TRIKOTAJ TO'QIMALARINI REAL VAQT REJIMIDA ANIQLANGAN NUQSONLARNI TAHLIL QILISH
Creators
- 1. Namangan muhandislik-texnologiyalari institute Energetika kafedrasi professori, f-m.f.d
- 2. TATU Farg'ona filiali Dasturiy injiniring kafedrasi
Description
Ushbu maqolada trikotaj mahsulotlarini ishlab chiqarish jarayonida yuzaga keladigan yuzaki nuqsonlarni real vaqt rejimida aniqlash va tahlil qilish masalasi ko'rib chiqiladi. Buning uchun tasvirni qayta ishlash, stokastik jarayonlar va Markov tasodifiy maydon modellari, Gabor filtrlari, shuningdek, konvolyutsion neyron tarmoqlar (CNN) kabi chuqur o'rganish yondashuvlariga asoslangan matematik modellardan foydalanish taklif etiladi. Ishlab chiqilgan usullar nuqsonli punktlarni aniqlash va klasifikatsiyalashda yuqori aniqlikka erishishga yordam beradi hamda ishlab chiqarishni optimallashtirish, brakka chiqadigan mahsulotlar miqdorini kamaytirish, umumiy sifatni oshirishga xizmat qiladi
Files
final_57_722-316-320-Musayev.pdf
Files
(918.6 kB)
Name | Size | Download all |
---|---|---|
md5:05fb6be3dd00a8c47feecb135aa66e25
|
918.6 kB | Preview Download |
Additional details
References
- Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, (6), 610-621.
- Gonzalez, R. C., & Woods, R. E. (2018). Digital Image Processing. Pearson.
- Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778.
- Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779–788.
- Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems (NeurIPS), 91–99.
- Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). SSD: Single Shot MultiBox Detector. European Conference on Computer Vision (ECCV), 21–37.
- Fang, W., & Liu, Y. (2020). Textile defect detection using deep learning techniques: A review. IEEE Access, 8, 170558–170576.
- Tsang, H. H., Tang, Y. Y., & Lau, F. C. M. (2001). A textile inspection method using two‐dimensional Gabor filters. International Journal of Production Research, 39(2), 307–319.
- Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603–619.