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Goldbach's Conjecture — Towards the Inconsistency of Arithmetic 
 
 

 Ralf Wüsthofen 
 

 
 
 
 
 
Abstract. This paper proves, using methods from elementary number theory, that there is 
an inconsistency in Peano arithmetic (PA), where the centerpiece is a strengthened form of 
the strong Goldbach conjecture. We express this form of the conjecture in terms of an 
infinite set and show that the conjunction of two properties of this set leads to a 
contradiction. An essential point here is the constructive role of the prime numbers within 
the natural numbers. 
 
 
 
Notations. Let  denote the natural numbers starting from 1, let a denote the natural 
numbers starting from a > 1 and let 3 denote the prime numbers starting from 3. 

The expression "we have a proof that P", where P is a statement, means that there is a 
proof in this paper that P. 

Strengthened strong Goldbach conjecture (SSGB): Every even number greater than 6 is 
the sum of two distinct odd primes. 

 
 
 
Theorem.  Peano arithmetic (PA) is inconsistent. 
 
 
Proof.  Assuming PA is consistent, we will show that the statement FALSE can be deduced. 
 
We define the set  Sg := { (pk, mk, qk) | k, m  ; p, q  3, p < q; m = (p + q) / 2 }. 
 
The term Sg is not a standard part of PA, but it can easily be defined within PA. 
 
 
 
SSGB is equivalent to saying that every integer n ≥ 4 is the arithmetic mean of two distinct 
odd primes and so it is equivalent to saying that all integers n ≥ 4 appear as m in a middle 
component mk of Sg.  So, by the definition of Sg we have 
 
  SSGB   <=>    n  4   Ǝ (pk, mk, qk)  Sg     n = m 

SSGB   <=>   Ǝ n  4    (pk, mk, qk)  Sg     n ≠ m. 
 
 
 



   
 

2 
 

The set Sg has the following two properties. 
 
 
First, the whole range of 3 can be expressed by the triple components of Sg (”covering”). 
We prove this by dividing it into the following three cases. 
 
(i)    x  3  is prime.  Then, x = pk  with p  3, k = 1. 
 
(ii)   x  3  is composite and not a power of 2.  Then, x = pk  with p  3, k ≠ 1. 
 
(iii)  x  3  is a power of 2.  Then, x = (p + q)k / 2  with p = 3, q = 5, k = (a power of 2). 
 
 
 
 
So we have  
 
(C)   x  3   Ǝ (pk, mk, qk)  Sg     x = pk      x = mk. 
 
 
 
 
A few examples of the covering: 
 
x =       19:  (19∙1, 21∙1, 23∙1), (19∙1, 60∙1, 101∙1) 
 
x =       27:  (3∙9, 7∙9, 11∙9) 
 
x =       42:  (3∙14, 5∙14, 7∙14), (7∙6, 9∙6, 11∙6) 
 
x =   4096:  (3∙1024, 4∙1024, 5∙1024) 
 
x = 10000:  (5∙2000, 6∙2000, 7∙2000). 
 
 
 
 
Second, all pairs (p, q) of distinct odd primes are used in the definition of the set Sg 
(“maximality”).  So we have 
 
(M)   p, q  3, p < q     k        (pk, mk, qk)  Sg,  where  m = (p + q) / 2. 
 
 
 
 
 
From (C) it would immediately follow that SSGB holds, since an x ≥ 4 that is different 
from all Sg triple components  pk  and  mk  is in particular different from all m in Sg. So the 
property (C) excludes this possibility. 
 
The property (M) excludes the possibility that if there is an n ≥ 4 different from all m in Sg 
(i.e. SSGB), then n is the arithmetic mean of a pair of distinct odd primes not used in Sg. 
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So (M) rules out the possibility that the question of whether SSGB holds or not depends on 
whether (M) holds or not. (The proof would no longer be possible if we left out any pair of 
distinct odd primes in the formulation of SSGB and Sg.) 
 
 
 
 
We will now show that ( (C)  (M) ) leads to a contradiction. The basic idea is the following. 
 
