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Abstract 

The most recent algorithmic enhancements of the COSMO solvation model are presented and the 

implementation in the TURBOMOLE program package is described. Three demonstrative applications 

covering homogeneous catalysis, tautomeric equilibria, and binary phase diagrams show the 

efficiency and general applicability of the approach. Especially when combined with the COSMO-RS 

extension, the method very reliably predicts thermodynamic properties of liquid mixtures. 
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1. Introduction 

TURBOMOLE [1] has developed as an efficient and reliable quantum chemical program package 

which is widely used in academia and in industry. Nevertheless, up to this work TURBOMOLE was 

restricted to the calculation of molecules in vacuo, i.e. to the state of molecules in the ideal gas phase. 

Due to the overwhelming role of fluid-phase reactions in technical chemistry as well as in 

biochemistry, it is desirable and in many cases of crucial importance to handle more accurately the 

special effects caused by a solvent. For this reason the conductorlike screening model (COSMO) [2], 

which was developed by one of the authors at Bayer AG, has been implemented in TURBOMOLE in a 

joint initiative of BASF AG and Bayer AG. COSMO is a variant of the dielectric continuum solvation 

models. For an overview over the different classes of continuum solvation models the interested 

reader is referred to recent reviews [3-5].  

 

Since its first implementation in MOPAC in 1993 [2], COSMO has been implemented in several 

quantum chemical codes, e.g. MNDO [6], AMPAC [7], DMol [8], GAUSSIAN94 [9], GAMESS [10], and 

ADF [11]. The more recent implementations contain slight improvements compared to the originally 

published method, regarding the cavity construction as well as the algorithmic handling of the model. 

Meanwhile COSMO turns out to be widely accepted as the mathematical most simple and 

nevertheless most reliable and stable continuum solvation model. This can be seen from the fact that 

even in competing approaches like the polarizable continuum model (PCM) [5], the basic ideas of 

COSMO have been adopted recently [5]. Therefore the implementation of COSMO appears to be the 

most efficient way towards a more realistic handling of fluid phase chemistry in quantum chemical 

codes like TURBOMOLE.  

 

In this paper a compact presentation of the theory and the actual implementation of COSMO is made 

in section 2. Section 3 presents some demonstrative applications of TURBOMOLE/COSMO: In 

section 3.2, some aspects of the solvent effects in the Heck reaction catalysed by palladacycles are 

considered. Section 3.3 demonstrates the calculation of thermo-physical equilibrium data of 

dihydrotriazine isomers in different solvents, and section 3.4 shows the calculated phase diagram of 

the binary mixture of propanol and water, using the extension of COSMO beyond the dielectric limits, 

COSMO-RS (COSMO for real solvents) [12, 13]. 
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2. Theory and implementation 

The basic idea of COSMO compared to other dielectric continuum models is to approximate the 

dielectric continuum by a scaled conductor. This approximation allows for the use of the relatively 

simple boundary condition of vanishing total potential valid in an infinite conductor instead of the much 

more complicated ones of a dielectric continuum. The deviations between COSMO and the rigorous 

dielectric results are negligible in strong dielectrics ( > 20) and can be shown to be less than 10% 

even in the case of non-polar solvents, which generally have a dielectric constant of about  = 2. Since 

10% surely are far within the inaccuracy introduced by the general approximation of a dielectric 

continuum representation of a solvent,  it can be concluded, that the additional deviations caused by 

the COSMO approximation are fair compared to the corresponding gain in mathematical simplicity. 

