Published December 25, 2024
| Version v2
Journal article
Open
COMPARISON OF MULTISERVICE REMOTE SENSING DATA FOR VEGETATION INDEX ANALYSIS
- 1. Lecturer of the "Information Technologies" department of the Fergana branch of the Tashkent University of Information Technologies named after Muhammad al-Khorazmi
- 2. Assistant of the department "Information technologies" of the Fergana branch of the Tashkent University of Information Technologies named after Muhammad al-Khorazmi
- 3. Student of the Faculty of "Computer Engineering and Artificial Intelligence", Fergana branch of Tashkent University of Information Technologies named after Muhammad al-Khorazmi
Description
With advancements in satellite sensors, multi-source observation systems have become widely utilized. However, significant disparities exist among quantitative remote sensing products due to variations in observational methods and retrieval algorithms. This study investigates the quantitative relationships between the Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), and a vegetation index derived using the universal decomposition method for data from Landsat 2+ and Landsat 3 sensors
Files
final_64_617-352-354-Karimov.pdf
Files
(1.1 MB)
Name | Size | Download all |
---|---|---|
md5:294fb6536900d03fba9ca8080d529907
|
1.1 MB | Preview Download |
Additional details
References
- Сутырина Е. Н. Дистанционное зондирование земли. – 2013
- Grishkin, V., Zhivulin, E., Khokhriakova, A., & Karimov, S. DETECTION OF FERTILE SOILS BASED ON SATELLITE IMAGERY PROCESSING // CEUR Workshop Proceedings. – 2021. – С. 251-255.
- Grishkin V. M., Karimov S. I. Use of satellite imagery and index control to monitor and analyze the agricultural lands of Bukhara region, which is a world historical heritage // AIP Conference Proceedings. – AIP Publishing, 2022. – Т. 2432. – №. 1.
- Каримов С. И. Структурная стратегия формирования дистанционного мониторинга земель сельскохозяйственного назначения // Современные методы прикладной математики, теории управления и компьютерных технологий (ПМТУКТ-2021). – 2021. – С. 59-62.
- Каримов С. И. Методы машинного обучения для прогнозирования урожайности с использованием спутниковых изображений sentinel-2 // Международная научно-техническая конференция "Перспективные информационные технологии" (ПИТ-2022). – 2022. – С. 163-169.
- Гришкин В. М. и Каримов С.И. Глубокая нейронная сеть для семантическая сегментация спутниковых изображений // «Наукоемкие технологии в космических исследованиях Земли», Том 16, №3-2024 г.