

Supercomputing Centro Nacional de Supercomputación

BSC-UPC at EmoSPeech-IberLEF2024: Attention Pooling for Emotion Recognition

Marc Casals-Salvador¹, Federico Costa¹, Miquel India², and Javier Hernando^{1,2} Barcelona Supercomputing Center¹, Universitat Politècnica de Catalunya²

Speech Emotion Recognition (SER) has emerged as a dynamic field in machine learning with impactful applications in daily life. The IberLEF 2024 hosted a competitive challenge using the Spanish MEACorpus 2023 dataset. This work leverages pre-trained speech and text models with attention pooling for feature extraction, achieving first place over 14 teams with an 86.69% Macro F1-Score.

Architecture

Attention Pooling

Let $\{h_t \in \mathbb{R}^E | t = 1, ..., T\}$ be the hidden states of dimension *E*. We define the Attention Pooling as:

where *u* is a trainable parameter

Figure 2: Diagram of the Attention Pooling operation.

Speech Feature Extractor

- Trained with 436,000h of **multilingual** speech.
- The **quantization module** transforms continuous speech into discrete speech units.

Figure 1: Diagram Attention Pooling for the Multimodal Emotion Recognition System. The speech utterances are represented in red and the text is represented in blue.

Figure 3: Diagram of wav2vec 2.0. Figure extracted from Baevski et al.

- It uses **1-D Convolutions** that acts as relative positional embedding.
- It uses **contrastive loss**.

Dataset

Figure 4: Some of the characteristics of the MEACorpus 2023. On the left is the distribution of the number of speech fragments over emotions. On the right, a histogram of the durations of the audio fragments.

Experimentation and Results

- ▶ The audio files were **cropped** using a **5.5s window**, randomly slicing the waveform.
- ► The optimal **data augmentation probability** was **0.3**.
- ► A weighted cross-entropy loss was used, with weights as the inverse of class frequencies.

Data Augmentation

Figure 5: In orange, the original waveform. In blue, the same waveform half the speed

Figure 6: Spectrograms of distinct transformations

Conclusions

- What distinguishes **XLSR-wav2vec 2.0** and **RoBERTa** from their counterparts is their training on a large corpus, which results in better performance.
- ► The top-3 models had very similar architectures and hyperparameter configurations; hence, ensembling provides little variance in the predictions.

Different configurations of Feature Extractors were eva	valuated in the development sub-dataset.
---	--

Text Model	Audio Model	Output Dimensions	Validation F1-Score
RoBERTa	WavLM LARGE	1,024	80.04%
RoBERTa	XLSR-wav2vec 2.0	1,024	89.73%
RoBERTa	HuBERT LARGE	1,024	76.03%
BERT Large Uncased	WavLM LARGE	1,024	83.27%
BERT Large Uncased	XLSR-wav2vec 2.0	1,024	86.59%
BETO	WavLM BASE PLUS	768	74.79%
BETO-EMO	WavLM BASE PLUS	768	73.19%

Different hyperparameter configurations were trained to ensemble different models.

Model Name	Hidden den	Hidden dense layers Weight Decay		
Top 1 Model	2	0.01	86.20%	
Top 2 Model	2	0.1	85.96%	
Top 3 Model	3	0.1	82.43%	
Model Ensemble	-	-	86.69%	
Baseline	-	-	53.08%	

- > Attention pooling offers an efficient method for merging speech and text features, yielding better results than vanilla attention and other pooling strategies.
- **Few-parameter attention** models can still outperform **transformer-based** models in certain domains.
- ► The system scored **86.69% Macro F1-Score**, achieving the **first place** over 14 teams.

Download the code here! Read the paper here!

This work has been promoted and financed by the Generalitat de Catalunya through the Aina project.