 

In each dielectric continuum solvation model the solute is considered to be located in a cavity of a 

dielectric continuum. According to the common findings of many workers in this area [3, 4], for a 

reliable treatment of arbitrarily shaped molecules a molecular-shaped cavity definition is required, 

using some generalized solvent-accessible surface (SAS) based on van der Waals radii increased by 

approximately 20%. Such cavities do no longer allow for an analytic treatment of the solvation energy 

like the originally used spherical and ellipsoidal cavities did. Therefore, a numerical treatment of the 

polarization of the continuum is required, which starts with a discretization of the cavity surface into 

finite elements, called segments further on. For a mathematical and algorithmic description of the 

interaction of the solute with the continuum it is most efficient to represent the polarization of the 

continuum by the corresponding screening charges on the cavity boundary. On each segment i of the 

m segments of the cavity a constant screening charge density i is assumed, corresponding to a 

screening charge qi = sii, where si denotes the area of segment i. In the following, a matrix denotation 

for the screening charges is used, introducing the m-dimensional vector of screening charges q = (q1, 

..., qm). The Coulomb interactions of the screening charges can be written as a symmetric matrix A, 

which takes into account the self-interaction of the screening charge distribution on each segment by 

non-zero diagonal elements. Let X be the corresponding vector of the electrostatic potential of the 

solute X on each segment, then the conductor boundary equation of vanishing total potential reads 

*0 qA
Xtot
       (1) 
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with q* denoting the screening charges in a conductor, i.e. at a dielectric of strength  = . The 

COSMO approximation now implies that at finite  the screening charges can be written as 

*)( qfq        (2) 

with  

x
f










1
)(       (3) 

with a small value of x in the range 0  x  1. As discussed elsewhere [2, 14], the optimal value of x is 

0.5. This value will be used throughout this paper and it is generally used in the 

TURBOMOLE/COSMO implementation. Hence, one obtains the equation 

X
fqA  )(      (4) 

which directly relates the screening charges to the solute potential, and hence to the charge density of 

the solute. In contrast to the original implementations of COSMO [2], in which this equation was solved 

by inversion of the matrix A, a Cholesky factorization is used nowadays because it is faster and 

demands less memory. Since the matrix A does only depend on the molecular geometry, the time-

consuming O(m3) step of the Cholesky factorization, which is about a factor of 6 faster than the 

corresponding matrix inversion, has only to be done once for a given molecular structure. The 

resulting factor matrices can then be used to solve eq. (4) for q in a O(m2) step. It should be noted that 

a specially developed factorization routine is used, which operates on the lower triangle of A and 

hence saves half of the memory compared to most routines available in math-libraries. 

 

Regarding the implementation of COSMO into the self-consistency part of Hartree-Fock (HF) or 

density functional theory (DFT), there are two different alternatives: Alternative 1, which was used in 

the first COSMO implementation [2], splits the solute potential and the resulting screening charges into 

nuclear and electronic contributions and adds the resulting COSMO expressions as additional terms to 

the nuclear interaction energy, the nuclei-electron-interaction operator (one-electron matrix), and the 

electron-electron interaction (two-electron matrix), respectively. Alternative 2 adds the entire 

electrostatic potential of the iteratively updated screening charges as an external potential to the one-

electron part and takes into account the polarization energy, which is required to generate the 

screening charges by subsequent substraction of half of the solute-continuum interaction energy [14]. 

Both approaches are equivalent and converge to the same total energies and solute densities. In the 
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present implementation, alternative 2 was chosen. Using Q as a general notation for the solute 

density, the flow chart of an SCF cycle in HF or DFT calculations is shown in scheme 1. Thus, the 

SCF procedure converges directly to the self-consistent state and energy of the molecule embedded 

in the dielectric continuum. It is not necessary to start with a gas-phase density. In many cases, the 

number of required SCF cycles required is even slightly lower while using COSMO with large values of 

 than it is in the gas-phase. This is due to the fact that screening continuum density fluctuations in 

one part of the molecule are electrostatically decoupled from those in other parts and hence the 

different parts can converge almost separately. 

 

After convergence of the SCF calculation, the total energy is corrected for the outlying charge error. 

