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A comparative study across the most widely known blockchain technologies is

conducted with a bottom-up approach. Blockchains are disentangled into build-

ing blocks. Each building block is then hierarchically classified in main and

subcomponents. Then, alternative layouts for the subcomponents are identified

and compared between them. Finally, a taxonomy tree summarises the study and

provides a navigation tool across different blockchain architectural configurations.
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I. INTRODUCTION

A. Background

The original combination of a set of existing technologies (distributed ledgers, public-key encryption,

merkle tree hashing, consensus protocols) gave origin to the peer-validated decentralised cryptocurrency

called Bitcoin, originally introduced by Satoshi Nakamoto in 2008 (Nakamoto, 2008). That year was the

advent of a new technological milestone: the blockchain. Indeed, blockchain has an impact well beyond the

specific case of Bitcoin. Blockchain allows new forms of distributed software architecture to be developed

where networks of untrusted (and sometimes even ”corrupted”) participants can establish agreements on

shared states for decentralised and transactional data in a secure way and without the need of a central

point of control or regulatory supervision. Blockchain ensures trust among anonymous counterparts in

decentralised systems without the need of central supervisor authorities in charge of verifying the correctness

of the records in the ledger. Blockchain has been announced as a disruptive technological innovation, but

in fact there is no true technical innovation in Bitcoin and blockchain. All components had already been

developed before the Bitcoin paper by Nakamoto in 2009. From a historic perspective, the technology has

its roots in Ralph C. Merkle’s elaborations, who proposed the Merkle Tree the use of concatenated hashes

in a tree for digital signatures in the 1970s. Hashing has been used since the 1950s for cryptography for

information security, digital signatures and message-integrity verification. A decade later, Leslie Lamport

proposed using the a hash chain for a secure login. The first crypto currency for electronic cash was described

at the dawn of the web in 1990. Further evolutions and refinements of the hash chain concept were introduced

in a paper by Neil Haller on the S/KEY application of a hash chain for Unix login, in 1994. Adam Back

proposed hashcash in 2002, but the first eletronic currency based on blockchain with the PoW concept

has been proposed by Satoshi Nakamoto’s disruptive paper (Nakamoto, 2008) While blockchain is still in

its emergent technological phase, it is fast evolving with the potential to see applications in many sectors

of our socio-economic systems. According to some statistics summarised by the World Economic Forum

the interest on blockchain expanded globally (R., 2016). Almost thirty countries are currently investing in

blockchain projects. In the finance sector, 80% of the banks predict to initiate blockchain-related projects

by 2017. Additionally, venture capital investments with a focus on blockchain activities raised to over 1.4

billion USD from 2014 to 2016. Since blockchain digital currencies combine together features of money with

those of a payment system (Tasca, 2016), also central banks started to look into the technology. Currently,

over nineteen central banks worldwide do blockchain research and development. Some of them - e.g. the

Bank of England - already have commissioned studies on CBDC (Central Bank Digital Currency). From

the industry side, over one hundred corporations have joined blockchain working groups or consortia and

the number of patents filled increased to more than three thousand at the moment of writing. These figures

show the importance and awareness of blockchain as one of the most promising emerging technologies that,

together with Artificial Intelligence, Internet of Things or nanotechnology will have a pervasive impact on

the future of our society.
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B. Problem Statement and Research Method

At the moment of writing, we may argue that – according to the Technology Life Cycle theory –, we

are at the beginning of the so called phase of “fermentation” which is characterised by technological uncer-

tainty due to the evolution of the blockchain into alternative technological paths. The industry promotes

different model designs favouring functional and performance aspects over others in order to meet specific

business goals. Currently there are thousands of blockchain projects worldwide under development, some of

them run on forks of successful technologies such as Bitcoin or Ethereum, while others propose completely

new functionalities and architectures. For this reason, instead of blockchain, in the remainder we refer to

blockchains or blockchain technologies in order to encompass all the possible architectural configurations

and, for the sake of simplicity, also the larger family of distributed ledger technologies, i.e., community

consensus-based distributed ledgers where the storage of data is not based on chains of blocks. An hetero-

geneous development combined with a lack of interoperability may endanger a wide and uniform adoption

of blockchains in our techno- and socio-economic systems. Moreover, the variation of blockchain designs

and their possible configurations represent an hindrance for software architectures and developers. In fact,

without the possibility to resort on a technical reference model, it is difficult to measure and compare the

quality and the performance of different blockchains and those of the applications sitting on top of them.

To summarise, current variations of blockchain software architectures pose greatest concerns from different

perspectives according to heterogeneity:

1. Heterogeneity is a problem according to the future developments of blockchain technologies, because

it will prevent the developments, adoption and stimulation of innovation.

2. Heterogeneity will prevent consistency in drafting laws and policies related to the regulation of

blockchain/DLT technologies.

3. Heterogeneity will increase ambiguity in the application of consumer protection laws and regulations.

4. Heterogeneity will decrease the clarity on how the workforce may be affected by blockchain/DLT

technology.

5. Heterogeneity will decrease the clarity in academic research and sharpen concepts that underpin the

development of new applications and solutions.

6. Heterogeneity will prevent the development of the specification and use of solutions using blockchain

and DLT for ISO, IEC and other SDOs.

7. Heterogeneity will increase the complexity in the understanding of blockchain/DLT for NGOs and

how this technology may be applied in the relevant sectors to achieve social and economic goals
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The solution to these problems requires the setting up of software reference architectures where standardised

structures and respective elements and relations shall provide templates for concrete blockchain architec-

tures. Standards can emerge naturally because of market adoption (industry driven) or because imposed

by institutes and organisations. In the first group we may include initiatives like the Accord Project 1, the

ChinaLedger 2 or R3 3. In the second group we may refer to the initiative conducted by the International

Organization for Standardization (ISO) with the establishment of the technical committee ISO/TC 307 on

Blockchain and distributed ledger technologies. Several working groups with different topics to discuss have

been settled. In particular, the ISO/TC 307/WG1 working group is engaged with the reference architecture,

taxonomy and ontology. Overall, a long-term standardisation of the blockchain reference architecture will

benefit every industry. Thus, a standard for software reference architecture is necessary in order to enable

a level playing field where every industry player and community member can design and adopt blockchain-

enabled products or services under the same very conditions with possibility of data exchange. As it is

for the Internet, several institutes of standardisations (e.g., ETF in cooperation with the W3C, ISO/IEC,

ITU) set a body of standards. Internet standards promote interoperability of systems on the Internet by

defining precise protocols, message formats, schemas, and languages. As a result, different hardware and

software can seamlessly interact and work together. Applied to World Wide Web (as a layer on the top of the

Internet), standards bring interoperability, accessibility and usability of web pages. Similarly, the adoption

of blockchain standards will promote the blossoming and proliferation of interoperable blockchain-enabled

applications. Thus, if we envisage a future where blockchains will be one of the pillars of our society’s

development, it is necessary to begin discussing and identifying standards for blockchain reference architec-

tures. The aim of this study is to highlight the need for standard technical reference models of blockchain

architectures. This is timely aligned with the industry sentiment which currently pushes organisations for

standardisation to set industry standards. In order to support an appropriate co-regulatory framework for

blockchain-related industries, a multi-party approach is necessary as it is for the Internet where both national

standards, international standards and a mixture of standards and regulation are in place. In the mid-long

term, the lack of standards could bring risks related to privacy, security, governance, interoperability and

risk to users and market participants, which can appear as blockchain related cyber crimes. From a prelim-

inary survey conducted in 2016 by Standards Australia, more than 88% of respondents indicate the role for

standards in supporting the roll out of blockchain technologies (Standards Australia, 2016). Given the above

problem statement the goal of this research is to conduct a review of the blockchain literature. This will be

a preparatory work in order to identify and logically group different blockchain (main and sub) components

and their layouts. In order to achieve our goal we propose a blockchain taxonomy. Taxonomy comes from

the term ”taxon” which means a group of organisms. In our case, taxonomy encompasses the identification,

description, nomenclature, and hierarchical classification of blockchain components. This is different from

an ontology which would be more focused on the study of the types, properties, and interrelationships of the

1 https://www.accordproject.org/
2 http://www.chinaledger.com/
3 https://www.r3.com/
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components and events that characterize a blockchain system. The methodological approach is composed

of the following steps:

1. Analysis across blockchains. A pre condition is the analysis of vocabulary and terms to sort out

ambiguities and disagreements. A literature review of the existing technologies is the starting point

to limit complexity and organise information in schematic order. To avoid dis-ambiguities the analysis

is supported by a merge of common blockchain terminologies developed so far in the literature and

grouped in an online database 4. This brings together a vocabulary of key blockchain terms to provide

readers with a foundation upon which understanding the classification and taxonomy developed in

the rest of the analysis. The identification of the blockchain components is the crucial part of this

analysis. In order to explore all the possible domains of blockchain components and their topological

layout indicating their runtime interrelationships, we conduct a comparative study across different

families of blockchain applications: digital currencies, application stacks, asset registry technologies

and asset centric technologies. See Table I in Appendix and (Tasca, 2015) for more information.

2. Framework setting. After the comparative study, a hierarchical taxonomy (a tree structure of clas-

sifications for a given set of components) has been defined and populated by main, sub and (when

necessary) sub-sub components.

3. Layout categorisation. Finally, for the components in the lowest level of the hierarchical structure,

different layouts are introduced and compared. However, as the technology keeps evolving, the layouts

are increasing over time. Thus, for the sake of simplicity, we limit our study to two or three main

layouts per each sub or sub-sub component.

C. Results

The result of the component-level analysis is a universal blockchain taxonomy tree that groups (in a

hierarchical structure) the major components, identifies their functional relation and possible design patterns.

In general, it is difficult to evaluate whether a taxonomy or an ontology is good or bad, especially if

the domain is a moving target like the blockchain. Taxonomies and ontologies are generally developed to

limit complexity and organise information but all serve different purposes and generally evolve over time

(see e.g. the evolution of the famous Linnaean taxonomy in biology). Thus, our taxonomy simply aims to

contribute to set the foundations for classifying different kinds of blockchain components. Without claiming

to represent the ultimate structure, the proposed taxonomy could be of practical importance in many cases.

For example, it can:

1. support software architectures to explore different system designs and to evaluate and compare dif-

ferent design options;

4 http//arstweb.clayton.edu/interlex
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2. be propeadeutic to the development of blockchain standards with the aim to increase the adoption

at a large scale of blockchain-enabled solutions and services;

3. enable research into architectural framework for blockchain-based systems in order to boost the

adoption of blockhain-enabled systems, their interoperability and compatibility;

4. create gateway models to multiple blockchains and design governance framework;

5. promote blockchain predictability;

6. be used to promote a regulatory framework that provides a mix of both legal and technical rules (i.e.,

regetech for blockchain-based systems) (Marian, 2015).

