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A b s t r a c t .  The initial formation and growth of capillary-gravity waves under wind-induced 
surface stress is studied by m easurem ent of the instantaneous, 2D  distribution of the along- 
wind slope at a fixed fetch. A new technique, using information from the complex 2D  wavelet 
transform , is described for the calculation of the local, instantaneous dispersion relation. The 
technique is validated on simple test fields. The dispersion relation measured from the wave 
tank  d a ta  is consistent w ith predictions from linear stability theory at early times, bu t depar­
tures can be noted la ter on. Some physical interpretations are offered, and possible nonlinear 
mechanisms are discussed.

1 Introduction

Classical linear stability analysis has been partially successful in predicting the 
generation and growth of the initial wave field on a calm water surface following 
an impulsive start in the wind stress. However, neither the Phillips resonant 
interaction (Phillips, 1957; Phillips, 1977), nor the Miles critical layer instability 
mechanism (Miles, 1957; Miles, 1959) has been able to incontrovertibly account 
for laboratory and held measurements of growth rates and wave initialisation. 
Kawai (1979) made careful measurements of the initial growth of wind gener­
ated surface waves, and combined this with a stability analysis by numerical 
integration of the Orr-Sommerfeld equation with initial and boundary values 
suggested by the experimental data. It was found that linear, shear how in­
stability mechanisms could successfully predict growth rates, phase speeds, and 
wavenumber-frequency relations in the observed wave held, to within experi­
mental accuracy. It was further pointed out that the subsequent evolution of 
long-crested to short-crested waves could not be expected to be governed by lin­
ear mechanisms, as indeed was indicated by ‘complicated movements of spectral 
peaks’. These spectra were quasi-steady estimates, computed by the maximum 
entropy method (cf  Press et al., 1992) on data segmented in time.

Following recent advances in local space-scale decompositions by means of 
wavelet functions, it is now possible to perform a systematic quantitative anal­
ysis of such unsteady phenomena, without some of the limitations imposed by 
the Fourier decomposition, and where the balance between resolution in physi­
cal and spectral space, scales automatically with wavenumber, within the limits
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Fig. 1. Simplified schematic of the wind-wave generation facility. The x’s m ark approxim ate 
locations of P ito t tubes, and a capacitance wire probe for wave elevation is m arked by an ‘o ’. 
The fan control, ID  digitising of P ito t tube and wave height data, and sam pling of the 2D 
video signal are synchronised using 3 personal com puters and one Sun w orkstation.

prescribed by the uncertainty principle. The objective of this paper is to de­
scribe the development of a method for the measurement of spatially-localised 
frequency and wavenumber relations of unsteady wind-generated surface waves, 
and to give examples of its initial application to recent, 2D, instantaneous wave 
slope data. This will include the later times when nonlinear mechanisms may 
be anticipated to be significant.

2 Experimental data

The experiments were conducted at the NASA Wallops wind-wave interaction 
facility, which is described in detail in Long (1992). The aspects of significance 
to this paper are shown in Fig. 1. Air is drawn by suction over a 75 cm 
deep water channel over a working section of approximately 18 m length and 
0.9 m width. The air gap over the still water surface is 46 cm. Observations of 
the streamwise surface slope were made at a fetch of 6.5m, using an Imaging 
Slope Gauge (ISG) with a field of view of approximately 18.5 x 14cm. The 
single experimental run treated here was made with a mean reference velocity, 
Us = 5.2 m /s (measured 5cm above the surface, and 15 cm upstream of the 
ISG). Digitizing of the video-encoded CCD signal began 7 s after the fan was 
turned on, at which time U5 = 5.0 m/s. By frame #50, 8.6 s after fan-on, 
the steady value of U5 had been reached. The x , y and z axes of a Cartesian 
coordinate system run streamwise, spanwise, and vertically up from the water 
surface, respectively.

The physical problem is thus somewhat complicated -  not only does it involve 
temporal and spatial growth of viscous boundary layers in both water and air, 
but the initial conditions and start up are much less homogeneous in space 
and instantaneous in time, than one would perhaps prefer, and careful physical 
interpretations must be made in this light.

