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Abstract 

Using a general theory for partition coefficients based on quantum chemically derived 

COSMO-RS  (Concuctorlike Screening Model for Real Solvents) -moment descriptors, the 

logarithmic soil sorption coefficients logKOC of a database of 440 compounds has been 

successfully correlated, achieving a standard deviation (rms) of 0.62 log-units on the training 

set and a predictive rms of 0.72 log-units on a more demanding test set. The quality of this 

generally applicable predictive approach is almost the same as the quality of a regression of 

logKOC with experimental logKOW values, which are the best correlations currently available. 

The error of this new predictive method  is only about 43% of the error of a recently 

published model using a different quantum chemically based approach. 
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1. Introduction 

The adsorption coefficient of organic molecules to soil is an important property for the 

estimation of the fate of these compounds in the environment. This is of special relevance for 

pesticides which to a large extent get in contact with soil when they are applied to the crops. 

Therefore the soil sorption coefficient KOC has become a standard  parameter in the  

regulatory process of pesticides. Due to the large variation of different kinds of soils, the KOC 

is normalized with respect to the soil content of organic carbon, because usually the organic 

components of the soil are most active with respect to adsorption.  The usual definition is [1]  
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where Csoil is the concentration of compound X (in g/[g of organic carbon]) in the soil phase, 

and CW denotes the concentration of X (in g/[g per gram of water]) in the aqueous phase. 

 

The experimental measurement of KOC is expensive, time-consuming, and often 

related with considerable experimental error or noise resulting from differences in soils and 

sometimes in temperature. Hence, there is a great need for reliable calculation methods which 
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can be used for the prediction of KOC for new pesticides or to validate experimental data. 

Many methods have been reported which are based on correlations of logKOC with other 

experimental data, especially with experimental logKOW data, water solubilities, melting 

points, etc. [1 - 3].   

 

In this paper we specially focus on pure predictive methods, which do not depend on 

other experimental data for the special compound under consideration. The advantages of 

such methods are that no time-consuming and expensive measurements have to be done for a 

new pesticide, and even more that they can be applied even for pesticide candidates which 

have not yet been synthesized. Methods of this kind have mainly be developed based on 

topological indices [2,3,5]. Meylan et al. [6] introduced a much broader applicable 

combination of topological indices with group contributions for polar groups [called PC-

KOCWIN, further on). This method appears to have considerable predictive power. 

Nevertheless it cannot be applied for compounds with polar fragments, for which no group 

contributions have been fitted before. Thus it is not applicable to pesticides with new 

heterocyles or with other rare polar groups. 

 

Recently, Winget et.al. published a study in which they try to predict KOC using the 

universal solvation models SMx [7] which is based on quantum chemical calculations in 

combination with a dielectric continuum model. In this study 440 compounds are considered. 

The advantage of this approach is that it can be applied to almost any neutral organic 

compound because of the generality of the underlying quantum chemistry. But the reported 

predictive accuracy of about 1.6 log-units (rms) is much worse than for other methods 

currently available. 

 

In this paper we present a new model for the prediction of KOC, which is based on 

another universal solvation model, the COnductor-like Screening MOdel for Real Solvents, 

COSMO-RS, [8-11], which is more rigorous than the SMx-models used in ref. [7] in two 

regards: 

- COSMO-RS is based on density functional calculations which are more reliable than semi-

empirical and Hartree-Fock quantum chemical methods used in the context of SMx in ref.[7]. 

- COSMO-RS is based on a quite rigorous thermodynamic concept for molecular interaction, 

which replaces the insufficient dielectric approximation [9,10]. Thus it enables the treatment 

of mixtures and of variable temperature without the need for new solvent parameters. 

 

COSMO-RS has successfully been used for accurate prediction of many kinds of 

thermodynamic liquid-liquid and liquid-vapor equilibrium properties, including vapor 

pressure, solubility and many kinds of partition coefficients. By a generalization of the 

COSMO-RS theory [12] it has been shown that any kind of logarithmic partition coefficient 

can be expressed as a linear function of a small number of COSMO-RS descriptors, the -

moments (see below). While the direct calculation of partition coefficients can only be used 

for solvent phases of known molecular composition, the -moment approach is applicable to 

situations of chemically less well defined phases. In this way physiological partition 

coefficients [12] and adsorption coefficients to activated carbon [13] have been successfully 

correlated.  
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2. Methodology and Theory 

 

 

 

2.1. KOC Data. 

The data sets used in this study are exactly the same as those used in the study of 

Winget et al. [7].  They consist of a training set of 387 compounds (Set1) that arises from a 

data collection of Meylan et al. [6], and a test of 53 compounds (Set2) selected from a data set 

of Sabljic et al. [2]. At one place a subset (SetPOW) of 316 compounds out of Set1 is used 

which is defined by the availability of experimental octanol-water partition coefficients 

(SetPOW) according to ref. [7].  