II. BACKGROUND ON BLOCKCHAIN TECHNOLOGIES

Since the Bitcoin inception in 2009, many blockchain software architectures have been deployed to meet

different technical, business and legal design options. Given the current complex dynamic of the blockchain

architectural development, it would be neither exhaustive nor comprehensive to provide a picture of the

existing blockchain technologies developed so far. Therefore, we take a bird-eye view and describe the

blockchain by looking at its key driving principles such as data decentralisation, transparency, security,

immutability and privacy (Aste et al., 2017).

Decentralisation of consensus. The distributed nature of the network requires untrusted participants

to reach a consensus. In blockchain, consensus can be on “rules” (that determine e.g., which transactions

are allowed and which are not, the amount of bitcoins included in the block reward, the mining difficulty,

etc.) or on the history of “transactions” (that allows to determine who owns what). The decentralised

consensus on transactions governs the update of the ledger by transferring the responsibilities to local nodes

which independently verify the transactions and add them to the most cumulative computation throughput

(longest chain rule). There is no integration point or central authority required to approve transactions and

set rules. No single point of trust and no single point of failure.

Transparency. Records are auditable by a predefined set of participants, albeit the set can be more

or less open. For example, in public blockchains everyone with an Internet connection to the network holds

equal rights and ability to access the ledger. The records are thus transparent and traceable. Moreover,

participants to the network can exercise their individual (weighted) rights (e.g. measured in CPU computing

power) to update the ledger. Participants have also the option to pool together their individual weighted

rights.

Security. Blockchain is a shared, tamper-proof replicated ledger where records are irreversible and

cannot be forged thanks to one-way cryptographic hash functions. Although security is a relative concept,

we can say that blockchains are relatively secure because users can transfer data only if they posses a private

key. Private keys are used to generate a signature for each blockchain transaction a user sends out. This



7

signature is used to confirm that the transaction has come from the user, and also prevents the transaction

from being altered by anyone once it has been issued.

Immutability. Blockchains function under the principle of non-repudiation and irreversibility of records.

Blockchains are immutable because once data has been recorded in the ledger, it cannot be secretly altered ex-

post without letting the network know it (data is tamper-resistant). In the blockchain context immutability

is preserved thanks to the use of hashes (a type of a mathematical function which turns any type of input

data into a fingerprint of fixed size, that data called a hash. If the input data changes even slightly, the

hash changes in an unpredictable way) and often of blocks. Each block includes the previous blocks hash as

part of its data, creating a chain of blocks. Immutability is relative and relates to how hard the history of

transactions is to change. Indeed, it becomes very difficult for an individual or any group of individuals to

tamper with the ledger, unless these individuals control the majority of “voters”. For public proof-of-work

blockchains such as Bitcoin, the immutability is related to the cost of implementing the so-called 51% attack.

For private blockchains, the block-adding mechanism tends to be a little different, and instead of relying

on expensive proof-of-work, the blockchain is only valid and accepted if the blocks are signed by a defined

set of participants. This means that, in order to recreate the chain, one would need to know private keys

from the other block-adders. A complete discussion of threats about immutability of the transaction history

can be found in (Barber et al., 2012). On the other hand, from a governance perspective, this solution is

never fully realised. The several examples where the Bitcoin community had reverted Bitcoin blocks based

on community decisions. The division between Ethereum and Ethereum classic, and later between Bitcoin

and Bitcoin Cash and Bitcoin Gold are not purely anecdotal evidence: they are strong indicators of the

importance that the governing body - even if informal - ends up having on the information eventually stored

in the blockchain (Walch, 2017).

Other non fundamental properties of blockchain include data automation and data storage capacity.

Automation and smart contracts. Without the need for human interaction, verification or arbitra-

tion, the software is written so that conflicting or double transactions are not permanently written in the

blockchain. Any conflict is automatically reconciled and each valid transaction is added only once (no double

entries). Moreover, automation regards also the development and deployment of smart legal contracts (or

smart contract codes, see (Clack et al., 2016)) with payoff depending on algorithms which are self-executable,

self-enforceable, self-verifiable and self-constraint.

Storage. The storage space available on the blockchain networks can be used for the storage and

exchange of arbitrary data structures. The storage of the data can have some size limitations placed to

avoid the blockchain bloat problem (Cawrey, 2014). For example, metadata can be used to issue meta-coins:

second-layer systems that exploit the portability of the underlying coin used only as fuel. Any transaction in

the second layer represents a transaction in the underlying network. Alternatively, the storage of additional

data can occur “off-chain” via a private cloud on the client’s infrastructure or on a public (P2P or third-

party) storage. Some blockchains like Ethereum allow to store data also as a variable of smart contracts or

as a smart contract log event.
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III. TAXONOMY OF BLOCKCHAINS

The diversity of blockchain research and development provides an opportunity for cross-fertilisation of

ideas and creativity, but it can also result in fragmentation of the field and duplication of efforts. One solution

is to establish standardised architectures to map the field and promote coordinated research and development

initiatives. However, in terms of blockchain software architecture design little has been proposed so far

(Xu et al., 2017), and the problem of consistently engineering large, complex blockchain systems remains

largely unsolved. We approach this problem by proposing a component-based blockchain taxonomy starting

from a coarse–grained connector–component analysis. The taxonomy compartmentalises the blockchain

connectors/components and establishes the relationships between them in a hierarchical manner. We adopt

a reverse-engineering approach to unbundle the blockchains and divide them into main (coarse-grained)

components. Each main component is then split into more (fine-grained) sub and sub-sub components

(where necessary). For each of these sub (and/or sub-sub) components, different layouts (models) are

identified and compared. By deriving the logical relation between (main, sub or sub-sub) components, the

study helps to clarify the alternative modus operandi of the blockchains and helps to develop the conceptual

blockchain design and modelling.

Similarly to other fields like electronics or mechanics (Otto and Wood, 1998), the software engineering

approach used to derive the taxonomy threats blockchains as the result of gluing together prefabricated,

well-defined, yet interdependent components. Although equivalent components provide similar services and

functions, they can be of different importance and type, and the interconnection may work in different ways.

Following this logic, each of the next seven sections will introduce a new blockchain main component and

its sub (and eventually sub-sub) components by describing and comparing their layouts.

IV. CONSENSUS

The first identified main component is Consensus. It relates to the set of rules and mechanics that

allows to maintain and update the ledger and to guarantee the trustworthiness of the records in it, i.e., their

reliability, authenticity and accuracy (Bonneau et al., 2015). Consensus varies across different blockchain

technologies, every consensus mechanism brings advantages and disadvantages based on different charac-

teristics e.g. speed of transactions, energy efficiency, scalability, censorship-resistence and tamper-proof

(Mattila, 2016). The set of rules and mechanics compose the framework of the validation process that is

necessary to overcome security issues during the validation. Figure 1 illustrates the subcomponents forming

the component Consensus:

1 Consensus Network Topology

2 Consensus Immutability and Failure Tolerance

3 Gossiping
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FIG. 1 Blockchain Taxonomy Tree: A representation of the taxonomic decomposition of blockchain-based

technologies.

4 Consensus Agreement

4.1 Latency

4.2 Finality

Those subcomponents and sub-subcomponents are to be jointly considered when designing an active network

consensus validation process because not only their individual configuration but also their combination

determine when and how the overall blockchain agreement is achieved and the ledger updated.
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A. Consensus Network Topology

Consensus Network Topology describes the type of interconnection between the nodes and the type of

information flow between them for transaction and/or for the purpose of validation. For efficiency reasons,

systems have historically been designed in a centralised manner. This centralisation lowers dramatically the

costs for system configuration, maintenance, adjustment (and the costs of arbitration in case of conflict)

as this work has to be performed only once in a central place. While highly efficient in many situations,

this kind of systems induce a single (or very limited set of) point(s) of failure and suffers of scalability

issues. With respect to the network topology, this hierarchical arrangement is still present in most of our

techno- and socio-economic systems (one example is the modern electronic payment system). To avoid the

single point of failure, these centralised can be extended into hierarchical constructs which exhibit larger

scalability and more redundancy, while keeping the communication efficient. Alternative to those centralised

topologies, decentralised solutions have been proposed. Since the dawn of the Internet, technical systems

have evinced a transition towards decentralised arrangements (Wright and De Filippi, 2015) where all the

nodes are equivalent to any other. For most applications, blockchain based systems - with its federated set

of participants - is a clear example of this kind. Blockchain based systems resort on specific topologies to

create the peer network that ultimately determines how the validation process will evolve.

It is important to mention that Consensus Network Topology is linked to the level of (de)centralisation

in the validation process but this is not the only determinant. Also other factors like the reward mechanism

(see Section XI) heavily influence the validation (Bonneau et al., 2015). As a matter of an example, Bitcoin

has a decentralised validation process, which is still be accompanied by ever increasing concentration of

computational power devoted to the proof-of-work by network participants. Indeed, during the period 2013-

2015, the cumulative market share of the largest ten pools relative to the total market hovered in the 70%

to 80% range (Tasca, 2015).

We identify three possible layouts for Consensus Network Topology :

1. Decentralised. There exist implementations that are decentralised. Bitcoin as the pioneer in digital

currencies established a distributed P2P network, which enables direct transactions to every node

within the network. The validation process within the Bitcoin network is decentralised through miners

and full nodes who validate the transactions within the network (Nakamoto, 2008) connected in a

random way as provided by super-nodes. This network illustrates a decentralised Consensus Network

Topology. Obviously, this layout is independent from the Consensus Immutability layout (Peercoin

and NXT also show decentralised network topologies).

2. Hierarchical. There are other implementations that are not decentralised, and there exists an

irregularity of the role the nodes have. For example, in Ripple (Ripple, 2015) the network topology

is divided into tracking and validating nodes. The tracking nodes are the gateway for submitting

a transaction or executing queries for the ledger, in addition to that the validating nodes have the

same functions as tracking nodes but they can also contribute additional sequences to ledger by
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validation (Ripple, 2015). This kind of solution yields (or can be extrapolated to) a hierarchical

network topology. In the community of developers these hierarchical topologies are also referred to

as “Consortium blockchains”.

3. Centralised. In some specific implementations, a central authority may need (or wish) to control

what is added to the ledger. An example for this are digital versions of fiat currencies: the so called

Central Bank Digital Currencies. This kind of solution yields a third layer, “Centralised topology”,

which is intimately related to private blockchains. It is important to mention that a centralised

solution would normally speak of a non-properly working design (or a non-solution) if implemented

in terms of a blockchain, as it would have been implemented otherwise in a more transparent manner.