This error results from the fact that at reasonable cavity sizes inevitably a small, but significant tail of 

the solute electron density is located outside the cavity, i.e. within the dielectric continuum. This 

problem has been discussed in detail by Klamt and Jonas [15] showing that COSMO is by about a 

factor of 10 less sensitive to outlying charge effects on the total energy than methods using the 

original dielectric boundary conditions. The stability with respect to outlying charge errors is the most 

important reason why COSMO starts to replace the direct dielectric models. Anyway, the residual 

outlying charge error even in COSMO often would be in the order of 2 kJ/mol for neutral compounds 

and up to 10 kJ/mol for ions. Therefore in the TURBOMOLE/COSMO implementation, a stable and 

local correction algorithm for this error is applied, which is based on an auxiliary cavity located 0.85 Å 

outside the SAS [15]. The residual electrostatic potential on this cavity arising from the solute and from 

the original screening charges is calculated. This potential, which should be zero if there would be no 

outlying charge, originates from the outlying charge density. The respective screening charges on the 

outer cavity are calculated and projected on the original cavity. Thus we get a local correction for the 

outlying charge error, which reduces the energetic error by at least one order of magnitude, i.e. to 

about 0.2 kJ/mol.  

 

In order to allow for efficient optimization of a solute structure in the presence of the dielectric 

continuum, analytical derivatives of the COSMO energy have to be considered. For the 

implementation of energy gradients the mathematical simplicity of the COSMO model is very 

beneficial. Due to the fully variational treatment of the continuum polarization in HF and DFT 

calculations,  it is only necessary to calculate the derivatives of the COSMO operators, i.e. of the 



 6 

matrix A and of the "one-electron" integrals for the solute potential on the segments. The formal 

expression for the gradient simply reads 

 

X

COSMO qqAq
f

E 
)(2

1


    (5) 

The gradient of the outlying charge correction apparently results in only a small contribution to the total 

value of the gradient and is thus neglected.  

 

3. Demonstrative applications 

3.1. Computational details 

The structures of all molecules and transition states have been fully optimized for both the gas phase 

and the condensed phase using DFT with an approximate treatment of the electronic Coulomb 

interaction (resolution of identity, RI-DFT) [16]. A combination of the exchange functional of Becke [17] 

with the correlation functional of Perdew [18]), commonly designated as B-P functional,  has been 

employed throughout. The Pd complexes in section 3.1 have been optimized using split-valence (SV) 

basis sets [19] with one set of polarization functions for non-H atoms [20]. For the Pd atom, an 

effective core potential including relativistic corrections [21] and a corresponding optimized basis set of 

SV quality have been applied [22]. After the structure optimization, a single energy calculation with 

basis sets of triple-zeta valence (TZV) quality [22, 23] and polarization functions at all atoms [20] has 

been performed. For the organic molecules in sections 3.3 and 3.4, TZVP basis sets have been 

employed already for the structure optimization. 

 

The calculations in solution have been carried out with the default COSMO parameters of the 

TURBOMOLE/COSMO implementation, i.e. dielectricity constant  = , number of points per atom in 

the cavity construction nppa = 1082, number of segments (groups of points) per atom nspa = 92, 

distance threshold for elements of matrix A disex = 10.0 Å, distance to outer solvent sphere rsolv = 1.3 

Å, distance of extra solvent sphere for outlying charge correction to outer solvent sphere routf = 0.85 Å 

(see [15] for further explanation of the latter two parameters). The optimized atomic COSMO radii 

(rH=1.3 Å, rC=2.0 Å, rN=1.83 Å, rO=1.72 Å, rCl=2.05 Å) of Ref. 13 have been used, in combination with 

non-optimized radii of 2.16 Å and 2.28 Å for P and Pd, respectively. Since the latter two elements 
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have four (P) and six (Pd) bond partners in the complexes considered in section 3.2, they have no 

contribution to the SAS anyway. 

