Published January 5, 2025 | Version v1
Journal article Open

Vitrificación de embriones bovinos cultivados en un medio suplementado con β-mercaptoetanol

Description

Los objetivos de este trabajo fueron evaluar diferentes concentraciones de β-mercaptoetanol durante el cultivo in vitro de embriones bovinos y determinar el efecto de la vitrificación en la supervivencia de embriones cultivados en un medio suplementado con ß-ME. Experimento 1: post-fertilización, los cigotos fueron asignados a grupos de cultivo con 0, 50, 100 y 150 µM de β-ME. Experimento 2: los cigotos se cultivaron en presencia o ausencia de 100 µM de β-ME y fueron vitrificados por el método Cryologic. Se determinó la supervivencia, el total de células e índice de apoptosis como indicadores de calidad y criotolerancia. La tasa de división sigue una tendencia lineal negativa y fue menor a una concentración de 150 µM de β-ME, no encontrándose diferencias entre las demás concentraciones. El porcentaje de embriones sigue una tendencia cuadrática con una mayor respuesta a una concentración de 100 µM de β-ME. La suplementación con 100 µM de β-ME aumentó la supervivencia, el total de células y redujo la apoptosis. Se evidenció que la suplementación del medio de cultivo con β-ME (100 µM) aumenta el porcentaje de embriones, la supervivencia y el número de células posterior a la vitrificación por el método Cryologic y reduce la apoptosis.

Files

7.pdf

Files (794.8 kB)

Name Size Download all
md5:80898aa609ff4ea6e1157f4b790d6dea
794.8 kB Preview Download