 

The full data set includes neutral compounds of very different classes, spanning the 

typical range of pesticide compounds. The elements C, H, N, O,  S, P, F, Cl, Br, and I are 

represented in the data set. Molecular weights are rather equally distributed in the range of 50 

to 400, with a minimum value of 32 and a maximum of 546. Most experimental values of 

logKOC are in the range of 1.5 to 5, and the extremes are 0 and 6.5, respectively. 

 

 

2.2. COSMO and COSMO-RS 

COSMO-RS [8-11] is a theory combining quantum theory, dielectric continuum 

models, the concept of surface interactions, and statistical thermodynamics. Since a full 

derivation of the theory of COSMO-RS is beyond the scope of this article, a short summary of 

the essentials will be given here. The reader interested in details is referred to the references 

[8-11]. COSMO-RS considers the a liquid system as an ensemble of molecules of different 

kinds, including solvent and solute. For each kind of molecules X a density functional 

calculation with the dielectric continuum solvation model COSMO [8]  is performed in order 

to get the total energy EX
COSMO and the polarization (or screening) charge density (SCD) , 

that the dielectric continuum or conductor, respectively, produces on the molecular surface.  

is an good local descriptor of molecular surface polarity [12]. 

 

For the purpose of an efficient statistical thermodynamics calculation the liquid 

ensemble of molecules now is considered as an ensemble of pair-wise interacting molecular 

surfaces. The most important parts of the specific interaction between molecular surfaces, i.e. 

electrostatics ES and hydrogen bonding HB, are expressed by the SCDs   and ' of the 

contacting surface pieces: 

2)'(
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 ESE     (2) 

and  

²}',0min{)',( HBHBHB cE          (3) 

The three parameters ', cHB, and HB have been adjusted to a large number of thermodynamic 

data. Since all relevant interactions depend on , the distribution functions (histograms) pX() 

are required for the statistical thermodynamics. These -profiles can easily be derived from 
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the COSMO output. Note, that the -profiles provide a vivid picture of the molecular polarity 

(see Figure 1, and a discussion given in refs. [8] and [10]). Furthermore we need the -profile 

pS() of the ensemble S, which is simply calculated as a sum of the molecular -profiles 

weighted by mol-fractions. 

 

Figure 1: -profiles of different solvents. These profiles show the amount of molecular 

surface in a given interval of polarization charge density . 

 

The chemical potentials of the compounds in the solvent are calculated by a novel, 

exact and very efficient statistical thermodynamics procedure. The first step is the iterative 

solution of the equation 


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where E(,') is the sum of the contributions from eqs. 2 and 3. This implicit equation, in 

which aeff denotes an effectively independent piece of molecular area, can be solved by 

iteration  within  milliseconds on a personal computer. It yields  the  function S() (-

potential) which tells how much the solvent S likes surface of polarity . This is a very 

characteristic function for each solvent. We call it the -potential of solvent S. Examples are 

given in Figure 2.  
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Figure 2: -potentials of solvents. These curves show the chemical potential (y-axis) of a 

piece of surface of polarization charge density  in a solvent. Thus they the affinity of a 

solvent for surface of polarity.  

Such -potentials describe the solvent behavior regarding electrostatics, HB-affinity, 

and hydrophobicity. In a second step the -potential is integrated over the surface of each 

compound X, yielding the chemical potential of X in S: 
X

ScombS

XX

S dp    )()(     (5)       

In this equation the surface integral is evaluated as an -integral, making use of the -profile 

of the solute X. The combinatorial contribution X
comb,S  in eq. 5 takes into account size and 

shape effects of solute and solvent [11]. Usually it is small compared to the first term in eq. 5 

which results from the surface interactions. It is sufficient to consider the combinatorial part 

as a solvent specific constant, here. 

 

As a result of this series of relatively simple steps, starting from a quantum chemical 

calculation for each compound we found a general expression for the chemical potential of a 

compound X in any solvent S, which may be a pure compound or a mixture. This allows us to 

calculate any partition coefficient as well as solubility. Based on density functional COSMO 

calculations, the few parameters required in COSMO-RS, have been fitted to a large set of 

experimental data [9], covering 215 diverse chemical compounds and the properties Ghydr, 

logPvapor, and the aqueous partition coefficients with octanol, hexane, benzene, and ether. 

