A Possible Proof Of The Riemann Hypothesis

Yunus-Emre KAPLAN

Abstract
The Zeta Function and one of its analytic continuations are defined as follows:

Vs € C| Re(s) > 1, {(s) = Els
n:ln

Vse C\ {1 + % | k € Z}, C(s) = %, where 1(s) = E (—i):—l

The Riemann Hypothesis states the following, for all the nontrivial zeros:

C(s) =0 = Re(s) = %

It has already been proved that Re(s) € ]0, 1] for all the nontrivial zeros.

Firstly, for a = Re(s) and b = Im(s), we'll prove that:

-1 ) .
”2 Z (=1)%+/-2 cos(b In(k / j))
k=1 j=k+1 (k)"

And since Yx € R, —1 < cos(x) < 1, this implies that there exists a map r,, satisfying -1 < r,, < 1 for
all n sufficiently large, and for which:

—0asn— +oo

C(s):O:>n(s):0<:>I§$+2x

n

1 n-1 n 1
Z—+2r XZ E —— —0asn— +oo
ok 3 iz (k7)"

Secondly, by reformulating it as a problem of quadratic equations, we will figure out that this holds true

1 1 1
onlyif Yme IN\ [0,3], r, € [— T 3] \ {——2} where [0, 3]] = {0, 1, 2, 3}, and therefore,
n-— n-—

1
thatr, ~ ——asn— +oo
n

And through various asymptotic equivalences, we will get:
a1 1 (w1 2
z——x E_u —0asn— +oo
=1 k no ik
Finally, from there, we'll consider @ = Re(s)_as a map a,, = Re(s,,) converging to a real number

d,0 € ]0, 1[, rather than considering it as a fixed value (since we're dealing with infinity).
It is for convenience that we denote lim a, = a,. € ]0, 1].

n— +00
Then we'll approximate these two sums with integrals depending on a., ., and asymptotic expansions, and
we shall distinguish three different cases:




"2
1

* Ay € ]E,l[
1
El.,_oo ZE

And conclude that the only case that is logically consistent is when a,,, = —
1 Simplifying the expression

First of all, for the sake of simplification, let's write s = a + ib where a = Re(s) and b = Im(s),
We can write the Eta function as follows:

S
n=1 n=1 nt nt

> —1)r-1 O —1)+1y- 1n1—zbln(n)
U(S):Z(n) =E( ) E( )

) = E( 1)1 cc;s( bIn(n)) i 2 (—1)” Lsin(=b In(n))

a
n=1 n

(-=1)"1! cos(b In(n)) (=1)"1 sin(b In(n))
"EED) a E a
n=1 n n
If we assume ((s) = 0, then by the expression of its analytic continuation {(s) = & we also

(-2

have 7(s) = 0 and then |1(s)|? is null too:

)12 = [E (-1t CO:(b ln(n))] i (1)1 sir;(b ln(n))]2 _ 0
h n=1 n
2

2
thus asn — +oo, [2 (=) cos(b In(k)) + [2 (-1)* " sin(b 1n(k))J 0

k=1 ke k=1 ke

— zn: zn: (=1)**72 cos(b In(k))cos(b 1n(])) (=172 sin(b In(k))sin(b In(j))

—0asn— +oo

k=1 j=1 (kp)* (kj)*
_ non (D)2 [cos(b In(k))cos(b In(j)) N sin(b In(k))sin(b ln(]))] 045 11— 400
k=1 j=1 (kp)* (kp)*
= ZE( 1)<+ 2[cos(b1n(k) bln(]))] —0asn— +oo
k=1 j=1 (kj)*

—0asn— +oo

— Z Z 1)k+i-2 Cosab In(k/ f))
k=1 j=1 (k7)



" 2k-2 non k+j-2
=X +zz< ORI 045 oo
k=1 k=1 j=1 (])
j£k
" k+j-2 ;
‘:’Z—+2XEE (=)™ Coé(bln(k/]))—>0asn—>+oo
k=1 j=k+1 (kj)”