Since, due to (C), an n  4 different from all m equals a component of some Sg triple that 
exists by definition and since, due to (M), this n cannot be the arithmetic mean of a pair of 
primes not used in Sg, we can prove that under the assumption that n exists (i.e. SSGB), 
the Sg triples are the same as under the assumption that n does not exist (i.e. SSGB). This 
causes a contradiction because under the assumption SSGB the numbers m defined in Sg 
take all integer values x ≥ 4 whereas under the assumption SSGB they don’t. 
 

 

The following steps are independent of the choice of n if, in the case of SSGB, there is 
more than one that is different from all m. For example, the minimal such n works. 

 

 

We split Sg into two complementary subsets in the following way. For any y  3, we write 

Sg = Sg+(y) ∪ Sg-(y), with 

Sg+(y) := { (pk, mk, qk)  Sg | Ǝ k'     pk = yk'    mk = yk'    qk = yk' } 

Sg-(y)  := { (pk, mk, qk)  Sg |  k'     pk ≠ yk'    mk ≠ yk'    qk ≠ yk' }. 

 
 
 
 
We define  S1 := { (pk, mk, qk)  Sg | SSGB }  and  S2 := { (pk, mk, qk)  Sg | SSGB }. I.e., 

S1 = Sg  if SSGB is true, and S1 = { }  if SSGB is false 
and 
S2 = Sg  if SSGB is true, and S2 = { }  if SSGB is false. 
 
 
 
 
 
Under the assumption SSGB there is an n  4 as described above and under the 
assumption SSGB there is no such n.  Then, since under both assumptions SSGB and      

SSGB  the properties (C) and (M) hold, we obtain 
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(1.1)  we have a proof that  (  y  3       SSGB  =>  S1 = Sg+(y) ∪ Sg-(y) ) 
 

 
 
(1.2)  we have a proof that  ( SSGB  =>  S2 = Sg+(n) ∪ Sg-(n) ). 
 
 
 
 
 
 
So, since  Sg+(n) ∪ Sg-(n)  is independent of n, 
 
 
we have a proof that 
 
        ( (  y  3         SSGB  =>  S1 = Sg+(y) ∪ Sg-(y) ) 
 
(1)      
 
          (  y  3       SSGB  =>  S2 = Sg+(y) ∪ Sg-(y) ) ). 
 
 
 
 
 
Now, we will make use of the following principle. 

If two sets of (possibly infinitely many) z-tuples are equal, then the sets of their 
corresponding i-th components are equal; 1 ≤ i ≤ z. 

 

To this end, for each k    we define 

M1(k) := { mk | (pk, mk, qk)  S1 }  and  M2(k) := { mk | (pk, mk, qk)  S2 }. 

 
 
 
 
Then, applying the principle above to the middle component of the triples (pk, mk, qk),         
the fact that both conjuncts in (1) are proved implies, by transitivity, that 
 
 
we have a proof that 
 
       ( (  k      y  3        SSGB  =>  M1(k) = { mk | (pk, mk, qk)   Sg+(y) ∪ Sg-(y) } ) 

(2)     

         (  k      y  3      SSGB  =>  M2(k) = { mk | (pk, mk, qk)   Sg+(y) ∪ Sg-(y) } ) ). 
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Setting  M1 := M1(1)  and  M2 := M2(1), 
 
 
we have a proof that 
 
        ( (  y  3         SSGB  =>  M1 = { m | (p, m, q)   Sg+(y) ∪ Sg-(y) } ) 
 
(2')     
 
          (  y  3       SSGB  =>  M2 = { m | (p, m, q)   Sg+(y) ∪ Sg-(y) } ) ). 
 
 
 
 
 
 
We define M := { m | (p, m, q)  Sg }. Then, since for every y  3  Sg+(y) ∪ Sg-(y)  equals 

Sg by definition, for every y  3  { m | (p, m, q)   Sg+(y) ∪ Sg-(y) }  equals M by definition. 
If SSGB is true, M is equal to 4, and if SSGB is false, M is equal to some non-empty 
proper subset U of  4.  
 
Therefore, defining X to be a variable that ranges either over the singleton set { 4 } or over 
the singleton set { U }, from (2') we obtain that 
 
 
we have a proof that 
 
(3)  ( ( SSGB  =>  M1 = X )        ( SSGB  =>  M2 = X ) ). 
 
