
Using Adversarial Autoencoders for Multi-Modal
Automatic Playlist Continuation

Iacopo Vagliano
ZBW – Leibniz Information Centre for Economics

Kiel, Germany
i.vagliano@zbw.eu

Lukas Galke
Kiel University

Germany
lga@informatik.uni-kiel.de

Florian Mai
Kiel University

Germany
stu96542@informatik.uni-kiel.de

Ansgar Scherp
University of Stirling

Scotland UK
ansgar.scherp@stir.ac.uk

ABSTRACT
The task of automatic playlist continuation is generating a list of
recommended tracks that can be added to an existing playlist. By
suggesting appropriate tracks, i. e., songs to add to a playlist, a
recommender system can increase the user engagement by making
playlist creation easier, as well as extending listening beyond the
end of current playlist. The ACM Recommender Systems Challenge
2018 focuses on such task. Spotify released a dataset of playlists,
which includes a large number of playlists and associated track
listings. Given a set of playlists from which a number of tracks
have been withheld, the goal is predicting the missing tracks in
those playlists. We participated in the challenge as the team Uncon-
scious Bias and, in this paper, we present our approach. We extend
adversarial autoencoders to the problem of automatic playlist con-
tinuation. We show how multiple input modalities, such as the
playlist titles as well as track titles, artists and albums, can be in-
corporated in the playlist continuation task.

CCS CONCEPTS
• Information systems→Recommender systems; •Comput-
ing methodologies→ Neural networks; Learning from implicit
feedback;

KEYWORDS
music recommender systems; neural networks; adversarial autoen-
coders; multi-modal recommender; automatic playlist continuation

ACM Reference Format:
Iacopo Vagliano, Lukas Galke, Florian Mai, and Ansgar Scherp. 2018. Using
Adversarial Autoencoders for Multi-Modal Automatic Playlist Continuation.
In Proceedings of the ACM Recommender Systems Challenge 2018 (RecSys
Challenge ’18), October 2, 2018, Vancouver, BC, Canada. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3267471.3267476

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RecSys Challenge ’18, October 2, 2018, Vancouver, BC, Canada
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6586-4/18/10. . . $15.00
https://doi.org/10.1145/3267471.3267476

1 INTRODUCTION
The task of automatic playlist continuation is adding one or more
tracks, i. e., songs, to a playlist while keeping the same target charac-
teristics of the original playlist [16]. Given a set of playlist features
and initial tracks, the system generates a list of recommended tracks
that can “continue” that playlist. This is particularly interesting in
services such as Spotify1. Automatic playlist continuation is be-
coming more and more important as user tend to prefer being
recommended musical experiences rather than single tracks [15].
This is a challenging task, because it is unclear to which extent
and when the sequential order of the tracks helps to create better
models for recommendation and it is difficult to assess the quality
of a playlist [16].

Recent advances in autoencoders on images have shown that
adversarial regularization can improve the performance of autoen-
coders [11]. Adversarial autoencoders [11] are not only trained to
reconstruct the input, but also to match the code with a selected
prior distribution. In a previous study [6], we successfully trans-
ferred adversarial autoencoders to recommendation tasks in the
context of citations and subject labels and we showed that smooth-
ness on the code aids autoencoders to reconstruct highly sparse
item vectors for citation and subject labels recommendation.

In this paper, we analyze whether adversarial autoencoders can
be applied to automatic playlist continuation in the context of
the ACM Recommender Systems Challenge 2018 [4]. In our prior
work [6], we did not yet exploit item attributes. In this work, we
explore the potential of aggregating item attributes (track title,
album title, artist name) to the playlist-level. This can be useful
because playlist titles may be not as meaningful as titles are, e. g.,
for research papers [6].

The challenge focuses on music recommendation, specifically
on automatic playlist continuation. Spotify released the Million
Playlist Dataset2 consisting of a large number of playlist titles and
associated track listings. The evaluation set contains playlists from
which a number of tracks have been withheld. The task is predicting
the missing tracks in those playlists.