Vk,je[L,n],¥b € R, —1< cos(bIn(k/j) < 1

Thus there exists a map r,, satisfying —1 < r,, < 1 for all n sufficiently large, and for which:

Z—+2 xz E

k1 K k=1 joke1 (KD

—0asn— +oo

And we end up with what curiously resembles a quadratic equation.
2 The "Russian Doll" Quadratic Equations

Now let's assume there is x1,..., x,, € IR with x; = 1 so that:

Exk+2rn><2 E xpxj =0

k=1 j=k+1
And let's try and figure out which kind of map 7, is.

n

But first, let's define Vi € IN*, u,, = Ex,% R Z 2 XeXjand p, = Exk
= k=1 j=k+1

Our previous equation becomes:

U, + 21,0, = X2+ 28 Pu1Xy + Uy1 + 270,10 =0
And now let's define (f ;) enj0,1) @nd ($1)nemnjo,1) SO that Vi € IN'\ {0, 1}:

fnun + &0y = fnx;% + &nuPn-1%Xn +fnun—1 +3n0p-1 = 0
Let's now express the delta A, of this equation and find the expressions of f,,_; and g,,_1
sothat A, = fn_lun_l + 911041 2 0:

n — (gnpn—l)z - 4fn(fnun—1 +gnvn—1)/
2

n-1
= Z'xk = Uy + 201’1—1/
k=1

thus An = (gnpn—l)z - 4fn(fnun—1 + gnvn—l) = g%(un—l + 27]11—1) - 4fn(fnun—1 +gnvn—1)
= (82 - 4f2)uyo1 + (283 — 4fugn) Vnt



We conclude that f,, 1 = ¢2—4f2and g, 1 = 2¢2 - 4f,4,, and we see A,, is in turn a new quadratic
equation:

— 2
An - fn—lxn_l + gn—lpn—an—l + fn—l”n—z + gn—lvn—Z

with a new A,,_; for which we must determine the conditions to ensure A,_; > 0, and so on until A,
(hence the comparison with a Russian doll).

8n
1 _ 280 =4fu8n _ 280(80—2f0) 2% _ °h

fn—l g%—4f% _(gn_zfn)(gn+2fn):(gn+2fn)_}gr—”+2

But also,

-k
We observe that each time we calculate a A,,_;, we actually apply /1 : x +— to the ratio gn— to

xX+2 fn—k
p&nk
obtain Sn k1 Vk e [[1,n-3], Snkl _ _fok .
n—k-1 fn—k—l Snk +2
n—k

In our precise case, f, =1andg, = 2r,, so g—n = 2r,;our f,_; and g,_; thus become:
n

foo = (4r2-4)f2 =4(r2-1)f2 = 4(r, — 1)(ra + 1) f2
n1 = (2 X 4r2 — 4 ><2r,1)fn = S(r,% — rn)f% = 8r,(r, — 1)f2
Su1 87, (r, —1)f> 2r,,

Thus,

for A -V +DfF 1yt 1

Now, let's prove by induction that Yk € [[1,n - 2], En = :
fok  kxr,+1

k 21’,1

_ 2r
Let's assume dk € [1,n - 3], Snk = . ,
fn—k kxr,+1

Then we have:

Tn-k-1 Tn-k Zrn 1 1
=h =2X X =2 X2r, X
frok-1 fuk kxr,+1 20 L 5 2r, +2(k xr, +1)
kxr,+1
k-1 -k 4rn Zrn
<:> == h = =
f k-1 fuk 2(r, +kxr,+1) (k+1)xr,+1

k 21’n

Which proves that Yk € [[1,n - 2], Sn- = :
fok kXxr,+1

Now, Yn € IN'\ [[0, 3], Yk € [[1, n — 2]] we can express all the A,,_;, and above all the following:

— — 2 2 — 2 —
A3 = le/lz + 820 = fzxz + fle +QoXoX1 = f2x2 +Q2X> +f2 (because x; = 1)
2
r

02462 = n _ 2
Ay =85 -4f3 4X[[(n—2)><rn+1]2 1]Xf2




2
L

To determine the positivity of A, we only focus on the positivity of -
[(n—2) %71, +1]?

for we know f3 and 4 are always positive.