 

In combination with the COSMO-RS method, TURBOMOLE/COSMO is also capable to calculate all 

kinds of thermodynamic properties of multi-component mixtures in the liquid phase [24, 25]. This is 

demonstrated by the calculation of Gibbs free energies and Boltzmann weights for a tautomeric 

equilibrium in section 3.3, and the phase diagram and the activity coefficients of a binary mixture in 

section 3.4. The program COSMOtherm [25] has been used for the COSMO-RS calculations. It is able 

to directly read and process the TURBOMOLE/COSMO output files and has been parametrized and 

optimized for four different density functional / basis set combinations, namely B-P/SV(P), B-P/TZVP, 

B3-LYP/SV(P) and B3-LYP/TZVP [26]. 

 

3.2. Solvent effect on the C-C coupling step in the Heck reaction catalysed by palladacycles 

Homogeneous catalysis is one of the most successful fields for the application of density functional 

theory. However, most of the DFT investigations of reaction mechanisms are performed for the 

catalyst in the ideal gas phase, thus neglecting the influence of the reaction medium (solvent or 

reactants). In this paragraph we discuss solvent effects on the C-C coupling step in the Heck reaction 

[27] of chlorbenzene and ethylene, 

 

Cl

+
+B

- [HB]Cl
, 

 

catalysed by palladacyles of the type 

 

P

CH
2

Pd

R R
X

L
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with R = o-tolyl, X = halide, L = solvent, olefin. Recently, these catalysts have emerged as very stable, 

efficient and selective catalysts for Heck type reactions [28]. Despite the experimental success of this 

class of catalysts, some details about the mechanism of the catalytic reaction are still not understood. 

There is an ongoing debate in the literature whether the reaction proceeds via Pd(II)/Pd(IV) species 

with the palladacycle staying intact [29], or whether a reductive opening of the palladacycle takes 

place before the catalytic process starts, leading to palladium phosphine compounds as in traditional 

Heck catalysts [28]. 

 

We have investigated the C-C bond formation step for the Pd(II)/Pd(IV) route, i.e. we have calculated 

structural isomers and activation barriers for complexes of the type 

P

C
H

2

Pd
(IV)

R
R

Cl

Cl

R'
3
P Pd

(II)

Cl

1

 

with R = o-tolyl. Figure 1 shows the six calculated isomers of 1. They all have a cis-configuration of the 

phenyl and ethylene ligands, which is necessary for the C-C coupling reaction to take place. Table 1 

contains the relative energies of these isomers in both the gas and liquid phase. From the gas phase 

calculations, isomer 1a clearly should be the dominant species for the mechanism. The isomers next 

higher in energy, 1c and 1d, are already 24-25 kJ/mol above 1a. Hence, in the gas phase, the trans 

configuration of the Cl ligands appears to be most favourable. Isomer 1e as well as 1f are much higher 

in energy due to the unfavourable trans position of the two Pd-C bonds. 

 

The situation changes significantly for the solution phase (assuming a high dielectric constant), which 

can be deduced from the COSMO results in Table 1. Here, isomers 1c and 1d are most stable and 1a 

is 7 kJ/mol higher in energy. Also structure 1e is strongly stabilized and has only half of the energy 

difference to the most stable isomer in the solution phase as compared to the gas phase (21 kJ/mol 

vs. 42 kJ/mol). Apparently, the dielectric continuum stabilizes most the structures with cis-coordinated 

Cl ligands, since their higher dipole moments cause stronger polarization. Thus, depending on the 

solvent, one can expect different species dominating the catalytic reaction, which then can have a 

significant influence on the kinetics of the reaction. 
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To investigate the latter aspect, we have also determined the activation barriers for the C-C coupling 

for the four most stable isomers, 1a – 1d, in gas phase and solution, repectively, which are also given 

in table 1. The activation energies change by max. 9 kJ/mol when going from the gas phase to the 

solution. In both phases, the barriers are rather high (70 kJ/mol or more) for the isomers which have 

ethylene bound trans to the Pd-C bond (1a and 1c). Isomers 1b and 1d show much lower barriers (38 

kJ/mol and 20 kJ/mol, resp., in the gas phase), so that for the gas phase, the transition state formed 

