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Speech Emotion Recognition (SER) has emerged as a dynamic field in machine learning with impactful applications in daily life. The
IberLEF 2024 hosted a competitive challenge using the Spanish MEACorpus 2023 dataset. This work leverages pre-trained speech
and text models with attention pooling for feature extraction, achieving first place over 14 teams with an 86.69% Macro F1-Score.
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Figure 2: Diagram of the Attention Pooling operation.
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Figure 1: Diagram Attention Pooling for the Multimodal Emotion
Recognition System. The speech utterances are represented in red

: ) raw waveform X
and the text is represented in blue.

Figure 3: Diagram of wav2vec 2.0. Figure extracted from Baevski et al.
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Figure 4: Some of the characteristics of the MEACorpus 2023. On the left is the distribution of the number of

) , : , ) Figure 5: In orange, the original waveform. In
speech fragments over emotions. On the right, a histogram of the durations of the audio fragments.

Figure 6: Spectrograms of distinct transformations
blue, the same waveform half the speed & p 8

Conclusions

Experimentation and Results

» The audio files were cropped using a 5.5s window, randomly slicing the waveform.
» The optimal data augmentation probability was 0.3.

» A weighted cross-entropy loss was used, with weights as the inverse of class
frequencies.

Different configurations of Feature Extractors were evaluated in the development sub-dataset.

» What distinguishes XLSR-wav2vec 2.0 and RoBERTa from their counterparts is their
training on a large corpus, which results in better performance.

» The top-3 models had very similar architectures and hyperparameter configurations;
hence, ensembling provides little variance in the predictions.

» Attention pooling offers an efficient method for merging speech and text features,

Text Model Audio Model Output Dimensions Validation F1-Score yielding better results than vanilla attention and other pooling strategies.
RoBERTa WavLM LARGE 1,024 80.04% » Few-parameter attention models can still outperform transformer-based models in
RoBERTa XLSR-wav2vec 2.0 1,024 89.73% Certaln domainso
RoBERTa HuBERT LARGE 1,024 76.03% .. .
, 0 -
BERT Large Uncased WavLM LARGE 1024 83 2704 » The system scored 86.69% Macro F1-Score, achieving the first place over 14 teams.
BERT Large Uncased XLSR-wav2vec 2.0 1,024 86.59%
BETO WavLM BASE PLUS 768 74.79%
BETO-EMO WavLM BASE PLUS 768 73.19%
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Different hyperparameter configurations were trained to ensemble different models.

Model Name Hidden dense layers Weight Decay Test F1-Score

Top 1 Model 2 0.01 86.20%

Top 2 Model 2 0.1 85.96%

Top 3 Model 3 0.1 82.43%

Model Ensemble - - 86.69%

Baseline : . 53.08% Read the paper here! Download the code here!
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