
H2020 – FOF – 09 – 2015

Innovation Action

Smart integrated immersive and symbiotic human-robot collaboration system
controlled by Internet of Things based dynamic manufacturing processes with

emphasis on worker safety

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 680734

D4.2 Early version of the integrated platform
and new Integration Plan

Report Identifier: D4.2

Work-package, Task: WP4, Task 4.1 Status – Version: 1.00

Distribution Security: CO Deliverable Type: D

Editor: PROS

Contributors:

Reviewers: TUM, CEA, ED

Quality Reviewer: ED

Keywords:

Project website: www.horse-project.eu

Ref. Ares(2018)1286411 - 08/03/2018

http://www.horse-project.eu/

D4.2 Early version of the integrated platform

and new Integration Plan

Page 2 of 72

Disclaimer

Use of any knowledge, information or data contained in this document shall be at the user's sole risk.
Neither the HORSE Consortium nor any of its members, their officers, employees or agents accept shall
be liable or responsible, in negligence or otherwise, for any loss, damage or expense whatever sustained
by any person as a result of the use, in any manner or form, of any knowledge, information or data
contained in this document, or due to any inaccuracy, omission or error therein contained.

The European Commission shall not in any way be liable or responsible for the use of any such
knowledge, information or data, or of the consequences thereof.

This document does not represent the opinion of the European Union and the European Union is not
responsible for any use that might be made of it.

Copyright notice

© Copyright 2015-2020 by the HORSE Consortium

This document contains information that is protected by copyright. All Rights Reserved. No part of this
work covered by copyright hereon may be reproduced or used in any form or by any means without the
permission of the copyright holders.

D4.2 Early version of the integrated platform

and new Integration Plan

Page 3 of 72

Table of Contents

ABBREVIATIONS .. 9

EXECUTIVE SUMMARY .. 11

1 INTRODUCTION ... 12

1.1 OBJECTIVES .. 12

Project health check ... 12

Demonstration of the implemented features .. 12

Validation of the collaboration of the modules .. 12

Validation of the installation and configuration instructions .. 12

Validation and refinement of the integration plan ... 12

1.2 SCOPE ... 13

2 COMPONENTS OF THE EARLY HORSE PLATFORM .. 16

2.1 GLOBAL EXECUTION - MPMS .. 17

2.1.1 INTERFACES ... 17

2.1.1.1 Databases ... 17

2.1.1.2 Messages ... 17

2.1.1.2.1 Task assignment message from HEG (MPMS) to FlexBe .. 17

2.1.1.2.2 Pickup task competition of reported by FlexBe to HEG (MPMS) .. 18

2.1.1.2.3 Task assignment for visual check to FlexBe.. 19

2.1.1.2.4 Visual check competition expected by FlexBe ... 20

2.1.1.2.5 Placing task assignment to FlexBe ... 20

2.1.1.2.6 Completion of the placing task .. 21

2.1.2 IMPLEMENTATION SPECIFICS ... 22

2.2 MESSAGING MIDDLEWARE ... 22

2.2.1 INTERFACES ... 23

2.2.1.1 Databases ... 23

2.2.1.2 Messages ... 23

2.2.2 Implementation specifics .. 23

2.3 LOCAL EXECUTION - FLEXBE.. 23

2.3.1 INTERFACES ... 23

2.3.1.1 Databases ... 23

2.3.1.2 Messages ... 24

2.3.2 IMPLEMENTATION SPECIFICS ... 24

2.4 ROS BRIDGE .. 24

2.4.1 INTERFACES ... 24

D4.2 Early version of the integrated platform

and new Integration Plan

Page 4 of 72

2.4.1.1 Databases ... 24

2.4.1.2 Messages ... 24

2.4.2 IMPLEMENTATION SPECIFICS ... 25

2.5 ROBOT INTERFACE ... 25

2.5.1 INTERFACES ... 25

2.5.1.1 Databases ... 25

2.5.1.2 Messages ... 25

2.5.2 IMPLEMENTATION SPECIFICS ... 25

2.6 DATABASE SERVER .. 25

2.6.1 TABLE ABILITY .. 25

2.6.2 TABLE AGENT .. 26

2.6.3 TABLE AUTOAGENT .. 26

2.6.4 TABLE BOX ... 26

2.6.5 TABLE HUMANAGENT .. 27

2.6.6 TABLE PARTNOWSAS ... 27

2.6.7 TABLE PROCESSDEF ... 27

2.6.8 TABLE ROLE ... 28

2.6.9 TABLE TASKDEF .. 28

2.6.10 TABLE TOOL .. 28

2.6.11 TABLE WSA .. 28

2.6.12 TABLE WSABATCH .. 29

2.7 DESIGN GLOBAL (MPMS) .. 29

2.7.1 INTERFACES ... 29

2.7.1.1 Databases ... 29

2.7.1.2 Messages ... 29

2.7.2 IMPLEMENTATION SPECIFICS ... 29

2.8 AUGMENTED REALITY ... 30

2.8.1 INTERFACES ... 30

2.8.1.1 Databases ... 30

2.8.1.2 Messages ... 30

2.8.2 IMPLEMENTATION SPECIFICS ... 31

2.9 SENSING SUPERVISOR .. 32

2.9.1 INTERFACES ... 32

D4.2 Early version of the integrated platform

and new Integration Plan

Page 5 of 72

2.9.1.1 Databases ... 32

2.9.1.2 Messages ... 32

2.9.2 IMPLEMENTATION SPECIFICS ... 32

2.10 GLOBAL SAFETY GUARD .. 32

2.10.1 INTERFACES ... 32

2.10.1.1 Databases .. 32

2.10.1.2 Messages .. 33

2.10.2 IMPLEMENTATION SPECIFICS ... 33

2.11 AGENT MANAGER ... 33

2.11.1 INTERFACES ... 33

2.11.1.1 Databases .. 33

2.11.1.2 Messages .. 33

2.11.2 IMPLEMENTATION SPECIFICS ... 33

3 TARGET PLATFORM .. 34

3.1 SINGLE PLATFORM.. 34

3.2 MULTIPLE PLATFORMS .. 34

4 TAXONOMY OF INTERFACES AND ALERTS .. 35

4.1 EVENT CLASSES .. 35

4.2 EVENT TYPES .. 35

4.2.1 PROCESS EVENT TYPES ... 35

4.2.2 TASK EVENT TYPES .. 36

4.2.3 STEP EVENT TYPES .. 37

4.2.4 AGENT EVENT TYPES ... 38

4.2.5 PRODUCT EVENT TYPES .. 39

4.2.6 OBJECT EVENT TYPES .. 40

4.3 EVENT LIST .. 40

5 PROTOTYPE DEMONSTRATION .. 42

6 INTEGRATION PLAN - REVISED ... 48

6.1 TIMELINE ... 48

6.1.1 MILESTONES .. 48

MS2 - First Integrated Prototype and Pilot Users Feedback .. 48

MS3 - Final Integrated Prototype and Pilot Users Feedback ... 49

MS9 - Final HORSE .. 49

D4.2 Early version of the integrated platform

and new Integration Plan

Page 6 of 72

6.1.2 WORK ORGANIZATION .. 49

6.1.3 DELIVERABLES: ... 51

6.1.4 BILATERAL INTEGRATION ACTIVITIES.. 52

6.2 RESOURCES .. 52

6.3 INTEGRATION PROCESS ... 53

6.3.1 INTEGRATION AND TESTING OF THE INTERNAL BUILDS AND PROTOTYPES .. 54

6.3.2 INTEGRATION, UPDATE AND TESTING OF THE PILOT PLATFORMS ... 59

6.4 INTEGRATION LEVEL.. 61

7 INTEGRATION INFRASTRUCTURE - REVISED ... 68

8 INTEGRATION RISKS - REVISED .. 70

9 CONCLUSION AND NEXT STEPS.. 72

D4.2 Early version of the integrated platform

and new Integration Plan

Page 7 of 72

List of Tables

TABLE 1: INTER-COMPONENT RELATIONS .. 15

TABLE 2: EVENT CLASSES ... 35

TABLE 3: PROCESS EVENT TYPES.. 36

TABLE 4: TASK EVENT TYPES ... 37

TABLE 5: STEP EVENT TASKS ... 37

TABLE 6: AGENT EVENT TYPES .. 39

TABLE 7: PRODUCT EVENT TYPES .. 39

TABLE 8: OBJECT EVENT TYPES ... 40

TABLE 9: EVENT LIST ... 41

TABLE 10: WP4 TASKS .. 49

TABLE 11: WP4 DELIVERABLES ... 52

TABLE 12: PLANNED PARTNERS' RESOURCES IN WP4 TASKS ... 53

TABLE 13: MATURITY LEVELS .. 62

TABLE 14: COMPLETION LEVEL PER COMPONENT ... 67

TABLE 15: INTEGRATION TASKS AND TOOLS ... 69

TABLE 16: INTEGRATION RISKS .. 71

List of Figures

FIGURE 1: HORSE IMPLEMENTATION AND INTEGRATION PHASES.. 14

FIGURE 2: EARLY PROTOTYPE COMPONENTS ... 16

FIGURE 3: EARLY PROTOTYPE DEMONSTRATION - BANNER WITH THE PARTICIPANTS OF THE DEMO 42

FIGURE 4: EARLY PROTOTYPE DEMONSTRATION - MPMS WORKFLOW ... 43

FIGURE 5: EARLY PROTOTYPE DEMONSTRATION - TASK ASSIGNMENT BY MPMS .. 43

FIGURE 6: EARLY PROTOTYPE DEMONSTRATION - THE BROKER PROCESSES THE MESSAGE ... 44

FIGURE 7: EARLY PROTOTYPE DEMONSTRATION - FLEXBE STATE MACHINE ... 45

FIGURE 8: EARLY PROTOTYPE DEMONSTRATION - ROBOT OPERATION ... 45

FIGURE 9: EARLY PROTOTYPE DEMONSTRATION - MPMS WORKFLOW PROGRESS ... 46

D4.2 Early version of the integrated platform

and new Integration Plan

Page 8 of 72

FIGURE 10: EARLY PROTOTYPE DEMONSTRATION - SITUATION AWARENESS ... 46

FIGURE 11: EARLY PROTOTYPE DEMONSTRATION - TASK EXECUTION .. 47

FIGURE 12: TIMELINE OF WP4 ACTIVITIES .. 48

FIGURE 13: WP4 EFFORTS DISTRIBUTION ... 53

FIGURE 14: INTEGRATION OF THE INTERNAL PROTOTYPES .. 55

FIGURE 15: COMPONENT DEVELOPMENT .. 56

FIGURE 16: TC DEVELOPMENT .. 58

FIGURE 17: INTEGRATION AND TESTING OF THE PILOT PLATFORM ... 60

D4.2 Early version of the integrated platform

and new Integration Plan

Page 9 of 72

Abbreviations

CI Continuous Integration

D2.1 Refers to HORSE Project deliverable D2.1 – System Requirements
Specification