Additional details

Dates

Accepted
2025-01-04

References

  • Ahmed EA, Sindi RA, Nasra AY, Hussein HA, Badr MA, Syaad A, Al-Saeed FA, Saad A, Abdelrahman M, & Montaser EA. (2023). Impact of epidermal growth factor and/or β-mercaptoethanol supplementations on the in vitro produced buffaloes' embryos. Frontiers in Veterinary Science, 10: 1-11 https://doi.org/10.3389/fvets.2023.1138220
  • Anchordoquy JP, Lizarraga RM, Anchordoquy JM, Nikoloff N, Rosa DE, Fabra MC, Peral-García P, & Furnus CC. (2019). Effect of cysteine, glutamate and glycine supplementation to in vitro fertilization medium during bovine early embryo development. Reproductive Biology, 19(4): 349–355. https://doi.org/10.1016/j.repbio.2019.10.002
  • Caamaño JN, Ryoo ZY, Thomas JA, & Youngs CR. (1996). β-Mercaptoethanol Enhances Blastocyst Formation Rate of Bovine in vitro-Matured/in vitro-Fertilized Embryos1. Biology Reproduction, 55(5), 1179–1184. https://doi.org/10.1095/biolreprod55.5.1179
  • Caamaño JN, Zae YR, & Youngs CR. (1998). Promotion of Development of Bovine Embryos Produced In Vitro by Addition of Cysteine and β-Mercaptoethanol to a Chemically Defined Culture System. Journal of Dairy Science, 81(2): 369–374. https://doi.org/10.3168/jds.s0022-0302(98)75586-9
  • Choe C, Yong SS, Eun KK, Cho SR, Hyun JK, Choi S, Han M, Han J, Son D, & Kang D. (2010). Synergistic Effects of Glutathione and BETA-Mercaptoethanol Treatment During In Vitro Maturation of Porcine Oocytes on Early Embryonic Development in a Culture System Supplemented with L-cysteine. Journal of Reproduction and Development, 56(6): 575–582. https://doi.org/10.1262/jrd.09-214h
  • de Mattos K, Pena BCA, Campagnolo K, Borba de Oliveira G, Ticiani E, Pinzón OCA, da Silva FAL., da Silva FH, Rodrigues JL, Bertolini M, Mezzallira A, & de Souza RE. (2022). β-Mercaptoethanol in culture medium improves cryotolerance of in vitro-produced bovine embryos. Zygote, 30(6): 830–840. https://doi.org/10.1017/s0967199422000338
  • Ferré LB, Kjelland ME, Taiyeb AM, Campos‐Chillon F, & Ross PJ. (2020). Recent progress in bovine in vitro‐derived embryo cryotolerance: Impact of in vitro culture systems, advances in cryopreservation and future considerations. Reproduction in Domestic Animals. 55(6): 659–676. https://doi.org/10.1111/rda.13667
  • Feugang JM, De Roover R, Moens A, Léonard S, Dessy F, & Donnay I. (2004). Addition of β-mercaptoethanol or Trolox® at the morula/blastocyst stage improves the quality of bovine blastocysts and prevents induction of apoptosis and degeneration by prooxidant agents. Theriogenology, 61(1): 71–90. https://doi.org/10.1016/s0093-691x(03)00191-2
  • Gallego F, Mancheno A, Mena L, & Murillo A. (2022). Bovine in vitro Embryo Production: State of the Art. ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M., 172–185. https://doi.org/10.18502/espoch.v2i2.11192.
  • Hamano S, Kuwayama M, Takahashi M, Okamura N, Okano A, & Nagai T. (1994). Effect of β-Merchaptoethanol on the Preimplantation Development of Bovine Embryos Fertilized In Vitro. Journal of Reproduction and Development, 40(4): 355–359. https://doi.org/10.1262/jrd.40.355
  • Hosseini SM, Forouzanfar M, Hajian M, Asgari V, Abedi P, Hosseini L, Ostadhosseini S, Moulavi F, Safahani M, Sadeghi H, Bahramian H, Eghbalsaied S, & Nasr-Esfahani MH. (2009). Antioxidant supplementation of culture medium during embryo development and/or after vitrification-warming; which is the most important? Journal of Assisted Reproduction and Genetics, 26(6): 355–364. https://doi.org/10.1007/s10815-009-9317-7
  • Khazaei M & Aghaz F. (2017). Reactive Oxygen Species Generation and Use of Antioxidants during In Vitro Maturation of Oocytes. Int. Journal Fertility and Sterility, 11(2): 63–70. https://doi.org/10.22074/ijfs.2017.4995
  • Mahmoud KGM, El-Sokary MMM, Kandiel MMM, Abou El-Roos MEA, & Sosa GMS. (2016). Effects of cysteamine during in vitro maturation on viability and meiotic competence of vitrified buffalo oocytes. Iranian Journal of Veterinary Research, Summer, 17(3): 165- 170. https://doi:10.22099/IJVR.2016.3810
  • Masaya G, Yonai M, Sakaguchi M, & Nagai T. (1999). Improvement of in vitro co-culture systems for bovine embryos using a low concentration of carbon dioxide and medium supplemented with β-mercaptoethanol. Theriogenology, 51(3): 551–558. https://doi.org/10.1016/s0093-691x(99)00009-6