Note, that the properties Ghydr and logPvapor involve the gas-phase, which requires a small 

addendum to the steps given above that is not of interest here. However, since logSaq is the 

difference of Ghydr/RT and lnPvapor, aqueous solubility was implicitly taken into account in 

the parameterization of COSMO-RS. The initial COSMO-RS parameterization yielded a rms 

of 0.3 log-units for the diverse partition and solubility properties of small and medium sized 

molecules [9]. In recent parameterizations the error has been reduced to about 0.23 log-units.  

 

2.3 Extension of COSMO-RS to chemically undefined phases 

As shown in Chapter 2.2, COSMO-RS is a reliable method for the a priori prediction of 

thermophysical data and phase equilibria of pure fluids and liquid mixtures of well defined 

composition. Nevertheless, there are several thermodynamic equilibria of industrial 

importance, which involve one or more phases, which are either chemically less defined, or 

which are disordered, but not really liquid, or both. Since in such phases no surface 

composition function pS() is available, the -potential S() of the phase S and the chemical 

potentials S
X of solutes X in these phases cannot be directly calculated by COSMO-RS. But 

an indirect treatment of such phases by COSMO-RS is enabled by the following extension: 

 

Consideration of a large number of different solvents led to the finding (see as well figure 2) 

that -potentials can be described very well by a Taylor-like expansion of the form 
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The highest order of the polynomial contributions (eq. 6) required for a sufficient description 

of -potentials typically is m = 3. The hydrogen bonding contributions expressed by eq. 8 are 

necessary to describe the acceptor and donor behavior of the solvent. As can be seen in figure 

2, this behavior corresponds to an almost linear descent in the -potentials starting from some 

threshold HB. The functions facc() and fdon()  are well capable of describing just these 

features of the -potentials. Using this Taylor expansion, we may characterize each solvent 

(at fixed temperature, usually room temperature) by the set of -coefficients ci
S. Obviously 

any difference between the -potentials of two solvents is of the same kind of expansion, with 

coefficients ci
S,S' being just the difference of the coefficients of the two solvents.  Partition 

coefficients are connected with the pseudo-chemical potentials by the equation 
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Using eq. 5 for s(), we thus find that any partition coefficient between two solvents S and S' 

should be expressible in the form 
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where the combinatorial contributions have been subsumed in ',
~

SSc  and the -moments Mi
X 

of the solute X are defined by 

 dfpM i

XX

i )()(         (11) 

Eq. 10 implies that any logarithmic partition coefficient can be represented as a linear 

combination of -moments. As a consequence, the set of -moments Mi
X, i = 0,2,3, 

complemented by the hydrogen bond moments Macc
X (=M-2

X) and Mdon
X (=M-1

X) should be a 

very good and almost complete set of molecular descriptors for a linear regression analysis of 

any partition problem. Note, that the first moment M1
X usually is of no importance, because it 

is just the negative of the total charge of the molecule. Hence, for neutral compounds M1
X 

trivially vanishes. By definition of the -profiles the zero-th moment M0
X is identical with the 

molecular surface. The second moment is an excellent measure of the overall electrostatic 

polarity of the solute, and the third moment is a measure of the asymmetry of the sigma 

profile. The hydrogen bond moments are quantitative measures of the acceptor and donor 

capacities of the compound X, respectively. Since the organic soil phase involved in the soil 

sorption coefficients is of unknown chemical composition,  this -moment approach is well 

suited to generate a predictive KOC model.  

 

2.4. Calculations 
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Density functional COSMO calculations have been done for all compounds. Starting 

from the optimized geometries used by Winget et. al. [7], the geometries of all compounds 

have been optimized by the semi-empirical AM1/COSMO [14,8] method using the 

MOPAC2000 program [15]. Using the geometries thus optimized, the COSMO polarization 

charge densities  on the molecular surfaces have been computed on density functional level 

with the COSMO extension of Turbomole program package [16, 17] using Becke-Perdew 

density functional theory [18, 19] with split valence polarization basis set. Finally, the -

moments have been calculated using the COSMOtherm program [20]. The -moments of all 

440 compounds considered in this paper are provided as supplementary material together with 

calculated and exp. values of logKOW and logKOC 

 

A multi-linear regression was performed on the 387 compounds of the training set (Set 

1) using a self-written multi-linear regression routine which automatically evaluates the 

predictivity of the model by leave-one-out cross-validation. The regression coefficients and 

standard deviations are referred to as r² and rms, and their analogs from cross-validation are 

noted as q² and qms. 