 
 
 
 
A variable that ranges either over the set { B1 } or over the set { B2 } is either a variable that 
ranges over the set { B1 } or a variable that ranges over the set { B2 }. 
 
Thus, X is either a variable in (3) that ranges over the set { 4 } or a variable in (3) that 
ranges over the set { U }. Therefore, we can make use of the following rule. 
 
 
Let P = P(A) be a proposition that depends on a variable A, where A stands for a set. Then, 
for any set B, 
 
( we have a proof that P(A)      we have a proof that  A = B )   =>   we have a proof that 
P(B). 
 
 
If A is a variable in P that ranges over the set { B }, the above conjunct ( we have a proof 
that A = B ) is true, so that we get 
 
( we have a proof that P(A) )   =>   ( we have a proof that P(B) ). 
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So, if A is either a variable in P that ranges over the set { B1 } or a variable in P that ranges 
over the set { B2 }, we get 
 
( we have a proof that P(A) )   =>   ( we have a proof that P(B1)      we have a proof that 
P(B2) ). 
 
 
 
 
 
We apply the above rule with 
 
P(A) = ( ( SSGB  =>  M1 = A )        ( SSGB  =>  M2 = A ) ) 
 
A = X 
 
B1 = 4 
 
B2 = U. 
 
 
 
 
 
Then, since we have proved (3), we obtain 
 
 
(3.1) we have a proof that ( ( SSGB  =>  M1 = 4 )              ( SSGB  =>  M2 = 4 ) ) 
 

 
 
(3.2) we have a proof that ( ( SSGB  =>  M1 = U ≠ 4 )        ( SSGB  =>  M2 = U ≠ 4 ) ). 
 
 
 
 
 
 
This is equivalent to 
 
 
(3.1')  ( we have a proof that  (   SSGB  =>  M1 = 4 ) 

            
            we have a proof that  ( SSGB  =>  M2 = 4 ) ) 
 

 
 
(3.2')  ( we have a proof that  (   SSGB  =>  M1 = U ≠ 4 ) 

            
            we have a proof that  ( SSGB  =>  M2 = U ≠ 4 ) ). 
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This implies 
 
 
(4.1)  we have a proof that  ( SSGB  =>  M2 = 4 ) 
 

 
 
(4.2)  we have a proof that  (    SSGB  =>  M1 = U ≠ 4 ). 
 
 
 
 
 
 
Now, we will establish a contradiction to  ( (4.1)  (4.2) ). 
 
 
We have a proof that ( SSGB => M = 4 )  and  we have a proof that ( SSGB => M = U ≠ 

4 ).  Therefore, since  SSGB => M1 = M  and  SSGB => M2 = M  by definition, we get 
 
 
(5.1)  we have a proof that  (   SSGB  =>  M1 = 4 ) 
 

 
 
(5.2)  we have a proof that  ( SSGB  =>  M2 = U ≠ 4 ). 
 
 
 
 
 
 
Because of  ( (5.1)  (5.2) )  and because 
 
 
we have a proof that  ( SSGB  =>  M2 = { } ≠ 4 ) 
 
and 
 
we have a proof that  ( SSGB  =>  M1 = { } ≠ U ), 
 
 
we have a proof that ( M2 = 4 ) is false and we have a proof that ( M1 = U ≠ 4 ) is false. 
 
 
 
 
 
 
Therefore, ( (4.1)  (4.2) )  yields 
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(6.1)  we have a proof that  ( SSGB  =>  FALSE ) 
 

 
 
(6.2)  we have a proof that  (    SSGB  =>  FALSE ). 
 
 
 
 
 
 
And this yields 
 
 
(7.1)  we have a proof that    SSGB 
 

 
 
(7.2)  we have a proof that  SSGB. 
 
 
 
 
 
Since we have neither a proof of SSGB nor of SSGB, both (7.1) and (7.2) are false. 
 
So, we obtain  ( FALSE    FALSE )  and thus FALSE. 
 
 
Hence, the assumption that PA is consistent was false. 
 

                                                                                                                          □ 


