
The enzyme cost of metabolic fluxes

Wolfram Liebermeister1 and Elad Noor2

1 Université Paris-Saclay, INRAE, MaIAGE, 78350 Jouy-en-Josas, France
2 Department of Plant and Environmental Sciences, Weizmann Institute of Science, 76100 Rehovot, Israel

Abstract

In this chapter we discuss why certain pathway designs have been selected by evolution, by hypothesizing that some
are more beneficial than others – based on several possible criteria and optimization goals: minimizing the num-
ber of reactions, maximizing product yield, increasing reaction turnover rates, and avoiding small thermodynamic
driving forces. It turns out that all these criteria are related to a single objective: minimizing enzyme demand per
product production rate or, equivalently, maximizing “enzyme productivity”. We first focus on simple unbranched
pathways with predefined flux distributions. We discuss several feasibility and optimality problems where metabolite
concentrations are independent variables and solve for the minimal enzyme demand. In this setting, we see how
enzyme productivity can be assessed or predicted and how it depends on different system parameters such as kinetics,
thermodynamics, and concentrations of enzymes and metabolites. We discuss the difference between growth rate
and yield. We then illustrate it by comparing between pathway options for glycolysis.
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Chapter overview

◦ In this chapter we discuss why certain pathway designs have been selected by evolution, by hypothesizing that
some are more beneficial than others – based on several possible criteria and optimization goals: minimizing
the number of reactions, maximizing product yield, increasing reaction turnover rates, and avoiding small
thermodynamic driving forces.

◦ It turns out that all these criteria are related to a single objective: minimizing enzyme demand per product
production rate or, equivalently, maximizing “enzyme productivity”.

◦ We first focus on simple unbranched pathways with predefined flux distributions. We discuss several feasibility
and optimality problems where metabolite concentrations are independent variables and solve for the minimal
enzyme demand. In this setting, we see how enzyme productivity can be assessed or predicted and how it
depends on different system parameters such as kinetics, thermodynamics, and concentrations of enzymes
and metabolites.

◦ We discuss the difference between growth rate and yield. We then illustrate it by comparing between pathway
options for glycolysis.

6.1. What guides evolution to select one pathway over another?
In the previous chapters, we asked what flux distributions are possible in a network, and which are most profitable
for a certain task. Now we shall ask, more specifically, what led to the choice of existing pathways, or what makes
a pathway variant favorable over another one that exists, or may have existed, in evolution. Of course, the same
question plays also an important role in metabolic engineering, when new pathways are added to an organism, typically
with the goal of achieving a maximal production, while imposing the smallest possible burden on the cell.

The chemical space is vast and many options exist for the same process, even if we consider only reactions with
known enzyme mechanisms and impose thermodynamic constraints. Hence, while evolution had a choice between
many pathway variants, only a tiny fraction of these possible variants is actually realized in nature, and a core part
of central metabolism almost always follows the exact same design. The few exceptions that exist actually prove
the rule, such the two natural variants of glycolysis discussed later in this chapter. How can we understand why a
certain variant is used in a certain organism or situation? And why are many variants not used at all? Moreover,
some very successful pathways show features that might appear strange at first glance [1]: in glycolysis, an initial
investment of ATP is required, and only later it is recovered in higher amounts leading to a net gain. Is this just an
evolutionary accident, i.e. a case where the pathway that evolved first is the one that stuck around although it is
not necessarily better than all the alternatives? Or, rather, evolution did manage to find the optimal solution and
therefore we should try to explain what the advantages of these “engineered” features are?

In this chapter, we assume that it was a selection for functional features, not chance, that determined these pathway
“choices”, and ask: what guides evolution to select one pathway over another? What are the criteria that make
pathways “efficient” or “profitable” for a cell or, alternatively, for a metabolic engineer? To compare pathways, we
assume that each pathway comes with a predefined flux distribution, and therefore a predefined product yield, and
alternative pathways (yielding the same product) are compared at equal product production rates.

When people talk about natural ecosystems, diversity is usually the first topic discussed. Indeed, evolution through
natural selection is almost guaranteed to create diversity where species evolve to occupy biological niches while
exploring the vast space of possible phenotypes. Similarly, the world of biochemistry is a vast space of possible
reactions. Metabolic enzymes participate in a network of pathways that supply cells with energy, and building blocks
for biomass. Scientists have been studying these biochemical reactions for nearly 300 years [2] – so far tens of
thousands such reactions have been classified; certainly many more exist in nature. Here are a few online databases
where biochemical reaction data are collected or predicted: MetaNetX, KEGG, MetaCyc, BiGG, ModelSEED, ATLAS

https://www.metanetx.org/
https://www.kegg.jp/
https://metacyc.org/
http://bigg.ucsd.edu/
https://modelseed.org/
https://lcsb-databases.epfl.ch/pathways/atlas/
https://lcsb-databases.epfl.ch/pathways/atlas/
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Philosophical remark 6.A What do we mean by a "pathway"?

The notion of “pathways” is common in cell biology to describe a set of reactions, proteins, or processes that form a
functional unit. However, there is no general definition: in practice, a pathway is often just a subregion of interest within
a larger network. In metabolism, “pathways” often lead from some important substrate to some important product, with
a simple and predefined flux distribution that consumes substrate(s), generates product(s), and may or may not make
use of co-factors. Considering fluxes in specific pathways (instead of flux distributions in the entire network) is often a
practical choice and, importantly, a choice that assumes that we can model, understand, manipulate, or engineer such
a pathway without strongly affecting the rest of the cell. This has a number of benefits: (i) Instead of studying a huge
network, we can look at pathways separately; (ii) there are reasons to believe that the flux distributions in enzyme-efficient
metabolic states must be elementary flux modes (see Chapter 4 in [3]). Since EFMs often entail discrete choices between
different pathways, it can make sense to study these pathways separately (iii) once we understand the costs and benefits
of single pathways (with a single, scalable flux mode), we can apply the same thinking to analysing flux distribution on
the entire metabolic network. Thus, in the rest of this chapter, all results about “pathways” will also hold generally for
entire networks, as long as a (scalable) flux mode is given. Instead of comparing alternative pathways, we can compare
alternative flux modes. In the following chapter, we use this for optimizing over the set of all possible flux modes that a
given network can support.

of biochemistry.

To study the choice between pathways variants, we consider alternative pathways leading from A to B (or having
a certain net sum formula) and their respective advantages and disadvantages. For simplicity, let us focus on
biosynthesis pathways whose main task is more or less clear: producing a precursor molecule. Thus, the theoretical
question would be: if a cell needs to make B from A, which pathway should it use? More specifically, how should
the metabolic reactions be chosen and in what order? What should their kinetics and how should they be regulated?

If the pathway variant found in nature is due to selection for “good functioning”, then what are the features that
make existing pathway designs successful? In short, what are criteria for “good” pathways? One possible criterion
seems to be simplicity, that is, choosing a short route from pathway substrate and pathway product.

In contrast to the huge diversity that is allowed by the catalytic capabilities of enzymes, a few metabolic pathways are
extremely ubiquitous and exist virtually in every living cell. For example, glycolysis is a general term for pathways that
convert glucose to pyruvate while producing ATP [1]. One variant of glycolysis, named after Gustav Embden, Otto
Fritz Meyerhof, and Karol Parnas (or the EMP pathway for short, see Figure 6.1), was the first metabolic pathway
to be discovered by scientists [2]. Often, the pyruvate is reduced to lactate or ethanol, which makes the pathway
redox balanced. Therefore, it one of the most common way for producing ATP anaerobically (i.e. without oxygen
to serve as an electron acceptor). Another common variant was discovered in 1952 by Nathan Entner and Michael
Doudoroff [4] (ED for short). For example, E. coli is capable of metabolizing glucose through both the EMP or the
ED variants, and often does so simultaneously [5].

More generally, the overall reaction describing glycolysis is:

Glucose + 2 NAD(P)+ + n ADP + n Phosphate −−→ 2 Pyruvate + 2 NAD(P)H + n ATP + n H2O (6.1)

where the value of n for the EMP pathway is 2. Ng et al. [6] explored the space of all possible glycolyses (with different
values of n), by exhaustively enumerating all glycolytic pathway variants. In order to generate the variants, they
adapted a computational method first introduced by Bar-Even et al. [7] for finding alternative carbon fixation cycles
– metabolic cycles whose net reaction converts CO2 into organic compounds. You start by collecting a database of
known biochemical reactions (e.g. from a database such as KEGG [8]) and then use a linear-programming algorithm

https://lcsb-databases.epfl.ch/pathways/atlas/
https://lcsb-databases.epfl.ch/pathways/atlas/
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Figure 6.1: Two natural variants of the glycolysis pathway, named after their discoverers: Embden-Meyerhof-Parnas
(EMP) and Entner-Doudoroff (ED)

to identify the set of reactions with the minimal sum of fluxes that conform to the predefined net reaction (e.g. 6.1).
The objective is somewhat arbitrary, but since solving the LP requires setting an objective, we chose the min-flux
as a reasonable proxy for the simplicity of the pathway. In any case, we will soon see how one can iterate through
all possible solutions. Ng et al. [6] used this algorithm with the stoichiometry from 6.1 to find all possible glycolysis
pathways comprising known enzymatic reactions (see Box 6.B).

The objective set by the linear problem (6.2) is minimizing the sum of fluxes, which corresponds to pathways with
fewer reactions and low fluxes in each one. As discussed in 5.2 in [3], this objective is only a crude proxy for the
efficiency of a pathway, and its only purpose is to get the pathway solutions in a relatively logical order. Although we
have discussed global enzyme constraints in previous chapters (such as molecular crowding and proteome allocation),
when comparing pathways we will focus only on the efficiency of the pathway itself. This will allow us to compare
pathways without thinking about the rest of the cell or a specific metabolic context. But how can one quantify the
efficiency of a pathway? The next section will be dedicated to exactly this question.