from 1b is on an absolute energy scale 5 kJ/mol lower than the one formed from 1a, although 1b is 24 

kJ/mol above 1a. In solution, isomer 1b is lowest in energy, and the activation energy for 1b is further 

reduced compared to the gas phase. Therfore, it can be concluded, that in polar solvents, isomer 1b 

should be the relevant species for the catalytic mechanism of the Pd(II)/Pd(IV) type. Furthermore, 

polar solvents should increase significantly the reaction rates, since then the energtically most stable 

isomer also has a very low activation barrier. 

 

3.3. Relative stabilities of  dihydro-1,2,4-triazines 

Dihydro-1,2,4-triazines are well known experimentally and their derivatives have found a broad range 

of  applications in organic chemistry and  life sciences [30-32]. Their structures have been studied and 

characterized by 1H-NMR- [33] and UV-spectroscopy [34] as well as via preparative considerations 

[33-36]. However, the experimental work on these compounds left some uncertainty about their 

detailed geometric and electronic structure.  Recently, a theoretical study on the relative stabilities of 

the dihydro-1,2,4-triazines and the dihydro-1,2,4-triazinium cations based on density functional theory 

and high level ab-initio quantum chemical  calculations, has been published [37]. So far, all of the 

theoretical calculations done on these molecules have been restricted to the gas phase, although the 

experimental results indicate a significant contribution of solvent effects on the relative stability of the 

dihydro-1,2,4-triazines [30-32, also compare Ref. 37]. This work attempts to further clarify the 

tautomerism of the dihydro-1,2,4-triazines by extending the theoretical approach to the liquid phase. 

 

Figure 2 shows the nine possible isomers of  dihydro-1,2,4-triazine as well as three possible structures 

of the dihydro-1,2,4-triazinium cation. In the first preparative articles, the 2,5-dihydro (8) and the 4,5-

dihydro (9) isomers have been reported as reaction products [38, 39]. In addition, UV spectroscopic 

measurements of 1,2,4-triazines with aryl substituents in the 3, 5 and 6-position of the heterocyclic 
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ring indicate a tautomeric equilibrium between 8 and 9 in ethanol, consisting of predominantly 2,5-

dihydro isomer 8 [34, 36]. If a substituent is present at the N-4 atom, the most stable species is the 

4,5-dihydro isomer [34], whereas the 1,6-dihydro isomer is preferred if a substituent is present at N-1 

[36]. Thus, for the unsubstituted dihydro-1,2,4-triazine a tautomeric equilibrium between mainly the 

2,5-dihydro- (8), 4,5-dihydro (9) and 1,6-dihydro (4) isomers can be expected [37]. Only the 

unsubstituted dihydro-1,2,4-triazines and a selection of dihydro-1,2,4-triazinium cations are considered 

in our calculations, in order to allow for an unambiguous comparison with the gas phase stabilities of 

these molecules calculated by Nagy et al. [37]. 

 

Table 2 shows the optimized gas phase and COSMO energies for the nine dihydro-1,2,4-triazines and 

three dihydro-1,2,4-triazinium cations. The relative gas phase energies are in good agreement with the 

results of Nagy et al. that were calculated on a similar level of density functional theory [37]: The 2,5-

dihydro isomer 8 was found to be most stable, followed by the 1,6- and the 4,5- dihydro isomer (4 and 

9 resp.), which are about 6.9 and 8.6 kcal/mol higher in energy. The 1,4- and 2,3- dihydro isomers  (3 

and 5) are energetically comparable to 9, whereas all other isomers are much higher in energy.  This 

situation changes significantly with the application of COSMO: As expected, the 2,5-dihydro isomer 8 

is still lowest in energy, and 2, 7 and 10 are still the least stable structures, with no significant change 

in energy relative to 8. However, the order in energy as well as the energy differences of the other 

isomers have changed. Isomers 3 and 9 are strongly stabilized, whereas the relative energy of the 

1,6- isomer 4 has increased. In addition, isomers 5 and 6 have changed places on the energy scale. 