2
L

[(n - 2) x +1]2_1>0‘:’732[(”‘2)”””]2@[1—(n—2)2]r,%—2(n—2)rn—1
n-— Ty

A=4n-22-4x(-)[1-(n-2)?] =4[(n-2)*+1-(n-2)*] =4>0
So solutions for all of our previous A exist;

Vn € IN'\ [0, 3], the quadratic coefficient [1 -(n- 2)2] is strictly negative, so:

) e[z(n—z)—\/i 2(n—2)+\/2]\{_ 1 }
T 2[1-m-2)2] 2[1-(n-2)?] n—2
which means:
n-2)-1 n-2)+1 1
rne[1—(11—2)2'1—(11—2)2]\{_n—Z}
(n-2)-1 n-2)+1 1
(1—n+2)(1+n—2)’(1—n+2)(1+n—2)]\{ n—Z}

@rne[

1 1 1
or, € [_n—l' _n—Sl\{_n—Z}' VYn e IN\ O, 3]

2
¢
(we exclude — because of the term - in Ay);
n-2 [(n—2)x7r, +1]?
1
Therefore,asn — +o00, 1, ~ — —
n

In conclusion, for the following to be true, as n — +o0:

Exk+2rn><2 Z xrxj— 0

k=1 j=k+1

We must have it in the following form:

Zxk—;xE Z xXpxj — 0asn— +oo

k=1 j=k+1

Now we could simplify this:

Exk—;XZ 2 XXy = Exk——xzzxkx]

k=1 j=k+1 k=1 j=1
j*k

e [zzxkx] z]

k=1 k=1 j=1

>0



1 n 1 n n
& [1+—] xzx,%——xzz:xkxj=0
nJ) k=1 N k=1 j=1
And as n — +o00 the asymptotic equivalences give us the following:

n

1 n n
S 3 M vasn o

k=1 N k=1 =1
2
n 1 n
@Zx,%——x D x| > 0asn— +o0
k=1 k=

1
Now to get back to our problem, if we assume that Yk € [1, n]], xx = rE then we get, as 1 — +oo:

2
n n
1 1 1
E kz ——X Z k_ll -0
k=1 k=1
Which is therefore - thanks to all we've seen up to now - the new formula on which we'll work from now
on, and which is way more easy-to-handle and less obscure than:
n n-1 n :
1 —1)k+=2 cos(b In(k / j
ZEJFZXEZ( ) El (/]))—>Oasn—>+oo
-1 k k=1 j=k+1 (k7)

3 Comparison Of Asymptotic Behaviours
Now, We got this expression from the previous part:

2
n n

1 1 1
— ==X E—a — 0, asn— +oo
= Ko ok

Since we're dealing with infinity, instead of distinguishing the cases for different fixed values fora € 10, 1],
I will speak of a map (1,),cn- converging to a real number in |0, 1[: lim a4, »>a,, € ]0,1[ with a

1 — 400

rate of convergence €, = a,, — 4.

The sums with their corrections (first-order Taylor expansions) become, as n — +oo:

2
n n n n

Zk;m—z%zgg‘:_lx D 1 —enzln(k) o

A+00 A+00
k=1 k=1 O P k=1 k™

The correction terms can be ignored for a fast convergence of a,;;
We'll deal with fast and slow convergences, and also figure out the expansions of the p-th order.