The ISG works on principles described in Jähne and Riemer (1990). A strong, 
homogeneous (in y) light source illuminates a rectangular box filled with par-
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Fig. 2. Time sequence of surface slope values com puted from the ISG measurements, num ­
bered in frames. Since the sampling rate, determ ined by the video framing rate, is 30Hz, the 
to ta l sequence, occupying 45 frames, covers 1.5 seconds. The doppler-shifted group velocity 
is such th a t an entirely new wave held is covered every 15 frames. The color bar is scaled to 
cover the maximum and minimum slope sym m etrically about zero a t the last time step  in the 
sequence. (See colour p la te  7).

tides in suspension that scatter the light so that its intensity decreases with 
downstream distance. In the absence of any surface deformation, light rays pass 
normal through the surface and the CCD illumination is also homogeneous in 
y , monotonically decreasing in x. A nonzero surface slope in x (sx) causes light 
rays to be refracted and arrive at a different x location on the sensor array. 
Thus, given the intensity distribution on the array, it is possible to compute 
the deflection and, hence, the value of sx at each position in {x , y}. With care­
ful calibration procedures (Jähne and Schultz, 1992), this calculation can be 
performed so as to reduce errors due to nonlinear effects to less than 0.05 |sx|.

Fig. 2 shows a time sequence of sx over a 1.5 second period, during which 
time the mean and maximum slopes increase by more than a factor of 10. Even 
at early times, the wave field is never strictly one-dimensional, or uniform in y. It 
is unclear as to how much this reflects the inhomogeneity of the original forcing. 
At frame #70, sx(x ,y)  reaches its most ordered state, in which the spanwise 
correlation length is a maximum. After this, the spanwise correlation length 
decreases, and shortly after the end of this sequence the wave field becomes 
quite disordered, as noted originally by Kawai (1979), and more recently in 
Spedding et al. (1993).

3 2D Wavelet functions for 2D data

A very readable introduction (Meyer, 1993) and review of wavelet applications 
(Rushai et al., 1992) have recently become available, and the specific design and 
application of 2D wavelet functions for analysis of 2D real signals is discussed 
in Dallard and Spedding (1993). Denoting fw(a,b),  as the wavelet transform 
(WT) of the function f ( x ), a is the analysing wavelet scale, and resonance 
at any particular value of a can be related to a wavenumber k in the signal. 
This information is localised at a shift from the origin, b, equivalent to physical
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location x .
It is convenient to think of the wavelet transform as a product in Fourier space 

of the wavelet function g(ak) with the Fourier-transformed signal, f ( k), and 
Dallard and Spedding (1993) introduced the Arc wavelet as a smooth function 
for general use in a. complex, non-directional specific, energy-conserving WT for 
2D data analysis. Here, the alongwind surface slope is sx = ∂s / ∂x , and since 
sx(x,y)  also contains contributions from sy(x,y)  projected on x , the response 
ought to be weighted by cosΘ, where Θ is the angle between k and the mean 
wind, U∞ . We therefore introduce the Cos wavelet function:

( 4 )
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Fig. 3. The Cos wavelet function in Fourier space (a), and its real and imaginary parts  (b) 
& (c) in physical space.

is maximised, and then

However, simple solutions to this problem blow up in the presence of the lo­
cal phase discontinuities of ± π found in  fW (a, b), and it is desirable to find 
some globally smooth solution, such as commonly computed using optical flow 
tech tuques.

u was computed using a modification of the technique of Zhou et al. (1995) 
who kindly made available their original codes. We proceed by minimising the 
cost function,

(5)

eI(u ) and es(u) are terms related to the L2 error, and the smoothness (both 
global terms), respectively, and γ1 and γ2 are weightings on the smoothness, 
and a divergence-free constraint that was introduced by Zhou et al. (1995) for 
fluid flow applications.