From the COSMO calculations, 9 is second lowest in energy, which is consistent with the experimental 

UV spectroscopic results mentioned above.  

  

Regarding the cations,  4,5-dihydro-1,2,4-triazin-2-ium 13 is found to be the most stable isomer in 

vacuo, in agreement with the results of Nagy et al. [37] and experimental findings [34, 36]. Upon the 

application of COSMO, the relative energies do not change much compared to the gas phase results. 

The energy difference between 4,5-dihydro-1,2,4-triazin-1-ium 12 and 13 is lowered by 0.7 kcal/mol 

whereas 1,4-dihydro-1,2,4-triazin-2-ium 11 is destabilized by 1.3 kcal/mol. 

 

The relative stability of  the isomers in different solvents can be rationalized via their dielectric energy 

(defined as half of the solvent-solute interaction energy, Eint/2), which is shown in the third column of 
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Table 3. The 4,5-isomer 9 has the lowest dielectric energy of the nine dihydro-1,2,4-triazines. This is 

also reflected in the significant energy gain in the COSMO calculation compared to the gas phase, 

which is also found for the other molecules with a strongly negative dielectric energy, i.e. 3, 6 and 

cation 12. In addition, the dielectric energy allows for a qualitative prediction of the stabilities of the 

isomers in solvents of different polarity. In general, a strongly negative dielectric energy will stabilize 

the solute molecule in polar solvents and destabilize it in unpolar solvents. Thus, in a polar solvent, the 

4,5- and possibly also the 1,4- and 3,4-dihydro isomers 9, 6 and 3 should be the predominant species 

besides 8, whereas in an unpolar solvent 4 and 5 should be more stable. Isomers 2, 7 and 10 are far 

too high in energy to make a significant contribution in the tautomeric equilibrium, independent of the 

solvent. 

   

Such qualitative considerations can be turned into quantitative estimates using the COSMO-RS 

approach, which is a generalization of the COSMO model towards the realistic and physically correct 

representation of  solvation effects by means of a rigorous statistical thermodynamic treatment of the 

solute-solvent interaction. Using the program COSMOtherm, the tautomeric equilibria have been 

determined in a self-consistent way, i.e. the relative Boltzmann weights of the tautomers in the mixture 

have been allowed to relax until self-consistency of their chemical potentials has been reached [26]. 

Table 3 shows the calculated Gibbs free energies and Boltzmann weight factors for the nine isomers 

of dihydro-1,2,4-triazine and the three isomers of the dihydro-1,2,4-triazinium ion at infinite dilution in 

various solvents. The qualitative predictions from the dielectric energies are well met: in the unpolar 

solvent cyclohexane, 2,5-dihydro-1,2,4-triazine (8) is the predominant isomer, with a small amount of  

the 1,6-dihydro isomer 4 in the mixture. Proceeding to more polar solvents, the amount of  isomer 8 

(having a small dielectric energy) in the mixture decreases and isomer 4 completely vanishes. On the 

other hand, the free energy gain of isomers 9, 6 and 3 is quite strong for polar solvents, resulting in an 

increased share (i.e. increased Boltzmann factor WB) in the equilibrium of the tautomers.  Based on 

UV spectroscopic measurements in ethanol and acetic acid, Nagy et al. [36, 37] have assumed a 

tautomeric equilibrium between predominantly isomer 8 and a small amount of isomer 9. This result is 

reproduced by the present calculations, as is apparent from Table 3. The effect of different solvents on 

the dihydro-1,2,4-triazinium isomers is smaller but still visible: In polar solvents, the weight of isomer 

12 is increased. 
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3.4. Phase diagrams of binary mixtures of liquids 

The phase diagram and the activity coefficients of a binary mixture of 1-propanol with water at T = 

333.15 K have been calculated. In the computation of the gas phase compositions, experimental 

vapour pressures of the pure compunds (1-propanol: 192.0 mbar, water: 198.7 mbar [40]) have been 

used.  