Traditionally, the recommendation problem is modeled as the
prediction of missing ratings in a U × I matrix with set of users
U and set of items I (matrix completion). In our case, we consider

1https://www.spotify.com
2http://recsys-challenge.spotify.com/dataset

https://doi.org/10.1145/3267471.3267476
https://doi.org/10.1145/3267471.3267476
https://www.spotify.com
http://recsys-challenge.spotify.com/dataset

Table 1: Notation

Symbol Description

P Set ofm playlists
T Set of n tracks
X ∈ {0, 1}m×n Sparse ratings matrix
S ∈ Rm×d Side information of the playlist
x , s Row vectors of X or S , respectively
[x ; s] Concatenation of vectors x and s
◃▹ Natural join (on document identifiers)
I Identity matrix

a matrix P × T which indicates the occurrences of tracks in the
playlists, where P is the set of playlist andT is the set of tracks. We
aim to predict the missing occurrences.

We show how adversarial autoencoders can be applied to the
challenge task and how multiple input modalities can be incorpo-
rated. We consider metadata like the playlist titles as well as track
titles, artists and albums, as content-based features. We performed
various experiments for the challenge task to study how adversarial
autoencoders perform while exploiting metadata along with the
partial list of tracks. Our results show that adversarial autoencoders
consistently outperform other models and that their capability of
incorporating multiple input modalities increase the performance
of the models.

The remainder of this paper is organized as follows. In Section 2,
we formally state the problem. We introduce the employed models
in Section 3 and describe the experiments conducted in Section 4.
We conclude in Section 5.

2 PROBLEM STATEMENT
In the following, we provide a formal problem statement for the
considered automatic playlist continuation task. The playlists can be
considered users in a traditional recommendation scenario, while
the items are the tracks. This means that we regard tracks as a
bipartite graph, as shown in Figure 1.

Given a set ofm playlists P and a set of n tracks T, the typical
recommendation task is to model the spanned space, P × T. We
consider a sparse matrix X ∈ {0, 1}m×n , where X jk means that the
track k is included in the playlist j. We only consider the binary
occurrence of a track in a playlist, i. e.X jk is 1 if the track k appears
one or more times in the playlist j , and we normalize by the number
of tracks in the playlist by the L1 norm.

For training, the models are supplied with the complete occur-
rences of the tracks in the playlists, X train = Ptrain ◃▹ X , along
with side information, S train = Ptrain ◃▹ S . As side information, we
use the title of the playlist, as well as the aggregated artists names,
track names, and album names of the playlist’s tracks. At test time,
the representations X test and S test are obtained analogously.

To conduct preliminary experiments, we create an artificial test
set that is similar to the setting of our own prior work [6]: we
remove randomly selected items in X test by setting one non-zero
entry in each row to zero. We denote this test set by X̃ test. For
the purpose of the challenge, the real test set is provided by the
organizers. However, we artificially construct a development set

Rock

Workout Walk of life

Chill Don´t give up

We are the
champions

Playlists Tracks

Figure 1: Exemplary bipartite graph of tracks occurrences in
playlists.

that is representative for the challenge test set (more details are
provided in Section 4).

The model ought to predict values Xpred ∈ [0, 1]mtest×n , given
the test set X̃ test along with the additional information S test. The
goal is that the correct tracks (continuations) are highly ranked in
Xpred.

3 OUR APPROACH
In the following, we describe the employed models. We initially
developed and applied them to citation recommendation and sub-
ject indexing tasks [6]. We also exploited two baselines based on
item co-occurrence in the preliminary experiments. We first present
those baselines, then we introduce the multi-layer perceptron as a
building block for the two autoencoder variants. Finally, we briefly
describe undercomplete autoencoders and we show how they can
be extended to obtain adversarial autoencoders and how side in-
formation, such as the playlist title, track titles, artist names, and
album titles can be incorporated in both models.