6.2. Pathway efficiency - some notions and thoughts
For glycolysis alone, Ng et al. [6] found 11,916 alternatives that produce at least one mole of ATP per mole of glucose.
These include, of course, the EMP pathway. Although evolution can explore these options, natural selection typically
converges on one or a few efficient variants. This does not mean that every single pathway observed in nature must
be optimal, but we generally expect cells hosting highly inefficient pathways to eventually become extinct. Iacometti
et al. [10] tested this experimentally by knocking out the EMP pathway from E. coli and forcing the cells to use the
alternatives that naturally exist in this bacterium. In all cases, growth rates were slower than in the wild-type.

Before we discuss other examples for metabolic pathways, we need to define what we mean by “efficiency”. There
are several criteria one should consider:
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◦ Low consumption rate of the substrate
◦ High generation rate of the product
◦ High regeneration rate or low consumption rate of the co-factor
◦ Small number of steps [11]
◦ Higher thermodynamic forces [12, 13]
◦ High enzyme turnover numbers
◦ High enzyme saturation levels

Some of these criteria refer to the cost (or investment) of the pathway, while others reflect the benefit (or profit) to
the cell. By considering two common scenarios – single nutrient limitation or exponential growth in rich media – we
can focus on two simple criteria which provide good measures of efficiency.

When the availability of a single nutrient is limiting growth, maximizing the molar yield (i.e. the number of moles of
product generated for each mole of the nutrient) becomes the important feature. Yield is rather straightforward to
calculate, as it is a direct outcome of the stoichiometry of the pathway. For example, anaerobic fermentation is often
compared to respiration and deemed inefficient since it yields two moles of ATP per glucose, instead of ≈30 [14].

On the other hand, when conditions are good, such as during exponential growth in rich media, minimizing the total
number of proteins required is often the objective which determines growth rate. . Here, we will be using the enzyme
demand (e.g. in grams of protein) per unit of flux (typically, in mmol per hour per gram of cell dry weight). In
fact, the enzyme demand per flux, as an objective, takes into consideration both the cost (protein) and the benefit
(flux). Importantly, these two criteria scale linearly with respect to each other: doubling the amount of all enzymes
without changing any of the metabolite concentrations would directly double the flux in the pathway. Therefore, this
measure of efficiency is independent of the magnitude of the flux in the pathway. But, as we will see shortly, enzyme
demand is a non-linear function, making it trickier to compute compared to other constraint-based problems such as
ones we’ve seen in previous chapters.

Notably, these two measures of efficiency are not only useful for evolutionary processes, but for bioengineering as well.
Obviously, the molar yield has economical implications when, for example, producing ethanol from sugar. However,
the rate of a bioprocess is important as well due to the costs involved, e.g. for maintaining an operational bioreactor.
One can imagine a computational model that accurately predicts the enzyme demand per flux of a pathway. Choosing
the pathways with the lowest demand would be a good strategy for increasing the overall rate of bioproduction [15].

We define the enzyme demand per unit flux as the total amount of enzyme (in grams of protein) that is required
to catalyze all of the pathway reactions at their required rates. We start by deriving a formula for the demand of a
single enzymatic reaction. Consider an enzyme-catalyzed reaction:

S −−⇀↽−− P (6.4)

where s and p will be the concentrations of the substrate (S) and product (P) respectively, and E the concentration
of the enzyme which catalyzes this reaction (for simplicity, we drop the tot subscript from Etot). Here, we will be
using the factorized rate law (Eq. 3.10 in [3]), but other kinetic rate laws would produce similar results. The rate of
a reaction is given by:

v = e · k+
cat · s/KS

1 + p/KP + s/KS
·
(

1 − e∆rG′/RT
)

(6.5)

where k+
cat is the forward turnover rate, Ks and Kp are the Michaelis-Menten constants for the S and product P,

and ∆rG
′ is the Gibbs free energy. So, the minimal amount of enzyme that is required for reaching a given rate v

is:
q ≡ v · h · 1

k+
cat

· 1 + p/KP + s/KS

s/KS
·
(

1 − e∆rG′/RT
)−1

, (6.6)
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Figure 6.2: Enzyme cost in metabolism – (A) Enzyme-specific flux depends on a number of physical factors. Under
ideal conditions, an enzyme molecule catalyses its reaction at a maximal rate given by the enzyme’s forward catalytic
constant (blue). The rate is reduced by microscopic reverse fluxes (magenta) and by incomplete saturation with
substrate, causing waiting times between reaction events, or by enzyme inhibition or incomplete activation (red).
(B-C) On a logarithmic scale, catalytic rates and enzyme demand can be split into sums of efficiency terms. With
lower catalytic rates, larger amounts of enzyme are required for realizing the same metabolic flux.

where h is a number converting enzyme concentration e into enzyme amount q (for example, the enzyme molecular
mass). For an illustration, see Figure 6.2 . Summing up the demand across all the reactions in the pathway (each
with its own rate, kinetic parameters, and substrate/product concentrations) will produce the total enzyme demand.
Looking at this function, we can already make some interesting observations. First, the kinetic parameters (k+

cat,
Kp, and Ks) can be treated as constants since they change only in evolutionary timescales, and we often assume
that existing enzymes already have near-optimal kinetics (although that’s not always the case). Since we care about
the demand per pathway flux one can, without loss of generality, set v to 1. However, if the pathway requires a
non-trivial ratio between some reactions, the value of v can be different based on the stoichiometry. Finally, the
thermodynamic term, i.e. 1 − e∆rG′/RT (which we will discuss in more detail in the following section, 6.3), is a
function of the metabolite concentrations and the Keq, which is another constant. So, generally speaking, enzyme
demand is defined by a set of constants that are unique to each pathway, and variables that represent the metabolite
concentrations. Since these concentrations are subject to change depending on the growth conditions, we often treat
them as optimization variables and try to find the minimal demand possible within certain constraints. In Section
6.4, we will see a general method for finding the minimal value using convex optimization.

Most of the proposed criteria for good pathways have either to do with material investments (such as substrate,
cofactor, or energy demand) or with “machine investments”, that is, enzyme demands. Enzyme demands, in turn,
depend on pathway length, enzyme masses, and enzyme efficiency, and therefore on rate laws (where kcat values,
thermodynamic forces, and metabolite concentrations come into play). In fact, many criteria which we discussed
earlier as indicators of efficiency are actually an approximation of the enzyme demand under certain assumptions.
For example, the number of steps is proportional to the total demand if all enzymes have exactly the same k+

cat,
saturation, and thermodynamics. Therefore, it is quite a useful rule-of-thumb in case not much else is known about
the enzymes themselves. A better approximation, denoted Pathway Specific Activity, was used by [7] to compare
CO2 fixation cycles. If we assume that all enzymes are fully saturated and irreversible, the demand would be a direct
function of the individual enzyme specific activities (specifically, proportional to the sum of all their reciprocal values).
But even if we know nothing about the enzyme kinetic parameters, thermodynamics alone can provide us with useful
information with which to grade pathways. Specifically, the Keq of a reaction is a universal constant that is not



6

affected by enzymes, but rather determined solely by the chemical structures of the substrates and products.

In the following sections, we will focus on enzyme use efficiency as a main objective and consider a thermodynamic
approximation, relating enzyme demands to thermodynamic forces. For linear metabolic pathways, optimal enzyme
profiles (and the associated metabolite profiles and enzyme costs) can be computed with closed formulae. We will
also discuss a way to compute optimal enzyme profiles numerically, for networks of any shape and size, as long as
the flux mode is known.

6.3. The role of thermodynamics
In general, when considering larger metabolic networks, thermodynamic feasibility can play an important or even
crucial role in determining which pathways are used. In this section we will discuss this role more explicitly and see
how thermodynamics can still give us useful insights about pathway efficiency even when no other kinetic data is
available.

Why are thermodynamic driving forces a meaningful criterion for good pathways? In brief, the driving forces, defined
as θ ≡ −∆rG

′/RT , play a double role: first, they determine whether or not a pathway flux is feasible at all, given
the metabolite concentrations at the pathway boundary (i.e. the metabolites that form connections to the broader
metabolic network); and second, in case the pathway is feasible, driving forces can affect enzyme efficiency and,
consequently, the enzyme demand for a given desired pathway flux. In Chapter 3 in [3], we learned that ∆rG

′, and
hence the driving force θ, depends on the equilibrium constant Keq of the reaction and on the substrate and product
concentrations. We also learned that for a flux in forward direction, the driving force must be positive. Beyond
that, the efficiency of an enzyme is proportional to ηfor(θ) = 1 − e−θ, a function that ranges between 0 (for θ = 0,
reactions in thermodynamic equilibrium) and 1 (θ � 1, reactions far from equilibrium). Let us now see how this
non-equilibrium relation affects pathway efficiency.

6.3.1. Enzyme kinetics and driving forces

We should remind ourselves some of the lessons learned in Chapter 3 in [3]. Specifically, recall the factorized rate
law [16] with a reversibility term that is an explicit function of the Gibbs energy (Eq. 3.10 in [3]):

v = e · k+
cat ·

∏
i sνi

i /Ks

1 +
∏

j p
νj

j /Kp +
∏

i sνi
i /Ks

· (1 − e∆rG′/RT ) . (6.7)

The enzyme mechanism behind this formula assumes fast binding and unbinding of substrate and product, and a slow
reversible conversion step (of bound substrate into bound product). Note that here we generalize the rate law for
cases with more than one substrate and one product, where νi and νj are the stoichiometric coefficients of substrates
and products, respectively1. This generalization is one out of many, and corresponds to the assumption that all
reactants bind independently to the enzyme (and at random order). We focus on this rate law because it is one of
the simplest, but the theoretical results in this chapter apply to most other generalizations as well (e.g. convenience
kinetics [17]).