When the displacement field due to u is large compared to the grid resolution, 
a multiresolution relaxation method is used to avoid convergence on local min­
ima in eq.(5). Beginning from the original data, successive binary expansions
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Fig. 4. Block diagram sum m ary of the m ethod for calculating ω (|k|) from sx (x, y ). Currently, 
the minimum A t is determ ined by the video framing rate. The two video fields are treated  
identically on either side of the line of sym m etry in the block diagram , until the XM ROF 
m ethod combines both sides to  calculate . All boxes marked with an asterisk 
include state-of-the-art advances in analytical techniques from the last two years.

speeds are doppler-shifted by the water drift velocity at the surface, U0. Since 
we lack accurate simultaneous measurements of Uo, a constant offset is added to 
place the solid curve on the data point occurring at the predicted most amplified 
wave, at k0 = 3.63 rad/cm (An independent measurement of the wavenumber 
of the most amplified wave from the spatially-averaged centroid of the |W T |2 
gives k0 = 3.67 ± 0.05 rad/cm). This offset gives a drift current of 14 cm/s, 
which is consistent with previous results reported for this facility (Huang, 1992), 
but at 0.027 U∞ is significantly below the 0.05 or 0.04 U∞ sometimes assumed in 
the literature.

The measured ω(|k|) in Fig. 5a agrees with the theoretical prediction to 
within experimental uncertainty over the whole range of |k| where there is 
significant energy. At the next time step (Fig. 5b), the range of energetic |k|  
has contracted around k0, consistent with qualitative observations made earlier 
for Fig. 2 at t  =  65/70. The agreement with the linear theory over this range 
remains good. At t  =  80, the range of energetic modes is significantly expanded,
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Fig. 5. Evolution of the dispersion relation for the wind-generated surface wave field of Fig. 
2. (a) t=50, (b) t = 65, (c) t=80. D iamonds are the mean m easured values at each |k|. The 
solid line is the linear stability result. It is drawn over the whole range of k for which the W T 
was computed.

with energy having appeared in both lower and higher wavenumbers. It is 
greatly reduced around k0. Above k0, eq.(6) predicts the data well, but there is 
increased scatter and difference between the two at, and below k0.

6 Discussion and Conclusions

The simple relationship of eq.(6) from 1-D linear theory appears to hold well 
until the latter stages of the sequence discussed here, despite the fact that the 
waveheld is never strictly 1-D (i.e. spanwise uniform). Nevertheless the initial, 
most unstable wavelength is well predicted. Caponi et al. (1992) include a dis­
cussion of the time-varying interpretation of their analytical results, which were 
obtained from piecewise linear approximations to the wind and water velocity 
profiles, although the solution itself did not involve time-dependent growth of 
these profiles. Quite specific predictions are made concerning the growth rates 
and most unstable modes at different wind speeds and we look forward to mak­
ing detailed comparisons over the same parameter range. The results of Kawai 
(1979) thus far appear to be confirmed in the current study, and will also be
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Fig. 6. Isosurface of |fw(a,b)|, thresholded a t 50% of the m axim um , for t=80. Surface 
intensity variations are only to assist in showing the 3D  shape. The vertical scale, a runs from 
λ max =  4.6 cm at the bottom , to λmin =  0.6 cm a t the top. (See colour plate 8).

compared further.
At the later stages corresponding to the presumed onset of nonlinear effects, 

we note here growth of modes of both higher and lower wavenumber than k0. 
This is illustrated in Fig. 6, where it appears that growth of these modes occurs 
in closely associated spatial locations. Although an earlier, preliminary wavelet 
analysis (Spedding et al., 1993) indicated that significant energy developed in 
subharmonic wavelengths, the improved resolution and quantitative accuracy of 
the current data allow the distinction to be made that the majority of the side­
band growth actually occurs in bands centred at 2/3k0 and 4/3k0 The sum of these 
is 2k0, consistent with the resonance frequency condition for a Benjamin-Feir 
type instability. However, Bliven et al. (1986) suggested that this mechanism is 
suppressed by active wind forcing, and it is unlikely to be significant at this scale 
range. There is an alternative, simple physical interpretation, that asymmetric 
steepening and growth of single wave crests is manifested as different modes, 
which would then necessarily be correlated in physical space.

In this case, the natural tendency to think in terms of Fourier modes, or their 
spatially localised, wavelet-based cousins, may be unnecessarily restrictive. It 
could prove interesting instead to allow the wavelet function basis itself to auto- 
adapt with time, similar in spirit to the work of Coifman et al. (1992) and 
Wickerhauser (1992).
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