ItemCo-Occurrence. As one baseline, we consider the co-occurrence
score [17] that is purely based on track co-occurrence. The ratio-
nale is that two tracks, which have occurred together in the same
playlist in the past, are more likely to occur together in the future.
Given training data X train, we compute the full item co-occurrence
matrixC = X train

T ·X train ∈ Rn×n . At prediction time, we obtain
the scores by aggregating the co-occurrence values via matrix mul-
tiplication X test ·C . On the diagonal ofC , the (squared) occurrence
count of each item is retained to model the prior probability.

Singular Value Decomposition. Singular value decomposition
(SVD) is an approach that factorizes the co-occurrence matrix of
items XT ·X . Caragea et al. showed that SVD can be successfully
used for recommendation [3]. We extend SVD by the capability
of incorporating side information. We concatenate the textual fea-
tures as TF-IDF weighted bag-of-words with the items and perform
singular value decomposition on the resulting matrix. To obtain
predictions, we only use those indices of the reconstructed matrix
that are associated with items.

Figure 2: Adversarial autoencoder for item-based recommendations [6]. Each edge resembles a parametrized mapping f (Wx +
b) with activation function f and parametersW ,b. When not labeled differently, the activation function is rectified linear
followed by dropout.

Multi-Layer Perceptron. Amulti-layer perceptron (MLP) is a fully-
connected feed-forward neural network with one or multiple hid-
den layers. The output is computed by consecutive applications of
h(i) = f (h(i−1) ·W (i) + b(i)) with f being a nonlinear activation
function. In the description of the following models, we abbreviate a
two hidden-layer perceptron module byMLP-2. This MLP-2 module
is not only used as a building block for subsequent architectures,
but also as a full model that only operates on the playlist titles.
In this case, we optimize binary cross-entropy BCE(x ,MLP-2(s)),
where the playlist titles s are used as input and tracks x as target
outputs. We chose to operate on an TF-IDF weighted embedded
bag-of-words representation [7] for a fair comparison with the
autoencoder variants, which are described below.

Undercomplete Autoencoders. The general concept of an autoen-
coder (AE) involves two components: the encoder enc and the
decoder dec. The encoder transforms the input into a hidden repre-
sentation (the code) z = enc(x). Then the decoder reconstructs the
input from the code r = dec(z). The two components are jointly
trained to minimize the loss function BCE(x , r). To avoid learning
to merely copy the input x to the output r , the code has a lower di-
mensionality (undercomplete). Autoencoders are trained to capture
the most important factors of variation for reconstruction [2].

For both the encoder and the decoder we chose an MLP-2 mod-
ule, such that the model function is r = MLP-2dec(MLP-2enc(x)).
When side information s is available, we supply it as additional
input to the decoder r = MLP-2dec([MLP-2enc(x); s]). We embed
the textual features into a lower dimensional space by using pre-
trained word embeddings [13]. The rationale here is that the rather
low code dimension is not overwhelmed by the high amount of
vocabulary terms. For a fair comparison of the models, also the MLP
described above is supplied the same text representation as input.
More precisely, we employ a TF-IDF weighted bag of embedded
words representation which has proven to be useful for information
retrieval [7]. The usage of side information in an undercomplete
autoencoder is comparable to the approach by Barbieri et al. [1].
A minor difference is that we supply the side information (titles,
artists and albums) only to the decoder, yet use two hidden layers
for both the encoder and the decoder to enable a fair comparison
to the adversarial variant, which is described below.