According to the definition of k+
cat, and also by noticing that the middle and rightmost terms in Eq. (6.7) are each

smaller than 1, the rate of an enzymatic reaction is bounded by v ≤ e · k+
cat (see Mathematical Details Box 6.C

for a detailed explanation). However, the additional terms are often much lower than 1, which means that the rate
does not reach its maximum. If we try to measure the apparent catalytic rate by dividing the rate by the enzyme
abundance (kapp = v/E) we would typically get a value that is lower than k+

cat, while only in rare “ideal” cases,
1In general, reaction stoichiometries can be arbitrarily scaled. For example, instead of a reaction 2 A → B, we may write A → 1

2 B
for convenience, which will only lead to a scaling factor in the reaction rate. However, this holds only if reaction stoichiometries are used
to describe mass-balance. In cases like Eq. (6.7), where stoichiometries appear in kinetic rate laws or in thermodynamic balances, we do
not have this choice. In these cases, the stoichiometries must reflect the molecularities, that is, the actual number of reactant molecules
involved in the enzymatic reaction.
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Figure 6.3: The thermodynamic efficiency term ηfor and some approximations – (A) In a given reaction, the thermo-
dynamic efficiency term ηfor = 1 − e−θ (solid line) can vary between 0 and 1 depending on the driving force θ. Small
driving forces make the enzyme inefficient, since ηfor → 0, while for large forces, thermodynamics does not play a
role as ηfor → 1. The dashed lines show two linear approximation that hold always as bounds, but can also be used
as good approximations for small or large θ values, respectively: (1−e−θ) < θ and (1−e−θ) < 1. (B) The reciprocal
value 1/ηfor is one of the factors determining enzyme demand. The solid line shows the thermodynamic demand
factor 1/ηfor, while the dashed lines show the resulting approximations 1/ηfor > 1/θ and 1/ηfor > 1, corresponding
respectively to the enzyme demand approximations E ≥ v

kcatθ and E ≥ v
kcat

.

kapp would approach the k+
cat. In fact, this reasoning was used by Davidi et al. [18] to estimate the k+

cat values of
more than 100 enzymes in E. coli, where they sampled many growth conditions and took the maximum kapp as the
estimate.

As discussed in Section 3.2.3 in [3], the factorized rate law has a thermodynamic perspective based on the flux-force
relationship, where we view the reversibility term as a “penalty” for the fact that by lowering the energy barrier,
enzymes must catalyze reactions in both directions. When the driving force (θ) is low, the reverse reaction flux can
become significant and lower the net flux. On the other hand, if the driving force is large enough, this term can be
ignored and the rate law resembles irreversible kinetics .

So far we’ve seen that increasing the driving force of a single reaction translates to a better enzyme efficiency and
lower demand. If we consider whole pathways, ones whose overall driving force is larger have more of it to distribute
among the reactions and therefore should also have higher efficiencies overall. However, using “too much” driving
force can also have downsides. Using a larger amount of the Gibbs energy to drive the pathway reactions means that
less of that energy would go for building biomass or currency metabolites such as ATP. An example for this trade-off
between the efficiency of single enzymes (in terms of backward rates) and the overall pathway efficiency (in terms of
ATP yield) was demonstrated by Flamholz et al. [19] who analyzed two versions of the famous glycolytic pathway
(see Figure 6.1 below).

6.3.2. Driving forces should not be too small

With the factorized rate law 6.7, we can approximate the reaction rates by v ≤ e kcat (1 − e−θ) (where we assume
positive fluxes by convention). The thermodynamic efficiency ηfor = 1 − e−θ plays a prominent role. As shown in
Figure 6.3, this formula yields two important approximations: for small forces θ, that is, close to equilibrium, we
obtain ηfor ≈ θ, while for large forces, that is, for strongly forward-driving reactions, we obtain ηfor ≈ 1. In fact,
both approximations also serve as upper bounds across all θ values. What does this mean? Far from equilibrium, the
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thermodynamic term does not play a role and can be ignored. Close to equilibrium, in contrast we obtain a simple
approximation for fluxes

v < e · k+
cat · (1 − e−θ) < e · k+

cat · θ (6.8)

and hence for the enzyme demand

e >
v

k+
cat · (1 − e−θ)

>
v

k+
cat · θ

. (6.9)

As θ goes to zero, the enzyme demand (for a given desired flux) goes to infinity. We already know the reason from
Chapter 3 in [3]: the driving force determines the ratio of forward and reverse one-way fluxes, v+

v− = eθ. If θ comes
close to zero, their relative difference becomes very small, and in order to obtain a given net flux v = v+ − v−, both
v+ and v− must grow enormously, which would require an a large amount of enzyme. This effect concerns only
very small θ values - for θ much larger than 1 (or ∆rG

′ much smaller than -RT), it can be neglected. Therefore,
redistributing driving forces between reactions, to avoid very small forces, can save enzyme costs. The relation
between driving forces, enzyme efficiency enzyme demand is shown in more detail in Figure 6.4.

If small driving forces should be avoided to prevent enzyme costs from going infinity, how can this happen in practice?
The driving forces themselves depend on metabolite levels, which can vary over several orders of magnitude. While
the true metabolite concentrations are usually unknown, we hypothesize that selection favors concentration profiles
that prohibit very small driving forces, in order to escape the ensuing large enzyme demands. Of course, completely
avoiding small driving forces may be impossible, as there is always a trade-off: if a metabolite concentration decreases,
the driving forces of all reactions producing it will increase, but the driving forces of all reactions consuming it will
decrease simultaneously. So, all else being equal, the optimal metabolite profile is one that distributes its driving
forces as evenly as possible.

6.3.3. Max-Min driving force method

Previously in Chapter 4.3.2 in [3], we discussed adding thermodynamic constraints to constraint-based models in
order to comply with the second law of thermodynamics. We can extend that approach in order to implement the
idea of avoiding small driving forces. When we talk about the thermodynamic profile of a metabolic pathway, we
usually try to visualize it by the cumulative Gibbs energy of reaction: we start at 0 and at each step add the ∆rG

′ of
the next reaction, which, assuming the pathway is feasible, is a negative number. The profile therefore has a shape
of a downhill slope. The end point represents the total Gibbs energy and depends only on the concentrations of
the metabolites that are part of the net reaction. Intermediate metabolites do not affect it, but they do determine
the shape of the profile itself (see Figure 6.4). Specifically, each intermediate metabolite typically affects the driving
force of two reactions – the one producing it and the one consuming it – with opposite signs. Therefore, changing
the concentration of an intermediate can help increase the driving force of one reaction, but always at the expense
of another reaction. This strong coupling between ∆rG

′ is why it is not trivial to find the optimal thermodynamic
profile of a pathway.

The Max-Min driving force method (MDF) [20] is a method for predicting metabolite concentrations, based on
the principle of evenly distributed driving forces. All fluxes are fixed and given, and assumed to be positive. It
assumes that each metabolite concentration must remain in a predefined range, converts each choice of metabolite
concentrations into the corresponding pattern of driving forces, and determines the smallest resulting driving force
in the network. If this smallest driving force is negative, the flux distribution cannot be realized thermodynamically.
Otherwise, the larger this smallest driving force, the better the overall metabolite profile. Hence, among all possible
metabolite profiles, MDF predicts the one that maximizes the value of the minimal driving force across the network.
Mathematically, this leads to a linear optimization problem: in the space of logarithmic metabolite concentrations,
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the shape of the profile can vary. In the optimal profile (in red), small driving forces are avoided. The driving forces
determine the ratios of forward and backward one-way fluxes (red arrows), and at a given net flux (black arrows) the
enzyme demands. In the suboptimal blue curve, in contrast, the last three reactions show lower forces, and therefore
relatively high reverse fluxes (blue arrows); to obtain the same net flux, forward and backward fluxes have to be
strongly increased, which increases the enzyme demand.

a lower bound on all driving forces (denoted B) is maximized (Eq. 6.10). An illustrative example is shown in Figure
6.5.

Maximizex,B B

Subject to − (∆rG′◦ + RT · N>x) ≥ B

ln(Cmin) ≤ x ≤ ln(Cmax)

(6.10)

MDF is easy to apply: it is based on a simple Linear Programming problem and requires only the following input
data: (i) the stoichiometric network; (ii) the flux directions; (iii)) the known equilibrium constants (or equivalently,
the standard reaction Gibbs free energies); (iv) physiological ranges for metabolite concentrations. Based on these
data alone, metabolite concentrations and driving forces (or ∆rG

′ values) are predicted. An example application can
be found in Hädicke et al. [21], where the potential of CO2 fixation in E. coli via endogenous pathways was analyzed
using MDF.