 

3. Results and Discussion 

The multi-linear regression of the experimental logKOC value vs. 5 -moments yielded 

the model equation 

 

)14(37.0)5(27.0)5(19.0

)4(040.0)2(017.0)8(0168.0log 320


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donacc

OC

MM

MMMK
     (12) 

(N = 387, r² = 0.71, rms = 0.62, q² = 0.70, qms = 0.63, F = 189) 

 

This model will be referred to as COSMO-KOC, further on. The results are graphically shown 

in Figure 3. On the chemically more demanding test set of 53 compounds  COSMO-KOC 

achieves a rms deviation of 0.72. These results are significantly better than those achieved by 

Winget et al. [7]. They got rms = 1.36 on the training set and rms = 1.62 on the test set. Note, 

that the number of adjusted parameters is very similar in both models, i.e. 5 in their model and 

6 in COSMO-KOC. The applicability of COSMO-KOC can be assumed to be even broader 

than that of the method of Winget et al.  
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Figure 3: Experimental vs. calculated soil sorption coefficients. Values on x-axis are by the 

COSMO-KOC model (see eq. 12).  

 

In order to compare the quality of COSMO-KOC with methods based on other 

experimental data we considered the 316 compounds (SetKOW) for which experimental 

octanol-water partition coefficients are reported in ref. 6. A linear regression of logKoc with 

respect to these experimental values yields 

 

)6(80.0log)2(63.0log  OWOC KK        (13) 

(N = 316, r² = 0.77, rms = 0.56) 

 

We call this the KOW-KOC model. On the same subset COSMO-KOC yields a rms of 0.59 

(without re-fitting). Thus both models can be considered as almost equally accurate. In Figure 

4 an analysis of the error distribution of both models is given. The deviations from experiment 

of the two methods are clearly correlated (r² = 0.54). Because COSMO-KOC and KOW-KOC 

models are absolutely independent, this error correlation may either be caused by a common 

systematic of the errors of the models, or it may be due to experimental error or experimental 

noise, resulting from different soil samples and eventually different temperatures. We 

consider the latter to be more likely, because the intrinsic accuracy of the COSMO-RS 

approach for logarithmic partition coefficients is about 0.3 log-units (rms). But we may keep 

in mind, that both COSMO-KOC and KOW-KOC derive the logKOC-values from models of 

liquid partition. Hence there is some chance, that special effects arising from the fact that soil 

is a solid phase, may be missed by both models. 
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Figure 4: Error correlation of the two models COSMO-KOC (see eq. 12) and KOW-KOC (see 

eq. 13). The full line is the regression line. 

 

The error distribution curve of COSMO-KOC for all 440 compounds would be best 

described by a Gaussian error function which is centered at  = COSMO-KOC – logKOC,exp = 

0.06 log-units and which has a width of 0.83 log-units. While on the positive side the error 

distribution is very to this Gaussian distribution, there are significantly more large negative 

deviations, i.e. large underestimations, than expected from a purely Gaussian distribution. A 

large number of these large underestimations arise from polycyclic aromatic hydrocarbons 

and their aza-derivatives. Interestingly, these classes show about the same underestimation in 

the KOW-KOC model. Hence it is likely, that some special adsorption effects are present in 

soil sorption of large, rigid compounds like polycyclic aromatic hydrocarbons that are not 

captured in pseudo-liquid partition models. Surprisingly simple alcohols appear to get 

overestimated systematically by about 0.8 log-units, without a significant trend in chain 

lengths. Again, the same feature can be found in the KOW-KOC model, with an even larger 

deviation of about 1.0 log-unit. For the 35 phosphate compounds in the dataset COSMO-KOC 

tends to overestimate the logKOC significantly. The overall largest overestimation (2 log-units) 

is for phosalone, which is a phosphate. Since we have carefully checked the conformation of 

this outlier, no reason for this overestimation is obvious at the moment. 

 

We also compared our method with the  PC-KOCWIN estimation method of Meylan 

et al. [6]. For this we made use of a list of 430 estimated logKOC values from PC-KOCWIN, 

which have been made available for this study by Meylan. On all 430 compounds the rms of 

PC-KOCWIN is 0.48. On a subset of 368 compounds, which we could merge with the 

structures of our data set, we found an rms deviation of 0.49, while COSMO-KOC gives a 

rms error of 0.62 on this set. It is remarkable, that there is almost no error correlation (r² = 
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0.04) between these two methods. For some compounds for which COSMO-KOC and KOW-

KOC consistently find a large deviation from the experimental results, PC-KOCWIN finds 

almost zero error. Others, for which COSMO-KOC and KOW-KOC are in reasonable 

agreement with experiment, are large outliers in PC-KOCWIN. This behavior probably arises 

from the bias in the development of PC-KOCWIN. Polar fragment corrections have been 

defined only by the apparent necessity, i.e. based on the deviations to experiment. This 

procedure bears the danger that some experimental error has been fitted into polar group 

corrections, while for other compounds necessary corrections are missing. Since KOW-KOC 

and COSMO-KOC do not have any group-specific contributions they are not subject to such 

bias. 