Adversarial Autoencoders. We extend the work of Makhzani et al.
on adversarial autoencoders (AAE) [11], who combine generative

adversarial networks [8] with autoencoders. The autoencoder com-
ponent reconstructs the sparse item vectors, while the discriminator
distinguishes between the generated codes and samples from a se-
lected prior distribution (see Figure 2). Hence, the distribution of
the latent code is shaped to match the prior distribution. We hy-
pothesize that the latent representations learned by distinguishing
the code from a smooth prior lead to a model that is more robust to
sparse input vectors than undercomplete autoencoders. The ratio-
nale is that smoothness is a main criterion for good representations
that disentangle the explanatory factors of variation [2].

Formally, we first computeh = MLP-2enc(x) and r = MLP-2dec(h)
and then update the parameters of the encoder and the decoder
with respect to binary cross-entropy BCE(x , r). Hence, in the reg-
ularization phase, we draw samples z ∼ N(0, I) from indepen-
dent Gaussian distributions matching the size of h. The parame-
ters of the discriminatorMLP-2disc are then updated, to minimize
logMLP-2disc(z)+ log(1−MLP-2disc(h)) [8]. Finally, the parameters
of the encoder are updated to maximize logMLP-2disc(h), such that
the encoder is trained to fool the discriminator. As a result, the
encoder is jointly optimized for matching the prior distribution and
for reconstruction of the input [11]. At prediction time, we discard
the discriminator and perform one pass of encoding and decoding
to obtain a prediction over all considered items.

Application to playlist continuation. In the case of playlist con-
tinuation, the considered items are tracks. On the input side, the
tracks are repsented by an L1-normalized bag-of-tracks vector. The
desired output is an estimated probability p(track|playlist) for each
track. Since the number of distinct tracks is large, we limit the
amount of considered tracks to the ntracks most frequent tracks,
which is controlled by a hyperparameter. After the probabilities
are estimated, we eliminate (for all methods) those tracks that were
already present in the original playlist, before the tracks are ranked
by descending probability.

We incorporate side information in the model, namely playlist
titles, track titles, artists, and albums. To this end, we first aggregate
this information by generating a string with all these metadata for
each track in the playlist. Similar to our prior work on scientific
documents [6], the side information is concatenated with the code
of the autoencoders, before the decoder uses it to make a prediction.
In this way, during training, the models’ parameters are optimized
to draw the necessary information for prediction either from the
already prevalent track set or the supplied side information.

As an example for a prediction step, we consider a “Workout”
playlist with the track “Walk of life” and the desired continuation
by “We are the champions” (see Figure 1). In this case, the input
track set consists only of the single track “Walk of life”, whose (one-
hot) vector is mapped to the code. The code is then concatenated
with the bag-of-words representation composed of the playlist title
“Workout” along with all words of the already prevalent tracks, in
this case: “Walk”, “of”, “life”. The decoder takes both the code and
the side information as input and estimates a high probability for
the track “We are the champions”.

4 EXPERIMENTS
The goal of the challenge is automatic playlist continuation. Given a
set of playlist features and some initial tracks, the system generates
a list of recommended tracks that can be added to the playlist.
The input is a user-created playlist, represented by some playlist
metadata (see Section 4.1) and a list of the K tracks in the playlist,
where K can be equal to 0, 1, 5, 10, 25, or 100.

The output is a list of 500 recommended candidate tracks, or-
dered by relevance in decreasing order. It is necessary to cope
with playlists for which no initial seed tracks are given. To assess
the performance of a submission, the output track predictions are
compared to the ground truth tracks from the original playlist.

4.1 Dataset
The Million Playlist Dataset3 contains 1,000,000 playlists created
by users on the Spotify platform between January 1, 2010 and
December 1, 2017. Every playlist has a title and includes at least
three unique artists and two unique albums, has a minimum number
of followers and listeners and has at least 5 tracks and no more than
250 tracks. Each playlist is caracterized by the playlist identifier,
the playlist title, the total number of tracks in the playlist and the
number of tracks included in the playlist. For each track in the
playlist, the following information is included: the position in the
playlist, the title, the Spotify URI, the name and Spotify URI the of
the primary artist, the title and the Spotify URI of the album, the
duration. The main dataset statistics are summarized in Table 2.