A theoretical insight from MDF is the notion of distributed bottlenecks. A simple bottleneck would consist of a single
reaction whose driving force cannot be increased because the substrates are at their upper concentration bounds and
the products are at their lower concentration bounds. Given the fixed equilibrium constant, nothing can be done to
increase the driving force in this reaction. A distributed bottleneck is more complicated: it consists of a series of
reactions that all share the same low driving force, which, because of all the concentration constraints in the system,
cannot be further increased (e.g. as in Figure 6.4). Even though each single reaction looks “harmless” because its
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Figure 6.5: Max-Min Driving force method (MDF): an optimality problem in metabolite space – (A) Example pathway
with given equilibrium constants and fixed concentrations of the external metabolites X and Y . What are the most
favorable concentrations of the internal metabolites A and B? Assuming that small driving forces should be avoided
in all reactions, MDF determines the metabolite profile that optimizes a worst case: it maximizes the worst (that is,
smallest) driving force among all three reactions. (B) Driving force in reaction 1, as a function of the logarithmic
concentrations of A and B, called ln a and ln b. Higher concentrations of A (the reaction product) lead to smaller
driving forces. Above a critical value (where X and A are in equilibrium), the driving force becomes negative, and a
forward flux is impossible (gray region). The concentration of B, which does not participate in the reaction, does not
play a role. (C) Driving force for reaction 2. Here, it is the ratio b/a that counts. The lower the ratio (lower right),
the higher the driving force. If the ratio is higher than the equilibrium constant, the driving force becomes negative
(grey region). (C) Driving force for reaction 3. (E) By overlaying the contours in (B), (C), and (D) and taking
the minimum value, we obtain the minimal driving force θmin among all three reactions. θmin is a piecewise linear
function of ln a and ln b within the feasible range, yielding positive forces in all three reactions. The maximum point
of this function is the optimum metabolite profile predicted by MDF. In the example shown, the feasible concentration
space is entirely defined by the driving forces themselves, given the external concentrations. In general, physiological
concentration ranges for all metabolites could further decrease the solution space and shift the optimum point (not
shown).

own driving force could still be increased, this increase would happen at the expense of other driving forces.

6.3.4. The role of thermodynamics for metabolic states

In summary, thermodynamics provides important clues both about the feasibility of pathways fluxes and about their
enzyme demand. To use this knowledge, fluxes need to be considered together with metabolite concentrations (to
obtain the possible driving forces), but no detailed knowledge of enzyme kinetics is required. Thermodynamics alone
yields an upper bound on fluxes (and hence, a lower bound on enzyme demands) that holds for any kinetic rate laws.
The only required data (except for the metabolic network itself) are equilibrium constants (or equivalently, standard
Gibbs free energies of reactions ∆rG

′◦), which can be obtained from the eQuilibrator tool (equilibrator.weizmann.ac.il)
[22, 23, 24] as well as physiological bounds on metabolite concentrations. Given this information, and given a feasible
choice of metabolite concentrations, we can compute the driving forces of all reactions, and from the factorized rate
law (and assuming positive fluxes by convention) we can then approximate the reaction rates by v ≤ e kcat (1 − e−θ).

We also recall from Chapter 3 in [3] that driving forces are not independent between reactions, but depend on the
metabolite concentrations, which creates trade-offs: in a chain A R1→ B R2→ C, a lower concentration of B will increase

https://equilibrator.weizmann.ac.il


11

the driving force in R1, but decrease the driving force in R2. For high enzyme efficiency (low enzyme demand), all
driving forces should in principle be high, but this is most important for low θ values (while for θ � 1 it does not
even matter). Therefore we may conclude that, to save enzyme, a cell should rearrange its metabolite levels within
physiological bounds such that small θ are avoided. Implementing this as an optimality problem, we obtain MDF.

In conclusion, we described (i) a general rule of thumb that poor thermodynamics makes reactions costly; (ii) simple
approximations of enzyme cost; and (iii) practical methods (MDF) to obtain metabolite profiles with favorable
thermodynamic properties.

6.4. Enzyme cost minimization

6.4.1. Enzyme cost minimization

The problem of minimizing the total enzyme demand (or cost) for a given pathway can be solved numerically, thanks
to the fact that they are always convex [25]. Finding the minimum of the convex objective (the total enzyme cost)
in a convex set (the set of admissible metabolite profiles, a convex polytope in log-metabolite space) can be done
efficiently. In contrast to general optimality problems, such problems have a unique local optimum, which can be
found by simple numerical methods. In this section, we demonstrate it with a simple example, the same three-reaction
pathway that you already saw in Section 6.3 above.

6.4.2. Enzyme cost landscape of a metabolic pathway

Given the fluxes, kinetics, and concentration bounds in a metabolic pathway model, one can predict the enzyme
demand by assuming that cells minimize the enzyme cost in that pathway. In the Enzyme Cost Minimization method
A reaction rate v = e · f(c) depends on enzyme level e and metabolite concentrations ci through the enzymatic rate
law, f(c). If the metabolite concentrations were known, we could directly compute enzyme demands e = v/f(c) from
fluxes, and similarly calculate the flux-specific enzyme demand e/v = 1/f(c). However, metabolite concentrations
are usually unknown and vary between experimental conditions. Therefore, there can be many solutions for e and c
realizing one flux distribution. To select one of them, we employ an optimality principle: we define an enzyme cost
function (for instance, total enzyme mass) and choose the enzyme profile with the lowest cost while restricting the
metabolite levels to physiological ranges and imposing some thermodynamic constraints. As we shall see below, the
solution is in many cases unique.

Let us demonstrate this procedure with a simple example (Figure 6.6 (a)). In the pathway X 
 A 
 B 
 Y , the
external metabolite levels [X] and [Y] are fixed and given, while the intermediate levels [A] and [B] need to be found.
As rate laws for each of the three reactions, we use reversible Michaelis-Menten (MM) kinetics

v = E
k+

cat s/KS − k−
cat p/KP

1 + s/KS + p/KP
(6.11)

with enzyme level E, substrate and product levels s and p, turnover rates k+
cat and k−

cat, and Michaelis constants
KS and KP. In kinetic modeling, steady-state concentrations would usually be obtained from given enzyme levels
and initial conditions through numerical integration. Here, instead, we fix a desired pathway flux v and compute the
enzyme demand as a function of metabolite concentrations:

E(s, p, v) = v
1 + s/KS + p/KP

k+
cat s/KS − k−

cat p/KP
. (6.12)

Figure 6.6 shows how the enzyme demand in each reaction depends on the logarithmic reactant concentrations.
To obtain a positive flux, substrate levels s and product levels p must be restricted: for instance, to allow for
a positive flux in reaction 2, the rate law numerator k+

cat [A]/KS − k−
cat [B]/KP must be positive. This implies
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Figure 6.6: Enzyme demand in a metabolic pathway – (A) Pathway with reversible Michaelis-Menten kinetics (equi-
librium constants, catalytic constants, and KM values are set to values of 1, [A] and [B] denote the variable
concentrations of intermediates A and B in mM). The external metabolite concentrations [X] and [Y ] are fixed.
Plots (B)-(D) show the enzyme demand of reactions 1, 2, and 3 at given flux v = 1 according to Eq. (6.12). Grey
regions represent infeasible metabolite profiles. At the edges of the feasible region (where A and B are close to
chemical equilibrium), the thermodynamic driving force goes to zero. Since small forces must be compensated by
high enzyme levels, edges of the feasible region are always dark blue. For example, in reaction 1 (panel (B)), enzyme
demand increases with the level of A (x-axis) and goes to infinity as the mass-action ratio [A]/[X] approaches the
equilibrium constant (where the driving force vanishes). (E) Total enzyme demand, obtained by summing all enzyme
levels. The metabolite polytope – the intersection of feasible regions for all reactions – is a triangle, and enzyme
demand is a cup-shaped function on this triangle. The minimum point defines the optimal metabolite concentrations
and optimal enzyme levels. (F) As the kcat value of the first reaction is lowered by a factor of 5, states close to the
triangle edge of reaction 1 become more expensive and the optimum point is shifted away from the edge. (G) The
same model with a physiological upper bound on the concentration [A]. The bound defines a new triangle edge.
Since this edge is not caused by thermodynamics, it can contain an optimum point, in which driving forces are far
from zero and enzyme costs are kept low. Please note the resemblance to the MDF problem for the same pathway,
shown in Figure 6.5.

that [B]/[A] < Keq where the reaction’s equilibrium constant Keq is determined by the Haldane relationship, Keq =
(k+

cat/k−
cat) ·(KP/KS). With all model parameters set to 1, we obtain the constraint [B]/[A] < 1, i.e. ln[B]− ln[A] <

0, putting a straight boundary on the feasible region (Figure 6.6 (c)). Close to chemical equilibrium ([B]/[A] ≈ Keq),
the enzyme demand e2 approaches infinity. Beyond that ratio ([B]/[A] > Keq) no positive flux can be achieved (grey
region). Such a threshold exists for each reaction (see Figure 6.6 (b)-(d)). The remaining feasible metabolite profiles
form a triangle in log-concentration space, which we call metabolite polytope P (Figure 6.6 (e)), and Eq. (6.12)
yields the total enzyme demand etot = e1 + e2 + e3, as a function on the metabolite polytope. The demand increases
steeply towards the edges and becomes minimal in the center. The minimum point marks the optimal metabolite
profile, and via Eq. (6.12) we obtain the resulting optimal enzyme profile.

The metabolite polytope and the large enzyme demand at its boundaries follow directly from thermodynamics. To
see this, we consider the unitless thermodynamic driving force Θ = −∆rG

′/RT [26] derived from the reaction Gibbs
free energy ∆rG

′. The thermodynamic force can be written as Θ = ln Keq
[B]/[A] , i.e. the driving force is positive

whenever [B]/[A] is smaller than Keq, and it vanishes if [B]/[A] = Keq. How is this force related to enzyme cost?
A reaction’s net flux is given by the difference v = v+ − v− of forward and backward fluxes, and the ratio v+/v−
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depends on the driving force as v+/v− = eΘ. Thus, only a fraction v/v+ = 1 − e−Θ of the forward flux acts as a
net flux, while the remaining forward flux is partially canceled by the backward flux. Close to chemical equilibrium,
where the mass-action ratio [B]/[A] approaches the equilibrium constant Keq, the driving force goes to zero, the
reaction’s backward flux increases, and the flux per enzyme level drops. This is what happens at the triangle edges in
Figure 6.6: a reaction approaches chemical equilibrium, the driving force Θ goes to zero, and large enzyme amounts
are needed for compensation. Exactly on the edge, the driving force vanishes and no enzyme level, no matter how
large, can support a positive flux. The quantitative cost depends on model parameters: for example, by lowering a
kcat value, the increase in enzyme cost at the boundary becomes steeper and the optimum point is shifted away from
the boundary (see Figure 6.6 (f)).