 

4. Summary 

COSMO-KOC is a new and almost generally applicable method for the a priori 

prediction of soil sorption coefficients. It is based on -moments as molecular descriptors, 

which are derived from quantum chemical density functional calculations combined with the 

continuum solvation model COSMO. The underlying -moment approach is theoretically 

well justified and has been successfully validated for other partition coefficients.  The rms of  

COSMO-KOC from experimental data is about 0.65 log-units. Hence it is about as accurate as 

prediction methods based on experimental values of logKOW. It is likely that a large portion of 

the deviations arises from experimental error. 
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-------------------------------------------------------------------------- 

Suppl. Material 

 

Molecule  logKo/c exp. COSMO-KOC deviation logKOWexp KOW-KOC deviation 

Training Set       

methanol 0.4 0.4093 0.0093 -0.7 0.3599 -0.0401 

1-decanol 2.6 3.0777 0.4777 4.6 3.7095 1.1095 

1-propanol 0.5 1.0356 0.5356 0.3 0.9919 0.4919 

ethanol 0.2 0.7403 0.5403 -0.3 0.6127 0.4127 

1-butanol 0.5 1.3083 0.8083 0.9 1.3711 0.8711 

1-nonanol 1.9 2.7829 0.8829 4 3.3303 1.4303 

1-hexanol 1 1.8973 0.8973 2 2.0663 1.0663 

1-pentanol 0.7 1.5974 0.8974 1.5 1.7503 1.0503 

1-heptanol 1.1 2.1824 1.0824 2.6 2.4455 1.3455 

1-octanol 1.6 2.6914 1.0914 3 2.6983 1.0983 

benzo[f]quinoline 4.6 2.7004 -1.8996      

3-methylcholanthrene 6.2 4.3155 -1.8845 6.4 4.8471 -1.3529 

7H-dibenzo[c,g]carbazole 6 4.1669 -1.8331      

asulam 2.5 0.7114 -1.7886 -0.3 0.6127 -1.8873 

benzo[a]pyrene 6 4.2388 -1.7612 6.2 4.7207 -1.2793 

tetracene 5.8 4.0512 -1.7488 5.9 4.5311 -1.2689 

13H-dibenzo[a,i]carbazole 6 4.3107 -1.6893 6.4 4.8471 -1.1529 

2,3,7,8-TCDDx 6.5 4.8643 -1.6357 4.4 3.5831 -2.9169 

dibenz[a,h]anthracene  6.3 4.6974 -1.6026 6.5 4.9103 -1.3897 

2,3,5-trimethylphenol 3.6 2.1922 -1.4078      

acridine 4.1 2.7073 -1.3927 3.4 2.9511 -1.1489 

tebuthiurony 2.8 1.4291 -1.3709      

pyrene 4.9 3.5602 -1.3398 5.1 4.0255 -0.8745 

9-methylanthracene 4.8 3.4808 -1.3192 5.1 4.0255 -0.7745 

5-indanol 3.4 2.1179 -1.2821      

benz[a]anthracene 5.3 4.0217 -1.2783 5.8 4.4679 -0.8321 

thiabendazole 3.2 1.9701 -1.2299      

7,12-dimethylbenzanthracene 5.4 4.2024 -1.1976 5.8 4.4679 -0.9321 

6-aminochrysene 5.2 4.014 -1.186 5 3.9623 -1.2377 

mevinphos 2.3 1.1204 -1.1796 1.2 1.5607 -0.7393 

2-aminoanthracene 4.5 3.3518 -1.1482      

quinoline 3.1 1.9995 -1.1005 2 2.0663 -1.0337 

methomyl 1.3 0.2099 -1.0901 0.5 1.1183 -0.1817 

phenazine 3.4 2.3517 -1.0483 2.8 2.5719 -0.8281 

fluoranthene 4.6 3.5907 -1.0093 5.1 4.0255 -0.5745 

4-aminobenzoic acid 2 1.0259 -0.9741 0.8 1.3079 -0.6921 

anthracene 4.3 3.3517 -0.9483 4.6 3.7095 -0.5905 

mirex 6 5.0625 -0.9375 5.3 4.1519 -1.8481 

1-napthylamine 3.5 2.6238 -0.8762 2.2 2.1927 -1.3073 

fluorene 3.9 3.0285 -0.8715 4.2 3.4567 -0.4433 

p-cresolp 2.7 1.8471 -0.8529 2 2.0663 -0.6337 

1-naphthol 3.3 2.4481 -0.8519 2.8 2.5719 -0.7281 

benzo[b]thiophene 3.5 2.6504 -0.8496 3.1 2.7615 -0.7385 

2,3,4,5,6,2',5'-PCBo 6 5.2017 -0.7983      

diflubenzuron 3.8 3.0202 -0.7798 3.9 3.2671 -0.5329 
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phenanthrene 4.1 3.3255 -0.7745 4.5 3.6463 -0.4537 