D2.2 Refers to HORSE Project deliverable D2.2 – Complete System Design

D3.2 Refers to HORSE Project deliverable D3.2 - Early prototype of the
Manufacturing Process Management System (MPMS)

D3.4 Refers to HORSE Project deliverable D3.4 - Final Augmented Reality
software for user assistance in a manufacturing work cell

D3.5 Refers to HORSE Project deliverable D3.5 - Final prototype of a process-
execution environment for mixed-actor processes

D3.6 Refers to HORSE Project deliverable D3.6 - Early version of situation
awareness software for human and non-human agents in a manufacturing
work cell

D3.9 Refers to HORSE Project deliverable D3.9 - Final version of multi-modal
monitoring sub-system

D3.10 Refers to HORSE Project deliverable D3.10 - HORSE Cross-Domain
Messaging

D3.11 Refers to HORSE Project deliverable D3.11 - Final Version of HORSE Cross-
Domain Messaging

D3.12 Refers to HORSE Project deliverable D3.12 - Middleware for HORSE
Execution Domains

D3.13 Refers to HORSE Project deliverable D3.13 - Final Version of the Middleware
for HORSE Execution Domains

D3.15 Refers to HORSE Project deliverable D3.15 - Final version of intuitive
programming subsystem for robots and online, dynamic motion replanning

D4.1 Refers to HORSE Project deliverable D4.1 - Integration Plan and Description
of the Integration Infrastructure

DBMS Database management system

VCS Version Control System

D4.2 Early version of the integrated platform

and new Integration Plan

Page 10 of 72

WP Work package

D4.2 Early version of the integrated platform

and new Integration Plan

Page 11 of 72

Executive Summary
This deliverable describes the early version of the HORSE integrated platform. Various components
and functions have been presented on the HORSE validation workshop in Munich in May 2017 and
reported on the first annual review meeting in July 2017, while the final composition and verification
was done in November 2015, indicating the successful pass of MS2. This early HORSE prototype
validated the available functionality of the participating components demonstrating the optimal
collaboration with each other (no boundary or crash tests performed). The integration strategy was
adopted by the other components, who demonstrated basic collaboration capabilities.

The first introductory chapter describes the objectives and the scope of the document. The next
chapter presents the components of the early prototype, their level of maturity and integration.
Chapter 3 offers a short description of the target platform. Chapter 4 presents the taxonomy of event
types used for creating of the HORSE messages, the key communication interface between the
components. Chapter 5 describes the demonstration of the early prototype. The next chapters 6, 7
and 8 provide update of the integration plan, infrastructure and risks, that were introduced in D4.1.
The document ends with a conclusion and list of next tasks for WP4.

D4.2 Early version of the integrated platform

and new Integration Plan

Page 12 of 72

1 Introduction
The HORSE platform is a flexible software system interacting with sensors, operators and various
automation agents, engaged in an industrial process and enabling the safe collaboration of humans
and robots. The key platform components have been described in HORSE deliverable D2.2 Complete
System Design. These components have been implemented as part of Work package 3 activities and
described in detail in the relevant WP3 deliverables.

The early HORSE prototype is a collection of HORSE components that interact with each other and
demonstrate their capabilities by realizing a simple use case. This document contains description of
the use case and the involved components. The document extends the integration plan presented in
HORSE deliverable D4.1.

1.1 Objectives

The demonstrated early version of the HORSE platform marks the successful achievement of the
following objectives:

Project health check

The HORSE project is a complex endeavour of a consortium of partners with different background
and experience. The definition of internal milestones is vital for checking the health of the project and
the achievability of the project goals. The early version of the HORSE integrated platform is such an
important occasion for estimation of the progress, analysing the risks and designing and applying
corrective measures.

Demonstration of the implemented features

The early integrated prototype should align the understanding of the technical partners about the
further development and accommodation of the components they implement. Not of a lesser
importance is the improved understanding of the non-technical partners about the platform features
and limitations.

Validation of the collaboration of the modules

The early prototype contributed to the validation of the interfaces and the way the modules interact
with each other. A critical prerequisite for a successful collaboration is the availability of a working
middleware and persistent storage (databases).

Validation of the installation and configuration instructions

The activities to bring the components together contributed to a better understanding of the system
requirements of the individual components and their installation and configuration specifics.

Validation and refinement of the integration plan

The integration of the early version of the HORSE platform helped validating the implementation
strategy and plan published in D4.1.

D4.2 Early version of the integrated platform

and new Integration Plan

Page 13 of 72

1.2 Scope

The assembling of the early prototype of the HORSE platform is part of the integration efforts
performed in Work package 4 “System integration, prototyping and technical verification”. The
overall platform’s functionality, its context and scope are defined in the HORSE requirements
specification (D2.1) and HORSE system architecture (D2.2). The section 3.4 of the initial integration
plan (D4.1) denotes the bilateral relations of the components, defines several levels of maturity and
proposes a timeline of the bilateral integration activities.

The early version of the HORSE platform is part of HORSE Milestone 2 and is vital for collection of the
users’ feedback. This prototype, according to D4.1, should feature the implementation of the business
logic for the high-priority interfaces and features (all HORSE components). The interfaces and
business logic of the components should be implemented according to the implementation plan of
WP3. The components should be able to exchange data and the received data is checked for
consistency, but no complete handling of the deviations and exception will be expected.

The successful integration of the HORSE components depends on an elaborated and agreed taxonomy
of the messages bearing the events and alerts, a reliably operating messaging middleware and the
availability of the persistent data bases jointly used by the components. The HORSE partners under
the guidance of TUE have specified and documented the HORSE alerts and events. The release of the
HORSE Messaging Middleware, documented in D3.10 and D3.12 enables the transportation of the
messages. The needed database structures have been defined and configured too.

The mapping of the integration phases to the system architecture is displayed on Figure 1.

The components in white are not part of the runtime system. Their interaction with the execution
modules is limited to the provision of artefacts (scripts, models, data records) stored on the file
repository or jointly used databases. The artefacts needed for the platform demonstration and
validation will be created in advance in collaboration with the prospective users with the help of the
available tools.

The components in blue have proved mature levels of implementation and integration as part of joint
demonstrations.

The components in yellow demonstrated partial functionality and basic integration.

It needs to be pointed that the HORSE platform does not offer out of the box solution directly
applicable to the end user needs, rather than the flexibility for customers to extend the available data
structures, logical rules protocols to specific equipment.

In addition, the HORSE framework is just a prototype and does not provide complete handling of
errors or boundary cases. The integration activities have been oriented to achieve the successful
realisation of HORSE use cases and scenarios in their “best path of execution”.

D4.2 Early version of the integrated platform

and new Integration Plan

Page 14 of 72

Figure 1: HORSE implementation and integration phases

The next table (Error! Reference source not found.) presents the functional relationships between
the components (X) and indicates the level of integration achieved in the early prototype.

The components whose relationship is marked with “1” achieved the expected level of interaction and
participated in the early use case.

The relationships marked with “2” point to partial integration demonstrated detached from the early
use case.

D4.2 Early version of the integrated platform

and new Integration Plan

Page 15 of 72

M
id

d
le

w
a

re

D
a

ta
b

a
s
e

s

A
ge

n
t

M
gr

A
u

gm
en

te
d

 R
ea

li
ty

A
u

tA
ge

n
t

St
ep

 E
xe

c

C
am

er
as

 &
 S

en
so

rs

C
o

n
v

ey
o

r
B

el
t

(B
O

S)

D
ev

ia
ti

o
n

 M
o

n
it

o
r

D
ev

ic
e

A
b

st
ra

ct
io

n

D
ev

ic
e

M
an

ag
er

G
lo

b
al

 A
w

ar
en

es
s

G
lo

b
al

 E
xe

cu
ti

o
n

H
u

m
A

ge
n

t
St

ep
 E

xe
c

H
u

m
an

 D
et

ec
ti

o
n

/T
ra

ck
in

g

H
u

m
an

 M
ac

h
in

e
In

te
rf

ac
e

H
y

b
ri

d
 T

as
k

 S
u

p
er

v
is

o
r

K
U

K
A

 A
u

tA
ge

n
t

IN
F

L
o

ca
l S

af
et

y
G

u
ar

d

N
o

ti
fi

ca
ti

o
n

 B
ea

co
n

 (
B

O
S)

O
b

je
ct

 D
et

ec
ti

o
n

/T
ra

ck
in

g

Databases X

Agent Mgr 2 X

Augmented
Reality 2 X X

AutAgent Step
Exec 1

X

Cameras &
Sensors

 1

Conveyor Belt
(BOS) 2

X 2

Deviation
Monitor 2 X X 2

Device
Abstraction X X

Device Manager X X X

Global
Awareness 2 X 2

Global
Execution 1 1 X X

HumAgent Step
Exec X

X 2

Human
Detection/Trac
king 2 X X X X

Human
Machine
Interface X

X 2 X

Hybrid Task
Supervisor 1 X X 1 2 1 X

KUKA AutAgent
INF 1

X 1 X 1

Local Safety
Guard 2 X X

Notification
Beacon (BOS) X

X X X

Object
Detection/Trac
king 2 X X 1 2

VisionControl
(BOS) 2

X 2 2

Table 1: Inter-component relations

D4.2 Early version of the integrated platform

and new Integration Plan

Page 16 of 72

2 Components of the Early HORSE Platform
The sections of this chapter provide a description of the implementation of the individual components
of the early prototype.

Figure 2 presents the early prototype components and the realised interfaces. It needs to be pointed
out that the Message Broker and the ROS Bridge are acting as message forwarders. The functional
dependencies are depicted with blue arrows, while the paths that the messages travel between the
functional components are given with red arrows.

As seen from the figure, some components are able to send messages, but they are either not capable
to process them properly or the functional relations have not been fully demonstrated and for this
reason these components have not been included in the integrated use case. Their functionality has
been shown in bilateral demonstrations.

Figure 2: Early Prototype Components

D4.2 Early version of the integrated platform

and new Integration Plan

Page 17 of 72

2.1 Global Execution - MPMS

“The Manufacturing Process Management System (MPMS) is the collection of subsystems responsible
to orchestrate the activities of agents in the manufacturing processes. Orchestration is dependent on
the design of the processes and agents. The MPMS includes the functionality to design processes and
agents, and execute the processes by allocating activities to agents.” [D3.2]

The MPMS offers implementation of the components of the Global Execution functional group (part
of the high level functional domain HORSE Exec Global, HEG). A detailed description of the component
is provided in the HORSE deliverable “D3.5 Final prototype of a process-execution environment for
mixed-actor processes”. For this reason, the current section will only highlight the information and
features that describe the integration of the module in the early HORSE prototype.