6.4.3. Enzyme cost as a function of metabolite concentrations

The prediction of optimal metabolite and enzyme levels can be extended to models with general rate laws and
complex network structures. In general, enzyme demand depends not only on driving forces and kcat values, but
also on the kinetic rate law, which includes KM values and small-molecule regulation. We can conveniently model
or approximate these factors by using factorized rate laws. Let us write this rate laws here again in a general form
to see the different factors at play. As we learned in Section 6.2, the rate of a reaction depends on enzyme level
e, forward catalytic constant k+

cat (i.e. the maximal possible forward rate per unit of enzyme, in s−1), driving force
(i.e. the ratio of forward and backward fluxes), and on kinetic effects such as substrate saturation or small-molecule
regulation. If all active fluxes are positive, reversible rate laws like the Michaelis-Menten kinetics in Eq. (6.11) can
be factorized as [16]:

v = e · k+
cat · ηfor · ηsat · ηreg. (6.13)

Negative fluxes, which would complicate our formulae, can be avoided by orienting the reactions in the direction of
fluxes.

Enzyme demand can be quantified as a concentration (e.g. enzyme molecules per volume) or mass concentration
(where enzyme molecules are weighted by their molecular weights). If rate laws, fluxes, and metabolite concentrations
are known, the enzyme demand of a single reaction l follows from Eq. (6.13) as

el(c, vl) = vl · 1
k+

cat,l

· 1
ηfor

l (Θ(c))
· 1

ηsat
l (c) · 1

ηreg
l (c) . (6.14)

To determine the enzyme demand of an entire pathway, we sum over all reactions: Epath
tot =

∑
l el. Based on its

enzyme demands el, we can associate each metabolic flux with an enzyme cost q =
∑

l hel
el, describing the effort

of maintaining the enzymes. The burdens hel
of different enzymes represent, e.g. differences in molecular mass,

post-translational modifications, enzyme maintenance, overhead costs for ribosomes, as well as effects of misfolding
and non-specific catalysis. The enzyme burdens hel

can be chosen heuristically, for instance, depending on enzyme
sizes, amino acid composition, and lifetimes. Setting hel

= ml (protein mass in grams per mole), q will be in gram
protein per gram cell dry weight. Considering the specific amino acid composition of enzymes, we can also assign
specific costs to the different amino acids. Alternatively, an empirical cost per protein amount can be established
by the level of growth impairment that an artificial induction of protein would cause [27, 28]. Thus, each reaction
flux vl is associated with an enzyme cost ql, which can be written as a function ql(vl, c) ≡ hel

el(c, vl) of flux and
metabolite concentrations. From now on, we refer to log-scale metabolite concentrations si = ln ci to obtain simple
optimality problems below. From the factorized rate law Eq. (6.14), we obtain the enzyme cost function

q(s, v) ≡
∑

l

hel
el(vl, s) =

∑
l

hel
· vl · 1

k+
cat,l

· 1
ηfor

l (s)
· 1

ηsat
l (s) · 1

ηreg(s) (6.15)

for a given pathway flux v. If the fluxes are fixed and given, our enzyme cost becomes, at least formally, a function
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of the metabolite levels. The cost function is defined on the metabolite polytope P, a convex polytope in log-
concentration space containing the feasible metabolite profiles. Like the triangle in Figure 6.6, the polytope is
defined by physiological and thermodynamic constraints.

Beyond minimizing the total enzyme cost, one can also use Enzyme Cost Minimization to analyze the individual
enzyme demands. When the metabolite levels are known, the demand can be directly calculated and each efficiency
factor (η) in Eq. (6.15). By omitting some factors or replacing them by constant numbers 0 < η ≤ 1, simplified
enzyme cost functions with fewer parameters can be obtained. For example, ηfor = 1 would imply an infinite driving
force Θ → ∞ and a vanishing backward flux, ηsat = 1 implies full substrate saturation, and ηreg = 1 implies full
enzyme activation and no enzyme inhibition (or no small-molecule regulation at all). In these limiting cases, enzyme
activity will not be reduced, and enzyme demand will be given by the capacity-based estimate v/k+

cat, a lower estimate
of the actual demand. Instead of omitting an efficiency factor, it can also be set to a constant value between 0
and 1. Such simplifications and the resulting enzyme cost functions with fewer parameters can be practical if kinetic
constants are unknown.

6.4.4. General lessons from Enzyme Cost Minimization

Enzyme cost minimization not only provides numerical solutions, but also some general insights.

1. Convexity Enzyme Cost Minimization shows again the importance of the metabolite polytope. The usage of loga-
rithmic metabolite concentrations not only leads to a good search space for feasible metabolite profiles (as in MDF),
but also facilitates optimization because enzyme cost is a convex function of the metabolite log-concentrations
[29]. Convexity makes this optimization tractable and scalable – unlike a direct optimization in enzyme space.
Convexity holds for a wide range of rate laws and for extended versions of the problem, e.g. including bounds on
the sum of (non-logarithmic) metabolite concentrations or bounds on weighted sums of enzyme fractions.

2. Factorized rate laws disentangle individual enzyme cost effects To see how metabolic states are shaped by
different physical factors, we considered factorized rate laws. The different terms in these functions represent
specific physical factors and require different kinetic and thermodynamic data for their calculation. By neglecting
some terms, one obtains different approximations of the true enzyme cost. By comparing the different scores, we
can estimate the enzyme cost that cells “pay” for running reactions at small driving forces (to save Gibbs free
energy) or for keeping enzymes beneath substrate-saturation (e.g., to dampen fluctuations in metabolite levels ).

3. Relationship to other optimality approaches Beyond their practical advantages, factorized enzyme cost functions
also allow us to easily compare our method to earlier modeling and optimization approaches. These approaches
typically focused on only one or two of the factors that are taken into account in Enzyme Cost Minimization, and
many of them can be reformulated as approximations of this method [20, 30, 12].

4. Enzyme cost is related to thermodynamics In FBA, thermodynamic constraints and flux costs appear as
completely unrelated aspects of metabolism (as is explained in Chapter 5 in [3]). Thermodynamics is used to
restrict flux directions, and to relate them to metabolite bounds, while flux costs are used to suppress unnecessary
fluxes. In Enzyme Cost Minimization, thermodynamics and flux cost appear as two sides of the same coin. Like
in FBA, flux profiles are thermodynamically feasible if they lead to a non-empty metabolite polytope, allowing for
positive forces in all reactions. However, the values of these forces also play a role in shaping the enzyme cost
function on that polytope. Together, metabolite polytope and enzyme cost function (as in Figure 6.6) summarize
all relevant information about flux cost.

Many pathways are regulated, for instance by feedback inhibition of enzymes via the end product. While this may
stabilise the dynamics and adapt it to current demands, such enzyme regulation comes at a cost, which we can
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estimate by following the logic of Enzyme Cost Minimization. Many enzymes are regulated by small molecules that
act as competitive or allosteric inhibitors [31], an effective way to implement feedback control, for example to adapt
the flux in biosynthesis pathways to current needs. In order for such a regulation to work, the enzyme needs to
be partially inhibited on average (because only then, its activity can be increased on demand, by alleviating the
inhibition). Therefore, the enzyme efficiency goes down, and the cell needs to provide more enzyme to catalyze the
same flux than without the inhibition.

How much will this regulation cost the cell as part of the enzyme budget? From the perspective of Enzyme Cost
Minimization, where we start from desired fluxes and compute the enzyme demand, this question is easy to answer:
in the inhibited enzyme case, the lower efficiency will be described by a factor ηreg ∈ [0, 1] (Mathematical Details Box
6.C). In the same reaction, the enzyme demand increases by a factor 1/ηreg, so the extra cost is simply 1/ηreg − 1
times the “baseline” cost of this enzyme (without inhibition). Specifically, a non-competitive inhibitor, with efficiency
factor ηreg = 1

1 + c/KI
yields a cost factor 1+c/KI . If the metabolite concentrations are fixed, this corresponds to an

extra enzyme demand ∆el = el ci

KI,li
. Similarly, an enzyme activation with efficiency factor ηreg = c/KA

1+c/KA
in the rate

laws yields a cost factor 1+c/KA

c/KA
= 1 + KA/c in the formulae for enzyme demands. If the metabolite concentrations

are fixed, this corresponds to an extra enzyme demand ∆el = el KA,li

ci
(where l and i denote the regulated reaction

and the regulating metabolite, respectively). As usually in Enzyme Cost Minimization, an optimal rearrangement of
enzyme and metabolite concentrations must be taken into account, which will then slightly reduce the overall cost.

The predictions of optimal states by Enzyme Cost Minimization rely on two main inputs: a metabolic model that
relates metabolite concentrations, enzyme levels, and fluxes, and an optimality principle based on the assumption
that cells realize their production fluxes at a minimal total enzyme cost. To test whether this optimality principle
holds at all, Noor et al. [25] compared the predictions from Enzyme Cost Minimization to predictions from the same
metabolic model and the same flux distribution, but with randomly sampled metabolite profiles (and the corresponding
enzyme profiles). In comparison, metabolite profiles sampled close to the Enzyme Cost Minimization optimum yielded
significantly better enzyme level predictions than metabolite profiles sampled more broadly. This strongly supports
the idea that E. coli metabolism, in the conditions studied, is at least partially optimized for low enzyme cost, and
thus supports cost-optimality as a principle in living cells.

