ОБНАРУЖЕНИЕ И ОЦЕНКА ФИШИНГОВЫХ URL-АДРЕСОВ С ИСПОЛЬЗОВАНИЕМ АЛГОРИТМОВ МАШИННОГО ОБУЧЕНИЯ
Description
В настоящее время представлено несколько алгоритмов, основанных на машинном обучении, для обнаружения попыток фишинга. Однако эти подходы часто страдают от низкой точности, а также длительного времени отклика и высокого уровня ложных срабатываний, что снижает эффективность этих алгоритмов. Кроме того, большинство существующих методов опираются на предопределенный набор функций, что может ограничивать их гибкость и надежность. В будущих исследованиях передовые методы, такие как машинное обучение и глубокое обучение, для изучения и выявления меняющихся угроз помогут выявить индикаторы фишинга. Анализ данных в реальном времени и циклы обратной связи с пользователями также могут повысить производительность и надежность систем обнаружения фишинга за счет сокращения времени отклика и ложных срабатываний. Такой подход повысит общую эффективность мер кибербезопасности против фишинговых атак.
Files
final_71_729-382-390-Otaxonov.pdf
Files
(1.0 MB)
Name | Size | Download all |
---|---|---|
md5:8b66b4cb96e4cf978b95c792e0362c68
|
1.0 MB | Preview Download |
Additional details
References
- Anitha, J., and M. Kalaiarasu. "A new hybrid deep learning-based phishing detection system using MCS-DNN classifier." Neural Computing and Applications 34.8 (2022): 5867-5882.
- Das, Meenakshi, et al. "Exquisite analysis of popular machine learning–based phishing detection techniques for cyber systems." Journal of Applied Security Research 16.4 (2021): 538-562.
- Jafari, Somayyeh, and Nasrin Aghaee‐Maybodi. "Detection of phishing addresses and pages with a data set balancing approach by generative adversarial network (GAN) and convolutional neural network (CNN) optimized with swarm intelligence." Concurrency and Computation: Practice and Experience 36.11 (2024): e8033.
- Jha, Ashish Kumar, Raja Muthalagu, and Pranav M. Pawar. "Intelligent phishing website detection using machine learning." Multimedia Tools and Applications 82.19 (2023): 29431-29456.
- Pandey, Pankaj, and Nishchol Mishra. "Phish-Sight: a new approach for phishing detection using dominant colors on web pages and machine learning." International Journal of Information Security 22.4 (2023): 881-891.
- Rao, Routhu Srinivasa, Tatti Vaishnavi, and Alwyn Roshan Pais. "CatchPhish: detection of phishing websites by inspecting URLs." Journal of Ambient Intelligence and Humanized Computing 11 (2020): 813-825.
- Shirazi, Hossein, et al. "Adversarial autoencoder data synthesis for enhancing machine learning-based phishing detection algorithms." IEEE Transactions on Services Computing 16.4 (2023): 2411-2422.
- Vajrobol, Vajratiya, Brij B. Gupta, and Akshat Gaurav. "Mutual information based logistic regression for phishing URL detection." Cyber Security and Applications 2 (2024): 100044.
- Xiao, Xi, et al. "Phishing websites detection via CNN and multi-head self-attention on imbalanced datasets." Computers & Security 108 (2021): 102372.
- Zhu, Erzhou, et al. "MOE/RF: a novel phishing detection model based on revised multiobjective evolution optimization algorithm and random forest." IEEE Transactions on Network and Service Management 19.4 (2022): 4461-4478.
- Khan, S.A.
- Khan, W.
- Hussain, A. Phishing Attacks and Websites Classification Using Machine Learning and Multiple Datasets (A Comparative Analysis). In Intelligent Computing Methodologies: 16th International Conference, ICIC 2020, Bari, Italy, 2–5 October 2020, Proceedings, Part III
- Lecture Notes in Computer Science
- Springer: Cham, Switzerland, 2020
- Volume 12465. [CrossRef]
- Salihovic, I.
- Serdarevic, H.
- Kevric, J. The Role of Feature Selection in Machine Learning for Detection of Spam and Phishing Attacks. Advanced Technologies, Systems, and Applications. In Advanced Technologies, Systems, and Applications II: Proceedings of the International Symposium on Innovative and Interdisciplinary Applications of Advanced Technologies (IAT)
- Lecture Notes in Networks and Systems
- Springer: Cham, Switzerland, 2019
- Volume 60, p. 60. [CrossRef]
- Vishva, E.S.
- Aju, D. Phisher Fighter: Website Phishing Detection System Based on URL and Term Frequency-Inverse Document Frequency Values. J. Cyber Secur. Mobil. 2021, 11, 83–104. [CrossRef]
- Hutchinson, S.
- Zhang, Z.
- Liu, Q. Detecting Phishing Websites with Random Forest. Machine Learning and Intelligent Communications: Third International Conference, MLICOM 2018, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Hangzhou, China, 6–8 July 2018
- Meng, L., Zhang, Y., Eds.
- Springer International Publishing: Cham, Switzerland, 2018
- Volume 251. [CrossRef]
- Sarasjati, W.
- Rustad, S.
- Santoso, H.A.
- Syukur, A.
- Rafrastara, F.A. Comparative Study of Classification Algorithms for Website Phishing Detection on Multiple Datasets. In International Seminar on Application for Technology of Information and Communication (iSemantic)
- IEEE: New York, NY, USA, 2022
- pp. 448–452. [CrossRef]
- Al-Sarem, M.
- Saeed, F.
- Al-Mekhlafi, Z.G.
- Mohammed, B.A.
- Al-Hadhrami, T.
- Alshammari, M.T.
- Alreshidi, A.
- Alshammari, T.S. An Optimized Stacking Ensemble Model for Phishing Websites Detection. Electronics 2021, 10, 1285. [CrossRef]