3,5-dimethylphenol 2.8 2.0331 -0.7669 2.4 2.3191   

1-ethylnaphthalene 3.8 3.0377 -0.7623 4.4 3.5831 -0.2169 

urea 0.5 -0.2601 -0.7601 -2.7 -0.9041 -1.4041 

quintozenev 4.3 3.5406 -0.7594 4.6 3.7095 -0.5905 

butyl benzyl phthalate 4.2 3.4427 -0.7573 4.3 3.5199 -0.6801 

phenol 2.4 1.6444 -0.7556 1.5 1.7503 -0.6497 

diethylacetamide 1.8 1.0535 -0.7465 0.3 0.9919 -0.8081 

p-nitrophenol 2.4 1.6577 -0.7423 2 2.0663 -0.3337 

2-methylnaphthalene 3.6 2.8641 -0.7359 4 3.3303 -0.2697 

2-ethylnaphthalene 3.8 3.0891 -0.7109 4.4 3.5831 -0.2169 

methoxychlor 4.9 4.1987 -0.7013 4.6 3.7095 -1.1905 

benzidine 3.5 2.8307 -0.6693 1.3 1.6239 -1.8761 

carbendazim 2.4 1.7331 -0.6669 1.5 1.7503 -0.6497 

4-nitrobenzamide 1.9 1.2348 -0.6652 0.8 1.3079 -0.5921 

dibenzothiophene 4 3.336 -0.664 4.4 3.5831 -0.4169 

3-nitrobenzamide 1.9 1.244 -0.656 0.8 1.3079 -0.5921 

2,2',4-PCBo 4.8 4.1482 -0.6518 5.8 4.4679 -0.3321 

2-acetonaphthone 2.9 2.272 -0.628      

isocil 2.1 1.4887 -0.6113      

styrene 3 2.4198 -0.5802 3 2.6983 -0.3017 

9-acetylanthracene 3.6 3.0217 -0.5783      

chlorothalonil 3.3 2.722 -0.578      

1-methylnaphthalene 3.4 2.8224 -0.5776 3.9 3.2671 -0.1329 

1-butylamine 1.9 1.3231 -0.5769 0.8 1.3079 -0.5921 

aldrin 4.7 4.1337 -0.5663 7 5.2263 0.5263 

3,5-dinitrobenzamide 2.3 1.7357 -0.5643 0.8 1.3079 -0.9921 

9-anthracenemethanol 3.6 3.0373 -0.5627      

chlorsulfuron 2.7 2.1549 -0.5451 2.1 2.1295 -0.5705 

carbaryl 2.4 1.8718 -0.5282 2.3 2.2559 -0.1441 

4-acetylbiphenyl 3.2 2.6822 -0.5178      

3,4,5-trichlorophenol 3.6 3.0924 -0.5076 4.1 3.3935 -0.2065 

isopropalin 4.9 4.4079 -0.4921      

iodobenzene 3.1 2.6142 -0.4858 3.3 2.8879 -0.2121 

DNOCj 2.4 1.9183 -0.4817 2.1 2.1295 -0.2705 

methabenzthiazuron 2.8 2.3337 -0.4663      

4-methylbenzamide 1.8 1.3404 -0.4596 1.2 1.5607 -0.2393 

2,2',5-PCBo 4.6 4.1441 -0.4559 5.4 4.2151 -0.3849 

dieldrin 4.1 3.6513 -0.4487 5 3.9623 -0.1377 

carbazole 3.4 2.9557 -0.4443 3.6 3.0775 -0.3225 

n-butylbenzene 3.4 2.9661 -0.4339 4.4 3.5831 0.1831 

benzoic acid phenyl ester 3.2 2.7708 -0.4292      

3,4-dichlorophenol 3.1 2.6852 -0.4148 3.2 2.8247 -0.2753 

2-chlorophenol 2.6 2.1884 -0.4116 2.1 2.1295 -0.4705 

ethyl octanoate 3 2.59 -0.41      

ethyl 4-methylbenzoate 2.6 2.1919 -0.4081      

4-bromophenylurea 2.1 1.6981 -0.4019 2 2.0663 -0.0337 

ethyl 4-nitrobenzoate 2.5 2.1076 -0.3924      

2,3,4,6-tetrachlorophenol 3.7 3.3116 -0.3884 4.3 3.5199 -0.1801 

methiocarb 2.3 1.9309 -0.3691 2.9 2.6351 0.3351 

benzoic acid methyl ester 2.1 1.7348 -0.3652 2.1 2.1295 0.0295 

3-nitroacetanilide 1.9 1.5391 -0.3609 1.5 1.7503 -0.1497 

naphthalene 3 2.6584 -0.3416 3.4 2.9511 -0.0489 

ethyl 4-hydroxybenzoate 2.2 1.8599 -0.3401      
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benzamide 1.5 1.1602 -0.3398 0.7 1.2447 -0.2553 