Normally, some level of federation and redundancy are key to blockchain systems.

B. Consensus Immutability and Failure Tolerance

In general, the failure tolerance of a distributed system shall be defined with respect to three interrelated

issues: faults (e.g., Byzantine faults), errors and failures. See e.g., (Driscoll et al., 2003; Castro et al., 1999)

for Byzantine fault tolerance in distributed systems. There are different types of failures and generally it

is costly to implement a fault tolerant system. Practically, it is not possible to devise an infallible, reliable

system . For a literature review and deeper analysis of fault tolerant distributed systems, we refer the reader

to (Cristian, 1991) and (Fischer, 1983). A blockchain, as special case of a distributed system, is fault tolerant

when it shows the ability to continue functioning. i.e., it must grant reliability, validity and security of the

information stored in the ledger. Indeed, blockchains represent a decentralised solution to the problem of

information storage which require no central database but many duplicates such that each server holds a

replica of the ledger. Any new record is costly (often measured in terms of computational power) to be added

to the ledger, but cheap to be verified by peers. Therefore, a blockchain system is in the need of an efficient

consensus mechanism to ensure that every node has its original version of the full transaction history which

is kept consistent with the other peers over time. In this vein, the immutability of achieved consensus differs

with respect to the resources required to keep large network security. In the past years, the evolution of

blockchain technologies has been accompained with the development of different mechanisms that help to

keep reliable, valid and secure the information contained in the ledger. All together, the mechanisms for

Consensus Immutability together with the subcomponents of Consensus Agreement determine the failure

tolerance of the blockchains. As of this writing, we identify six main layouts for Consensus Immutability

and Failure Tolerance:

1. Proof-of-Work. The most widely used cryptocurrency, Bitcoin, uses Proof-of-Work (PoW) to ensure

the immutability of the transaction records. In this setup, computing devices, usually called miners,

connected to a peer-to-peer network perform the task of validating the transactions proposed for

addition to the complete record of existing - valid - transactions. The generation of a block that
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can be appended to the blockchain - rendering in this way valid all transactions there included -

requires finding the solution of inverting a cryptographic function, which can only be done by brute

force. In PoW, the probability that a miner mines a new block depends on the ratio between the

computational power he devotes to this task and the total instantaneous computational power by all

miners connected to the network. Specifically, miners must find a solution to an one-way hash function

by computing new hash values based on the combination of the previous hash values contained in the

message, the new transactions in the block they create and a nonce. The solution is such that the new

hash value will start with a given number of zeros ≤ target. As for this writing, the mining process

needs several requirements to be successful (Tsukerman, 2015). These include specialised hardware

which is needed to perform the computational tasks and ever increasing amounts of electricity to

power the hardware. These computations are run by dedicated machines (ASICs) which are very

expensive and are resource-intensive as contribute to a large electricity footprint for cryptocurrency

miners (O’Dwyer and Malone). Due to this scheme, in the last years miners agglomerate around

mining pools (Lewenberg et al., 2015). Therefore, a clear drawback of the PoW mechanism is the

inherent inefficiency from the resource point of view, and the large-scale investments needed, which

has led to long-term centralisation of the mining power. In late 2017, every second almost five

quadrillion SHA256 computations were performed in the Bitcoin mining process. Regretfully, these

computations do not have any practical or scientific relevance apart from ensuring that the process

of block creation is costly, but others’ blocks validity are simple to verify for peers. Interestingly,

when adversaries coordinate, it is sufficient that they hold only the 25% of the total computing power

to mount an attack (Eyal and Sirer, 2014). In this layout, there exists the risk of monopoly mining,

induced by large coordination of miners in a single mining pool, which continuously increases the

expected payoff of others if they join said mining pool. In this hypothetic situation, said maining

pool can censor specific transactions and dictate what transactions are accepted and which ones not.

In contrast, BFT consensus mechanisms tolerate at most n/3 corrupted nodes in the asynchronous

communication protocol and even higher levels in the synchronicity case. Electricity consumption

can be estimated around 0.1 to 1 W/GH corresponding to around 1GW of electricity consumed

every second. Therefore, other developers within the area of blockchain technologies continuously

attempt to develop novel mechanisms to achieve an equivalent goal. It is worth mentioning that

some cryptocurrencies (e.g. Primecoin) have tried to make the PoW a task that serves a useful aim

(in that case, searching for long chains of prime numbers, or Cuningham series).

2. Proof-of-Stake. PoS links the block generation to the proof of ownership of a certain amount of

digital assets (e.g., digital currencies) linked to the blockchain. The probability that a prover is

selected to verify the next block is larger the larger is the share of assets this prover has within the

system. The underlying assumption is that users with a large share of the system wealth are more

likely to provide trustworthy information with respect of the verification process, and are therefore
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to be considered trusted validator (Mattila, 2016). Two alternative PoS methods have been devised.

The first one is based on randomised block selection (used in e.g., NXT and BlackCoin); it uses

a calculation searching for the lowest hash together with the stake size; it is therefore somewhat

deterministic and each node can independently determine the likelihood of being selected in a future

round. An alternative scheme is the coin-age-based selection (used by e.g., Peercoin, being actually

the first one to be implemented in real world) which combines randomisation with coin-age (a number

derived from multipliying the amount of the assets held by the prover and the length of time it has been

helding them). Although PoS has the chance to solve two issues with PoW (risk of monopoly mining

and resources wasted in the mining process), it is affected by the “nothing at stake” issue. Because

there is little cost in working on several chains (unlike in PoW), one could abuse by voting for multiple

blockchain-histories which would prevent the consensus from ever resolving (double spending). This

problem can be addressed by Delegated Proof-of-Stake (DPoS), a generic term describing an evolution

of the basic PoS consensus (utilised in, e.g., BitShares, Casper by Ethereum, Tendermint) where

blocks are forged by a predetermined users delegated by the user who has the actual stake. These

forgers are rewarded for their duty and are punished for malicious behaviour (such as participation

in double-spending attacks). This principle of pre-authorised forgers is generalised by the Proof-of-

Authority mechanism.

3. Proof-of-Authority. In this case, participants are not asked to solve arbitrarily difficult mathemat-

ical problems like in PoW, but instead they are asked to use a hard-configured set of “authorities”

empowered to collaborate “trustlessly”. Namely, some nodes are exclusively allowed to create new

blocks and secure the blockchain. Typically, Proof-of-Authority (PoA) mechanism fits well for con-

sortium private networks where some preselected real entities (i.e., the authorities) are allowed to

control the content that is added to the public registry. Those nodes will receive a set of private keys

that will be used to “sign” the new blocks, acting as trusted signers. Thus, every block (or header)

that a client sees can be matched against the list of trusted signers. The challenges brought by PoA

are related to: control of mining frequency, distribution of mining load (and opportunity) between

the various signers and; maintenance of the the list of signers such to be robust from malicious attacks

even in presence of dynamic mutation of the trusted signers.

4. Proof-of-Capacity/Proof-of-Space and Proof-of-Storage. PoC or PoSpace and PoStorage are

implementations of the popular idea of “space as resource”. Here the focus is not on the CPU cycles

but on the amount of actual memory (non-volatile) space the prover must employ to compute the

proof. Nodes are asked to allocate significant volume of their hard drive space to mining instead of

using CPU-bound space as in PoW. Miners are incentivised to devote hard-drive capacity as those

who dedicate more disk space have a proportionally higher expectation of successfully mining a block

and reaping the reward. The PoC makes use of hash trees to efficiently allow verification of a challenge

without storing the tree. These schemes are more fair and green than PoW. The reason mainly comes
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from the lower variance of memory access times between machines and the lower energy cost achieved

through the reduced number of computations required. Several practical implementations adopt the

PoC consensus algorithm like Permacoin, SpaceMint and Burstcoin, just to cite a few. PoC consists

of an initialisation and subsequent execution between a prover P and a verifier V (Dziembowski

et al., 2015). Rather than P proving to V that some amount of work has been completed, P proves

to V that she has allocated some number of bytes of storage. After the initialisation phase, P is

supposed to store some data F of size N . Instead, V only holds some small piece of information.

At any later time point V can initialise a proof execution phase, and at the end V outputs reject

or accept. The PoC is in general defined by three quantities: (N0, N1, T ); then, the miner shows

that she either: 1) had access to at least N0 storage between the initialisation and execution phases

and at least N1 space during the execution phase; or 2) used more than T time during the execution

phase. Solutions to the “Mining multiple chains”, and “grinding blocks” problems of PoC algorithms

have been proposed by (Park et al., 2015) among the others. The Proof-of-Storage (PoS) mechanism

is similar to PoC but the designated space in it is used by all participants as common cloud storage

(Patterson, 2015).

5. Proof-of-Burn. In Proof-of-Burn (PoB) miners must prove that they burned some digital assets.

They do so by sending them (e.g., digital currencies) to a verifiable unspendable address belonging

to them. Similarly to the PoS, also the PoB logic is to minimise the waste of resources generated

by PoW. However, at the current stage, all PoB mechanisms function by burning PoW-mined digital

currencies. This is therefore an expensive activity as the digital currencies once required to work

as “fuel” in a PoB system cannot be recovered (Bonneau et al., 2015). PoB can be used also to

bootstrap a token off of another (see e.g., Counterparty or Mastercoin).

6. Hybrid. The more advances hybrid consensus immutability and failure tolerance methods are “PoB

and PoS” where Proof-of-Burn blocks act as checkpoints and “PoW and PoS” where PoW blocks

act as checkpoints containing no transactions, but anchor both to each other and to the PoS chain.

Peercoin uses PoW/PoS consensus. To solve the “nothing at stake” issue, Peercoin uses centrally

broadcast checkpoints (signed under the developer’s private key) according to which no blockchain

reorganisation is allowed deeper than the last known checkpoints. Here the problem is that the

developer becomes the central authority controlling the blockchain.

C. Gossiping

Blockchains are also decentralised, redundant storage systems. This redundancy makes it very difficult

to hijack the information stored in them. How this information travels through the network of computers

is a characteristic that varies from one blockchain system to another. Given the lack of a central routing

authority (like it would exist for example in traditional electronic payment systems) nodes must transmit
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the information they possess – in general new blocks, but it may be also the full blockchain to new nodes

that enter the network – to peers they know are participating of the system. To this aim, nodes possess a

list of peer nodes. Whenever a new block is added to the local blockchain of a node, the later passes the

block to others in its peer list by Gossiping.

We identify two possible layouts for Gossiping :

1. Local. Gossiping occurs first in a local manner (through a local validation process) until consensus is

reached. This is also called “federated consensus” used e.g., in Ripple (Ripple, 2015) in which nodes

can share transaction records to another node and reach consensus without directly knowing all the

nodes in the network. Therefore most information travels “locally” – in terms of the P2P network –

such that a consensus is reached at this initial level. Only then, the information is sent throughout

all the other nodes. In this layout, the Gossiping can be termed “local”.