The MPMS version partaking in the early HORSE prototype provided functional maturity and could
interact with the Messaging Broker and the components in HORSE Exec Local domain according to
the specification.

2.1.1 Interfaces

2.1.1.1 Databases

In order to orchestrate the agents’ tasks, the MPMS processes a workflow modelling the industrial
process and communicates with the HORSE Exec Local components over the HORSE Messaging
Middleware.

The workflow elements (processes, tasks, agents and products) are stored in separate tables of a
RDBMS. For the early HORSE prototype these tables have been populated with sample data, but the
structure of some tables (e.g. Product definitions) and the DB content need to be adapted to the end
user scenario.

The MPMS is interacting with all tables listed in Section 2.6. The connection with the DB server is done
JDBC protocol.

2.1.1.2 Messages

The MPMS is registered in the Messaging Middleware under the ID
“'heg/global_execution/production_execution_control/” followed by an instance of the workflow
execution.

The MPMS is capable of sending and processing the messages that follow the event taxonomy
(Chapter 4). The next pages present few examples of the interaction with FlexBe (implementing the
HybridTask Supervisor functionality).

2.1.1.2.1 Task assignment message from HEG (MPMS) to FlexBe

The MPMS instructs FlexBE (Hybrid Task Supervisor) to pick up an object via a task assignment
message like this:

{

 'Topic': 'task_assigned',

D4.2 Early version of the integrated platform

and new Integration Plan

Page 18 of 72

 'Priority': '2',

 'SenderID':

'heg/global_execution/production_execution_control/91051701-fb73-

11e7-be4e-00059a3c7a00',

 'Receivers': 'rosbridge',

 'Type': '2',

 'Subtype': 'notification',

 'Timestamp': '20180117103317',

 'MessageID': '20180117103317',

 'ResponseMessageID': '',

 'Internal': 'true',

 'ExternalBrokers': '*',

 'SenderBroker': '',

 'Body': {

 'op': 'call_service',

 'service': '/task_request',

 'args': {

 'agent_ids': '1',

 'task_id': '3',

 'task_instance_id': '504b5bbb-55a5-11e7-81c4-

2ae820524153',

 'process_instance_id': '81d29cf3-fb6d-11e7-8d69-

5cab20524153'

 }

 }

}

The message is sent to the Messaging Broker, then forwarded to the ROS Bridge from there to FlexBe

2.1.1.2.2 Pickup task competition of reported by FlexBe to HEG (MPMS)

The task completion message from the Hybrid Task Supervisor is expected as:

{

 'Topic': 'task_completed',

 'Priority': '2',

 'ResponseMessageID': '',

 'Receivers':

'heg/global_execution/production_execution_control/91051701-fb73-

11e7-be4e-00059a3c7a00',

 'SenderID': 'rosbridge',

 'MessageID': '',

 'Subtype': 'notification',

 'Type': '2',

 'Timestamp': '20180117103347',

 'ExternalBrokers': '*',

 'Internal': 'true',

 'SenderBroker': '',

D4.2 Early version of the integrated platform

and new Integration Plan

Page 19 of 72

 'Body': {

 'EventID': 'GEV010',

 'Details': {

 'process_instance_id': '81d29cf3-fb6d-11e7-8d69-

5cab20524153',

 'task_instance_id': '504b5bbb-55a5-11e7-81c4-

2ae820524153',

 'task_id': '3'

 },

 'Variables': {},

 'Entity': 'Task',

 'State': 'Completed',

 'Event_Type': 'task_completed',

 'Event_Class': 'Progress'

 }

}

The message is sent by FlexBe through the ROS Bridge and the Messaging Broker.

2.1.1.2.3 Task assignment for visual check to FlexBe

With this HORSE Message the MPMS instructs FlexBe to perform Visual check

{

 'Topic': 'task_assigned',

 'Priority': '2',

 'SenderID':

'heg/global_execution/production_execution_control/91051701-fb73-

11e7-be4e-00059a3c7a00',

 'Receivers': 'rosbridge',

 'Type': '2',

 'Subtype': 'notification',

 'Timestamp': '20180117103348',

 'MessageID': '20180117103348',

 'ResponseMessageID': '',

 'Internal': 'true',

 'ExternalBrokers': '*',

 'SenderBroker': '',

 'Body': {

 'op': 'call_service',

 'service': '/task_request',

 'args': {

 'agent_ids': '3,1',

 'task_id': '4',

 'task_instance_id': '7cf90b89-fb6e-11e7-8d69-

5cab20524153',

 'process_instance_id': '81d29cf3-fb6d-11e7-8d69-

5cab20524153',

D4.2 Early version of the integrated platform

and new Integration Plan

Page 20 of 72

 'checkpoints': '6'

 }

 }

}

2.1.1.2.4 Visual check competition expected by FlexBe

The message on completion of visual check task is expected from the Hybrid Task Supervisor as:

{

 'Topic': 'task_completed',

 'Priority': '2',

 'ResponseMessageID': '',

 'Receivers':

'heg/global_execution/production_execution_control/91051701-fb73-

11e7-be4e-00059a3c7a00',

 'SenderID': 'rosbridge',

 'MessageID': '',

 'Subtype': 'notification',

 'Type': '2',

 'Timestamp': '20180117103405',

 'ExternalBrokers': '*',

 'Internal': 'true',

 'SenderBroker': '',

 'Body': {

 'EventID': 'GEV010',

 'Details': {

 'process_instance_id': '81d29cf3-fb6d-11e7-8d69-

5cab20524153',

 'task_instance_id': '7cf90b89-fb6e-11e7-8d69-

5cab20524153',

 'task_id': '4'

 },

 'Variables': {

 'defect': {'value':true},

 'defectimage': {'value': 'image'}

 },

 'Entity': 'Task',

 'State': 'Completed',

 'Event_Type': 'task_completed',

 'Event_Class': 'Progress'

 }

}

2.1.1.2.5 Placing task assignment to FlexBe

D4.2 Early version of the integrated platform

and new Integration Plan

Page 21 of 72

The MPMS instructs the FlexBe to place the object in the packaging box. The HORSE Message looks
like this:

{

 'Topic': 'task_assigned',

 'Priority': '2',

 'SenderID':

'heg/global_execution/production_execution_control/91051701-fb73-

11e7-be4e-00059a3c7a00',

 'Receivers': 'rosbridge',

 'Type': '2',

 'Subtype': 'notification',

 'Timestamp': '20180117103406',

 'MessageID': '20180117103405',

 'ResponseMessageID': '',

 'Internal': 'true',

 'ExternalBrokers': '*',

 'SenderBroker': '',

 'Body': {

 'op': 'call_service',

 'service': '/task_request',

 'args': {

 'agent_ids': '1',

 'task_id’: '5',

 'task_instance_id': 'bfd23c21-fb6e-11e7-8d69-

5cab20524153',

 'process_instance_id': '81d29cf3-fb6d-11e7-8d69-

5cab20524153'

 }

 }

}

2.1.1.2.6 Completion of the placing task

The MPMS expects from FlexBe a confirmation message upon the task completion like this:

{

 'Topic': 'task_completed',

 'Priority': '2',

 'ResponseMessageID': '',

 'Receivers':

'heg/global_execution/production_execution_control/91051701-fb73-

11e7-be4e-00059a3c7a00',

 'SenderID': 'rosbridge',

 'MessageID': '',

 'Subtype': 'notification',

 'Type': '2',

D4.2 Early version of the integrated platform

and new Integration Plan

Page 22 of 72

 'Timestamp': '20180117103415',

 'ExternalBrokers': '*',

 'Internal': 'true',

 'SenderBroker': '',

 'Body': {

 'EventID': 'GEV010',

 'Details': {

 'process_instance_id': '81d29cf3-fb6d-11e7-8d69-

5cab20524153',

 'task_instance_id': 'bfd23c21-fb6e-11e7-8d69-

5cab20524153',

 'task_id': ‘5'

 },

 'Variables': {},

 'Entity': 'Task',

 'State': 'Completed',

 'Event_Type': 'task_completed',

 'Event_Class': 'Progress'

 }

}

2.1.2 Implementation Specifics

The MPMS is a Java product based on the Eclipse project Camunda. It could be started in Windows
and Linux platforms. It requires a HTTP Server (e.g. Apache) and internal DB.

2.2 Messaging Middleware

The HORSE Messaging Middleware provides a uniform and platform neutral mechanism for
exchanging JSON formatted messages between the HORSE components. The HORSE Architecture
defines two types of functional domains for runtime components – a single HORSE Exec Global (acting
as a Work Floor Manager) and one or more HORSE Exec Local (client platforms at the work cells). The
communication within a single domain is documented in HORSE deliverable “D3.12 - Middleware for
HORSE Execution Domains”, while the message exchange between the domains is explained in “D3.10
- HORSE Cross-Domain Messaging”.

All three components of the Messaging Middleware were available for integration and testing as
follows:

• The Messaging Agent was implemented as part of MPMS, ROS Bridge, Augmented Reality,
Global Safety Guard and KUKA Sunrise Platform, thus enabling their communication with the
Messaging Broker;

• An instance of the Messaging Broker was deployed on the HORSE Integration Server, offering
its functionality to all HORSE components capable of adequate participation in a joint test
session. Due to their limited number it has been decided to perform the test sessions with just
a single Broker and no Dispatcher.

D4.2 Early version of the integrated platform

and new Integration Plan

Page 23 of 72

• The Messaging Dispatcher has been tested separately with 3 Brokers and 3 dummy Agents.

2.2.1 Interfaces

2.2.1.1 Databases

The early versions of the Broker used no persistent databases.

2.2.1.2 Messages

The Messaging Broker receives all HORSE messages sent by the HORSE components by their
implementation of the Messaging Agent. The Broker is processing only the message headers in order
to determine the list of recipients. In order a component to be able to send and receive messages over
the Messaging Middleware it should send a control message to the Broker. The format of this type of
messages is elaborated in D3.11.

2.2.2 Implementation specifics

The Messaging Broker and the Messaging Dispatcher have been implemented as OSGi applications
deployed and executed in the ProSyst mBS (an implementation of OSGi Framework). The mBS, being
a Java based product, could be deployed in a great range of hardware platforms (from Raspberry Pi
to powerful servers) with Java support.

2.3 Local Execution - FlexBe

This component provides an implementation of the Hybrid Task Supervisor, the key component in
the HORSE Exec Local functional group. FlexBe is processing the task assigned by MPMS into a number
of execution steps and orchestrates their execution by the available agents. This module has been
implemented with Python and interacts with the other Python and C++ components (collision
avoidance, object recognition…) and the robot interfaces via ROS. The communication with the non-
ROS components and the HORSE Messaging Middleware is done though the ROS Bridge.

FlexBe could be used for designing the robotic operations and trajectories with the help of GPU-Voxel
module (a C++ implementation).