1,2,4,5-tetramethylbenzene 3.1 2.7612 -0.3388 4.1 3.3935 0.2935 

2,4,5,2',4',5'-PCBo 5.6 5.2643 -0.3357 7.1 5.2895 -0.3105 

2-nitrobenzamide 1.4 1.0661 -0.3339 -0.1 0.7391 -0.6609 

di-n-butyl phthalate 3.1 2.7716 -0.3284 4.4 3.5831 0.4831 

2,4,5-trichlorophenol 3.4 3.0737 -0.3263 4 3.3303 -0.0697 

butralin 3.9 3.5763 -0.3237      

pentachlorophenol 3.8 3.4806 -0.3194 5.1 4.0255 0.2255 

azoxybenzene 3.5 3.1811 -0.3189      

1,2,3-trimethylbenzene 2.8 2.4825 -0.3175 3.6 3.0775 0.2775 

pyridineu 1.6 1.2884 -0.3116 0.6 1.1815 -0.4185 

chlorpyrifos 3.7 3.391 -0.309 5 3.9623 0.2623 

phthalic acid 1.1 0.791 -0.309 1 1.4343 0.3343 

p,p'-DDTs 5.4 5.0964 -0.3036 6.1 4.6575 -0.7425 

ethyl heptanoate 2.6 2.2967 -0.3033      

2,5,2',5'-PCBo 4.9 4.6005 -0.2995 5.2 4.0887 -0.8113 

N-methylbenzamide 1.4 1.1127 -0.2873 0.9 1.3711 -0.0289 

2,4,4'-PCBo 4.6 4.3135 -0.2865 5.7 4.4047 -0.1953 

benzoic acid ethyl ester 2.3 2.0178 -0.2822 2.5 2.3823 0.0823 

ethyl pentanoate 2 1.7188 -0.2812      

chloroxuronc 3.5 3.2272 -0.2728 3.2 2.8247 -0.6753 

3-methyl-4-bromophenylurea 2.4 2.1276 -0.2724 2.5 2.3823 -0.0177 

folpet 3.3 3.0349 -0.2651 3.2 2.8247 -0.4753 

secbumeton 2.8 2.5383 -0.2617      

biphenyl 3.3 3.0404 -0.2596 3.9 3.2671 -0.0329 

N-methylaniline 2.3 2.0412 -0.2588 1.7 1.8767 -0.4233 

3-chlorophenol 2.5 2.2429 -0.2571 2.5 2.3823 -0.1177 

4-aminonitrobenzene 1.9 1.6526 -0.2474 1.4 1.6871 -0.2129 

chlorpropham 2.8 2.5562 -0.2438 3.3 2.8879 0.0879 

diphenyl ether 3.3 3.0562 -0.2438 4.2 3.4567 0.1567 

3-phenyl-1,1-dimethylurea 2.1 1.8563 -0.2437      

2,4'-PCBo 4.1 3.8616 -0.2384 5.1 4.0255 -0.0745 

3,3'-dichlorobenzidine 4.3 4.0692 -0.2308 3.5 3.0143 -1.2857 

n-propylbenzene 2.9 2.6711 -0.2289 3.7 3.1407 0.2407 

4-methylbenzoic acid 1.8 1.5751 -0.2249 2.3 2.2559 0.4559 

diethyl phthalate 1.8 1.5807 -0.2193 2.6 2.4455 0.6455 

nitrobenzene 2.1 1.8811 -0.2189 1.8 1.9399 -0.1601 

2,2'-PCBo 3.9 3.6822 -0.2178 4.7 3.7727 -0.1273 

methazole 3.4 3.1855 -0.2145      

3-chloro-4-methoxyphenylurea 2 1.7963 -0.2037 1.4 1.6871 -0.3129 

chloroneb 3.1 2.8964 -0.2036      

4-hydroxybenzoic acid 1.4 1.1968 -0.2032 1.4 1.6871 0.2871 

benzophenone 2.7 2.4973 -0.2027 3.3 2.8879 0.1879 

1,3,5-trimethylbenzeneac 2.8 2.6011 -0.1989 3.6 3.0775 0.2775 

acetophenone 1.8 1.6033 -0.1967 1.6 1.8135 0.0135 

phenylurea 1.5 1.3111 -0.1889 0.8 1.3079 -0.1921 

3,4-dichlorophenylurea 2.5 2.3232 -0.1768 2.6 2.4455 -0.0545 

endrin 4.1 3.9257 -0.1743 5 3.9623 -0.1377 

3,5-dinitroaniline 2.5 2.3272 -0.1728 1.9 2.0031 -0.4969 