2. Global. In most implementations – Bitcoin, Ethereum, etc. – Gossiping occurs to a list of peers

that have been selected by what in the Bitcoin network are called fallback nodes. These fallback

nodes maintain a list of all peers in the network. Upon connection of a new node, the submit a

randomly chosen list of peers to the entrant one. The logical network topology is intended to be

largely unstructured, similar to the Erdos-Renyi network (Barabsi and Psfai, 2016). Such topology

lacks a concept of vicinity or local neighbourhood, and therefore the Gossiping process can be termed

global.

D. Consensus Agreement

The consensus agreement defines the set of rules under which records (like sets of transactions or any

other atomic piece of information) are independently updated by the nodes of a distributed systems. This

is important to understand how a distributed system is able to handle the so-called Byzantine failures, i.e.,

how the system composed of n nodes can achieve consensus on storing verified, trustworthy, information

even in the presence of f malicious nodes or in presence of malicious participants launching sybil attacks

(Douceur, 2002). In this regard, it is very important to understand how the nodes communicate between

them.

1. Latency

Latency is a sub-subcomponent which describes the rule of message propagation in the networks.

1. Synchronous Communication. Systems which set upper bounds on “process speed interval” and

“communication delay” such that every message arrives within a certain known, predefined, time-

interval (∆) are called synchronous. This does not preclude the possibility of having message delays

due to exogenous network latency, but the delay is bounded and any message that takes longer than
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∆ is discarded. Lax synchronicity assumptions apply also to the Bitcoin blockchain. For example, a

block is rejected if contains a timestamp: 1) lower than (or equal to) the median timestamp of the

previous eleven blocks; and 2) greater than (or equal to) the “network-adjusted time” plus 2 hours.

Another example of blockchain adopting synchronous communication is Ripple through the use of

clocks. Specifically, Ripple’s “LastLedgerSequence” parameter asserts that a transaction is either

validated or rejected within a matter of seconds.

2. Asynchronous Communication. Systems which do not set any bound on “process speed interval”

and “communication delay” such that every message/packet can take an indefinite time to arrive are

called asynchronous. Although this type of communication protocols brings some advantages (e.g.,

calls/requests do not need to be addressed to active nodes and nodes do not need to be available

when a new information is sent to them by peers), its main disadvantage is that response times

are unpredictable and it is harder to design applications based on them. Synereo is an example of

blockchain using the asynchronous communication protocol.

2. Finality

Finality describes whether information intended to be stored in a blockchain (or, as a matter of fact, in

any system) can be safely considered perpetually stored once the recording is performed. For a distributed

system like blockchain-based ones this is very challenging to achieve, and it is certainly not one of the

underlying design principles. In a system where the new blocks diffuse through gossiping, and because of

rules such as the precedence of the longest chains, even if consensus is achieved globally, a priori nothing

prevents a set of new nodes entering the system and overriding the previous consensus by offering a longer

versions of the hostory. We identify two possible layouts for Finality :

1. Non-Deterministic. In this case, consensus agreement “eventually settles”. Non-deterministic

are randomised or inherently probabilistic consensus (also called stabilising consensus) in which the

probability to disagree decreases over time. For example in the Bitcoin blockchain the block frequency

is adjusted (with respect to the block-mining rate and indirectly to the computational power of the

nodes) to minimise the probability of forks. Moreover, the propagation of blocks through the network

has characteristic delays (Decker and Wattenhofer, 2013) and even in presence of only honest nodes

the fork probability cannot be ruled out simply because different nodes may find competing blocks of

the same height before the one found first reaches the complete network . This cannot be prevented

even if there is in place a concurrency control mechanism, which which attempts to correct results for

simultaneous operations. Therefore, overall, the protocol is non deterministic. Thus, even though the

widespread heuristic “wait until 6 confirmed blocks are appended to the chain” reduces the likelihood

that a transaction is overridden afterwards, it does not eliminate completely the probability of a

previously validated block to be pruned and removed from the blockchain in the future.



17

2. Deterministic. In this case, Consensus Agreement converges with certainty and transactions are

immediately confirmed/rejected in/from the blockchain. This property turns to be very useful for

smart contracts where, using state-machine replication, consistent execution of the contracts can be

achieved across multiple nodes. All the blockchains based on Lamport Byzantine Fault Tolerance

(Lamport et al., 1982) achieve deterministic consensus. A prime example of an implementation

featuring deterministic finality is Stellar. Another case of deterministic is for private blockchains

where new blocks follow a predefined set of rules.

V. TRANSACTION CAPABILITIES

The second main component, Transaction Capabilities, is important to illustrate scalability of transac-

tions and usability in possible applications and platforms. One of the major challenges for the blockchain

technology is to increase the transaction throughput to compete with other solutions already available in

the market (e.g. centralised payment systems, like credit cards). In order to achieve these improvements,

quantitative parameters (e.g. data storage in block header, TPS (transactions per second)), need to be

redesigned to realise such improvements. Figure 1 illustrates the subcomponents forming the component

Transaction Capabilities:

1 Data Structure in the Blockheader

2 Transaction Model

3 Server Storage

4 Block Storage

5 Limits to Scalability

5.1 Transactions

5.2 Users

5.3 Nodes

5.4 Confirmation Time

A. Data Structure in the Blockheader

The data stored in the block header has different functions. On the one hand, it includes the transaction

hashes for validation purposes; on the other, it contains additional information for different application

layers or blockchain technology platforms. The data structure in the blockheader describes the capabilities

of the system to store transaction information. The original application of Merkle proof was implemented
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in Bitcoin, as described in (Nakamoto, 2008). We identify two possible layouts for Data Structure in the

blockheader:

1. Binary Merkle Tree. Bitcoin uses the Binary Merkle tree (Merkle, 1988) within the block header

to store the transactions. The information in the block header in the Merkle tree structure contains

a hash of the previous header, timestamp, mining difficulty value, proof of work nonce and root hash

for the Merkle tree containing the transactions for that block, which are used for the verification

process to scale up the transactions speed. By convention, the longest chain (since the so-called

Genesis block) is considered to be the current status of the blockchain.

2. Patricia Merkle Tree. One the one hand, Patricia Merkle Tree (Practical Algorithm To Retrieve

Information Coded In Alphanumeric (Morrison, 1968)) allows activities like inserting, editing or

deleting information referring to the balance and nonce of accounts, which enables faster and more

flexible validation of transactions than the one merkle tree model (Wood, 2014). However, with

respect to the applications, it has the important advantage of allowing for verification of specific

branches of the tree. Ethereum (Ethereum, 2015) uses the Patricia Merkle Tree within the block

header to store more information than what is possible in the Binary Merkle Tree. Those contain

transactions, receipts (essentially, pieces of data showing the effect of each transaction) and state

(Wood, 2014). Importantly, this technology allows even blocks outside the longest chain to contribute

to the validation process, building a confirmation system that is less centralised. This is the so called

Ghost rule, a variant of which is implemented also in the Ethereum blockchain (Wood, 2014).

B. Transaction Model

The transaction model can be imagined as an accounting ledger which tracks the inputs and outputs

of each transaction. The transaction model describes how the nodes connected to the P2P network store

and update the user information in the distributed ledger. The challenge of the transaction model is to

prevent data that ought not to be trusted by the parties connected to the system - e.g. those originated in

behaviour, like double spending - to enter into the ledger As of this writing, it is possible to identify two

possible layouts for Transaction Model in the widely used blockchain-based systems:

1. The Unspent Transaction Output (UTXO). UTXO model includes a refractory number of

blocks during which network participants are prevented of using the transaction output in new trans-

actions. In this way, it prevents miners from spending transactions fees and block rewards before

stable validation status of the block chain. This measure prevents the forking problem of blockchains

(Guide, 2015). This transactions mechanism is available in blockchain technologies like Bitcoin.

2. Traditional Ledger. In comparison to the UTXO model, different implementations of blockchain

systems - like Stellar and Ripple use a more traditional ledger model to record the transactions
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recorded in the system. In particular, Stellar lists every single transaction in the Stellar dis-

tributed ledger history. Also, Ripple uses the traditional ledger transaction model to register in-

crements/decrements of balance and clear all account balances. In Ethereum some transactions are

used to execute actions in smart contracts defined in specific atomic records in the blockchain. Those

transactions can be seen as order executions of stakeholders which perform the actions out of said

smart contracts.

C. Server Storage

At the core of blockchain-based systems underlies their decentralised nature. This requires that nodes

connected to the peer-to-peer network are indistiguishable from each other. This concept, however, cannot

be fully expressed when the storage needs, computing power or bandwidth constraints of the network nodes

do not permit this feature to be fully realised. In these scenarios, different nodes have access to different

layers of information, those which do not store the information fully are “thin clients” connected to the

peer-to-peer network (Xu et al., 2018). We identify two possible layouts for Server Storage:

1. Full Nodes. All nodes connected to the network, and which are part of the validation process, are of

the same kind. This is a genuinely peer-to-peer network where all the nodes are equivalent in terms

of information contained. This property creates a large information redundancy, which makes the

system more resilient to attacks or malfunctioning.

2. Thin Nodes Capabilities. In this setup, some nodes connected to the network contain only a

selected subset of all the information contained in the blockchain. This creates more scalable systems

(in terms of number of nodes connected to the network and the concomitant network traffic and

storage needs), but may deteriorate the resiliency as only a fraction of the nodes contain the complete

blockchain information.

D. Block Storage

Which information is stored in the blockchain determines the scalability of the system across some dimen-

sions. More crucially, it also allows to understand how concomitant information from users are abstracted

within the system. We identify two possible layouts for Block Storage:

1. Transactions. In systems like Bitcoin, only the transactions are stored. They contain both, a set

of inputs and outputs that help to identify emitter(s) and receiver(s) of a specific transaction. This

kind of approach is preserved in more exotic applications of blockchain-like technologies, like IOTA,

which relies on the storage of an directed-acyclic-graph to store every single transaction. This kind

of approach works not only for cryptocurrencies applications, but it is underlying all transfer-of-

property-like applications.
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2. User balance. In systems like Ripple, the decentralised storage also contains information about the

user balance in the specific assets. This approach may limit the storage needs of the system, but at

the same time reduces accountability and the possibility to roll back transactions.