6.5. Comparison of alternative pathways
Having clarified our main functional criteria for pathways (substrate productivity and enzyme productivity) and how
they depend on pathway details (including outer concentrations), we can now compare alternative pathways by their
substrate and enzyme demand per production flux (an example of “cost per benefit”) and see which one scores better.

6.5.1. A tale of two glycolyses

One of the canonical examples discussed throughout this book is how cells choose between respiration and fermenta-
tion for making their ATP. However, having a precise kinetic model for respiration is difficult, since it involves electron
transfer and membrane-bound reactions. Therefore, it is challenging to calculate the enzyme cost of respiration using
models like those discussed in this chapter. Flamholz et al. [19] analyzed a similar but simpler case by comparing
between the EMP and ED variants of glycolysis, since all the required enzymes are soluble and expressed in the
cytoplasm and/or the periplasm and many of their kinetic parameters are measured. The common description of
glycolysis ends in pyruvate (e.g., as depicted in Figure 6.1). This means that the pathway is not neutral in terms of
redox, since the oxidation state of pyruvate is higher than glucose. In order to simplify the comparison and focus
only on ATP yield (rather than NADH), the EMP and ED pathways were extended to end in lactate by including
lactate dehydrogenase (ldh) as an extra step, making them redox neutral. These could be thought of as the more
relevant versions of the pathways in anaerobic conditions.
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Figure 6.7: Comparing two metabolic pathways using the MDF and the Enzyme Cost Minimization methods – For
the MDF analysis (top row), the dark blue line represents the cumulative Gibbs energy along the pathway if all
metabolite concentrations were 1 mM. The MDF solution is presented as a gray line, where the bottleneck reactions
are highlighted in red. For the Enzyme Cost Minimization analysis (bottom row), we used the same kinetic parameters
for all enzymes in both pathways (kcat = 200 s−1, KM = 200 µM, same as in [19]). However, here we used an
updated version of Enzyme Cost Minimization with the factorized rate law, therefore the results are not identical. A
Jupyter notebook for generating the figure can be found on the book website.

Although EMP-based fermentation is usually described in textbooks as less efficient than respiration, since it produces
only 2 moles of ATP per mole glucose instead of ≈ 30, the ED pathway has an even lower yield – 1 mole of ATP.
Nevertheless, the ED pathway is quite common among the bacteria. For example, Zymomonas mobilis – the
bacterium used in fermenting pulque (a.k.a., agave wine [32]) and a promising platform for bio-production [33] –
lacks key enzymes from the EMP pathway and uses the ED pathway exclusively to metabolize sugars. These bacteria
don’t seem to be bothered by the low ATP yield and can achieve high growth rates [34]. This already suggests to us
that the ED pathway is probably superior to EMP in other aspects, such as the enzyme demand. Another clue was
provided by a study which found that the ED pathway improves E. coli growth during glucose up-shifts and that the
flux through it increases by 130% [35] (see Economic Analogy Box 6.D)

To see if indeed the models provide predictions that are consistent with the experimental evidence, Flamholz et al.
[19] first used the MDF method to compare the two pathways. The ED pathway was found to be substantially more
thermodynamically favorable, with a much higher score than the EMP pathway (8.0 versus 4.8 kJ/mol, see Figure
6.7 upper row).

Although the EMP pathway is clearly more favorable, we can still argue that an MDF of 4.8 kJ/mol is good enough,
as it means θ > 1.9 for each one of the pathway reactions. In this case, ηfor > 0.85 (see Figure 6.3) and therefore
it might be a small price to pay for double the ATP yield. But, as discussed earlier, the efficiency of a pathway is

https://gitlab.com/principlescellphysiology/book-economic-principles-in-cell-biology/-/blob/master/book-manuscript/latex/chapters/PAT/jupyter/plot_figures.ipynb
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affected by other factors besides the thermodynamics. Flamholz et al. [19] tried to see whether ED is superior to
EMP also in terms of the enzyme cost using the Enzyme Cost Minimization method. Indeed, they found that the ED
pathway would require ≈5 times less protein compared to EMP for catalyzing the same flux (see Figure 6.7 bottom
row). So, although the ATP yield of the ED pathways is half that of EMP, one can still generate ATP at a higher
rate using the same amount of protein, according to the model.

The comparison of EMP and ED provided some insight as to a trade-off that can exists between the yield of a pathway
and its cost, or enzyme burden. However, one can expand the question and ask if there are any other theoretically
possible glycolysis pathways that might be able to break this trade-off and be more efficient than EMP and ED in
both aspects. Ng et al. [6] tried to address this question with an algorithm they called optStoic that generates
all biochemically feasible routes between glucose and pyruvate, with various ATP/glucose yields. They then ran
pathway analysis on all 11,916 options and found that indeed both EMP and ED are both (nearly) Pareto-optimal.
This suggests that evolution may indeed select for features such as high yield and low enzyme cost, where one might
be more important than the other depending on the context.

6.5.2. Metabolic engineering

Besides the quest for understanding the evolution of existing biochemical pathways, pathway analysis methods like
MDF and Enzyme Cost Minimization have also been used by metabolic engineers in order to rank and prioritize
different alternative designs. For example, Volpers et al. [36] used the MDF algorithm and the Pathway Specific
Activity measure to compare between designs of photo-electro-autotrophic strains. Similarly, Löwe and Kremling [37]
used the Enzyme Cost Minimization algorithm to predict the enzyme demand of both natural and synthetic carbon
fixation cycles.

6.5.3. Predicting the metabolite concentrations

So far, the examples given in this section focused on analyzing and comparing pathway alternatives in isolation,
outside of the context of actual living organisms. However, we should not forget that the motivation for optimization
goals such as enzyme demand are derived from physiological and evolutionary principles. Therefore, the optimal
solutions coming from MDF and Enzyme Cost Minimization might be good predictions for the actual metabolic state
that exists in naturally evolved organisms.

For example, a few years after the in silico analysis of the ED pathway [19], Jacobson et al. [38] measured the
intracellular concentrations ED intermediates in Z. mobilis, and used them to calculate the Gibbs energies of the
pathway’s reactions. Indeed, they found that they closely fit the predicted values from the MDF solution. Similarly,
measured values of enzyme and metabolite concentrations in E. coli correlate with predicted values from Enzyme
Cost Minimization (when empricial reaction fluxes were obtained from 13C-MFA measurements, Figure 6.8) [25]. In
a related paper, Wortel et al. [39] expanded the idea of this method to explore the entire flux polytope.

These results suggest that indeed the optimization process that occurs throughout evolution is somewhat similar to
the (much simplified) models presented here. Of course, improving the accuracy of the inputs and accounting for
other effects that impact fitness could improve the predictions further. On the other hand, it might be naïve to
expect natural systems to be optimal, which would mean that using basic principles to precisely predict phenotypes
is an impossible task.

6.6. Concluding remarks
Coming back to our initial question, what have we learned from theory about the choice between possible pathways?
The “choice between pathways” in a larger network is actually a choice between (network-wide) flux distributions
that use different alternative pathways. Here we discussed how to score the usefulness of given flux distributions,
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(A) (B) (C)

Figure 6.8: Validation of metabolite and enzyme concentrations, predicted by Enzyme Costs Minimization, in the
central carbon metabolism of E. coli – (A) Comparing predicted and measured metabolic concentrations. The thin
diagonal line marks x = y, i.e. where the predictions match the measurements. Hollow blue points represent co-
factors whose concentration is fixed in the analysis and therefore are not actually predicted. Full blue points are
for all other metabolites whose allowed concentration range was set to 1µM − 10mM . The Root Mean Squared
Error (RMSE, in log10 scale), r2 (Pearson correlation), and p-value refer only to the full points. (B) Comparing
predicted and measured enzyme concentrations. (C) A pie chart showing the distribution of the predicted absolute
mass-concentrations for both enzymes (orange) and metabolites (blue) together. Note that aconitase (catalyzing the
reactions acn1 and acn2) has a lower specific activity than glyceraldehyde-3P dehydrogenase (catalyzing gap), and
therefore occupies a higher fraction of the mass-concentration even though the required concentration of the latter
enzyme is higher. Labels of enzymes and metabolites that occupy the smallest fractions of the biomass are omitted
due to lack of space.

which can also be used to score single pathways.

Importantly, flux distributions are scalable (by scaling all enzyme levels proportionally, and keeping all metabolite
levels constant). If we scale the fluxes, this will scale both the flux benefit (for instance, the production of a desired
product or biomass) and the required resources (substrates consumed, enzyme budget invested, or toxic byproducts
produced). Because of this scaling property, our “quality criteria” mostly have the form of ratios between an output
flux (as the benefit) and some (limited) resource (the cost). Such ratios are called “productivities”, where in Chapter
4 in [3]-5 in [3] we focused mostly on substrate productivity (or yield on substrate) and in this chapter on enzyme
productivity (or enzyme-specific rate) as important criteria. Why these criteria? On the one hand, they are closely
related to some big objectives of the entire cell – depending on the type of competition it is facing. On the other
hand, they are easy to link to some concrete criteria about metabolic pathways such as product yield, pathway length,
kcat values, thermodynamic forces, etc.