1
A fast convergence with such sums typically means €,, = 0[1 ( )] .
n(n



It has already been well-established in the literature [1, 2] that a_.., € ]0, 1] for all the nontrivial zeros, so
1-a,. > 0 and then the squared sum can be approximated with the following squared integral as
follows if 1, converges fastly to its limit:

n1 2 (Tll_a - 1)2 n2—2a
[‘f; —dt] = ~ as n — +oo

o (1-a)?  (1-a)?

to obtain the following (I omit the 7 index of a,, for convenience in these calculations):

2

n 1 n2—2a

1 1
Ya € ]0,1[ and as n — +o0, — X Z— ~ —X =
no | k° n (1-a)? (1-a)?

n 1-2a

And for a slow convergence, the sum of the correction term added in the squared sum:

i e N, f””ln(t)d < Z In(k) L”” In(t—1) "

tll+c>o 1 kll+oo (t _ 1)ﬂ+oo
111 t 1 1-0+0 1-a+00 _ 1
with n( )dt = n(n)n _n
1 e 1-a, (1-a)?

Therefore, since 1 —a, ., > 0 we get the following asymptotic equivalence:

z”:ln(k) f”ln(t) dt In(n)nt==  pl-o=
1

- as 1 — +oo
k=1 K™

phre 1-a,, (1-a)?
For any order of expansion p, we figure out the p-th term as follows:

(—€x)’ xa In(k)?  (=€,)P [In(t)
X,

dtasn — +oo

= P! o
f”ln(t)P . In(n)Pn 1o é pl(-1)k pl(=1)7
1 e (1-a40) o (p-F)I1- a+oo)k1n(n)k (1-a400)f
n p p 1-0+
thus ln(t) —ln(n) ! as n — +oo
1 tu+°° (1-a4c)

So the p-th term in the Taylor approximation is written:
! (—€,)P In(n)?
(1 - a+oo)p!

And the total expression involving the asymptotic expansion using the Taylor approximation of order p is
then written:

1t PLnl=a=(—¢ Y In(n)k 1t P\ (=€, In(n))*
n (—€n) ()=n ><1+2("())

1-0i0 15 (1-a,.)k! 1-a,. o1 k!

As to the sum of squares, for a fast convergence:




And the sum of the correction term added for a slow convergence:

n+1]n (¢ 5 In(k n+l In(t -1
Vne]N*,f n()dt<2—n()<f (=1 4
1 k 2

t2ﬂ+oo 1 k2ﬂ+oo ( 1)2ﬂ+oo

We get to distinguish a,, # E anda,, = E for the sum of squares.

1
e # o

Fast convergence:
1-2a _ ' _1\1-2a _ (» _1\1-2a
(n+1) 1< 1 <1+(n+1 1) 2-1)

X

1-20  Zix 1-2a

(I skipped the details of variable substitution on the right side)

We then obtain the following asymptotic equivalences, as n — +oo0:

n

1-2a _ 1-2a _
A ! < Z i <1+ - L
1-2a i k% 1-2a

1-2a

n -1
Which means that as n — +o00, A € [0, 1], EkE ~ A+ T
—2a

Sum of the correction term added for a slow convergence (asymptotic equivalent as n — +0o0):
2”: In(k) f”ln(t) e In(m)n'=20s pl20e 1
1 k2ﬂ+oo 1 t2ﬂ+oo 1 _ 2a+oo (1 _ 2a+oo)2

For any order of expansion p, we figure out the p-th term as follows:

(-2€,)” xa In(k)P (=2€,)P "In(t)P
D

dtasn — +oo

p! o1 k2ﬂ+oo p! t2a+oo
f”ln(t)P Ly _ Iy 2’”: pl(-1)k pl(-1)P
| 2 (1-2040) 2 (-1 - 20,00)F In()* (1= 2a400)7*!
n P p 1-24+00
s In(t) ln(n) n 15 11— +00
1 t2a+oo (1 — 2a+oo)

So the p-th term in the Taylor approximation is written:
n'=24=(-2¢,)? In(n)?
(1 - 2a+oo)p!