  • Maslichah M, & Makuwira J. (2023). Analysis of mice (Mus Musculus L.) and hamster embryo development using culture and vitrification medium: Systematic review. Open Veterinary Journal, 13(2): 143–143. https://doi.org/10.5455/ovj.2023.v13.i2.2
  • Moussa M, Yang CY, Zheng HY, Li MQ, Yu NQ, Yan SF, Huang JX, & Shang JH. (2019). Vitrification alters cell adhesion related genes in pre-implantation buffalo embryos: Protective role of β-mercaptoethanol. Theriogenology, 125: 317–323. https://doi.org/10.1016/j.theriogenology.2018.11.013
  • Ranjbar A, Amin M, Mehran, & Moghadam F. (2019). Effect of Cysteamine and 13-Cis-Retinoic Acid on Bovine In Vitro Embryo Production. Kafkas Üniversites Veteriner Fakültesi Dergisi, 25(2):231-237. https://doi.org/10.9775/kvfd.2018.20778
  • Ribeiro ES, Gonçalves MC, Pedrotti MC, Martins LT, Gerger RPC, Vieira FK, Tavares KCS, Bertolini M, & Mezzalira A. (2009). 74 Effect of beta-mercaptoethanol on the vitrification cryotolerance of bovine in vitro-produced embryos. Reproduction, Fertility and Development, 21(1): 137-138. https://doi.org/10.1071/rdv21n1ab74
  • Rocha FNA de S, Leão BC da S, Nogueira É, Accorsi MF, & Mingoti, GZ. (2015). Effects of gaseous atmosphere and antioxidants on the development and cryotolerance of bovine embryos at different periods of in vitro culture. Zygote, 23(2): 159–168. https://doi.org/10.1017/s0967199413000361
  • Rocha FNA de S, Leão BCS, Nogueira E, Accorsi MF, & Gisele ZM. (2014). Reduced levels of intracellular reactive oxygen species and apoptotic status are not correlated with increases in cryotolerance of bovine embryos produced in vitro in the presence of antioxidants. Reproduction, Fertility and Development, 26(6): 797–797. https://doi.org/10.1071/rd12354
  • Sandal AI. (2018). In vitro maturation of bovine oocytes: beneficial effects of cysteamine. Journal of Dairy, Veterinary & Animal Research, 7(2): 64-65. https://doi.org/10.15406/jdvar.2018.07.00191
  • SAS. (1996). User´s guide. Statistics. Inst Inc.
  • Sidi S, Bogado OP, Velez AD, Nima AD, Krishna CP, Gretania R, Meese T, Filip Van N, Bawa EK, Voh AA, Olusegun JA, & Van Soom A. (2022). Lycopene Supplementation to Serum-Free Maturation Medium Improves In Vitro Bovine Embryo Development and Quality and Modulates Embryonic Transcriptomic Profile. Antioxidants 11(2): 344–344. https://doi.org/10.3390/antiox11020344
  • Software estadístico MINITAB 19. (2019). State College, PA Mnitab,Inc.
  • Soto HS, & Paramio MT. (2020). Impact of oxidative stress on oocyte competence for in vitro embryo production programs. Research in Veterinary Science, 132: 342–350. https://doi.org/10.1016/j.rvsc.2020.07.013
  • Sovernigo T, Adona P, Monzani P, Guemra S, Barros F, Lopes F, & Leal C. (2017). Effects of supplementation of medium with different antioxidants during in vitro maturation of bovine oocytes on subsequent embryo production. Reproduction in Domestic Animals, 52(4): 561–569. https://doi.org/10.1111/rda.12946
  • Takahashi M, Nagai T, Hamano S, Kuwayama M, Okamura N, & Okano A. (1993). Effect of Thiol Compounds on in Vitro Development and Intracellular Glutathione Content of Bovine Embryos. Biology Reproduction, 49(2): 228–232. https://doi.org/10.1095/biolreprod49.2.228
  • Torres V, Urrego R, Echeverri JJ, & López A. (2019). Estrés oxidativo y el uso de antioxidantes en la producción in vitro de embriones mamíferos. Revisión. Revista Mexicana de Ciencias Pecuarias, 10(2): 433–459. https://doi.org/10.22319/rmcp.v10i2.4652
  • Truong TT & Gardner DK. (2017). Antioxidants increase blastocyst cryosurvival and viability post-vitrification. Human Reproduction, 35(1): 12–23. https://doi.org/10.1093/humrep/dez243.
  • Vandaele L, Mateusen B, Maes D, de Kruif A, & Van Soom A. (2006). Is apoptosis in bovine in vitro produced embryos related to early developmental kinetics and in vivo bull fertility? Theriogenology, 65(9): 1691–1703. https://doi.org/10.1016/j.theriogenology.2005.09.014
  • Viana JHM, Figueiredo ACS, Gonçalves RLR, & Siqueira LGB. (2018). A historical perspective of embryo-related technologies in South America. Animal Reproduction., 15(Suppl. 1): 963–970. https:// doi/10.21451/1984-3143-AR2018-0016.