Since yield on substrate depends only on the shape of the flux distribution, it can be studied by methods like FBA
(see chapters 4 in [3] and 5 in [3]). In this chapter, we focused on the more difficult case, enzyme productivity,
where thermodynamics, enzyme kinetics, and the arrangement of metabolite and enzyme concentrations come into
play. The factorized law in Eq. (6.7) shows us how the enzyme demand of a flux distribution can be computed
if metabolite concentrations are known, and how the demand depends on forward kcat, the thermodynamic force,
and enzyme saturation. The only difficulty is that the thermodynamic forces and metabolite concentrations are
usually not known. Here we considered some best-case scenarios, assuming that the cell will realize the concentration
arrangements that optimize pathway performance. When considering thermodynamics alone (and making some
further simplifications), this led to the MDF method. For the full problem, the solution is provided by Enzyme
Costs Minimization. This method is directly related to the different pathway criteria we discussed initially (including
pathway length, thermodynamic forces, and kcat values) and thus shows how these different factors determine enzyme
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demand. As a numerical method, it is relatively easy to use because it is a convex optimization problem. But if little
data is available, simpler methods such as MDF, with their lower demand for parameters, may be useful tools to
predict pathway usage.

In order to predict optimal metabolic states, we started in the previous chapter with models that optimize the fluxes in
an entire network. Howeve, to keep the models linear, kinetics and concentrations were largely ignored. In FBA with
molecular crowding, a connection between fluxes and enzyme levels was made via empirical parameters, the apparent
catalytic rates or "enzyme efficiencies". We now saw that these parameters are not at all constant parameters, but
emerge from kinetics and given concentration profiles, and we also saw how optimal concentration profiles can be
computed for a given flux distribution. This means: we now know how to predict optimal fluxes from known enzyme
efficiencies, and we know how to predict optimal concentrations (and therefore enzyme efficiencies) from known
fluxes. In the next chapter we will put these two things together, in order to predict all variables in the system –
fluxes, metabolite concentrations, enzyme efficiencies, and enzyme levels – from a single principle of maximal overall
enzyme efficiency.

Recommended readings
A search for efficient pathways, based on different criteria: Arren Bar-Even, Elad Noor, Nathan E. Lewis, and
Ron Milo. Design and analysis of synthetic carbon fixation pathways. Proceedings of the National Academy of
Sciences, 107(19):88898894, 2010. doi: 10.1073/pnas.0907176107.

The max-min driving force method: Elad Noor, Arren Bar-Even, Avi Flamholz, Ed Reznik, Wolfram Liebermeister,
and Ron Milo. Pathway thermodynamics highlights kinetic obstacles in central metabolism. PLoS Comput. Biol.,
10(2):e1003483, 2014. doi: 10.1371/journal.pcbi.1003483.

Enzyme cost minimization: Elad Noor, Avi Flamholz, Arren Bar-Even, Dan Davidi, Ron Milo, and Wolfram
Liebermeister. The protein cost of metabolic fluxes: Prediction from enzymatic rate laws and cost minimization.
PLoS Comput. Biol., 12(11):e1005167, 2016. doi: 10.1371/journal.pcbi.1005167.

Problems
Problem 6.1 Pathway efficiencies

Estimate pathway efficiencies (i.e. product production rates per total enzyme concentration) from simple back-of
the envelope calculations and plausible numbers (refer to the BioNumbers database for realistic values). (a) From
pathway length (assuming reasonable apparent kcat values); (b) from given apparent kapp values (or given kcat

values and ∆rG). (c) Convert the results into growth rates (assuming realistic estimates of the total protein
density; the proteome fraction of metabolic enzymes; the biomass production rate etc). Assume plausible numbers
in all cases.

Problem 6.2 Efficiency – dependence on substrate

Compute the reduction of pathway efficiency in a linear chain when decreasing the external substrate concentration
(no constraints on metabolite levels)

Problem 6.3 ATP yield in glycolysis

Derive the optimal ATP yield in a glycolysis model with a linear flux-force relationship

Problem 6.4 MDF method

Implement the MDF method in a programming language of your choice.

Problem 6.5 MDF and enzyme cost

https://doi.org/10.1073/pnas.0907176107
https://doi.org/10.1371/journal.pcbi.1003483
https://doi.org/10.1371/journal.pcbi.1005167
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The optimality principle of MDF (avoiding small thermodynamic driving forces) can be justified by assuming
that low driving forces would entail high enzyme demands. Do you expect that MDF solutions are also Enzyme
Costs Minimization solutions (or vice versa)? Otherwise, can you think of an approximation of the Enzyme Costs
Minimization problem, such that MDF provides the correct solution? Show how the Enzyme Costs Minimization
objective could be approximated step by step, and illustrate this with an example.

Problem 6.6 Cycle of chemical reactions

Assume a cycle of chemical reactions A ↔ B ↔ C ↔ A without co-factors or external inputs/outputs. (a) Show
that there is no stationary, thermodynamically feasible flux distribution except for the (trivial) vanishing flux. (b)
Explain why, if there were a flux, this would be a perpetuum mobile.

Problem 6.7 Optimal enzyme levels in two-reaction chain

Consider a chain of two reactions S ↔ X ↔ P with enzymes e1 and e2, v1 = e1(k+1S − k−1X), v2 = e2(k+2X −
k−2P ). Compute the steady state flux given e1, e2. Let e1 + e2 = Epath

tot be fixed. Determine e1, e2 such that the
flux is maximal. Use Lagrange multipliers. Hint: Assume forward flux where P/S < (k+1k+2)/(k−1k−2) = q1q2.

Problem 6.8 Flux maximization in a linear pathway

Prove that the function:
f(e) = 1∑

i(Aiei)−1 (6.16)

for a fixed A and under the constraint
∑

i ei = etot, is at its maximum when:

ei = etot · A
−1/2
i∑

i A
−1/2
i

Problem 6.9 Haldane kinetic rate law

Haldane described an enzyme-catalyzed reaction by three steps, each following a mass-action rate law:

S + E k1−−⇀↽−−
k2

ES k3−−⇀↽−−
k4

EP k5−−⇀↽−−
k6

P + E . (6.17)

The ODE system describing the change in time of each species is:

d[ES]
dt

= [E] · [S] · k1 + [EP ] · k4 − [ES] · (k2 + k3)

d[EP ]
dt

= [E] · [P ] · k6 + [ES] · k3 − [EP ] · (k4 + k5)

d[E]
dt

= −[E] · [S] · k1 + [ES] · k2 + [EP ] · k5 − [E] · [P ] · k6

(6.18)

Prove that at quasy-steady-state (where the total enzyme concentration is fixed, and the concentration of each
species doesn’t change over time), the rate in which [S] is converted to [P ] is governed by the following rate law:

v = [E0]k
+
cat[S]/KS − k−

cat[P ]/KP

1 + [S]/KS + [P ]/KP
(6.19)

where:

KS = k2k4 + k2k5 + k3k5

k1(k3 + k4 + k5) ; KP = k2k4 + k2k5 + k3k5

k6(k2 + k3 + k4) ; k+
cat = k3k5

k3 + k4 + k5
; k−

cat = k2k4

k2 + k3 + k4

Problem 6.10 The factorized rate law
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Use the Haldane relationship:
k+

cat
k−

cat

KP

KS
= k1k3k5

k2k4k6
= Keq (6.20)

and the definition of Gibbs free energy:

∆rG
′◦ = −R · T · ln Keq

∆rG
′ = ∆rG

′◦ + R · T · ln ([P ]/[S])
(6.21)

to prove that Eq. (6.19) is equivalent to the following factorized rate law:

v = [E0]k+
cat ·

(
1 − e∆rG′/RT

)
· [S]/KS

1 + [S]/KS + [P ]/KP
. (6.22)

Solutions to problems

Problem 6.9 (Haldane kinetic rate law)

First, we add the constraint on the total enzyme concentration ([E] + [ES] + [EP ] = Etot) and rewrite the ODE
system in matrix notation:

1 1 1
[S]k1 −(k2 + k3) k4

[P ]k6 k3 −(k4 + k5)
−[S]k1 − [P ]k6 k2 k5


 [E]

[ES]
[EP ]

 =


[E0]

0
0
0

 . (6.23)

Note that the last row is linearly dependent on the two previous ones (it is minus their sum). Therefore, we can
drop it from the system without loosing information. Then, we will find exlicit expressions for [E], [ES], and [EP ]
by using Gaussian elimination – a process of eliminating off-diagonal values in the matrix until we reach the identity
matrix, while at the same time applying the same operations to the vector on the right-hand side of the equality.

Step 1, elimination the off-diagonal elements on the first column (subtracting the first row times [S]k1 from the 2nd
row and the first row times [P ]k6 from the 3rd row)1 1 1

0 −(k2 + k3) − [S]k1 k4 − [S]k1

0 k3 − [P ]k6 −(k4 + k5) − [P ]k6


 [E]

[ES]
[EP ]

 = [Etot]

 1
−[S]k1

−[P ]k6

 .

Step 2, dividing the second row by −(k2 + k3 + [S]k1) to have 1 on the diagonal:1 1 1
0 1 [S]k1−k4

k2+k3+[S]k1

0 k3 − [P ]k6 −(k4 + k5) − [P ]k6


 [E]

[ES]
[EP ]

 = [Etot]

 1
[S]k1

k2+k3+[S]k1

−[P ]k6

 .