FlexBe demonstrated a mature level of functionality and was capable to interact with the other HORSE
components as expected.

This module has been documented in HORSE deliverable “D3.15 Final version of intuitive
programming subsystem for robots and online, dynamic motion replanning”.

2.3.1 Interfaces

2.3.1.1 Databases

This module does not interact with the DB server.

D4.2 Early version of the integrated platform

and new Integration Plan

Page 24 of 72

2.3.1.2 Messages

FlexBe is capable of receiving and processing task assignments from MPMS as described in Section
2.1.1.2 (MPMS Messages). These messages have been relayed through the Messaging Broker and the
ROS Bridge. The messages sent to FlexBe should be addressed to “rosbridge” and should bear a
parameter “service” with the value “/task_request” in the message body.

The communication with the automated agent (Universal Robot) has been done with the help of
scripts of standard ROS commands like this:

/execute_saved_trajectory/goal

moveit_action_wrapper/ExecuteTrajectoryGoal

file_name:

'package://bosch_trajectories/trajectories/01_home_to_pickup.json

'

trajectory: ' '

2.3.2 Implementation specifics

This module is implemented in Python and requires Linux OS (Ubuntu 16.04). The Step Definitions
utilised by FlexBe are presented in the form of ROS scripts, stored in the local file system.

In case the GPU-Voxel modul is used for design and tracking of the robot operations and movements,
a GPU Voxel is needed.

2.4 ROS Bridge

This module translates the JSON formatted messages exchanged over the HORSE Middleware into
ROS messages and vice versa. In this way the components already utilising ROS messaging are
provided access to the non-ROS. The IDs of the ROS components are provided as parameters in the
HORSE Messages and thus they could be globally addressed.

The component demonstrates mature functionality and interacts with the other components as
expected.

2.4.1 Interfaces

2.4.1.1 Databases

The ROS Bridge does not utilise persistent data and thus no interaction with the DB server is needed.

2.4.1.2 Messages

The ROS Bridge component ID when exchanging messages over the HORSE Messaging Middleware is
“rosbridge”. Its only role is to forward these messages to the ROS proper component as provided in
the “service” property in the message body.

D4.2 Early version of the integrated platform

and new Integration Plan

Page 25 of 72

Examples of such addressing could be seen in Section 2.1.1.2 (MPMS Messages).

2.4.2 Implementation specifics

The ROS Bridge is implemented in Python and requires Linux OS (e.g. Ubuntu 16.04)

2.5 Robot Interface

The FlexBe capabilities to interact with automated agents have been demonstrated with a Universal
Robot. The robot was able to execute operations on pick-up of an object, its relocation and placement
at the desired location. The operation details have been designed by FlexBe and commissioned to the
robot via ROS messages.

2.5.1 Interfaces

2.5.1.1 Databases

This module does not interact with the HORSE DB.

2.5.1.2 Messages

The robot (automated agent) is not directly addressed via the HORSE Messaging Middleware. It
interacts exclusively with the Hybrid Task Supervisor (FlexBe). This communication is done via
messages within the ROS domain.

2.5.2 Implementation specifics

The Robot Interface utilises the ROS capabilities of the used robot.

2.6 Database Server

The definitions of objects, tasks and agents are stored in persistent database with the following
structure.

In the early HORSE prototype, the DB server has been used mainly by MPMS.

2.6.1 TABLE ability

Description:

This table stores data describing the capabilities of the production agents, so that they are filtered and
evaluated against the requirements of the tasks. As result, the agents are assigned to the proper tasks.

Fields:

D4.2 Early version of the integrated platform

and new Integration Plan

Page 26 of 72

 ability_id bigint NOT NULL,

 ability_name character varying(50),

 ability_descr character varying(200)

2.6.2 TABLE agent

Description:

This table stores references to all agents.

Fields:

 agent_id bigint NOT NULL,

 agent_name character varying(50),

 agent_role_id integer,

 agent_operation_status character varying(20)

2.6.3 TABLE autoagent

Description:

This table stores the data of the automated agents.

Fields:

 auto_agent_id bigint NOT NULL,

 auto_agent_name character varying(255),

 auto_agent_operation_status character varying(255),

 auto_agent_role_id bigint,

 auto_agent_team_id bigint

2.6.4 TABLE box

Description:

This table is specific for BOS pilot and stores the parameters of the boxes for packaging the WSAs.

Fields:

 box_id bigint NOT NULL,

 box_no character varying(20),

D4.2 Early version of the integrated platform

and new Integration Plan

Page 27 of 72

 box_pn_no character varying(20),

 box_pn_type character varying(20),

 box_capacity integer,

 box_layer_capacity integer

2.6.5 TABLE humanagent

Description:

This table stores the data of the human agents.

Fields:

 human_agent_id bigint NOT NULL,

 human_agent_name character varying(255),

 human_agent_operation_status character varying(255),

 human_agent_role_id bigint,

 human_agent_team_id bigint

2.6.6 TABLE partnowsas

Description:

Contains the part numbers of the WSAs (BOS UC).

Fields:

 pn_id bigint NOT NULL,

 pn_no character varying(20) NOT NULL,

 pn_quantity integer,

 pn_type character varying(20),

 pn_checkpoints integer

2.6.7 TABLE processdef

Description:

This table stores the process definitions.

Fields:

 process_id bigint NOT NULL,

D4.2 Early version of the integrated platform

and new Integration Plan

Page 28 of 72

 process_name character varying,

 process_descr character varying

2.6.8 TABLE role

Description:

This table stores the roles of the agents.

Fields:

 role_id bigint NOT NULL,

 role_name character varying(50)

2.6.9 TABLE taskdef

Description:

This table stores the task definitions.

Fields:

 task_id bigint NOT NULL,

 task_name character varying(80),

 task_process_id integer

2.6.10 TABLE tool

Description:

This table stores the data of the tools involved in the process.

Fields:

 tool_id bigint NOT NULL,

 tool_sn character varying(20),

 tool_type character varying(50),

 tool_capacity character varying(20)

2.6.11 TABLE wsa

Description:

D4.2 Early version of the integrated platform

and new Integration Plan

Page 29 of 72

This table stores the WSA data (BOS UC).

Fields:

 wsa_id bigint NOT NULL,

 wsa_sn character varying(20) NOT NULL,

 wsa_pn_id integer

2.6.12 TABLE wsabatch

Description:

This table stores the data of the batches of WSAs (BOS Pilot).

Fields:

 batch_id bigint NOT NULL,

 batch_no character varying(255),

 batch_quantity integer,

 batch_type character varying(255)

2.7 Design Global (MPMS)

This tool has been used for designing the global production workflow and its artefacts (agents,
products, processes). A basic implementation of this component is provided by Camunda (realising
the MPMS). This module interacts only with MPMS and the DB Server. An extended description is
provided by HORSE deliverable D3.5.

2.7.1 Interfaces

2.7.1.1 Databases

The module uses all tables used by MPMS and listed in Section 2.6

2.7.1.2 Messages

The module interacts only with MPMS and does offer or utilises any public interfaces.

2.7.2 Implementation specifics

The Design Global tool is part of MPMS.

D4.2 Early version of the integrated platform

and new Integration Plan

Page 30 of 72

2.8 Augmented Reality

This module helps the human agents (operators) to perform complex operations providing
instructions and guidance through the process. The custom specific implementation efforts are very
high and required proper equipment that was not available during the phase of initial integration. For
this reason, the module functionality was demonstrated aside from the joint test session. The
communication with the Messaging Middleware has been validated at level of exchanging of dummy
messages. Further specification of the message payloads to the other HORSE components is in
process.

An implementation of this module has been presented by TNO as documented in HORSE deliverable
D3.4 Final Augmented Reality software for user assistance in a manufacturing work cell.

An alternative implementation of AR is being developed by TUM for the BOS Pilot site.

2.8.1 Interfaces

2.8.1.1 Databases

None of the AR implementations at that stage interacted with the DB Server.

2.8.1.2 Messages

The AR module of TNO successfully registered an Agent in the HORSE Messaging Middleware under
the ID “hel/local_execution/humagent_step_execution”. It was able to receive and response to MPMS
messages like these:

Task assignment (MPMS to AR)

{

 'Topic': 'task_assigned',

 'Priority': '2',

 'SenderID':

'heg/global_execution/production_execution_control/04c980ba-d1c0-

11e7-8d1e-dc3e20524153',

 'Receivers': 'hel/local_execution/humagent_step_execution',

 'Type': '2',

 'Subtype': 'notification',

 'Timestamp': '20170620115843',

 'MessageID': '20170620115843',

 'ResponseMessageID': '',

 'Internal': 'true',

 'ExternalBrokers': '*',

 'SenderBroker': '',

 'Body': {

 'agent_ids': '',

 'task_id': '19',

 'task_instance_id': '504b5bbb-55a5-11e7-81c4-

2ae820524153',

D4.2 Early version of the integrated platform

and new Integration Plan

Page 31 of 72

 'process_instance_id': 'b6276ad0-5033-11e7-be1e-

f65820524153'

 }

}

Report on task completion (AR to MPMS)

{

 'Topic': 'task_completed',

 'Priority': '2',

 'ResponseMessageID': '20170620115843',

 'Receivers':

'heg/global_execution/production_execution_control/04c980ba-d1c0-

11e7-8d1e-dc3e20524153',

 'SenderID': 'hel/local_execution/humagent_step_execution',

 'MessageID': '',

 'Subtype': 'notification',

 'Type': '2',

 'Timestamp': ' '20170620120343 ',

 'ExternalBrokers': '*',

 'Internal': 'true',

 'SenderBroker': '',

 'Body': {

 'EventID': 'EV108',

 'Details': {

 'process_instance_id': 'b6276ad0-5033-11e7-be1e-

f65820524153',

 'task_instance_id': '504b5bbb-55a5-11e7-81c4-

2ae820524153',

 'task_id': '19'

 },

 'Variables': {

 'aStringVariable': {'value':'aStringValue'},

 'aBooleanVariable': {'value': true}

 }

 }

}

2.8.2 Implementation specifics

The AR module provided by TNO has been implemented as Python application. The module utilises a
MS Kinect sensor to track the hand movements of the operator and a beamer to project instructions.

D4.2 Early version of the integrated platform

and new Integration Plan

Page 32 of 72

2.9 Sensing Supervisor

This module utilises IR cameras to track the motion of objects and humans, GPU-Voxel to calculate
and visualize images and trajectories in order to identify possible collisions and undertake measures
for their avoidance as documented in HORSE deliverable D3.9 Final version of multi-modal
monitoring sub-system.

The module has demonstrated a mature functionality and was capable of exchanging sample
messages over the Messaging Middleware. A further specification of the messages according to the
taxonomy provided in Chapter 4 in in process.