E. Limits to Scalability

The decentralised nature of blockchain systems and the concomitant redundancy in the storage impose

different kinds of limits to the way in which a specific implementation scales when the system size. System

size is used here in a broad sense: It may refer to to the number of nodes connected to the network,

the number of users of the service, the set of network connections and/or amount of network traffic, the

number of transactions, etc. It is worth remarking that these ingredients are intertwined in the real world

(Tessone and Tasca, 2017), and - upon usage and continuous development - the limiting factor of a particular

blockchain system may vary over time. In a rapidly evolving technology such as blockchain is nowadays,

these limits are often changed by the development teams behind some of these systems. An example is

the implementation (or not) of SegWit2x and Lightning (as technology for micropayment channels) (Decker

and Wattenhofer, 2015) as ways to alleviate the limitation in the number of transactions that Bitcoin can

process with respect to its current implementation.

The importance of this component is due to its influence on the final scaling of the system. Scaling is

a property that specifies how the growth will influence its overall performance. As an example, how the

total network traffic induced by unverified transactions grow with the number of network nodes. If every

node has a small - limited - number of connections, then the total network traffic will scale linearly on the

number of nodes. In mathematical terms it will be O(N). However, if every node is connected to each other

then the traffic will be O(N2), i.e. it will grow quadratically on the number of nodes. Therefore, if - for

a given implementation - network traffic is the most crucial limiting factor, different logical topologies will

have different scalability. Acknowledging that a categorical definition is a crude simplification, we will focus

here on the most limiting element for each system. We identify four possible layouts as Limits to Scalability :

1. Limit by number of transactions. We start from the most common real-world example. Bitcoin

has a limitation in the number of transactions it can process in every block, because of the hard-

coded limit to the block size in bytes. Given that new blocks appear (on average) every ten minutes,

this means that the number of transactions that can be included in a given time window is limited.

Therefore the layout “Number of Transactions” refers - regardless of the information stored in the

blockchain(Eyal, 2015) - to the specific implementations, where the number of operations that can

be included in the blockchain is severely limited by design.

2. Limit by number of users. Bitcoin only stores transactions in its public ledger. This is different

from other related technologies. Ripple, on the other hand, stores not only transactions, but also the

state of the Ripple accounts. Therefore, in scenarios like this, it is the number of users of the system
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that limits its scalability. A similar problem occurs in Ethereum where the system will be constrained

by the number of DAOs, individuals, etc. that it will contain as these are the actors that generate

activity in the system. Therefore, the term “Number of Users” for this layout is a broad reference

to the number of objects of which states stored. Needless to say, this layout is somehow related to

the previous, the number of transactions will depend on the number of users. However, one limiting

factor can still appear irrespective of the other.

3. Limit by number of nodes. The number of nodes connected to the network, acting as verifiers

for the information that is stored on the blockchain, presupposes a limiting factor because of the

mechanism of information diffusion adopted. Gossiping is a process that requires larger times in

decentralised networks to propagate into a consensus state (Tessone and Garcia, 2017), and may

even reach a point - where the relative time taken by network traffic is very long - where consensus

cannot longer be reached and the blockchain naturally forks. Therefore this process naturally limits

the applicability of fully decentralised solutions.

4. Possible values. These three layouts can have three different values, regarding on how detrimental

is a specific layout to the overall performance of the system. The possible values that each layout

can have are divided into four: (i) Indifferent, (ii) At most linear, (iii) At most quadratic, (iv)

Worse than quadratic. The first value is assigned (Catalini and Gans, 2017) when the relevant

global characteristics of a system is independent of the number of specific class; the other three,

express three categorical values that are assigned to the dependency of the number of elements in

said class. For example, the number of users is largely irrelevant to the performance of the Bitcoin

network (because this number is never translated into any property of the network). However, the

number of transactions increases linearly a penalty on the local network traffic.

5. Confirmation time. The time it takes a specific action to be confirmed ultimately depends on the

time it takes for it to be added to the blockchain, and to be validated to further blocks later appended

to it. Different approaches can be taken to this process: deterministic addition of new blocks at

regular intervals (taken by Peercoin) and stochastic addition like in Bitcoin, where the process of

mining induces an Exponential distribution of inter-block discovery time.

VI. NATIVE CURRENCY/TOKENISATION

So far, cryptocurrencies and other transfer of property records are the most common usage of the

blockchain technology. In cryptocurrencies, system participants who contribute to the verification process

- if selected by some rule to issue a new block into the blockchain - are awarded the possibility to issue a

transaction without issuer (so called “coinbase”) to themselves. On the one hand, this is a customary way

of introducing new assets into the system. On the other, it introduces an incentive for users to participate

of the verification process which leads to an increased trustworthiness on the system.
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The aforementioned incentive scheme (Sompolinsky and Zohar, 2018) is to be provided in a token, whose

value is assigned (Catalini and Gans, 2017) precisely because of the cost associated with its production

(Garcia et al., 2014). Initially, solutions like Bitcoin have created its own (and single) asset class (the

bitcoin) that can be transacted within the system. This particular solution is not the only one possible

with the primary example of Ethereum, where beyond the natural Ether native token, via smart contracts

arbitrary new tokens can be created and their property exchanged. Further, the native currency possibilities

present for example in Ripple (Tsukerman, 2015) and tokenisation enable different use cases of the blockchain

technology like asset-transfers via tokens, exchanges, etc. All this is just the beginning of cryptoeconomics:

it is of uttermost importance how these assets are supplied into the system, because this affects the way

users are incentivised to participate in the validation process. Figure 1 illustrates the subcomponents

forming the component Native Currency/Tokenisation:

1 Native Asset

2 Tokenisation

3 Asset Supply Management

A. Native Asset

Some systems implemented using blockchain technologies have underlying a native asset (which are

normally called cryptocurrency) which is a digital token whose owners assign a value and allow to run the

daily activities on the platforms or communities. Whether these cryptocurrenties ought to be considered fiat

or commodity currencies (Grinberg, 2012; Selgin, 2015; Luther, 2018), and whether they may eventually be

massively adopted replacing traditional ones (Luther, 2016). We identify three possible layouts for Native

asset :

1. None. Private blockchain implementations do not require a native asset within to incentivise par-

ticipation. In these cases, there is no native asset incorporated into the system

2. Own Cryptocurrency. Most implementations of cryptocurrencies only deal with transfer of prop-

erty of its own tokens within the system. Bitcoin or Litecoin are examples of technologies with single

asset compatibility (Buterin et al., 2014). These technologies are limited to their own underlying

digital currency, but it can also have off-chain solutions to interoperate with other currencies to exe-

cute transactions or to enrol into smart contracts. Further, solutions like coloured-coins (Rosenfeld,

2012).

3. Convertible Multiple Assets. Other technologies like Counterparty, Ardor o do have their own

underlying currencies or tokens to execute tasks. However, these technologies also enable the possi-

bility of exchange of assets expressed in others outside those native to the platform. This approach
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of multiple, convertible, currencies has the advantage of allowing for exchange markets be directly

reflected into the system.

B. Tokenisation

A token acts as a digital bearer bond, whose ownership is determined by the data embedded in the

blockchain. Ownership of the tokens is transferable between holders using other transactions with associ-

ated “transfer” metadata. This does not require the approval of any other authority. The possibility of

tokenisation(Catalini and Gans, 2017) enables a range of possible use cases for the blockchain technologies

outside the purely financial world(Tsukerman, 2015; roh, 2017; adh, 2017; Conley et al., 2017).

We identify three possible layouts for Tokenisation:

1. No tokenisation present. Without third-party technologies , Bitcoin does not have implemented

technologies that enable tokenisation.

2. Tokenisation through third-party addons. Bitcoin plus Colour-Coin (Rosenfeld, 2012) enables

the existence of tokenised transactions in the Bitcoin blockchain. Such solution is based on the

cryptographic nature of Bitcoin addresses and the script language.

3. Tokenisation. The tokenisation possibilities together with the extensions of metadata are available

in several implementations and constitute the backbone of blockchain-based property registries. The

most paradigmatic example is Ethereum, where the creation of a new Token is produced by means

of the creation of a smart contract. Thanks to this flexibility, and extreme extension possibility of

such platform, the conditions for creation of new tokens is countless.

C. Asset Supply Management

The process of the digital asset (usually referred to as cryptocurrency) creation varies across different

blockchain technologies. Each approach has taken different economic frameworks in most cases fixing a

specific monetary policy the future of a particular system. This is also a pillar of the incentive scheme that

users have to participate (or not) in the validation process (Tessone and Garcia, 2017).

We identify three possible layouts for Asset Supply Management :

1. Limited - Deterministic. The most replicated system in the world of blockchain is the limited

supply as introduced in Bitcoin. Not only the supply grows sub-linearly over long periods of time (in

contrast to what occurs in normal fiat currencies), but it is designed to have a well defined limit. It

is important that, while this incentivises users to adopt the technology and contribute to the process
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of verification - for which they get a retribution -, on the other hand, it also creates an incentive to

hoard the asset, limiting transactions.

2. Unlimited - Deterministic. Very few (eventually not broadly adopted) digital currencies based

on blockchain attempted to create unlimited supply, like Dogecoin or Freicoin.

3. Pre-mined Some altcoins (with the purpose of funding the development of the platform, or with

the sole idea of profiting) have distributed all the assets before the starting of the system. Then, a

reward system induces some kind of redistribution.

VII. EXTENSIBILITY

The alignment of the interoperability, intraoperability, governance and script language determine the

future ecosystem of the blockchain network and the integration possibilities of variety of blockchain related

technology. Figure 1 illustrates the subcomponents forming the component Extensibility:

1 Interoperability

2 Intraoperability

3 Governance

4 Script Language

A. Interoperability

Interoperability illustrates the overall capability of blockchains to exchange information with other sys-

tems, outside of blockchains. It allows inflow, outflow and information retrieval of data providers that are

not necessarily a blockchain-based system, e.g. financial data providers(Dilley et al., 2016). We identify

three possible layouts for Interoperability :

1. Implicit interoperability. It occurs when the smart contracts that specify conditions under which

a particular transaction (or event) is to take place can be written in a Turing-complete blockchain

script language. In this context, implicitly any kind of condition can be specified, even those involving

specific status in other systems. This implies an (albeit cumbersome) way of interaction from a

blockchain solution to any API tool or interface.

2. Explicit interoperability. If the script language is not Turing complete or the system has specific

tools implemented that enable interoperability with the real world (like Bitcoin with Counterparty),

then we talk about explicit interoperability, as it is brought purportedly into the system and one of

its design principles.
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3. No Interoperability. A blockchain without any kind of possibility to interact with other systems.

As implemented, Bitcoin in absence of external solutions (i.e. off the chain layers) has no interoper-

ability implemented. It applies to most existing blockchain-based systems whose script language is

not Turing complete.