Table 2: Dataset statistics

Playlists 1,000,000
Tracks 2,262,292
Albums 734,684
Artists 295,860
Titles 17,381
Playlists with descriptions 18,760

The challenge set contains 10,000 incomplete playlists and the
task is to recommend tracks for each of these playlists. These 10,000
playlists are grouped in 10 clusters of 1,000 elements with simi-
lar characteristics. Specifically the clusters consist of: (1) empty
playlists with titles; (2) playlists with titles and the first track;
(3) playlists with titles and the first 5 tracks; (4) playlists with-
out titles but with the first 5 tracks; (5) playlists with titles and the
first 10 tracks; (6) playlists with first 10 tracks but without titles;
3http://recsys-challenge.spotify.com/dataset

(7) playlists with titles and the first 25 tracks; (8) playlist with ti-
tle and 25 random tracks; (9) playlists with titles and the first 100
tracks; (10) playlists with title and 100 random tracks.

We created a development set for internal testing that resem-
bles the challenge set. We reproduced the distribution of tracks
in playlists with titles and playlists without titles within the chal-
lenge set. The goal was then to sample a development set that is
representative of the challenge set.

We separated 10,000 random playlists for creating our develop-
ment set. For 2,000 of them, we removed their title. We retained
either five tracks or ten tracks at random (with a 0.5 probability
each). For the remaining 8,000, we randomly selected the number
of retained tracks according to the basic statistics of the test set: we
retain either 100 or 25 tracks with a 0.2 probability each, while we
retain either zero, one, five, or ten tracks, with probability 0.1 each.
Due to our random sampling approach, the resulting distribution
of tracks slightly differs from the challenge set.

We did not distinguish between selecting the first tracks or ran-
dom tracks. We decided to always select the tracks at random. We
also employed a naive approach for dealing with playlists with few
tracks. In these cases, we cannot remove more tracks than available.
However, we consider these effects to be negligible.

4.2 Procedure
Preliminary experiments. The challenge task is similar to the task

addressed in an our previous study [6]. In that case, the goal was
recommending citations or subject labels starting from a partial list
of references or labels. In this case, the system is given a playlist
with some tracks as input. In our previous work, we split the data
on the time axis of the citing documents to resembles the natural
constraint that publications cannot cite other publications that do
not exist yet. Similarly, no subject labels are available for papers still
not published. All documents that were published before a certain
year were used as training, and the remaining documents as test
data. For the challenge, time information is available in the from of
the last modification of a playlist, but it is not so meaningful as the
publication year. Thus, we did not split based on time. However,
these settings are more demanding than the challenge ones as they
correspond to a new user scenario: the system has to recommend
tracks for a playlist he has never seen before, which correspond to
the situation in which no ratings are given for some users.

As preliminary experiments, we compared AAE on the Million
Playlist Dataset in these more challenging settings against the
baselines used in the previous experiments, i. e. item co-occurrence
(IC) and singular value decomposition (SVD), as well as the decoder
(MLP) and the classical undercomplete autoencoder. This enabled
us to verify that the approach is also effective on this dataset and to
check whether using additional metadata together with the list of
tracks is beneficial. Specifically, we run all the methods once using
the title of the playlist and once without additional information to
compare their performance. The results showed that using playlist
title is more effective, as summarized in Section 4.4.