2.9.1 Interfaces

2.9.1.1 Databases

This module does not interact with the DB Server.

2.9.1.2 Messages

The module was able to send control messages to the Broker and a dummy payload message. A further
specification of the payload messages is necessary in order to achieve a full integration with the other
HORSE components.

2.9.2 Implementation specifics

This component has been implemented as C++ module.

Requires IR cameras and GPU-Voxel

2.10 Global Safety Guard

This module is capable of processing events and sensor data originating in multiple work cells and
thus identify safety risks on global level. The early prototype of this module has demonstrated proper
analysis and handling of the incoming data and was able to exchange sample messages over the
HORSE Messaging Middleware. A detailed description of this module is provided in HORSE
deliverable D3.6 - Early version of situation awareness software for human and non-human agents in
a manufacturing work cell.

2.10.1 Interfaces

2.10.1.1 Databases

This version of the module does not interact with the DB server

D4.2 Early version of the integrated platform

and new Integration Plan

Page 33 of 72

2.10.1.2 Messages

The module was able to send sample alert messages. A further specification of the payload messages
is necessary in order to achieve a full integration with the other HORSE components.

2.10.2 Implementation specifics

Not known

2.11 Agent Manager

This module is implemented as part of the Messaging Broker and provides information about the
available messaging agents. It could be used by the MPMS to ensure dynamic assignment and
reassignment of tasks to the available agents. Similarly, it could be used by the other members of the
distributed execution environment to check if the intended recipient of their messages is available.

The module functionality has been successfully tested, but not utilised by the current versions of the
other HORSE components.

2.11.1 Interfaces

2.11.1.1 Databases

This module does not handle with persistent data and thus it does not interact with the DB server.

2.11.1.2 Messages

The Agent Manager processes HORSE Messages of type System. An initial description is available in
Section 3.4.3 Retrieving System Information of HORSE Deliverable D3.12

2.11.2 Implementation specifics

The Agent Manager is implemented as OSGi module executable in ProSyst mBS, a Java implementation
of OSGI Framework specification.

D4.2 Early version of the integrated platform

and new Integration Plan

Page 34 of 72

3 Target Platform
The HORSE Framework provides a software system to be deployed in industry facilities. It features a
Work Floor Manager (or HORSE Exec Global, i.e. MPMS) and HORSE Exec Local instances at the work
cells. Depending on the number of work cells and number of HORSE modules requested by the end
user as well as their physical distribution there are several deployment options.

3.1 Single platform

This setup is possible in case of fewer components interacting with agents and equipment in a close
distance. In this case the system requirements of these components are not contradicting or
competing with each other it is possible to deploy all components on a single HW platform. Such a
deployment is planned for BOS pilot site. The characteristics of such platform are as follows:

- CPU – at least Intel core i5
- RAM – at least 8 GB
- Disk space – at least 10 GB
- GPU-Voxel if the Sensing Supervisor is needed.
- OS – Linux Ubuntu 16.04
- Java Runtime 8
- Apache Web Server
- postgresql database engine

Automated agents (robots), beamers, cameras, displays and additional sensors according to the needs
of the end user.

3.2 Multiple platforms

In this case the HORSE Framework is deployed on several HW platforms, connected with each other
via local network.

The HW platforms could have similar profile as the one above. Depending on the expected load,
alternative implementations of the existing HORSE components, the need of special communication
protocols (e.g. etherCAT), slight differences in one or more of the HW specifications should be
expected.

Since the HORSE framework features only one Work Floor Manager, one of the platforms should host
the MPMS. The recommended location of the DB server is on the same platform as MPMS, but a
distribution of the bases is possible, if needed.

D4.2 Early version of the integrated platform

and new Integration Plan

Page 35 of 72

4 Taxonomy of Interfaces and Alerts
The messages related to the production or safety aspects are subject of strict format, where some of
the properties are predefined as follows.

4.1 Event Classes

The event classes reflect the highest possible level of classification

Event Class Description

Notification Standard events related to the normal execution of the workflows

Compensation Deviation of the expected behaviour

Critical Critical condition with a defined resolution process

Failure Identified failure of an assigned task

Undeveloped Reserved for further specification, if needed

Table 2: Event Classes

4.2 Event Types

In addition to the event class each event is attributed to a given event type. The next subsections list
the event types with respect of the following entities:

• Process
• Task
• Step
• Agent
• Product
• Object

4.2.1 Process Event Types

These are the events related to the progress of the production process.

State

Event type (indicates
that corresponding
state is reached) Event class Condition Action

Responsible
module

Draft
(design in
progress) process_created Notification Design-time

Create new process
entry in data store

Process flow
modelling

Available
(design
approved) process_defined Notification Design-time

Save process
definition in data
store

Process flow
modelling

D4.2 Early version of the integrated platform

and new Integration Plan

Page 36 of 72

Execution

process_started Notification
Normal
operation Control process flow

Production
execution
control

process_resumed Notification
Process is in
waiting state Control process flow

Production
execution
control

Waiting process_paused Notification
Normal
operation

Wait until
process_resumed
event is received

Production
execution
control

Completed process_completed Notification
Normal
operation

Close process
instance

Production
execution
control

Out-of-
normal process_irregular Compensation

Out-of-normal
recognised
according to
process
heuristics

Initiate corrective
action according to
process control flow

Production
execution
control

Unknown
issue
detected

Calculate risk factor
according to
operating
parameters

Global safety
guard

Suspended process_interrupted Critical

No safety risk

Initiate corrective
action according to
process control flow

Next task
selection

Safety risk
present Halt production

Global safety
guard

Terminated process_terminated Failure

Production
incomplete

Notify production
planner

Worklist
delivery

Production
complete

Close process
instance

Production
execution
control

Safety risk
present Halt all production

Global safety
guard

Table 3: Process Event Types

4.2.2 Task Event Types

The events of these types are related to the assignment and execution of the individual production
tasks.

State

Event type (indicates
that corresponding
state is reached) Event class Condition Action

Responsible
module

Draft task_created Notification Design-time

Create new task
entry in data
store

Task
identification

D4.2 Early version of the integrated platform

and new Integration Plan

Page 37 of 72

Available task_defined Notification Design-time

Save task
definition in data
store Task parser

Active
(queued in
process logic) task_activated Notification

Select next task
to be executed

Next task
selection

Assigned (to
a team)

task_assigned Notification Team formed

Send task
instruction to
agent(s)

Worklist
delivery

task_assigned_failed Undeveloped

No
appropriate
agents found

Send notification
to responsible
person

Production
execution
control

Execution task_started Notification
Normal
operation

Subscribe to
task events

Event
processing

Completed task_completed Notification

Task
successfully
completed

Follow process
control flow

Production
execution
control

Suspended task_interrupted Critical

Out-of-normal

Initiate corrective
action according
to process
control flow

Next task
selection

Safety risk
present Halt production

Local safety
guard

Cancelled task_cancelled Failure Out-of-normal

Notify
responsible
person

Agent
selection

Table 4: Task Event Types

4.2.3 Step Event Types

The events of these type are related to the execution of the production steps.

State

Event type (indicates that
corresponding state is
reached)

Event
class

Draft step_created Notification

Approved step_defined Notification

Active (queued
in task logic) step_activated Notification

Execution step_started Notification

Suspended step_interrupted Critical

Completed step_completed Notification

Table 5: Step Event Tasks

D4.2 Early version of the integrated platform

and new Integration Plan

Page 38 of 72

4.2.4 Agent Event Types

The events of these types identify the availability and status of the production agents

State

Event type (indicates
that corresponding
state is reached) Event class Condition Action

Responsible
module

Draft agent_created Notification Design-time
Create new agent
entry in data store Design agent

Defined
(but not yet
active) agent_defined Notification Design-time

Save agent
definition in data
store Design agent

Idle

agent_activated

Notification

Connected to
service
directory

Agent publishes
its services as
available ??

Notification

No connection
to service
directory

Notify responsible
person ??

agent_released Notification

Task
successfully
completed

Agent makes its
services available
again ??

Assigned
(to a team) agent_assigned

Notification
Agent currently
idle

Assigned task
added to agent
tasklist

Worklist
delivery

Notification
Agent currently
occupied

Assigned task
added to agent
tasklist

Worklist
delivery

Compensation
Agent currently
stalled or stuck

Task assignment
rejected

Production
execution
control

Occupied agent_started

Notification
Normal
operation

Perform normal
task as dictated
by process
control flow

Hybrid task
supervisor

Compensation Out-of-normal

Perform
corrective action
according to
priority list

Hybrid task
supervisor

Notification Teaching

Inactive agent_deactivated Notification
Normal
operation

Remove agent
services from
directory ??

Stalled agent_halted

Critical
No other steps
in queue

Attempt to
resolve problem
according to
internal heuristics

Hybrid task
supervisor

Other steps
available in
queue

Attempt to
perform
alternative steps

Hybrid task
supervisor

D4.2 Early version of the integrated platform

and new Integration Plan

Page 39 of 72

Stuck agent_failed

Failure
Safety risk
present

Halt all movement
and sound alarm

Local
awareness

 No safety risk

Attempt to
resolve problem
according to
internal heuristics

Local
awareness

Table 6: Agent Event Types

4.2.5 Product Event Types

The events of these types are related to the status of completion and quality of the products

State
Event type (indicates that
corresponding state is reached)

Event
class Condition Action

Responsible
module

Draft product_created Notification
Design-
time

Defined product_defined Notification
Design-
time

In production product_started Notification
Normal
operation

In storage product_stored Notification
Normal
operation

Produced product_completed Notification
Normal
operation

Delivered product_distributed Notification
Normal
operation

Defective product_nonconformance_detected

Critical
Repair
possible

Initiate
corrective
action
according to
process
control flow

Next task
selection

Repair
impossible

Notify
responsible
person

Agent
selection

Discarded product_discarded Failure
Out-of-
normal

Notify
responsible
person

Agent
selection

Discontinued product_discontinued Notification
Normal
operation

Table 7: Product Event Types

D4.2 Early version of the integrated platform

and new Integration Plan

Page 40 of 72

4.2.6 Object Event Types

The events of these types bear information about the objects and tools used in the production

Usable

object_activated Notification

object_released Notification

In use object_seized Notification

Unusable

object_failed Failure

object_deactivated Critical

Unknown object_unknown Undeveloped

Table 8: Object Event Types

4.3 Event List

The following events have been handled by the early prototype. They are based on the events
specified for the Bosch pilot site.