B. Intraoperability

Intraoperability illustrates the overall capability of blockchains to exchange information with other

blockchains. It allows inflow, outflow and exchange of data between different blockchains(CHEN et al.,

2017). We identify three possible layouts for Intraoperability :

1. Implicit intraoperability It occurs when the smart contracts that specify conditions under which

a particular transaction (or event) is to take place can be written in a Turing-complete blockchain

script language. In this context, implicitly any kind of condition can be specified, even those involving

specific status in other blockchains.

2. Explicit intraoperability If the script language is not Turing complete but is specifically designed

to allow for intraoperability, then we talk about explicit intraoperability, because it is brought pur-

portedly into the blockchain and it is one of its design principles. An example of this is Bitcoin with

Counterparty.

3. No intraoperability A blockchain without any kind of possibility to interact with other blockchains.

As implemented, Bitcoin in absence of external solutions has no intraoperability implemented. So-

lutions for non intraoperable blockchains resort on: 1) Trusted proxies to connect blockchains; 2)

Pegged blockchain systems; 3) Distinguishing tokens in the same blockchain based system.

C. Governance

Effective governance rules are crucial for the successful implementation of the blockchains and for their

capability to adapt, change and interact. As the blockchain deployment structures (public chain, private

chain, consortium chain) are different, their management patterns are also quite different. We identify two

type of governance rules: 1) technical rules of self-governance defined by the participants. Technical rules are

composed of software, protocols, procedures, algorithms, supporting facilities and other technical elements;

2) regulatory rules defined by external regulatory bodies composed of regulatory frameworks, provisions,

industry policies and other components (Atzori, 2015; Davidson et al., 2016; Wright and De Filippi, 2015).

Regulatory rules are by definition not technical in nature and therefore outside the scope of this taxonomy.

We focus instead on techical rules which are particularly interesting for their feedback loop with the proposed

technological solutions. We identify three possible layouts Governance:
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• Open-source Community. In this case, open communities of developers (following open-source

principles) and validators (very often in coordination with the blockchain foundation) coordinate

upgrades and technical adjustments of the blockchain. For example, Bitcoin is mainly maintained

by a team of core developers who in coordination with miners agree on changing parameters or

other settings of the Bitcoin network. Also Ethereum and Hyperledger (backed up by the Linux

Foundation) follow an open-source community model.

• Technical. Since the blockchain technology is very versatile and can be applied to many business

cases, enterprises with a strong technical strength (e.g., IBM and Microsoft) have proposed them-

selves as technical solution providers for blockchain architectures (proprietary hardware and software

systems and basic services). In these cases, the technical rules of blockchain governance are dictated

by the companies according to their business goals. For example, in 2015 Microsoft collaborated with

ConsenSys to create the Ethereum blockchain technology service and took it as part of the Microsoft

Azure service (EBaaS) to provide distributed ledger technology trials for enterprise customers, part-

ners and developers. Moreover, in order to protect their proprietary blockchain architectures, these

companies generally apply also for patents. According to (R., 2016) 2,500 patents on this topic have

been filed from 2014 to 2016.

• Alliance. This is the blockchain governance model proposed by industry consortia (e.g., B3i, R3)

composed of companies with common business or technological progress demands. The alliance mode

has the scope to sharing technology platforms to build common business models and standards. Only

companies that meet certain criteria (e.g., payment of the fees, qualification of the organisation)

are legitimised to collaborate to set technical rules of blockchain governance. Those companies join

together to promote commercial and technological progress in the area of blockchain under mutual

benefit and common contribution.

D. Script Language

Widespread programming languages are Turing-complete, which in formal terms refers to the fact that

it is possible to implement an algorithm on it to simulate any Turing machine. These are therefore general

purpose languages, in which arbitrary computations can be performed. Languages that are not of this kind,

are so because of design reasons which aim at prevent specific behaviours of code execution, like undefined

termination.

Blockchain systems allow to modify the conditions under which certain information (e.g. transactions)

will be included into the public record. These conditions must be specified in an algorithmic manner, and

in some contexts are termed smart contracts. These algorithms are elicited in a scripting language designed

purely for this purpose. Therefore the intended flexibility given to the users, with respect to the scope that

the algorithm can develop, affects tremendously the degree of freedom to create conditions for some actions
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to occur (on the one hand) and the hypothetical computational effort that may be necessary to assess if a

particular condition is fulfilled or not (Kim and Laskowski, 2018).

It is worth remarking here that how limited is the scope of the scripting language is another design

decision developers must carefully choose before the implementation of the blockchain, as abrupt changes

(or bugs) may deride the logic of particular transactions. We identify four possible layouts for Script

Language:

1. Turing Complete. Ethereum refers to a suite of protocols that define a platform for decentralised

applications. With respect to scripting languages, on the one end of the spectrum, the Ethereum

Virtual Machine (EVM) can execute code of arbitrary algorithmic complexity. In the terms described

above, Ethereum is “Turing complete”, because developers can create applications, which runs on

the EVM. Furthermore, Counterparty also uses Ethereum’s entire smart contract platform to enable

users to write Turing completeness for smart contracts. It has been pointed out that there exist

scalability and security concerns regarding the usage of Turing-complete for scripting languages in

blockchain systems (Atzei et al., 2017). As of this writing, these have not been resolved.

2. Generic Non-Turing Complete. When designing Bitcoin, a decision was made to keep the script-

ing language limited in scope, to allow for a low impact of these calculations in the efficiency of the

system. It is therefore a non-Turing complete language, and most blockchain implementations have

followed this path. There is no connectivity in these to so-called “oracles” that allows obtaining data

from sources that gather data which is exogenous to the blockchain.

3. Application-specific Non-Turing Complete. There are some non-Turing complete languages

that are more expressive than the generic ones and purposely designed for certain cases. By restricting

the language to be only able to write programs relevant to specific limited cases, the potential outputs

of those programs becomes predictable. This allows those outputs to be queried and easily analysed.

One example is Digital Asset Modelling Language (DAML) which is designed to codify only financial

rights and obligations for execution in private networks. DAML is also more expressive than Bitcoin’

script language and easier to read from a non techical audience.

4. Non-Turing Complete + External Data. There exists a third category barely used so far

that (while keeping the nature of the scripting language non-Turing complete) allows for existence

of oracles. These oracles are considered trustful sources and add a layer of simplification on the

validation to be performed by the language, empowering above Turing-completeness (as long as the

oracles are reliable). This layout is then “non-Turing Complete + External Data”.

VIII. SECURITY AND PRIVACY

The recent evolution and new implementations of blockchain systems bring risks, both technical and

operational, associated with security and privacy. Thus, we group together security and privacy as two
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interrelated faces of the same problem. Similarly, ISO TC 307 has created a dedicated Working Group on

“Security and Privacy” (iso).

Security of blockchain systems is a matter of significant concern. Crypto currencies, the most widely

deployed application of blockchain systems, have suffered from cyber attacks which became possible because

of sensitive data mismanagement and the flawed design of the systems (Lin and Liao, 2017). Without going

into the detailed distinction between “risks”, “threats”, “attack surfaces” and “vulnerabilities”, security of

blockchain systems concerns: 1) Information mismanagement (alternation, deletition, distruction, disclosure

etc.); 2) Implementation vulnerabilities (including cryptomechanisms implementation vulnerabilities, run-

time leakage of information etc. ); 3) Cryptographic mechanisms mismanagement (including use of weak

algorithms, key disclosure); 4) User privileges mismanagement. For a recent comprehensive survey specifi-

cally targeting to the security and privacy aspects of Bitcoin and its related concepts we refer the readers

to (Conti et al., 2017). With regard to privacy we refer to the “freedom from intrusion into the private life

or affairs of an individual when that intrusion results from undue or illegal gathering and use of data about

that individual” (ISO 25237 and other ISO standards). These privacy principles apply to any ICT system

containing or processing PII, including blockchain systems. Figure 1 illustrates the subcomponents forming

the component Security & Privacy:

1 Data Encryption

2 Data Privacy

A. Data Encryption

By Data Encryption we refer to cryptographic primitives. To ensure authenticity, integrity property

and order of events, cryptographic primitive (cryptographic algorithms) are used. For example, Bitcoin

blockchain uses ECDSA digital signature scheme for authenticity and integrity, and SHA-2 hash function

for integrity and order of event. Hash functions are also commonly used as a part of Proof-of-Work consensus

mechanism. We identify two major layouts for Data Encryption:

1. SHA-2. SHA stands for Secure Hash Algorithm. In its two incarnations, SHA-256 and SHA-512,

SHA (originally developed by the National Security Agency, USA) is the most widely variants for

hashing functions (Crosby et al., 2016; Harvey, 2016) having first been used in Bitcoin. When issued

to hash transactions, it requires a piece of information from the issuer, i.e. the public key for the

validation to take place(Meiklejohn and Orlandi, 2015).

2. ZK-SNARKS. The Zero-Knowledge - Succinct Non-interactive Argument of Knowledge is a newer

technology where no data whatsoever has to be provided to validate a specific hash (Ben-Sasson

et al., 2014). With the hashed message and the encrypted one, is sufficient as a proof to generate the

validation. This anonymises much more the individual information.
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B. Data Privacy

Although public/private key infrastructures and other measures like hashing functions should ensure

that only the intended recipient can read the message and have access to the content of the transaction, the

research shows that blockchain transactions (for e.g., in Bitcoin) can be linked together in order to extract

additional information and eventually also the identity of the participants (Tasca et al., 2016). Indeed, there

exists an inevitable tradeoff between a decentralised peer-validate system and the security and privacy of

information. In this regard, several alternative solutions have been proposed to “encrypt” the data in such

a way that even though computations and transactions occur in plain sight, the underlying information

is completely kept obfuscated. Obfuscation is a way of turning any program into a “black box”. This is

equivalent to the original program: runs the same “internal logic” and provides the same outputs for the

same inputs. But information on the data and processes is inaccessible. Of course there exists a strong

interrelation between Data Privacy and Data Encryption. According to the solutions proposes so far to

enhance Data Privacy, we identify two possible layouts:

1. Built-in data privacy. With built-in data privacy we include all those blockchains that by default

provide obfuscation of information. For example ZeroCash uses built-in zero-knowledge cryptography

to encrypts the payment information in the transactions (Sasson et al., 2014). Although ZeroCash

payments are published on a public blockchain, sender, recipient, and amount of a transaction remain

private. Alternatively, blockchains like Enigma (a project that seeks to implement the secret sharing

DAO concept)(Wit, 2017) uses built-in secure multi-party computation guaranteed by a verifiable

secret-sharing scheme. In this case, the data can be split among N parties in such a way that M < N

are needed to cooperate in order to either complete the computation or reveal any internal data in the

program or the state. But M -1 parties cannot recover any information at all (which implies the need

of trust on the majority of the participants to be honest). Finally, CORDA by R3 proposes a Node

to Node (N -to-N) system characterised by encrypted transactions where only the parties involved

in the transaction have access to the data (Hearn, 2016). This is suitable for financial transactions

where a high degree of confidentiality is required. Third parties like central banks or other market

authorithies may have access to the data by invitation only.

