Published December 25, 2024 | Version v2
Journal article Open

LSTM MODELI ASOSIDA OB-HAVO SHAROITLARINING YURAK-QON BOSIMI KASALLIKLARIGA TA'SIRINI BASHORATLASH

  • 1. "TIQXMMI" MTU dotsent, texnika fanlari nomzodi
  • 2. "TIQXMMI" MTU 1-kurs tayanch doktorant
  • 3. Muhammad al-Xorazmiy nomidagi TATU Farg'ona filiali assistenti

Description

Yurak-qon bosimi kasalliklari dunyo bo'ylab keng tarqalgan hamda ularning sabablarini aniqlash, profilaktik choralarni rejalashtirish bugungi kunda dolzarb muammolardan biri bo'lib kelmoqda. Ushbu tadqiqotda ob-havo sharoitlarining (harorat, atmosfera bosimi, nisbiy namlik, shamol tezligi va geomagnit faoliyat) yurak-qon kasalliklariga ta'sirini bashorat qilish uchun chuqur o'rganish modeli — LSTM (Long Short-Term Memory) qo'llanilgan. Tadqiqot natijalari modelning yuqori aniqlik darajasini ko'rsatdi, bu esa profilaktik choralarda va sog'liqni saqlash sohasida foydalidir. Ushbu ish tibbiyot, meteorologiya va sun'iy intellekt sohalarining tutashgan nuqtasida joylashgan va o'zaro hamkorlikni rivojlantirishga xizmat qiladi

Files

final_29_720-173-177-Pulatov.pdf

Files (988.0 kB)

Name Size Download all
md5:acec5a2f60c3397d7e63702b1582bfc0
988.0 kB Preview Download

Additional details

References

  • Pulatov, G., Kabildjanov, A., & Pulatova, G. (2024). Аналитический анализ влияния погодных условий на сердечно-сосудистые заболевания. Потомки Аль-Фаргани, 1(2), 296–300.
  • Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780.
  • Zhang, Z., Wang, W., & Liu, J. (2020). Deep Learning Models for Time-Series Analysis: Applications in Medicine. IEEE Access, 8, 158015–158025.
  • Brownlee, J. (2017). Deep Learning for Time Series Forecasting: Predict the Future with MLPs, CNNs and LSTMs in Python. Machine Learning Mastery.
  • Kabildjanov, A. S. (2018). Методы обработки и формирование экспериментальных данных. Toshkent: "TIQXMMI" MTU.