Event
ID Event name Description Event_type

EV001 WSA arrives
The first wiper system assembly arrives for visual control
and packaging. process_started

EV002
Alert: Defect
detected

Visual control camera indicates that the WSA is non-
conforming. process_irregular

EV003

1 minute
without
response

The operator fails to provide a response within one minute
after a WSA is flagged as non-conforming. process_irregular

EV004

Alert: Team
leader notified
of defect

A notification sent to the team leader if the operator fails to
provide a response within one minute. process_progress

EV005

Team leader
received
defect
message

The team leader is informed that a defect was detected and
not handled within the designated time. process_progress

EV006

Intervention
request
accepted

The team leader indicates that he/she will handle the
unhandled defect. process_progress

EV007

Intervention
request
rejected

The team leader acknowledges the defect, but indicates that
he/she can’t assist with it. process_progress

EV008

4 minutes
without
response

The team leader fails to provide a response within four
minutes after a WSA is flagged as non-conforming. task_interrupted

EV009

WSA placed
in secondary
rejected box

A true defect or unmanaged suspected defect is placed in a
secondary box for later. process_interrupted

D4.2 Early version of the integrated platform

and new Integration Plan

Page 41 of 72

EV010
Rejected box
full No space available in the secondary box. task_interrupted

EV011

Production
process
halted

Production is stopped because of excessive defects or no
space in the secondary box. process_terminated

EV012

False
negative
recorded

The human agent determined that the defect is flagged
incorrectly. process_progress

EV013
Defect
corrected

The human agent was able to repair the defect within the
designated time. process_progress

EV014
True defect
evaluated

The human agent determined that the WSA was defective
and determined the cause of the defect. process_irregular

EV015

Predefined
layer count
reached

Depending on the packaging size, an alert is triggered an X
number of WSA's in advance of a full layer. process_progress

EV016
New layer
available

The human agent indicates that a sheet has been placed
and the layer is available process_progress

EV017

Predefined
box count
reached

Depending on the packaging size, an alert is triggered an X
number of WSA's in advance of a full box. process_progress

EV018
New box
available

The human agent indicates that a new packaging box is
placed allowing packaging to continue. process_progress

EV019 Layer full
The HORSE System detects that the layer is full, preventing
further packaging task_interrupted

EV020

WSA
packaging
completed

WSA successfully placed in packaging and process
instance is completed process_completed

Table 9: Event List

D4.2 Early version of the integrated platform

and new Integration Plan

Page 42 of 72

5 Prototype Demonstration
The components of the early prototype were engaged in the execution of a joint demonstration.

Figure 3: Early Prototype Demonstration - Banner with the participants of the demo

The workflow executed by MPMS contained several tasks and condition points. The task assignments
were sent over the Messaging Broker and ROS-Bridge to FlexBe. FlexBe operated the robot and
reported completion of the tasks back to the MPMS. The MPMS decided for the next task and the
process was repeated.

As a very first step, the MPMS and the ROS Bridge registered their agents in the Messaging Broker.

The MPMS executed the workflow based on the model presented in the next figure.

D4.2 Early version of the integrated platform

and new Integration Plan

Page 43 of 72

Figure 4: Early Prototype Demonstration - MPMS Workflow

The MPMS initiated the execution of a given task

Figure 5: Early Prototype Demonstration - Task assignment by MPMS

The MPMS sent the task assignment through a payload message (like the one in Section 2.1.1.2.1) over
the HORSE Messaging Middleware. The Broker received the message and determined its recipients.

D4.2 Early version of the integrated platform

and new Integration Plan

Page 44 of 72

Figure 6: Early Prototype Demonstration - the Broker processes the message

The Broker forwarded the message to the ROS Bridge.

The ROS Bridge processed the message body and based on the value of “Service” property determined
the ultimate recipient of the message (in this case, FlexBe). Then the ROS Bridge converted the JSON
formatted message into a ROS message and sent it to FlexBe.

FlexBe retrieved the model for execution of the given task and started the execution of its workflow
by sending ROS instructions to the robot interface (like the one presented in Section 2.3.1.2 /FlexBe
Messages).

D4.2 Early version of the integrated platform

and new Integration Plan

Page 45 of 72

Figure 7: Early Prototype Demonstration - FlexBe state machine

The robot interface instructed the robot (automated agent) to perform a specific operation (pick up
an object, move it and drop it in a specified location).

Figure 8: Early Prototype Demonstration - Robot operation

The results of the robot operations were processed by FlexBe and when the task was completed, the
FlexBe sent a notification message (as the one in Section 2.1.1.2.2) up the communication channel
back to MPMS.

The MPMS identified the progress, followed the decision path and initiated the next task.

D4.2 Early version of the integrated platform

and new Integration Plan

Page 46 of 72

Figure 9: Early Prototype Demonstration - MPMS workflow progress

In parallel to the main process (the production track), a constant evaluation of the execution
environment and participants has been performed. Two IR cameras monitored the work cell for
human intrusion or deviations from the planned behaviour. Any disruptions have been reported to
FlexBe.

Figure 10: Early Prototype Demonstration - Situation awareness

D4.2 Early version of the integrated platform

and new Integration Plan

Page 47 of 72

Figure 10 shows the point cloud of the live environment constructed with the data of the IR cameras.

The next figure gives a schematic presentation of the demonstration steps presented above.

Figure 11: Early Prototype Demonstration - Task Execution

A video with the highlight of the demo could be watched at:

https://www.youtube.com/watch?v=hD1vqzykLkU

https://www.youtube.com/watch?v=hD1vqzykLkU

D4.2 Early version of the integrated platform

and new Integration Plan

Page 48 of 72

6 Integration Plan - Revised
This section presents the time and resource constrains of the WP4 activities, defined in the DoW. Then
it introduces the integration plan for bringing together the WP3 components into a single platform.

6.1 Timeline

Figure 12 presents the timeline of the activities within Work package 4.

Figure 12: Timeline of WP4 activities

The activities in WP4 start at project month 15 (January 2017) and continue till the end of the project
(project month 54, April 2020).

6.1.1 Milestones

There are three important milestones (the yellow boxes in the timeline), related to the product of this
work package:

MS2 - First Integrated Prototype and Pilot Users Feedback

This milestone has been reached in November 2017 (project month 25). It marked the release of the
early version of the integrated HORSE platform, its demonstration to the pilot users and the
collection of their feedback. The key features of this release:

• Full functioning messaging middleware – the components should be able to send messages
to the intended recipient components and these messages should be properly delivered -
ACHIEVED;

• Databases that could be accessed by the components for retrieving and storing data.
Availability of sample data for internal test purposes - ACHIEVED;

D4.2 Early version of the integrated platform

and new Integration Plan

Page 49 of 72

• The individual HORSE components should implement the functionality planned for this
milestone as defined in their implementation plan - ACHIEVED;

• The integration of the devices, robots and machines should be at least of level of ability to
communicate with the platform – PARTIALLY ACHIEVED.

The components that constitute the early prototype and their functional and integration maturity
are presented in Chapter 2. More details are presented in Section 6.4 Integration Level.

MS3 - Final Integrated Prototype and Pilot Users Feedback

This milestone in June 2018 (project month 32). It marks the completion of the development process and

the full integration of all components. The customised versions of the complete HORSE platform should

be deployed at pilot sites and made available for field trials in industrial conditions. The definition of

“complete HORSE platform” is presented in Section 6.4 Integration Level.

Update

The integration activities are on track and the milestone will be reached on time.

MS9 - Final HORSE

This milestone marks the completion of HORSE project, scheduled for April 2020. The integration efforts

up to this moment comprise of updating the deployed instances of the platform with new releases of the

HORSE modules, containing bug fixes and implementations of minor but critical changes whose need has

been identified during the platform exploitation at the pilot sites and Competence Centres.

Update

No deviations of the plan are observed.

6.1.2 Work Organization

The implementation activities are divided into three tasks, as follows:

Number Name Begin End

T4.1 Integration plan and infrastructure M15 M18

T4.2 Integrated platform versions M18 M54

T4.3 Integration Tests M22 M26

Table 10: WP4 tasks

The bulk effort should be invested up to project month 32 (Milestone 3), when the final release of the
integrated HORSE platform should be made available for field trials at the pilot test sites and centres
of competence. From that moment on there will be no development and integration, but only support.

D4.2 Early version of the integrated platform

and new Integration Plan

Page 50 of 72

The partners’ activities are synchronised in bi-weekly telephone conferences, remote and physical
integration sessions. The work progress is reported to the rest of the consortium during the telephone
conferences of HORSE Coordination Board and the relevant physical meetings.

A virtual platform has been setup as integration and test server in order to experiment with
deployment and operation of the HORSE components.

D4.2 Early version of the integrated platform

and new Integration Plan

Page 51 of 72

6.1.3 Deliverables:

Number Name Short Description Due

D4.1 Integration plan and
description of the
integration infrastructure

Initial integration plan, strategy
and infrastructure.

Originally scheduled
for M17 (Mar 2017)

First release in M20
(Jun 2017) – rejected

Revision in M25 (Nov
2017) –resubmitted

D4.2 Early version of the
integrated platform and
new integration plan

A demonstration of the early
prototype and an update of the
integration plan

This document

Originally scheduled
for M20 (Jun 2017)

Rescheduled to M25
(Nov 2017)

To be released in M29
(Mar 2018)

D4.3 Final Version of the
integrated platform

Specification of the integrated
platform (description of the
hardware, modules and their
versions, integrated sensors
and actuators, communication
channels and protocols) and
demonstration of its final
integration.

M26 (Dec 2017)

Rescheduled to M32
(Jun 2018)

D4.4 Test Report Integration tests report,
containing description of the
integration test cases with
reference to their source code,
log of execution of the
integration test cases and
registration of raised issues
with their status

Originally scheduled
for M26 (Dec 2017)

Realistic release M32
(Jun 2018) with the
release of the final
prototype

D4.5 User Handbook A guide for the HORSE platform.
This deliverable should contain
the description of the HORSE
platform and its functionality
for user point of view. The
platform itself should be
completed shortly after.

Originally scheduled
for M22 (Aug 2017)

Expected in M28 (Feb
2018), to be used by
the pilot sites
deployments

D4.6 Final HORSE Framework Demonstration of the final
HORSE framework, updated

M54 (Apr 2020)

D4.2 Early version of the integrated platform

and new Integration Plan

Page 52 of 72

according to the final users
feedback

Table 11: WP4 deliverables

The schedule of the WP4 activities and the early deliverables suffered from a short delay. It is due to
the technical problems on the setting up the integration infrastructure and experimenting with
partners’ modules and products from within Bosch network after the adoption of the Bosch security
and communication restrictions on the acquired ProSyst Software GmbH.

In addition, not all HORSE components provided the required maturity as expected. The danger of
delay in the release of the early integrated platform and the accompanying integration tests and thus
missing the MS2, has been thwarted by investing of unplanned resources in aligning and negotiating
the interfaces of the components. This resulted in reducing the efforts of the documenting the work
done. This is the reason for the significant delay of this document.

The progress of the integration activities provides confidence that the next milestone will be reached
on time.