2. Add-on data privacy. In this case, pseudonymous or public blockchains must resort on external

solutions in order to obfuscate the information. One method is the mixing service like Coinjoin. The

principle behind this method is quite simple: several transactions are grouped together so to become

a unique M -to-N transaction. If for example, Alice wants to send one coin to Bob, and Carla wants

to send one coin to David, a mixing transaction could be established whereby the addresses of Alice

and Carla are both listed as inputs, and the addresses of Bob and David are listed as outputs in

one unique transaction. Thus, when inspecting the 2-to-2 transaction from outside it is impossible to

discern who is the sender and who the recipient (Bitcoin Wiki, 2015) (Bitcoin wiki, 2015). Alternative

to the mixing service, the secret sharing allows data to be stored in a decentralised way across N
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parties such that any K parties can work together to reconstruct the data, but K-1 parties cannot

recover any information at all. Alternative add-on data privacy tools are ring signatures (Noether

et al., 2016) and stealth addesses (Möser and Böhme, 2017) which hide the recipient of a transaction

and can be used by any blockchain. Ring signatures - firstly introduced by (Rivest et al., 2001) - and

its variant (linkable ring signatures) allow to hide transactions within a set of others’ transactions. In

this case the transaction is tied to multiple senders’ private keys but only one of them is the initiator.

Thus, the verifier may only identify that one of them was a signer, but not who exactly that was.

In the case of stealth addresses, a receiver generates a new dedicated address and a “secret key”

and then sends this address to someone who he wants payment from. The sender use the address

generated by the receiver plus a “nonce” (one time random number) in order to generate the address

he/she will send funds to. The sender communicates the nonce to the receiver wwho can unlock the

address by using the nonce and the secret key generated earlier. Monero (https://getmonero.org/) is

an example of blockchain that aims to achieve privacy through the use of traceable ring signatures

and stealth addresses.

IX. CODEBASE

The codebase of the blockchain technologies delivers information about which challenges a developer could

face and what kind of changes the underlying programming language could undergo. Therefore the main

component Codebase is essential to align and increase the efficiency of blockchain related IT architectures.

Figure 1 illustrates the subcomponents forming the component Codebase:

1 Coding Language

2 Code License

3 Software Architecture

A. Coding Language

Coding language illustrates the interconnectivity of programming languages of the blockchain technolo-

gies. We identify two possible layouts for Coding Language:

1. Single Language. Bitcoin has released The Bitcoin Core version 0.13.1 with the underlying coding

language C++. As Bitcoin is open source, implementations occurred (much less popular than the

original codebase) in different languages (like Java).

2. Multiple Languages. Ethereum uses C++, Ethereum Virtual Machine Language and Go, which en-

ables more interaction with other languages. Stellar maintains JavaScript, Java, and Go-based SDKs
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for communicating with Horizon. There are also community-maintained SDKs for Ruby, Python,

and C-Sharp.

B. Code License

The Code License illustrates the possibility of changes to the source code of the underlying technology.

We identify thee possible layouts for Code License:

1. Open Source. Regardless of the exact licence used for specific projects, we refer only to the openness

in the source code as the only differentiating factor. Bitcoin core developers have continuously

licenced the source code under the MIT licence. Counter-intuitively, a permissive licence like the MIT

one (in which other developers can take the source code and fork it) eventually prevents multiple

implementations. It also allows for continued development, larger code growth and allows adoption

at a faster pace. Furthermore, Ripple and Stellar have licensed their codes with the ISC License. The

ISC license is another permissive licence.

2. Closed Source. For private implementations of blockchain-based systems, the source code is not

necessarily openly distributed. Just as an example, most the blockchains running on the Ethereum

Enterprise Alliance, rather than on the public Ethereum blockchain, use closed source codes. In

this case, risking the existence of unadressed bugs or unreported characteristics that may violate the

expected conditions of use and functioning, the code may be kept outside of reach for users.

C. Software Architecture

The Software Architecture refers to the high level structures of the blockchain system. Each structure

comprises software elements, relations between them, and the properties that elements and relations give.

The choice of the software architecture is very important in order to better manage changes once imple-

mented. Software architecture choices include specific structural options among the possibilities that are

available for software design.

We identify two possible layouts for Software Architecture:

1. Monolithic Design. In this case, all the aspects of a decentralised ledger (P2P connectivity, the

“mempool” broadcasting of transactions, criterion for consensus on the most recent block, account

balances, nature of smart contracts, user-level permissions, etc.) are handled by a blockchain built

as a single-tier software application without modularity. Examples of blockchains with monolithic

design include Bitcoin and Ethereum. These architectures suffer from lack of extensibility on the

long run.
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2. Polylithic Design. The Polylithic approach decouples the consensus engine and P2P layers from the

details of the application state of the particular blockchain application. For example, in Tendermint

the blockchain design is decomposed. It offers a very simple API between the application process and

its application-agnostic ”consensus engine” (TenderminCore) which enables to run Byzantine fault

tolerant applications, written in any programming language, not just the one the consensus engine is

written in. Also Hyperledger Fabric follows a polylithic design as it is composed of interchangeable

modules representing different components of blockchain technology.

X. IDENTITY MANAGEMENT

The main component Identity Management ensures secure access to sensitive data to establish a suitable

governance model for the blockchain. This is a complex matter, as different levels of authority, accountability

and responsibility are attached to different type of participants (e.g. users, administrators, developers,

validators, etc). Generally, the set of rules are defined and enforced through mechanisms intrinsic to the

system itself (on-chain governance). The subcomponents also eventually determine the concept of digital

identity that users end up having within the systems. Figure 1 illustrates the subcomponents forming the

component Identity Management:

1 Access and Control Layer

2 Identity Layer

A. Access and Control Layer

When establishing the right governance structure for a blockchain it is important to consider the ledger

construct. Depending on its purpose, the ledger could be run by a central authority and governed by it or

it could be run in a decentralised fashion according to a set of governance rules adhered to and enforced

by participants on the blockchain network. The governance structure determines the authorisation and the

control policy management functions. Those rules provide permission for users to access to or use blockchain

resources. Those are a set of rules that manage user, system and node permissions that must be followed in

security-related activities. Blockchains may have different permissions according to which access and control

to data is allowed. The distinguishing features must answer to the following questions:

• Which users have “read” access?

• Which users have “write” access?

• Is it there anyone who can “manage consensus” (i.e., update and maintain the integrity of the ledger)?

According to the set of governance rules, we may have different system designs that reply to the above

questions in a different way in order to better serve either a public or a private interest of either a general (like
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in the case of Ethereum) or a special (like in the case of Corda) purpose. On one side, private blockchains

are generally those with a set of constrained “read/write” access alongside a consensus algorithm which

allows only a pre-selected group of people to contribute and maintain the blockchain integrity. Instead,

public blockchains do not control “read/write” access or in the consensus algorithm for any given set of

participants. Nevertheless, this does not mean that certain permission structures can not be implemented

as part of a specific application.

Although different variations are possible, the authority to perform transactions on a blockchain generally

belongs to one of the following main models of the Access and control Layer(Guegan, 2017):

1. Public blockchain. In this case, there is no preference in access or in managing consensus. All par-

ticipants (nodes), have ”read/write” access and without any control can contribute to the update and

management of the ledger. An example of blockchain in this area is Bitcoin where every participant

can either choose just to use the blockchain to exchange Bitcoins (or other data on the top of it, in

general by means of third-party technologies), run a full node or even become a miner to participate

in the process of transaction validation.

2. Permissioned Public blockchain. In this case “read” access is enabled for all users, however

“write” access and/or “consensus management” require permission by a pre-selected set of nodes.

Ripple belongs to this group as to validate transactions a participant need to be part of the so-called

Unique Node List. Some other examples include Ethereum and Hyperledger Fabric which is used

for the exchange of tangible (real estate and hardware) with intangible (contracts and intellectual

property) assets between enterprises.

3. Permissioned Private blockchain. In this case, ”read/write” and ”consensus management” rights

can only be granted by a centralised organisation. An example is Monax (formerly known as Eris).

B. Identity Layer

The onboarding and offboarding of nodes / entities to the blockchain networks is handled differently by

the various software solutions. By identification we mean the capability to identify an entity uniquely in a

given context. Digital identity can be defined as a set of identifying attributes for an entity that together

enable the unique identification of the entity in a context (UID). A vital part of any identity system (and

most information systems) is that a UID is managed throughout the entitys lifecycle to protect it from

negligence and fraud, and to preserve the UIDs uniqueness. A UID can then be assigned to the identity and

used to link or bind the entity to the claimed identity and to any digital credential (software or hardware)

issued to the entity. This digital credential acts a trusted proxy for the physical or logical entity and is used

to support a wide range of personal and trust-related functions such as authentication, encryption, digital

signatures, application logins and physical access control.
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AML and KYC procedures – generally required to proceed personal related data e.g. medical data, bank

information or other personal related data –, are the key aspects to consider when looking at the Identity

Layer. We identify two possible layouts:

1. KYC/AML. Compliant blockchains have the ability to validate organisations and their attribute

data from authoritative sources to ensure the quality of data written to the blockchain and linked to

identifiers in the blockchain. An example is Stellar that sets requirements for all integrators to imple-

ment Know-Your-Customer (KYC)/Anti-Money-Laundering (AML) identity verification process to

increase the transparency of the stellar network participants. Furthermore, Ripple forces its financial

services partners to implement an identity layer to verify the user information.The financial services

partners have to do a due diligence, depending on the requirements they must fulfil.

2. Anonymous. In general the common misunderstanding of the anonymity level within Bitcoin

networks is that the majority of the users do not distinguish between anonymity and the pseudo-

anonymity. In light of this, the Bitcoin protocol has no identity layer to identify the users. Those cir-

cumstances could benefit misuse of Bitcoins and money laundering activities through this blockchain

network, but to control approaches to anonymity in Bitcoin and other cryptocurrencies(Maurer,

2016). Regal Reid and Martin Harrigan (Reid and Harrigan, 2013) have been able to demonstrate

that several pseudonymous addresses can be linked to one single user. See also (Tasca et al., 2016)

for a Bitcoin transaction-path driven users identification method.

XI. CHARGING AND REWARDING SYSTEM

Blockchain systems incur in operational and maintenance costs that are generally absorbed by the par-

ticipants to the network. Different kind of cost models are applied according to: 1) the architectural con-

figuration design; 2) the governance system; 3) the data structure and the computation required on-chain.