We randomly split the data in order to obtain a 90:10 ratio be-
tween training and test items guaranteeing that all playlists used
as training, do not appear in the test data. In other words, instead

http://recsys-challenge.spotify.com/dataset

Table 3: Values tested for each parameter

Hyperparameter Values
ntracks 25 k, 50 k, 75 k, 100 k
Hidden units 50, 100, 200
Epochs 10, 20
Code size 50, 100

of cutting the P ×T matrix along the time axis, as we did for docu-
ments [6], we randomly select some of its rows (playlists) for the
test set. The hyperparameters are initially selected based on our
previous experiments on other datasets [6]. While we do not ex-
clude that a certain set of hyperparameters may perform better in
a specific scenario, we select the following, most robust, hyperpa-
rameters: hidden layer sizes of 100 with ReLU [14] nonlinearities
and drop probabilities of 0.2 after each hidden layer. The optimiza-
tion is carried out by Adam [10] with initial learning rate 0.001.
The two autoencoder variants use a code size of 50. We further
select a Gaussian prior distribution for the adversarial autoencoder.
For SVD, we consecutively increased the number of singular val-
ues up to 1,000. Higher amounts of singular values decreased the
performance.

As a preprocessing step, we extracted the 50,000 most frequent
tracks in the training set. We filtered both the training and test set
to retain only those items. Furthermore, we remove playlists that
have less than one track left, so that there is at least one track to
drop out for testing. In the extreme case, this results in no track as
input for a given playlists.

Optimization on the development set. We selected themost promis-
ing approach from the preliminary experiments, namely AAE, and
optimized it on the challenge task exploiting our development set.
The training set includes all the playlists that do not belong to
the development set. For preprocessing the dataset, we first built
a vocabulary on the training set including only the 50,000 most
frequent distinct words from the metadata considered (playlist title,
track title, artist name, and album title). Subsequently, we restrict
our model to the ntracks most frequent distinct tracks. The rationale
is that for the less frequent items, there is too few training data
available such that taking these into account would harm the over-
all performance. We tested different configurations of considered
tracks (ntracks), hidden units, number of training epochs, and code
sizes. The values tested for each parameter are listed in Table 3. We
tried the different values of hidden units and epochs as well as the
code size on a predefined vocabulary based on Google news and
with ntracks equal to 50,000. Then, we choose the best-performing
values (200, 20 and 100, respectively) while varying ntracks.

As using playlist titles is effective, we expected that exploiting
even more metadata further improve the results. For this reason,
we run every configuration of the AAE model both relying on the
playlist title only and on playlist title together with track title, artist,
and album. When considering more metadata, we aggregated this
information generating a string with all these metadata (playlist
title as well as title, artist, and album for each of its track), which is
concatenated to the code. Overall, we run 20 different configura-
tions.

Final experiments. Finally, we conducted some experiments on
the challenge set. We provided playlist titles together with tracks
metadata to the model as this proved to be effective during the
optimization on the development set. The training now takes all
the playlists of the challenge set into account. We apply the same
preprocessing steps carried out for the optimization on the devel-
opment set and we tested several configurations varying the ntracks
as before, with hidden units, epochs and code size set to 200, 20 and
100, respectively.

4.3 Evaluation metrics
The metrics considered in the challenge were R-precision [12], nor-
malized discounted cumulative gain (NDCG) [9], and song clicks.
All these metrics were evaluated at both the track level (exact track
must match) and the artist level (any track by the artist is a match).
Additionally, we relied on the mean reciprocal rank (MRR) [5] for
the preliminary experiments to reuse a module implementing the
evaluation of the models through this measure. Thus, we could
focus on adapting the models tested on the new scenario. As MRR
considers the single highest-ranked relevant item, it is an appropri-
ate choice because in the preliminary experiments we predict only
one track. In the following, we recall all the measures exploited
denoting the set of tracks considered as ground truth by G, the
ordered list of recommended tracks by R, and the size of a set or
list by |·|.

R-precision. R-precision (Equation 1) is the number of retrieved
relevant tracks divided by the number of known relevant tracks,
i. e., the number of withheld tracks. The metric is averaged across
all playlists in the challenge set and rewards the total number of
retrieved relevant tracks regardless of their order.