6.1.4 Bilateral Integration Activities

The status of the realisation of the functional relationships is given in Section 1.2 and Chapter 2

6.2 Resources

The integration efforts are supported by the majority of the partners. The partners developing
software modules or providing equipment would assist in the proper integration and testing of
these components. The representatives of the pilot test sites would assist in the customisation and
deployment of the HORSE Platform in their production facilities. They would also provide the
valuable feedback from the field trials.

The next table and diagram present the partners resources per task and the share of each task in the
entire efforts pool.

Partner \Task T4.1. T4.2. T4.3. Sum

ED

4,0

4,0

CEA 0,5 3,0 2,0 5,5

FZI 1,0 6,5 3,0 10,5

PROS 5,0 12,0 7,0 24,0

TUE 4,0 4,0 5,0 13,0

OPSA 1,0 5,0

6,0

D4.2 Early version of the integrated platform

and new Integration Plan

Page 53 of 72

KUKA 1,0 3,0 1,0 5,0

BOS 1,0 4,0

5,0

TUM 2,0 2,0 2,0 6,0

TNO 1,0 3,0 5,0 9,0

CET 1,5 2,0

3,5

Total 18,0 48,5 25,0 91,5

Table 12: Planned partners' resources in WP4 tasks

Figure 13: WP4 efforts distribution

As clearly seen on Figure 13, the greatest amount of the efforts is planned for actual
integration, followed by designing, implementing and performing integration tests.

6.3 Integration Process

The HORSE integration process is an iterative one with increasing level of automation and functional
coverage.

It could be divided into two major parts:

• Integration and Testing of the Internal Builds and Prototypes

T4.1 18; 20%

T4.2 48.5; 53%

T4.3 25; 27%

Efforts per Task

D4.2 Early version of the integrated platform

and new Integration Plan

Page 54 of 72

• Integration, Update and Testing of the Pilot Platforms

.

6.3.1 Integration and Testing of the Internal Builds and Prototypes

This is the initial and internal part of the integration work. It includes all activities up to the release
of a testable prototype for the pilot sites. During this period the components and the test cases are
gaining in complexity and stability. Figure 14 visualises the process. The orange boxes denote
interaction with the integration infrastructure.

D4.2 Early version of the integrated platform

and new Integration Plan

Page 55 of 72

Figure 14: Integration of the internal prototypes

D4.2 Early version of the integrated platform

and new Integration Plan

Page 56 of 72

The process is iterative and incremental. Each iteration contains the following groups of operations:

A. Preparation and analysis
Each iteration starts with analysis of the results of the previous iteration. For the very first
iteration the analysis is done based on the output of WP2. Special attention is paid on the reported
problems, which are prioritised.

B. Development of HORSE components and features
The WP3 developers fix the identified problems, add new features and increase the stability of
their components. They configure their development environment. The activities related to the
Component Development are presented in next diagram.

Figure 15: Component development

B.1 Feature Design.

D4.2 Early version of the integrated platform

and new Integration Plan

Page 57 of 72

In this step the features to be implemented or the changes to be applied are properly designed
and documented.

B.2 Setup of the Development Environment.
The developers retrieve from the integration server (repository of source code or binary
artefacts) the latest stable versions of the needed HORSE components and libraries.

B.3 Feature Development
The developers implement the assigned feature. For team work purposes the intermediate work
could be stored in the source code repository.

B.4 Internal Testing
The partners responsible for the implementation of a given component (or its feature) are
responsible for its quality. The team performs internal validation (unit tests, code review etc.) of
the component before submitting it to the integration testing. In case of problems, several
development iterations can be performed.

B.5 Push in the Version Control System
The healthy code is submitted into the Version Control System (VCS) with a mark “QC1 OK”
(Quality Check 1) as ready for the integration testing.

C. Development of the test cases (TCs)
The TCs are auxiliary applications and scripts, aimed to verify and validate specific capabilities of
the HORSE platform, respectively HORSE components. The steps are similar to those for the
HORSE components’ development. However, because the TCs are not part of the HORSE platform,
they are tested only internally.

D4.2 Early version of the integrated platform

and new Integration Plan

Page 58 of 72

Figure 16: TC development

C.1 TC Design
The design of the TCs includes specification of the tested components, initial conditions and input
data, interaction with the tested modules and expected output data. The TC definitions are formal
descriptions of the HORSE use cases.

C.2 TC Development
The TCs are implemented with the help of the development tools. For team work purposes the
intermediate work could be stored in the source code repository.

C.3 Internal Testing
This step aims to check the quality of the implemented TCs.

C.4 Push in VCS
The healthy TCs are made available for use by the testing environment

The steps in each group B or C are performed independently. Within each group multiple
iterations are possible.

D4.2 Early version of the integrated platform

and new Integration Plan

Page 59 of 72

D. Update Test Configuration
The Test Configuration lists all components that are eligible for integration testing. At predefined
periods (e.g. at night) or conditions (e.g. new QC1 update), the CI Server initiates the compilation
and consistence check of the QC1 tagged component update. Upon success the update is added to
the Test Configuration.
This group of operations is executed for each QC1 tagged component update.

D.1 Quality Check 2
The CI Server retrieves the QC1 tagged components updates from the VCS. It executes the building
tools and scripts to compile and build temporary instances of these components. In case of
success, the component is tagged as “QC2 OK” (Quality Check 2 – successful compilation by CI,
ready for next step). Otherwise the update is tagged as “QC2 Fail” and a report is sent to the
developer.

D.2 Update of the Test Configuration
The list of the test-ready components (the Test Configuration) is updated with the new version of
the freshly certified component. A deployable build of the component is stored in the Artefacts
Repository.

D.3 Build of the Test Configuration
The CI Server retrieves the deployable builds of Test Configuration components from the Artefacts
Repository and deploys/installs them on the test platforms.

E. Integration Testing
The testing application attempts to run the available TCs on the temporary builds. For each TC the
following steps are executed.

E.1 TC Execution
The TC feeds the testable components with the predefined input data, interacts with the system
simulating the external systems, actors and devices, and keeps record of the processes and
communication. The debug information is collected. A test protocol is created.

E.2 Test Report
Once the TC execution ends, a comparison of the observed end conditions and the expected ones
is done. The test report is created and stored in the code repository. In case of problems or
misbehaviour a ticket in the Issue Tracking System is created. If possible, the ticket is assigned to
the developer of the component, causing the problem.

After the successful completion of all TCs, the Test Configuration is considered integrated prototype
(i.e. ready for field trials at pilot sites).

6.3.2 Integration, Update and Testing of the Pilot Platforms

Once the individual HORSE components reach the required level of maturity and the integrated
prototype passes the internal tests, it can be deployed at the test sites and validated in industrial
conditions with real equipment. This is the initial point of a new cycle of iterative integration

D4.2 Early version of the integrated platform

and new Integration Plan

Page 60 of 72

activities, as schematically depicted on Figure 17. These are applied on any stable system updates
produced and internally tested, as described in the previous section

Figure 17: Integration and testing of the pilot platform

Using the deployment tools and scripts, the prototype components are installed at the target
platforms at the pilot test sites. (It should be reminded that the HORSE Framework is a distributed
solution, consisting of at least two physical entities, whose components are collaborating via a unified
messaging infrastructure).

This step is followed by a cycle of execution sessions for each relevant integration TC. These are
performed with real industrial equipment, factory operators and the IT infrastructure at the test sites.
After the completion of each tests session, the test protocol is submitted to the integration server and
the identified issues are reported to the development/support team by creating an issue in the
ticketing system.

D4.2 Early version of the integrated platform

and new Integration Plan

Page 61 of 72

The results of all TCs are analysed and a decision if the prototype could be handed over for production
operation is taken.

Once HORSE platform is accepted for production operation, any new system update undergoes the
integration and validation processes described in sections 6.3.1 and 6.3.2 before updating the live
platform.

6.4 Integration Level

The degree to which a component is capable to interact with the other HORSE components, actors and
external software and hardware determines its integration level. The integration level depends on the
maturity level of the component. The integration level of the entire HORSE platform is a direct product
of the integration levels of its components.

In respect of integration the following maturity levels of the components developed in the HORSE
project are identified:

Level Description Integration aspect

Mockup No implementation available.

The component’s interfaces are identified and
aligned with the other relevant components. The
common data structures are defined.

The data and control flows are
described.

The integration is at design and
planning stage.

Empty shell
(Placeholder)

No business logic available.

The component implements the HORSE
messaging agent and is able to send and receive
messages through the HORSE messaging
middleware. The value of the sent
message/request parameters is not relevant

Communication is realised on
transport level only.

Dummy No real business logic available

The component is capable to:

• compose messages/requests structured
according to the interface specification
and send them to the other components.
The value of the sent message/request
parameters could be predefined
(hardcoded).

• receive messages/requests from other
components and retrieve their
parameters and log them. No further
processing of the received data is
required.

The components are aware of
each other. The execution of an
exemplary scenario, in which
the components are exchanging
predefined data, could be
demonstrated.

D4.2 Early version of the integrated platform

and new Integration Plan

Page 62 of 72

Development
prototype

Partial implementation (core functionality and
some of the high-priority interfaces)

The component is capable to respond correctly
to some of the received messages. It is assumed
that the delivered data is meaningful and
properly formatted, so no exception handling is
done. Having in mind the limited functionality,
the component can be used together with other
components.

The TCs are designed to cover
the available functionality.

Not all UCs can be realised and
validated.

(Part of)
Early
integrated
platform

=MS2

The business logic for the high-priority
interfaces and features (all HORSE components).

The interfaces and business logic of the
component are implemented according to the
implementation plan (WP3). The received data
is checked for consistency. Deviations and
exception are partially handled.

The TCs cover all components
and their functionality
(according to the WP3
implementation plan). End-to-
end testing with properly
selected pre-conditions and
data completes without
exceptions and the observed
results (post-condition) match
the expected ones

Final
integrated
platform

=MS3

The component is implemented according to the
specification at the agreed level of completion.

The TCs are successfully
executed with great range of
test data. The incorrect data is
properly handled. The
integrated platform can be
validated at test sites.

Table 13: Maturity levels

Next table presents the expected functionality of HORSE components for the early and final versions
of the integrate platform (resp. MS2 and MS3). An update of the status at MS2 is added.

Component name MS2 Features MS3 Features

Messaging Middleware Complete implementation of the
MW components (agents,
dispatcher & broker);

Other components can exchange
messages;

ACHIEVED

History Log added,

Complete implementation

Databases Initial version of the table
structures;

Final table structures;

Real data for the pilot sites;

D4.2 Early version of the integrated platform

and new Integration Plan

Page 63 of 72

Dummy data;

Scripts for creation of the tables and
feeding the data;

The individual components access
the tables directly

ACHIEVED

Updated and final scripts.