And the total expression involving the asymptotic expansion using the Taylor approximation of order p is
then written:

1 2o p n1_2a+oo (_2€n)k ln(n)k
“e )
1-2a, 5 (1-2a,.)k!

/\+



If a+oo = =

Fast convergence:

o1
3/\6[0,1]|I§ﬁ = A +In(n) as n — +oo

Sum of the correction term for a slow convergence (asymptotic equivalent as n — +00):

Z In(k) ~ f1 1n(t)dt‘ as n — +oo

P k2u+oo t

Lnlr;(t) ~ In(n)? - fnlr;(t)

”ln(t) ln(n)2
< f1 t 2

For any order of expansion p, we figure out the p-th term as follows:

n

(=2€,)P 1 In(k)?  (=2€,)" ["In(t)?
Z ~ f dt as n — 400
pPboia k ptJ1ot

n P n P
fl lnt(t) dt = ln(n)PJ’l—pr1 In(®) dt

t
n n P n 11 p+1

t p+1
So the p-th term in the Taylor approximation is written:
(=2€,) In(n)P*! (=2e,)" In(n)?
= In(n) X
(p+1)! (p+1)!

And the total expression involving the asymptotic expansion using the Taylor approximation of order p is
then written:

p k
(_zen 11’1(71))
/\+ln(n)1+]§ D) , Aelo,1]

Remark:
Instead of expanding the sums first and then approximating each term with integrals, | could have done
this right away:

Va,. €]0,1[asn — +oo:
2 2

1y 1 (" 1 pl2@eren)
” z A+c0t€ - f Atoot€ at| ~ 2
L V=N B G S (1= (@100 +€4))




n
1 n 1 1-2(a+c0+€n) _ 1
Z—~f—dt~A+" Ae[0,1]
=1 k2(a+oo+€n) 1 t2(ll+oo+€n) 1 — 2(a+00 + en)

This way we would just expand 12" and the outcome would have been exactly the same as all that

follows. Therefore, in upcoming versions | may remove the parts dealing with any finite order of
approximation p € IN* and directly jump into p — +o00.

We therefore have three different cases:
1
* i € ]Or E[

1
* Ay € ]5,1[

* Ay =

1
2

1
Caseda,, € ]0, E[:

If a,, converges fastly enough to its limit, we can take the following for granted:

1-2a.. > 0so 12" grows unboundedly as 1 — +00, s0:
1 nl-2a
— ~ as 1 — +0o
k=1 kza 1 - 2&

Thus our expression:

n 1 1-2a

Z_ n

Sk (1-a)?

—0asn— +oo

becomes, as 1 — +o0:

1 1-2a 1-2a 1 1 1
A— P -0 A- +nl2 — -0
1-212 1-2a (1-a)? 1-2a 1-20 (1-a)?

Since n'72% tends to infinity, this requires two things at once:

L — L =0and A — L =0
1-2a (1-a)? 1-2a
Thus:
LI =0 (1-a,0)?=1-2a,0 ©1-2a,+a%>_ =1-2a,
1-2a (1-a)? e
a2 =090a,,=0

and



A

- =0e(l-200A=1o2a, ,A=A1-1
1-2a
A-1

S 40 = —— < 0since A € [0,1]
2A
) 1
And both of these contradicta,, € |0, E[.

If the convergence is slow, the expression with the correction terms is as follows, for the
asymptotic expansions using the Taylor approximations of infinite order p — +oco:

o0

We get the following, since Yz € C, e* = Z @:
p=0 p!
2 —€n 2
1 1 looan | T ~ (” )
1-2a,. 1-2a,, (1-a,,)%] "2+
o - # + nl—z(ﬂ+m+€n) 1 _ 1
1-2a,. 1-2a, (1-a,0)%| "7

1-2(a+c0+€n)

n tends to infinity, the same reasoning as in the case of a fast convergence apply.