R − precision =

��G⋂
R1: |G |

��
|G |

(1)

NDCG. The discounted cumulative gain (DCG) measures the
ranking quality of the recommended tracks. It increases when rel-
evant tracks are placed higher in the list. The normalized DCG
(NDCG) is determined dividing the DCG by the ideal DCG (IDCG).
In the latter, the recommended tracks are perfectly ranked. Equa-
tion 2 shows the DCG, while Equation 3 shows the IDCG. When
a recommended track is relevant, ri is 1, while it is 0 otherwise. If
the intersection between G and R is empty, then the DCG is equal
to 0. The NDCG metric is given in Equation 4.

DCG = r1 +
|R |∑
i=2

ri
log2(i + 1)

(2)

IDCG = 1 +
|G |∑
i=2

1
log2(i + 1)

(3)

NDCG =
DCG
IDCG

(4)

Recommended Songs clicks. Recommended Songs is a Spotify
feature that, given a set of tracks in a playlist, recommends 10
tracks to add to the playlist. The list can be refreshed to produce 10
more tracks. Recommended Songs clicks is the number of refreshes
needed before a relevant track is encountered (Equation 5). If the

metric does not exist, i. e., there is no relevant track in R, a value
of 51 is picked, which is 1 plus the maximum number of clicks
possible.

clicks =
⌊
argmini {Ri : Ri ∈ G} − 1

10

⌋
(5)

Mean reciprocal rank. The reciprocal rank (RR) assesses the re-
ciprocal of the position at which the first relevant track occurs in
R. It is 1 if a relevant track is in the first position, 0.5 if a relevant
track occurs in the second position, and so on [5]. The mean recip-
rocal rank (MRR), shown in Equation 6, is the RR averaged across
the playlists. The position of the first relevant track in the list of
recommendations for the i-th playlist is denoted by ri .

MRR =
1
|G |

|G |∑
i=1

1
ri

(6)

4.4 Results
Table 4 shows the results for the preliminary experiments. We run
each model once using the title of playlists and once without the
titles. Item co-occurrence (IC) cannot exploit the titles, MLP can
only rely on titles. In all the cases tested, using titles increased
the performance. AAE obtained the highest MRR both with and
without titles. Thus, we decided to further optimize this model on
the development set.

Table 4: Results of the preliminary experiments both with
playlist titles and without playlist titles.

Method MRR
No titles Titles

IC 0.0515 (0.1700) -
SVD 0.0658 (0.1946) 0.0662 (0.1953)
AE 0.0645 (0.1855) 0.0679 (0.1913)
AAE 0.0682 (0.1937) 0.0700 (0.1958)
MLP - 0.0300 (0.1310)

Table 5: Results of the best configuration AAE on our devel-
opment set (dev) and on the challenge set (final)with playlist
titles only (Titles) and with aggregated metadata (Aggr.).

Set R-Prec NDCG Clicks
Titles Aggr. Titles Aggr. Titles Aggr.

dev 0.1063 0.1205 0.2092 0.2319 9.9477 7.9350
final - 0.1787 - 0.3201 - 5.3510

Table 5 lists the best-performing AAE configurations on the
development set and on the challenge set. On the development
set, we run each model once using playlist titles and once using
aggregated metadata (playlist titles as well as title, artist, and album
of each track in the considered playlist). As on the development
set using aggregated metadata was more effective, we run only
experiments with aggregated metadata on the challenge set. In both
configurations, the vocabulary contained the 50,000 most frequent
distinct words from the metadata considered, and we restricted
our model to the 75,000 most frequent distinct tracks (ntracks). The

code size, hidden units, and training epochs were 100, 200, 20,
respectively.

5 CONCLUSION
We extended adversarial autoencoders to the problem of automatic
playlist continuation and we showed how multiple input modal-
ities can be incorporated. We executed various experiments for
the challenge task to study how adversarial autoencoders perform
while exploiting metadata along with the partial list of tracks. Our
approach outperformed other models and considering additional
metadata such as the playlist titles as well as track titles, artists,
and albums increased the performance of the models.