Agent Mgr Functional implementation
complete;

Exchange of the correct data over
the middleware;

ACHIEVED

Storing of dummy data in DB;

DROPPED

Storing the correct data in DB
(DROPPED);

Components can retrieve
information about the available
agents.

Augmented Reality

(pilot specific)

Projecting of virtual controls and
instructions;

Execution of sample workflows;

Exchange of dummy data over the
middleware;

ACHIEVED

Storing of dummy data in DB;

DROPPED

Implementation of the pilots’
specific workflows complete;

Exchange of the correct payload
over the middleware;

Storing the correct data in DB
(DROPPED)

AutAgent Step Exec

(Pilot / HW specific)

Simple interaction of KUKA robot
over ROS;

Simple interaction of KUKA robot
over Messaging MW;

ACHIEVED

Interaction with pilots’ robots over
ROS and MsgMW.

Cameras & Sensors The components’ specific sensor
and cameras are integrated in the
respective components;

ACHIEVED

Additional cameras and sensors
according to the needs of the pilot
sites.

Conveyor Belt (BOS) Initial implementation of PLC
communication (transport level);

Implementation of complete PLC
communication (transport &
payload);

D4.2 Early version of the integrated platform

and new Integration Plan

Page 64 of 72

Exchange of dummy data over the
middleware;

ACHIEVED

Exchange of the correct payload
over the middleware;

Deviation Monitor Implementation of the processing
logic complete;

Operation with dummy data and
rules;

Exchange of dummy data over the
middleware;

ACHIEVED

Storing of dummy data in DB;

DROPPED

Implementation of pilot specific
features (rules & data);

Exchange of the correct payload
over the middleware;

Storing the correct data in DB
(DROPPED)

Device Abstraction Support of generic device classes;

Exchange of generic sensor data
and commands over the
middleware;

Initial version of the device model.

Storing of dummy data in DB;

MISSING (no UC and devices)

Support for pilot’s specific devices
and protocols complete

Device model updated;

Exchange of the correct payload
over the middleware;

Storing the correct data in DB

TO BE RECONSIDERED

Device Manager Support of device protocols ZigBee
and Z-wave;

Integration with Device
Abstraction;

Storing of device configuration data
in DB;

MISSING (no UC and devices)

Support of pilot specific protocols
added;

TO BE RECONSIDERED

Global Awareness Implementation of the engine
complete;

Execution of sample rules;

Exchange of dummy data over the
middleware;

Storing of dummy data in DB;

PARTIALLY ACHIEVED

Implementation of pilot specific
features;

Rules for all pilots implemented;

Exchange of the correct payload
over the middleware;

Storing the correct data in DB

D4.2 Early version of the integrated platform

and new Integration Plan

Page 65 of 72

Global Execution
(MPMS)

Implementation of the engine
complete;

Execution of the initial versions of
the pilots’ workflows;

Exchange of dummy data over the
middleware;

Storing of dummy data in DB;

ACHIEVED

Implementation of pilot specific
features;

Workflow scripts for all pilots
implemented;

Exchange of the correct payload
over the middleware;

Storing the correct data in DB

HumAgent Step Exec

(pilot specific)

Sample interaction with the
Augmented Reality engine (feeding
sample instructions);

Simulation via messages for the
missing HMI devices.

Exchange of dummy data over the
middleware;

ACHIEVED

Storing of dummy data in DB;

MISSING (consider dropping)

Interaction with the HMI devices
to be used in pilot tests.

Exchange of the correct payload
over the middleware;

Storing the correct data in DB

Human
Detection/Tracking

Implementation of the detection
and tracking logic complete;

Exchange of dummy data over the
middleware;

ACHIEVED

Storing of dummy data in DB;

DROPPED

Data models for the pilot specific
environments;

Exchange of the correct payload
over the middleware;

Storing the correct data in DB
(DROPPED)

Human Machine
Interface

(UC specific)

Simulation via messages.

MISSING

Implementation of pilot specific
HMI;

Exchange of the correct payload
over the middleware;

Hybrid Task
Supervisor

Implementation of the FlexBE
engine complete;

Execution of sample ROS scripts for
steps execution;

Exchange of dummy data over the
middleware;

All ROS scripts implemented;

Exchange of the correct payload
over the middleware;

Storing the correct data in DB
(DROPPED)

D4.2 Early version of the integrated platform

and new Integration Plan

Page 66 of 72

ACHIEVED

Storing of dummy data in DB;

DROPPED

KUKA AutAgent INF
(BOS)

Sending sample ROS instructions to
a KUKA robot.

MISSING

Sending of all BOS specific
operations to KUKA robot, used by
BOS pilot.

KUKA AutAgent INF
(OPSA)

Exchange of dummy data
(instructions & status) over the
messaging middleware;

MISSING

Exchange of the correct data with
the KUKA robot, used by OPSA
pilot;

KUKA AutAgent INF
(TRI)

Exchange of dummy data
(instructions & status) over the
messaging middleware;

MISSING

Sending of all TRI specific
operations to KUKA robot, used by
TRI pilot.

Local Safety Guard Implementation of the core logic
complete;

Operation with dummy data and
rules;

Exchange of dummy data over the
middleware;

ACHIEVED

Storing of dummy data in DB

DROPPED;

Completion of the pilot specific
features (data & rules);

Exchange of the correct payload
over the middleware;

Storing the correct data in DB
(DROPPED)

Notification Beacon
(BOS)

Conceptual design of the OPC-UA
communication;

Specification of the communication
with the HORSE Messaging
Middleware.

MISSING

Exchange of the correct payload
over OPC-UA;

Exchange of the correct payload
over the middleware;

Object
Detection/Tracking

Implementation of the detection
and tracking logic complete;

Exchange of dummy data over the
middleware;

Storing of dummy data in DB;

MISSING

Data models for the pilot specific
artefacts and environments;

Exchange of the correct payload
over the middleware;

Storing the correct data in DB

D4.2 Early version of the integrated platform

and new Integration Plan

Page 67 of 72

VisionControl (BOS) Initial implementation of etherCAT
communication (transport level);

Exchange of dummy data over the
middleware;

ACHIEVED

Sending of the correct payload
over etherCAT;

Handling of the check results and
images;

Exchange of the correct payload
over the middleware;

Storing the correct data in DB

Table 14: Completion Level per Component

D4.2 Early version of the integrated platform

and new Integration Plan

Page 68 of 72

7 Integration Infrastructure - Revised
The integration infrastructure should provide the means for the software developers, integrators and
testers to perform their tasks described in Section 6.3 Integration Process.

Table 15 lists the integration infrastructure parts mapped to the individual parts of the integration
process.

Operation Done by Involved II Component

Analysis of reported
issues

Developer
Ticketing System

Setup of the Development
Environment

(Component
Development)

Developer

Artefacts Repository (Nexus)

Source Code Repository / Version Control System
(Git)

Feature/TC Development

(Component
Development)

Component/TC
Developer

Source Code Repository / Version Control System
(Git)

Push in the Version
Control System

(Component
Development)

Component/TC
Developer

Source Code Repository / Version Control System
(Git)

Retrieval from the Version
Control System

(QC2)

Automated
Script

CI Server (Jenkins)

Source Code Repository / Version Control System
(Git)

Building of the component

(QC2)

Automated
Script

CI Server (Jenkins)

Building tools (Maven, CMAKE Script)

Artefacts Repository (Nexus)

Update of the Test
Configuration

Integrator Source Code Repository / Version Control System
(Git)

Building Deployable Units Integrator Building tools (Maven, FZI Script; ProSyst
mToolKit)

Configuration of the Test
Environment

Integrator Test Execution Framework (ProSyst TEE)

Deployment of the Test
Components

Integrator /
Scripts

Artefacts Repository (Nexus)

D4.2 Early version of the integrated platform

and new Integration Plan

Page 69 of 72

Execution of Internal
Integration Tests

Test Engineer /
Script

Test Execution Framework (ProSyst TEE)

Test Report Test Engineer /
Script

Test Execution Framework (ProSyst TEE)

Source Code Repository / Version Control System
(Git)

Ticketing System

Table 15: Integration tasks and tools

The majority of the integration infrastructure components will be hosted and executed on a virtual
machine provided by TUM and featuring Ubuntu operating system. The VCS is realised as dedicated
Git project at the TUM public server with managed access.

D4.2 Early version of the integrated platform

and new Integration Plan

Page 70 of 72

8 Integration Risks - Revised
The following risks have been considered. An update is provided, when needed.

ID Risk Probability Severity Measure

IntR-1 Component implementation
missing or delayed

Low

High

High Regular progress checks;

Intensive alignment

IntR-2 Design and implementation of
test modules too complex
resulting in insufficient test
coverage.

High Medium Revision of the test
priorities

IntR-3 New/changed requirements Medium Medium Detailed requirements
specification through an
intensive collaboration of
all stakeholders.

IntR-4 Critical equipment missing (e.g.
due to the high acquisition &
maintenance costs)

Low High Early specification of the
needed equipment with
cost estimation,
procurement planning

IntR-5 Wrong time estimation (could
result in IntR-1)

Medium Medium Regular progress checks
and review of the
priorities

IntR-6 Unexpected project scope
expansion

Low High Understanding and
agreement on the project
scope by all stakeholders
before the integration
start

IntR-7 Wrong budget estimation (could
result in IntR-1, IntR-2 & IntR-4)

Medium Medium Regular progress and
costs checks

IntR-8 Dropping off a key contributor
(person)

High Medium Proper knowledge
management to enable
seamless takeover of
responsibilities by other
contributor

IntR-9 Dropping off a partner
(organization)

Low High Due the specialization of
the partners a complete
takeover of
responsibilities by a single
party is unlikely.

D4.2 Early version of the integrated platform

and new Integration Plan

Page 71 of 72

However, the shared
expertise of the
consortium is sufficient to
deal with partitioned
responsibilities of the
partners

IntR-10 Insufficient team communication Medium Medium Regular synchronization
calls, issue review,
documentation

IntR-11 Technical problems
(competency gap) by the
integration of the existing
equipment and technologies at
pilot test sites or competence
centers.

High High Intensive collaboration
and commitment of all
involved parties,
especially the pilot hosts
and competence centers
hosts

Table 16: Integration risks

D4.2 Early version of the integrated platform

and new Integration Plan

Page 72 of 72

9 Conclusion and Next Steps
This document describes the early HORSE prototype and presents un update of the integration plan.

The following has been observed:

• Most of the components are implemented and integrated according to the initial plan
• The HORSE framework allows the existence of multiple solutions for one component. This

allows the end user to select the one that fits his needs best.
• This official deliverable suffers from a significant delay.

The next steps in the WP4 activities include:

• Gap analysis of the D2.2 Use Cases and distribution of the responsibilities on designing and
developing of the TCs,

• Deployment guide for all components
• Identification, design, implementation and execution of key TCs
• Release of the final integrated HORSE platform