1
That is, this requires a,., = 0 and a,,, = EYS < 0 which contradicta,, € |0, E[.

1
Cased., € ]5, 1[:

If a,, converges fastly enough to its limit, we can take the following for granted:

n
1 nt=20 -1
Asn—+oo, AN e[0,1], Dy — ~ A+ ——
k=1 kZlZ 1 - 261
In this case, 1 —2a.,,, <0,
n n

1 1 n1—2a

Therefore as 1 — +oo, Z — A+ and then Z — - >0 becomes:
P kZa 2a—-1 o1 kZa (1 _ a)z n— +oo

1 nl—Za
+ —
20-1 (1-g)2 "2+

0, and since 1 — 2a.,, < 0 this means A + 0

2a-1 -

A-1
S2-DA+1=002r=A-1a,, = 7<0becauseA—1<0while2A>Ofor

1
A € [0, 1], which contradicts a., ., € ]E, 1[.

If the convergence is slow, the expression with the correction terms is as follows, for the
asymptotic expansions using the Taylor approximations of infinite order p — +co:

(0]

Z)P
We get the following, since Vz € C, ¢* = Z %:
p=0 P
—€n 2
1 1-94e n e (” 6)

A +n

— —1 NGy 1-2a.., - (1- ﬂ+oo)2 n— 400



with A € [0,1]

Y /1 _ 1 + nl—Z(ﬂ+oo+€n) 1 _ 1
1-2a,, 1-2a,0 (1-a,)%] "27*
o . 1 o A-1 _ _
Which implies (again) A + ——— = 0 which implies 2., = —— < 0 which contradicts
20, —1 2A

1
Aio € ]E, 1[ again.

Caseda,,, = —

If a,, converges fastly enough to its limit, we can take the following for granted:
1-2a,
— 0 as n — +oo becomes:

o1 o1 n
As 11 — +09, — ~A+1In(n), A €]0,1], so —
Ekza” () [ ] ];kZan (1_a1’1)2

1-2a,
A+In(n) - — —0asn— +o0
(1 _an)z

And now, let's reflect upon the conditions for this statement to hold:

1
« As said earlier, we deal with a map (a,,) e+ converging to a real number in ]0, 1[ as n — +00, >

1
in this case, rather than a fixed value a = > otherwise it would mean that lim In(n) - 4-A

n— 400

which is absurd,

1
' (1 )2 — 4 as n — 4090, so it doesn't affect the asymptotic behaviour of n

« In(n) grows unboundedly as n — +00, so we must have 1 — 2a,, > 0 for all n sufficiently large, for

1-2an

n'=2m to grow unboundedly as n — +o00 as well,
!

« Had we assumed that 3/ > 0 | lim 1-2a,, = [, we would get In(n) — — 0asn— +oo,

1= +00 1+1)>
2

which is impossible because VI > 0, In(n) = o(n'), therefore this subtraction tends to —co and

not 0 as n — +oo,
« Soitis necessary that 1 — 2a,, be strictly positive for all n_sufficiently large while converging to

0* as 1 — +09, in order to adequately "bend" 117" for it to match In(n), for the subtraction to
tend to zero,

You'd think we finished, the problem is, even in this case, the expression of €,, = a,, —a, ., becomes
(A+ln(n)
In 1

something like €, = — T() which is too slow a rate of convergence to neglect the correction
n(n
terms; which we ironically did here.

So our last chance is actually dealing with the correction terms:



We need to use the asymptotic expansions using the Taylor approximations to figure out what is
required by:

z”: 1 _1)([21] o

o K2

Using the first-order Taylor approximations:
1

n'2(1-2€, In(n) + €2 In(n)?)