Reproducibility. The source code for reproducing our experi-
ments is openly available on GitHub4.

ACKNOWLEDGMENTS
This work was supported by the German Research Foundation
under project number 311018540 (Linked Open Citation Database)
as well as by the EU H2020 project MOVING (contract no 693092).

REFERENCES
[1] Julio Barbieri, Leandro G. M. Alvim, Filipe Braida, and Geraldo Zimbrão. 2017.

Autoencoders and recommender systems: COFILS approach. Expert Syst. Appl.
89 (2017), 81–90.

[2] Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. 2012. Unsupervised
Feature Learning and Deep Learning: A Review and New Perspectives. CoRR
abs/1206.5538 (2012).

[3] Cornelia Caragea, Adrian Silvescu, Prasenjit Mitra, and C. Lee Giles. 2013. Can’t
see the forest for the trees?: a citation recommendation system. In JCDL. ACM,
111–114.

[4] Ching-Wei Chen, Paul Lamere, Markus Schedl, and Hamed Zamani. 2018. RecSys
Challenge 2018: Automatic Music Playlist Continuation. In Proceedings of the
12th ACM Conference on Recommender Systems (RecSys ’18). ACM, New York, NY,
USA.

[5] Nick Craswell. 2009. Mean Reciprocal Rank. Springer US, Boston, MA, 1703–1703.
[6] Lukas Galke, Florian Mai, Iacopo Vagliano, and Ansgar Scherp. 2018. Multi-

Modal Adversarial Autoencoders for Recommendations of Citations and Subject
Labels. In Proceedings of the 26th Conference on User Modeling, Adaptation and
Personalization (UMAP ’18). ACM, New York, NY, USA, 197–205.

[7] Lukas Galke, Ahmed Saleh, and Ansgar Scherp. 2017. Word Embeddings for
Practical Information Retrieval. In GI-Jahrestagung (LNI), Vol. P-275. GI, 2155–
2167.

[8] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. 2014. Generative
Adversarial Nets. In NIPS. 2672–2680.

[9] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated Gain-based Evaluation
of IR Techniques. ACM Trans. Inf. Syst. 20, 4 (Oct. 2002), 422–446.

[10] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-
mization. CoRR abs/1412.6980 (2014).

[11] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, and Ian J. Goodfellow. 2015.
Adversarial Autoencoders. CoRR abs/1511.05644 (2015).

[12] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Eval-
uation in information retrieval. Cambridge University Press, 139–161.

[13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
2013. Distributed Representations of Words and Phrases and their Composition-
ality. In NIPS. 3111–3119.

[14] Vinod Nair and Geoffrey E. Hinton. 2010. Rectified Linear Units Improve Re-
stricted Boltzmann Machines. In ICML. Omnipress, 807–814.

[15] Markus Schedl, Peter Knees, and Fabien Gouyon. 2017. New Paths in Music
Recommender Systems Research. In Proceedings of the Eleventh ACM Conference
on Recommender Systems (RecSys ’17). ACM, New York, NY, USA, 392–393.

[16] Markus Schedl, Hamed Zamani, Ching-Wei Chen, Yashar Deldjoo, and Mehdi
Elahi. 2018. Current challenges and visions in music recommender systems
research. International Journal of Multimedia Information Retrieval 7, 2 (01 Jun
2018), 95–116.

[17] Henry Small. 1973. Co-citation in the scientific literature: A new measure of the
relationship between two documents. JASIS 24, 4 (1973), 265–269.

4https://github.com/lgalke/mpd-aae-recommender

https://github.com/lgalke/mpd-aae-recommender

	Abstract
	1 Introduction
	2 Problem Statement
	3 Our approach
	4 Experiments
	4.1 Dataset
	4.2 Procedure
	4.3 Evaluation metrics
	4.4 Results

	5 Conclusion
	Acknowledgments
	References