One of the cost items which is common to the wide majority of the blockchains is the verification cost. This

is required to sustain the validation process of the transactions that compete to be appended (and never

removed) to the ledger. The potential financial costs incurred when taking part of a blockchain platform,

require an incentive scheme that maintains consistency of the cost structure across the different stakeholders.

Figure 1 illustrates the subcomponents forming the component Charging and Rewarding System:

1 Reward System

2 Fee System

2.1 Fee Reward

2.2 Fee Structure
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A. Reward System

This subcomponent illustrates the rewarding mechanisms automatically put in place and triggered by

the systems in order to compensate active members contributing to data storage or transaction validation

and verification. We identify two possible layouts for Reward System:

1. Lump-sum Reward. Individuals taking part of the storage, validation or verification process (e.g.,

in the Bitcoin verification is only rewarded to users called miners) may be rewarded for their action.

For example, in Bitcoin, the first transaction in each block is called coinbase, and the recipient is

the user (or users) who created the block, that in this regard is a set of transactions verified by said

user(s). The lump-sum reward can be fixed like in Enigma or variable like in Bitcoin.

2. Block + Security Reward. In other blockchain-based technologies, like Ethereum, the blockchain

rewarding system includes, besides the block reward, a reward for including in the validation forked

blocks that are still valid. The design idea is to incentivise cross-validation of transactions (crucial

in a setting where validation can be arbitrarily costly)(Timmerman et al., 2017).

B. Fee System

Other kind of rewards are those provided directly by the users to other participants of the system when

launching any request in the network for storage, data retrieval, or computation and validation. With

regards to this, we identify two sub-subcomponents: Fees Reward and Fee Structure.

1. Fee reward

Fees Reward describes the nature of the fees that the users are required to contribute when using a

blockchain. The fees system has been shown to play an important role in the way verifiers do (Möser and

Böhme, 2015) and may (Carlsten, 2016) behave. This kind of design-time consideration ought not to be

neglected, as it is usually the case. We identify three possible layouts for Fees Reward :

1. Optional Fees. In Bitcoin and related technologies (Guide, 2015) users can optionally pay a

voluntary fee for the validation process. This fee is optional, but it is assumed that the larger the

fee is, the lower is the processing time it will take to be added to a block, as miners will be more

incentivised to do so. Moreover, given that the coinbase reward halves approximately every four

years, currently, the reference Bitcoin client refuses to relay transactions with zero or no fees.

2. Mandatory Fees. Some systems like Stellar force all users to include fees in any transaction added

into the system.
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3. No Fees. In comparison, the Hyperledger Fabric is a blockchain solution for businesses, which

combines a permissioned network and an identity layer without any transaction fees.

2. Fee structure

When provided by the system, fees can follow either a fixed or a variable structure. There are two

alternative layouts for Fees Structure:

1. Variable Fees. In this case, the fee is somehow linked to the ”size” of the request. In Bitcoin, the

larger the transaction size, the higher will be the fee the user shall pay in order to compensate for

taking up space inside the block. Miners usually include transactions with the highest fee/byte first.

The user can decide how many Satoshis (0.00000001 Bitcoins) wants to pay per byte of transaction.

For example, if the transaction is 1,000 bytes and the user pay a fee of 300,000 Satoshis, he/she will

be in the 300 Satoshi/bytes section (300,000/1,000=300.00). At the time of writing, this implies that

the transaction will be included in the next 2 block transactions (i.e., within 20 minutes). However,

to avoid queuing, the user can increase the fee. The fastest and cheapest transaction fee is currently

360 Satoshis/byte. For an average transaction size of 226 bytes, a fee of 81,360 Satoshis is currently

the cheaper fee in order to get the transaction included in the first available block without delays.

Also other blockchains apply variable fees and follows similar rules as Bitcoin.

2. Fixed Fees. In this case, the fee is linked to the request, not to its ”size”. For example, in Enigma

every request in the network for storage, data retrieval, or computation has a fixed price, similar to

the concept of Gas in Ethereum. However, since Enigma is a Turing-complete system, the fee can be

different depending on the specific request. Another example of blockchain with a fixed transaction

fee is Peercoin which required a fixed 0.01 PPC per kilobyte.

XII. CONCLUSION

In the 21st century, the blockchain technologies will athwart affect all business areas: financial services

(Alvseike and Iversen, 2017; Scott, 2016; Evans, 2015; Quintana Diaz, 2014), IoT (Boudguiga et al., 2017;

Dorri et al., 2017), consumer electronics (Andrews et al., 2017), insurances (Mainelli and von Gunten, 2014;

ste, 2016), energy industry, logistics (Badzar, 2016; Hackius and Petersen, 2017), transportation, media (Ko-

tobi and Bilén, 2017), communications (Plant et al., 2017), (Chakravorty and Rong, 2017), entertainment,

healthcare (Kuo et al., 2017), automation, and robotics will be involved. After the advent of Internet, it

currently represents the most prominent technology and it will shape the upcoming products and services in

every industry field. Since the introduction of Bitcoin in 2009, the awareness of blockchain technologies has

considerably increased. During the initial phase, the first mover regarding the adoption of blockchain was

the financial industry. This is explained by the fact that blockchain enables cost reduction and increases the
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efficiency in several business processes (both internal and external) for financial institutions. An example of

the big impact of blockchain in the financial industry regard the networks of global payments which involve

money transactions in exchange of goods, services or legal obligations between both individuals or economic

entities. Beyond payments, blockchain allows real-time settlements, which reduces operational costs for the

banks. Furthermore, the immutability of the blockchain reduces the risk of fraud, as a consequence banks

can use sophisticated smart contracts to capture digital obligations and to eliminate operational errors.

Global payments are just a fraction of the overall use cases in the financial industry. Moreover, many other

industries, including the public sector, are now looking at blockchain-enabled solutions for their own pro-

cesses. This tremendous trend is causing a proliferation of multiple blockchain architectures which often are

not interoperable and are built according to different engineering designs. Lately, software architectures,

companies and regulators realised the need for standardisation of some of their components. This is be-

coming a necessary step for the blockchain in order to: 1) gain global adoption and compatibility, 2) create

cross-industry solutions, 3) provide cost-effective solutions. As always with standardisation processes, their

creation must be a necessary equilibrium between different parties. But in this particular case, the open

source community that brought forward this disruptive technology and which continuously develops most

implementations should play a crucial role, as heralds of the advancement of blockchain.

Based on the review of the current literature on blockchain technologies, our work is an early stage

analysis across existing software architectures with the aim to propose a taxonomy: a reference architectural

model for blockchains and their possible configurations. Based on component-based design, the blockchain

taxonomy decomposes the blockchains into individual functional or logical components and identifies any

possible different layout. The blockchain taxonomy proposes to assist in the exploration of design domains,

in the implementation, deployment and performance measurement of different blockchain architectures.

Figure 1 illustrates the blockchain taxonomy tree resulting from our analysis.

Our work sheds light on the current proliferation of non-interoperable blockchain platforms and on

the need (for) and current discussions (about) blockchain standards. Although our work contributes to the

ongoing efforts on setting blockchain standards, we do not conclude by saying that we need a set of standards

now. This process generally takes several years in order to produce concrete solutions (even 10 years for

complex subjects). Therefore, we think that our taxonomy represents a timely honest intellectual exercise

to be used as preliminary supporting material for all those interested in reducing blockchain complexity. At

the same time, we are aware that our taxonomy tree, although hopefully very useful, is very preliminary

and likely the first version of subsequent more complex evolutions.
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Appendix A: Blockchains Analysed for the Taxonomy

Technology Description
Bitcoin Forerunner and by far the most widely used cryptocurrency.

Dash

Privacy-centric digital currency. The digital currency Dash has different functionalities e.g. instant

transactions. Dash is based on the Bitcoin source code, but it allows anonymity while performing

transactions.

Monero
Monero is an open-source digital currency, with the focus on decentralisation, scalability and

privacy. It is based on the CryptoNote protocol, which has an enabled anonymous layer.

LiteCoin
LiteCoin is a P2P cryptocurrency and open source software project. The Litecoin is technically

nearly identical to Bitcoin, except for the proof-of-work cryptographic function used.

Zcash
Zcash is a decentralised and open-source cryptocurrency, which combines privacy with selective

transparency of transactions.

Peercoin Cost-effective and sustainable cryptocurrency based on proof-of-stake.

ColorCoin
A concept that allows attaching metadata to Bitcoin transactions and leveraging the Bitcoin in-

frastructure for issuing and trading immutable digital assets that can represent real world value.

Omnilayer (MasterCoin)
A meta-protocol layer that enables new digital currencies, digital assets, and communication pro-

tocol to existing on top of the Bitcoin blockchain.

NameCoin
NameCoin is an asset registry on top of the Bitcoin Blockchain, which enables a decentralised

domain name system.

Counterparty
Counterparty enables anyone to write specific digital agreements or programs known as smart

contracts, and execute them on the Bitcoin blockchain.

NXT (Ardor)
NXT is a safe, transparent and decentralised system for sharing data and allowing payments to

people all over the world. Ardor platforms enable smart contract functions with NXT.

Ethereum
Ethereum is an open-source platform to build blockchain-based applications in different business

fields.

Monax

Monax is an open platform for developers and DevOps to build, ship, and run blockchain-based

applications for business ecosystems. Monax is known as a private blockchain offered by the monax

company.

Cosmos

Cosmos is an architecture for cross-chain interoperability where independent blockchains can in-

teract via an inter-blockchain communication (IBC) protocol, a kind of virtual UDP or TCP for

blockchains each driven by the Byzantine fault tolerant (BFT) consensus algorithm, similar to

Tendermint.

COMIT

COMIT is a cryptographically-secure off-chain multi-asset instant transaction network (COMIT)

that can connect and exchange any asset on any blockchain to any other blockchain using a COMIT

cross-chain routing protocol (CRP).

Synerio Synerio is intended to become a decentralised social network.

Ripple Ripple is a global real-time financial settlement provider.

Stellar
Stellar is a decentralised multicurrency-exchange platform for people without access to the banking

system.

Hyperledger

Hyperledger (or the Hyperledger project) is an open source blockchain platform, started in Decem-

ber 2015 by the Linux Foundation, to support blockchain-based distributed ledgers. It is focused

on ledgers designed to support global business transactions, including major technological, finan-

cial, and supply chain companies, with the goal of improving many aspects of performance and

reliability.

Tendermint

Tendermint is a high-performance blockchain consensus engine that enables to run Byzantine fault

tolerant applications written in any programming language. Tendermint is a partially synchronous

BFT consensus protocol derived from the DLS consensus algorithm.

Corda Open-source distributed ledger platform.

2-3 Enigma Distributed ledger technology, created by the MIT digital currency lab.
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