-y

s In(n)(1 - €, In(n)) — 4(1 —2¢, In(n) + €2 ln(n)z) — 0, asn — +oo

— 0, asn - +oo

In(n) — 2, [1“(;)2] _

& In(n) -4 + (8In(n) — In(n)?)e, — 4€2 In(n)> - 0, as n — +oo

is an ideal choice:

€, =
In(n)

2

_ () —— —a| 2
In(n) -4 + (8 In(n) — In(n) ne) 4[111(11) ] In(n)
81In(n) In(n)? 4

=In(n)-4+
In(n) In(n)
=In(n)-4+8-In(n)-4=0

—0asn— +oo.

We have agood €,, =
n(n)

Soifa, tends to 5 slowly, this adequate €,, exists, and voila, we get the right result.

1
5 is the only limit the map a,, can reach as n — +oo9, if it hopes to satisfy:

2

Z ! —lx[z 1] —0asn— +oo

=1 kzan n =1 kﬂn

1
And we could ideally write a,, as a,, = — +
2  In(n)
the Taylor approximations of all orders, which leads us to the last part.

, for a first-order Taylor expansion. Alas, it won't satisfy

What about the asymptotic expansions using Taylor approximations of any order p € IN*, ideally
very large?

V¥p € IN*, The p-th order Taylor approximations give us the following:
2

1 2
p k 1-= p k
—2¢, In(n 2 —€, In(n
FRSA) R D et AR B S VY F P Yttt
o1 (k+1)! n 1_% o1 k! n—+eo



2
Po(_ k Po(_ k
L4 3 (26 In0) ]_4x[1+2( €, In() ] _

& A +1In(n)
o1 (k+1)! 1 k!
x, In(n) +y,
Let's try and find Xp, Yp € Csoeg, = ; the equation becomes:
In(n)?
Y ¢ Y k)
P
p ( 2(3( + 11’1(71))] p (—1)k(xp + ﬁ)
A+1n(n)1+2 -4 x 1+Z
1 (k+1)! 1 k! n— oo
ko &k j k-1
. kx 1
Vk € N, (xp+ yp] :Z[k x’;‘fx y”]:x’;+ P }/p+0( ]
In(n) o \J In(n) In(n) In(n)
Therefore we get for all p € IN™:
2
p (<20 (xh + ek x ) (1) [xh + ok x )
A+In(mn)|1+ )] —ax |1+ )] 0
1 (k+1)! 1 k! n= e

(=2x,)| < (kT o ()
@A+1n(n)[1+k s 1)‘J+k§; k1) -4 X 1+§_] ———0

2
_ k p kpak-1 P Nk
<:>/\+ln(n)[1+ (-2 p)] Z(Z)kx - x[l+z(xp)] —0

o (k+1)! o1 (k+1)! o1 K!
_9k
And for all p € IN" the polynomial P,(x) =1 + ((k 1))| admits p roots (real or complex), we just have
k=1

p
to pick one of them to "nullify" ln(n)[ 2 ] then there will only remain:
k=1

~2) k! —Xx
. Z (=2) p) 0
o1 (k+ 1)[ n— +oo
2 kk k-1
We also notice that E (—x =P, (x).
o1 (k+1)!

Now, let's see why the polynomial Pp(x) only has simple roots, meaning that none of them are roots of
P, (x).

We're already sure that 0 is not a root of P,(x) because P,(0) = 1.

Let x, € C* be aroot of P,(x), let's assume it's also a root of P,"(x):

Z( pr)k _ Z( pr)k _

4 (k+ 1)) 4 (k+ 1))




On the other hand, we also have:

(2fkxk K (2 (k+1-1)xk L (2R k+Dxk & (—2x,)F
XpPp'(xp) = E E E 2_.14 :

o1 (k+1)‘ 1 (k+1)! 1 (k+1)! — (k+1)!
(- 2xp>k (2x,)F A (-2,)F
- Z . E D) ; - (Pylx) - 1)
p _ k _ k
E ((kz_:ci))' = —1, this means: E 2}? ) = —1 as well
k=1 ‘ k=1 '

And this is impossible, because the terms of the sum on the left are those of the sum on the right scaled

down by a factor , S0 we can't have both of them match —1 (I shall develop this in upcoming

versions).