 

The results for the binary liquid vs. gas phase composition diagram are presented in Figure 3. The RI-

DFT(B-P)/COSMO/COSMO-RS values are in good agreement with the experimental results of  

Schreiber et al. [41]. In particular, the flat region of the phase curve, between x1 = 0.2 and x1 = 0.7 is 

represented very well, showing only small deviations of less than 10% from the experiment. In 

addition, the absence of a miscibility gap for the propanol-water system at T = 333.15 K is predicted 

correctly. Figure 4 shows the activity coefficients of 1-propanol and water vs. the mole fraction of 1-

propanol at T = 333.15 K. Apparently the correspondence betwen the predicted values and the 

experimental data of Schreiber et al. [41] is very good.  

 

4. Conclusions 

It has been shown that the DFT/COSMO method and its extension, the COSMO-RS approach, 

provide a valuable (in some cases even indispensable) tool for the theoretical rationalization and 

prediction of chemistry in solution. As demonstrated by the given examples, the 

TURBOMOLE/COSMO implementation allows a computationally efficient description of solvation 

effects, which can be assessed quantitatively using the COSMO-RS extension, and additionally 

provides a vivid picture of the solute-solvent interactions in the liquid phase. 

However, the range of applications is not restricted to chemical and engineering thermodynamics. 

E.g., TURBOMOLE/COSMO/COSMOtherm can also provide valuable descriptors for QSAR 

applications in life sciences and related fields of research [26] (see also 

http://www.cosmologic.de/ct_examples.htm). 
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Scheme and figure captions 

 

Scheme1: Flow chart of an SCF cycle in HF or DFT calculations with COSMO. 

 

Figure 1: Calculated structures of six isomers of the paladacycle complex (see text), ordered 

according to the calculated gas phase energy. 

 

Figure 2: Calculated structures of nine possible dihydro-1,2,4-triazines and three possible dihydro-

1,2,4-triazinium cations.  

 

Figure 3: Phase diagram of a binary mixture of 1-propanol (1) and water (2) at T = 333.15 K; xi= mole 

fraction in the liquid phase; yi = mole fraction in the gas phase. Experimental values are taken from 

Ref. 41. 

 

Figure 4: Activity coefficients of the binary mixture of 1-propanol (1) and water (2) at T = 333.15 K. 

Experimental values are calculated from the thermodynamical data of  Schreiber et al. [41]. 
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Figure 1: 
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Figure 3: 
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Figure 4: 
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Table 1. Absolute energies (in a.u.) and energy differences to the most stable structure (in kJ/mol) for the isomers of the 

 paladacycle complex 1 (see text) as obtained from the RI-DFT(B-P)/TZVP//RI-DFT(B-P)/SV(P) calculations for the 

 gas phase and the solution. For isomers 1a-1d, also calculated activation barriers (in kJ/mol) for the C-C bond 

 formation are given. 

 

Absolute energies [Hartree] Relative energies [kJ/mol] Activation barriers [kJ/mol]

EGas ECOSMO EGas ECOSMO EGas ECOSMO 

1a -2512,89568 -2512,91752 0,0 7,3 75,6 75,9

1b -2512,88670 -2512,92031 23,6 0,0 37,8 29,3

1c -2512,88596 -2512,92016 25,5 0,4 70,4 75,5

1d -2512,87981 -2512,91221 41,7 21,3 19,7 10,9

1e -2512,87395 -2512,89410 57,1 68,8

1f -2512,85264 -2512,88431 113,0 94,5
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Table 2.Optimized Turbomole-BP/TZVP gas phase and COSMO energies of nine dihydro-1,2,4-triazine isomers and three 

 dihydro-1,2,4-triazinium cations. Values of Nagy et al. (CBS4 method including free energy correction) are taken from 

 Ref. 37. 