Step 3, subtracting the second row from the 1st, and again from the 3rd (after multiplying by k3 − [P ]k6):
1 0 1 − [S]k1−k4

k2+k3+[S]k1

0 1 [S]k1−k4
k2+k3+[S]k1

0 0 −(k4 + k5) − [P ]k6 − ([S]k1−k4)(k3−[P ]k6)
k2+k3+[S]k1


 [E]

[ES]
[EP ]

 = [Etot]


1 − [S]k1

k2+k3+[S]k1
[S]k1

k2+k3+[S]k1

−[P ]k6 − [S]k1(k3−[P ]k6)
k2+k3+[S]k1

 .
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which after simplifying becomes:
1 0 k2+k3+k4

k2+k3+[S]k1

0 1 [S]k1−k4
k2+k3+[S]k1

0 0 − [S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5
k2+k3+[S]k1


 [E]

[ES]
[EP ]

 = [Etot]


k2+k3

k2+k3+[S]k1
[S]k1

k2+k3+[S]k1

− [P ]k6k2+[P ]k6k3+[S]k1k3
k2+k3+[S]k1

 .

and we normalize the last row to have 1 on the diagonal:

1 0 k2+k3+k4
k2+k3+[S]k1

0 1 [S]k1−k4
k2+k3+[S]k1

0 0 1


 [E]

[ES]
[EP ]

 = [Etot]


k2+k3

k2+k3+[S]k1
[S]k1

k2+k3+[S]k1
[P ]k6k2+[P ]k6k3+[S]k1k3

[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5

 .

Step 4, we eliminate the off-diagonal values of the third column using the 3rd row:

1 0 0
0 1 0
0 0 1


 [E]

[ES]
[EP ]

 = [Etot]


k2+k3

k2+k3+[S]k1
− k2+k3+k4

k2+k3+[S]k1
· [P ]k6k2+[P ]k6k3+[S]k1k3

[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5
[S]k1

k2+k3+[S]k1
− [S]k1−k4

k2+k3+[S]k1
· [P ]k6k2+[P ]k6k3+[S]k1k3

[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5
[P ]k6k2+[P ]k6k3+[S]k1k3

[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5


Simplifying the expressions on the right-hand side is a lengthy process (which we do not show here) and in the end
we get:

1 0 0
0 1 0
0 0 1


 [E]

[ES]
[EP ]

 = [Etot]


k2k4+k2k5+k3k5

[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5
[P ]k4k6+[S]k1k4+[S]k1k5

[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5
[P ]k2k6+[P ]k3k6+[S]k1k3

[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5


Therefore,

[E] = [Etot]
k2k4 + k2k5 + k3k5

[S]k1(k3 + k4 + k5) + [P ]k6(k2 + k3 + k4) + k2k4 + k2k5 + k3k5
(6.24)

[ES] = [Etot]
[P ]k4k6 + [S]k1k4 + [S]k1k5

[S]k1(k3 + k4 + k5) + [P ]k6(k2 + k3 + k4) + k2k4 + k2k5 + k3k5
(6.25)

[EP ] = [Etot]
[P ]k2k6 + [P ]k3k6 + [S]k1k3

[S]k1(k3 + k4 + k5) + [P ]k6(k2 + k3 + k4) + k2k4 + k2k5 + k3k5
(6.26)
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Math box 6.B Integer cuts for iterating all possible pathway variants

The linear problem can be described by:

minimize
∑

i

vi

subject to Nv = 0

∀i 0 ≤ vi ≤ β

vglycolysis = −1

(6.2)

where v is the flux variable, and N is comprised of the universal stoichiometric matrix , and in addition one reaction
(whose flux is denoted vglycolysis) which has the stoichiometry of Eq. (6.1). The constraint vglycolysis = −1 ensures that the
sum of all active reactions except for vglycolysis will together form a full glycolysis pathway, since their net reaction has to
balance the stoichiometry of vglycolysis given the mass balance constraint Nv = 0. β given the upper bound on the flux
for all reactions. For simplicity, we assume that all fluxes are positive and that reversible reactions are split into their two
opposing directionalities . β is a tunable parameter that is an upper bound on all the fluxes in the solution pathways.
Setting it too low would exclude solutions with complex stoichiometries. On the other hand, a very high value would
increase the complexity of the search and lead to very long run-times. Typically, we choose β = 10 which is a good
balance between the two extremes. Finally, we set the objective function (

∑
i
vi) to minimize the sum of fluxes. As we

will explain shortly, we can iterate through all possible solutions and therefore the objective will only determine the order
at which we find them.
To find all possible glycolysis pathways comprising known enzymatic reactions, Ng et al. [6] iteratively introduced con-
straints in order to exclude all previous solutions and find the next optimal one [9]: to exclude a solution, they add an
integer cut, which is an inequality constraint ensuring that the number of active reactions is strictly larger than the sum
over their indicator variables (boolean variables that are equal to 1 if the reaction is active, i.e. carries a nonzero flux).
Therefore, at least one of those reactions must be inactive in all future solutions. This is quite similar to constrained
Minimal Cut Sets (cMCS) which were introduced in Chapter 4.4 in [3] as a way of exploring the flux space.
Formally, if {P0, P1 . . . Pm} are the set of solutions already discovered by our algorithm (where ∀j Pj ⊆ {0, . . . , n}, i.e.
each solution is a set of integers which correspond to indices of active reactions) then the added constraints will be:

∀i zi ∈ {0, 1}

∀i vi − βzi ≤ 0

∀j
∑
i∈Pj

zi < ‖Pj‖
(6.3)

where ‖Pj‖ is the length of pathway j (i.e. the number of reactions). The zi are boolean reaction indicators, i.e. zi must
be equal to 1 if a reaction is active (vi > 0). The final set of constrains eliminate Pj and any pathway which is a superset
of Pj from the solution space. Using this extra set of constraints iteratively, each time generating the next pathway and
adding it to the excluded list, will eventually go through all possible solutions (by increasing order of their sum of fluxes).
It is important to note that using integer cuts requires switching to an MILP (Mixed-Integer Linear Program) solver,
which is computationally much more demanding and typically requires a commercial license.
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Math box 6.C Factorized rate laws and enzyme cost function

According to Eq. (6.13), reversible rate laws can be factorized into five terms that depend on metabolite concentrations
in different ways [16]. For a reaction S 
 P with reversible Michaelis-Menten kinetics Eq. (6.11), a driving force
θ = −∆rG

′/RT , and a prefactor for non-competitive inhibition, the rate law can be written as

v = E · k+
cat · [1 − e−θ]︸ ︷︷ ︸

ηfor

· s/KS

1 + s/KS + p/KP︸ ︷︷ ︸
ηsat

· 1
1 + x/KI︸ ︷︷ ︸

ηreg

Rate = enzyme · forward catalytic · thermodynamic · saturation · regulation
level constant factor factor factor

with inhibitor concentration x. The product of the first two terms, E and k+
cat, represents the maximal velocity, i.e. the

rate at full substrate-saturation without backward flux and without enzyme inhibition. The following factors decrease
this velocity for different reasons: ηfor describes a decrease due to backward fluxes, ηsat – the decrease due to incomplete
substrate saturation, and ηreg – the decrease due to small-molecule regulation (see Figure b). While k+

cat is an enzyme-
specific constant (yet, dependent on conditions such as pH, ionic strength, or molecular crowding in cells), the efficiency
factors are concentration-dependent, unitless, and can vary between 0 and 1. The thermodynamic factor ηfor depends
on the driving force (and thus, indirectly, on metabolite concentrations), and the equilibrium constant is required for its
calculation. The saturation factor ηsat depends directly on metabolite levels and contains the KM values as parameters.
Enzyme regulation by small molecules yields additive or multiplicative terms in the rate law denominator, which in our
example and can be captured by a separate factor ηreg. The enzyme cost for a flux v, with an enzyme burden he, can be
written as

q = he · E = he · v · 1
k+

cat
· 1

[1 − e−θ]︸ ︷︷ ︸
1/ηfor

· 1 + s/KS + p/KP

s/KS︸ ︷︷ ︸
1/ηsat

· [1 + x/KI]︸ ︷︷ ︸
1/ηreg

and contains the terms from the rate law in inverse form. The first factors, he v/k+
cat, define a minimum enzyme

cost, which is then increased by the following efficiency factors. By omitting some of these factors, one can construct
simplified enzyme cost functions with higher specific rates, or lower enzyme demands (compare Figure 6.2b). For a closer
approximation, the factors may be substituted with constant numbers between 0 and 1.

Economics analogy 6.D The push for fast growth

The ED pathway seems to be useful as a quick response to a sudden increase in abundance of resources (glucose), but
less efficient than EMP when the environment is steady. This is somewhat analogous to start-up companies, which burn
large amounts of venture capital in order to grow rapidly. However, after reaching a certain scale, the dynamic nature of
start-ups often becomes a burden, where overhead costs pile up and signal that it is time to join a larger corporation.
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Economics analogy 6.E Two central assumptions: homogeneity and stationarity

In the models described in this chapter, we generally assume that our system (for example, a metabolic pathway in a
cell) is spatially and temporally homogeneous, and that it shows stable stationary states. This is clearly a simplification:
in reality, cells are inhomogeneous, with compartments, with enzymes unequally distributed across the cell, and with
enzymes forming complexes or dedicated compartments like the glycosome (an organelle in some organisms that contains
the glycolytic enzymes), which changes (average) enzyme kinetics. Cells are also dynamic on various time scales (chemical
noise, metabolic dynamics, protein expression dynamics), which also may change (average) enzyme kinetics. If we ignore
this in our models – assuming a timeless steady state – this will not only cause approximation errors in our metabolic
model, but much more importantly, we ignore the fact that the cell can exploit spatial inhomogeneity (e.g. compartments
or channeling) and non-steady states (e.g. metabolic oscillations, or adaptation to fluctuations in the environment) to
further improve its fitness (as compared to a steady-state, constant enzyme model).
Interestingly, classical economic theory makes similar assumptions – e.g. about markets in equilibrium– which ignore the
spatio-temporal, dynamic side of real economic systems, which – as in the case of metabolic models – is likely to lead to
wrong results.
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