In conclusion, no root of P,(x) is a root of P,/ (x).

Therefore, we just need to pick any root for the value of x,,, and we're sure y,, exists as well, and we can
4 x (1+Ek C if)k]z—/\

P (=2)kkxkT
2k=1 (k+1)l!7

expressitasy, =

In conclusion, for all orders of expansion p € IN*, there exist x,, i, € C so that we get
x, In(n) +
€, = p—]/p ensuring the limit:
In(n)?

1 1 1
E1—__>< Z 1 n—>+c>00
= K2

required by ((s) =0 = n(s) =

x, In(n) +

And we would actually write a, = a,., + Re(€,)) = .. + Re M .
In(n)?
And now, for an infinite order of approximation p — +oo:
In the formula:
2
(-2%)"  (-2) ey o (-xp)"
A+In(n)|1+ +y,X ), ——— —4X |1+ 0
) 2(k e ,; k+1)! ,Z; K| o

k P ko k—1

- -2)*k

Let's have a closer look at P,(x) = 1+ Z (727) and P,"(x) = E: u:
o (k+1)! i (k+1)!



2’”:( 2x,) Z( 2x,,)k Z( 2x,)f*1 _ 2( 2xp)k
=1

(k+1)! (k+1) 2%y 1= (k+1)! -2Xp 1
p+1
1 1 5
e -1
—2x, kEo k! pore 2x, ( )

1
If we want 2— (e_zx?’ - 1) = 0, we can't chose Xp = 0 (we shall see why soon), but we can very well
—2Xx
p

chose x, = kmi, k € 77,
Now let's remember:

p ) k
P(x,) = 3 % P(x,) +1
k=1 )

As p — +oo, for x, = kni, k € Z*, we then have:

krix Py’ (x,) =e#M-1+1=1& P,/(x,) = - é

So our formula:
2

WAV P (_0)Kfeyk-1 K
A+ln(n)1+2( ») +yp><2()—p— 4% 1+Z(xp) ——0
k=1

(k 1)! =1 (k+1)!
becomes:
1 N2
A—y, X — —4x (e 0
Yp krt ( )m’
S A - yPXE—4 5 oo —0

Thus our y,, exists and its expression is:

kr(4 - A)

Yp = — =ikn(4- A7)

As a result, this expression of €,, is valid for all k € Z.*:

In(n) +4— A

€, = ikt X 2 Ae[0,1], ke Z*

In(n
So here you see why we can't have k = 0, for it would mean €,, = 0, and this would mean:
In(n) ——4-A
n— +o0o

which is absurd. Hence k € Z*.

Also, we notice that it is a purely imaginary value, but do we care so long as it makes everything work? |

1
don't think so. Plus the real part is a plain E so it's all good.



1
In conclusion, the real part of our nontrivial zero is actually a fixed value E but it is the imaginary part that

includes €,,.

That's an unexpected twist. But it works, just in an unexpected way.

Conclusion:
27tk
In(2)

|keZ}, lim Eﬂ

s
n—+eo T k

=0

For any nontrivial zero s € C \ {1 +

1
requires that the only value the real part Re(s) can have as n — +0o0 be Re(s) = > and one of the

expressions of the number s depending on 7 to ensure this limit is the following:

In(n)+4-A

1 .
sn:§+z[b+ krt X >

,keZ',A€[0,1], be R
In(n)

0 —1)n1
Therefore, since ((s) = 0 = 1(s) = Z L = 0:
nS

n=1

In(2)

This proves the Riemann Hypothesis.

27k 1
For any nontrivial zero s € C \ {1 + cmx | k € Z}, C(s) =0 = Re(s) = >
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