 

Absolute energies [E h ] Relative energies [kcal/mol]

EGas ECOSMO Nagy et al. EGas ECOSMO 

1,2-dihydro-1,2,4-triazine 2 -281,622966 -281,638251 14,48 15,03 14,96

1,4-dihydro-1,2,4-triazine 3 -281,632861 -281,651203 9,46 8,82 6,83

1,6-dihydro-1,2,4-triazine 4 -281,635927 -281,650621 9,33 6,90 7,20

2,3-dihydro-1,2,4-triazine 5 -281,632704 -281,644334 10,39 8,92 11,14

3,4-dihydro-1,2,4-triazine 6 -281,628723 -281,648088 15,13 11,42 8,79

3,6-dihydro-1,2,4-triazine 7 -281,622376 -281,636781 16,08 15,40 15,88

2,5-dihydro-1,2,4-triazine 8 -281,646918 -281,662090 0 0 0

4,5-dihydro-1,2,4-triazine 9 -281,633158 -281,656743 8,89 8,63 3,35

5,6-dihydro-1,2,4-triazine 10 -281,615725 -281,628804 18,39 19,57 20,89

1,4-dihydro-1,2,4-triazin-2-ium 11 -281,997270 -282,098384 10,71 11,38 12,63

4,5-dihydro-1,2,4-triazin-1-ium 12 -282,004946 -282,109233 8,95 6,56 5,82

4,5-dihydro-1,2,4-triazin-2-ium 13 -282,015399 -282,118512 0 0 0
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Table 3. COSMO-RS dielectric energies, Gibbs free energies and Boltzmann weights of  nine dihydro-1,2,4-triazine isomers and three 

  dihydro-1,2,4-triazinium cation in various solvents. 

 

Edielectric     Relative free energy Grel of the isomers in various solvents [kcal/mol] Boltzmann weight WB of the isomers in various solvents

[kcal/mol] Cyclohexane Chloroform Ethanol Acetic Acid Water Cyclohexane Chloroform Ethanol Acetic Acid Water

1,2-dihydro-1,2,4-triazine 2 -12,71 14,76 14,63 13,94 13,91 14,18 0 0 0 0 0

1,4-dihydro-1,2,4-triazine 3 -14,38 8,14 7,65 7,18 7,25 6,93 0 0 0,00001 0,00001 0,00001

1,6-dihydro-1,2,4-triazine 4 -11,72 6,40 6,76 7,45 7,66 7,69 0,00002 0,00001 0 0 0

2,3-dihydro-1,2,4-triazine 5 -10,07 9,86 10,35 10,92 11,15 11,41 0 0 0 0 0

3,4-dihydro-1,2,4-triazine 6 -17,19 10,71 9,63 9,10 8,90 8,50 0 0 0 0 0

3,6-dihydro-1,2,4-triazine 7 -11,48 15,39 15,58 18,17 17,70 17,70 0 0 0 0 0

2,5-dihydro-1,2,4-triazine 8 -11,63 0 0 0 0 0 0,99997 0,99967 0,99884 0,99070 0,98516

4,5-dihydro-1,2,4-triazine 9 -21,13 7,09 4,74 3,97 2,73 2,45 0,00001 0,00031 0,00115 0,00929 0,01483

5,6-dihydro-1,2,4-triazine 10 -9,97 19,59 20,09 22,87 22,62 22,68 0 0 0 0 0

1,4-dihydro-1,2,4-triazin-2-ium 11 -64,52 12,36 12,44 9,79 10,98 10,42 0 0 0 0 0

4,5-dihydro-1,2,4-triazin-1-ium 12 -66,80 6,60 6,33 6,05 5,86 5,69 0,00002 0,00003 0,00004 0,00006 0,00007

4,5-dihydro-1,2,4-triazin-2-ium 13 -65,74 0 0 0 0 0 0,99998 0,99997 0,99996 0,99994 0,99993

 