anthracene-9-carboxylic acid 2.7 2.5277 -0.1723 3.5 3.0143 0.3143 

neburonn 3.4 3.2352 -0.1648 3.8 3.2039 -0.1961 

aldicarb 1.5 1.3387 -0.1613 1.1 1.4975 -0.0025 

3-bromophenylurea 2.1 1.9428 -0.1572 2.1 2.1295 0.0295 

1,2,3-trichlorobenzene 3.3 3.1462 -0.1538 4.1 3.3935 0.0935 
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3-fluorophenylurea 1.8 1.6536 -0.1464 1.3 1.6239 -0.1761 

3-chlorophenylurea 2 1.8542 -0.1458 1.8 1.9399 -0.0601 

3-bromoacetanilide 2 1.859 -0.141 2.2 2.1927 0.1927 

2-chlorobiphenyl 3.5 3.3636 -0.1364 4.5 3.6463 0.1463 

diamidaphos 1.5 1.3722 -0.1278       

oxamyl 1 0.8734 -0.1266 -0.5 0.4863 -0.5137 

prometon 2.6 2.4748 -0.1252 3 2.6983 0.0983 

??chlordane 4.8 4.6767 -0.1233       

nitralin 3 2.8786 -0.1214      

4-bromophenol 2.4 2.2835 -0.1165 2.5 2.3823 -0.0177 

4-phenoxyphenylurea 2.6 2.4842 -0.1158 2.8 2.5719 -0.0281 

3-methylphenylurea 1.6 1.4865 -0.1135 1.3 1.6239 0.0239 

phenylacetic acid 1.4 1.2868 -0.1132 1.4 1.6871 0.2871 

2,4-dichlorophenol 2.8 2.687 -0.113 3.2 2.8247 0.0247 

3-chloroacetanilide 1.9 1.7918 -0.1082 2.1 2.1295 0.2295 

3,6-dichlorosalicylic acid 2.3 2.1942 -0.1058       

norflurazon 3.3 3.1979 -0.1021 2.3 2.2559 -1.0441 

N,N-dimethylaniline 2.3 2.1999 -0.1001 2.4 2.3191   

methyl chloramben 2.7 2.6032 -0.0968      

aldicarb sulfone 0.5 0.4058 -0.0942 -0.6 0.4231 -0.0769 

ethyl hexanoate 2.1 2.0061 -0.0939      

methyl N-phenylcarbamate 1.7 1.6065 -0.0935 1.8 1.9399 0.2399 

4-fluorophenylurea 1.5 1.4081 -0.0919 1 1.4343 -0.0657 

hexanoic acid 1.5 1.4086 -0.0914 1.9 2.0031 0.5031 

2,2'-biquinoline 4 3.9194 -0.0806 4.3 3.5199 -0.4801 

cyanazine 2.3 2.2242 -0.0758 2.1 2.1295 -0.1705 

benzoic acid 1.5 1.4291 -0.0709 1.9 2.0031 0.5031 

ethyl 3,5-dinitrobenzoate 2.7 2.6354 -0.0646      

azobenzene 3.3 3.2358 -0.0642 3.8 3.2039 -0.0961 

2-chlorophenylurea 1.6 1.5363 -0.0637 1.3 1.6239 0.0239 

pebulateq 2.8 2.762 -0.038 3.8 3.2039 0.4039 

veratrolead 2 1.9859 -0.0141 1.7 1.8767 -0.1233 

2,3-dichlorophenol 2.6 2.5862 -0.0138 3 2.6983 0.0983 

1,4-dimethylbenzenei 2.4 2.3923 -0.0077 3.2 2.8247 0.4247 

metribuzin 2 1.9985 -0.0015 1.7 1.8767 -0.1233 

captafol 3.3 3.2986 -0.0014 3.2 2.8247 -0.4753 

3-methyl-4-fluorophenylurea 1.8 1.8059 0.0059 1.6 1.8135 0.0135 

thiobencarb aa 3.3 3.3166 0.0166 3.4 2.9511 -0.3489 

pyroxychlor 3.5 3.5204 0.0204      

3-(3,4-dichlorophenyl)-1-methylurea 2.5 2.5218 0.0218       

bromobenzene 2.5 2.5235 0.0235 2.9 2.6351 0.1351 

2,3,4,2',3',4'-PCBo 5 5.0358 0.0358 7.1 5.2895 0.2895 

4-bromonitrobenzene 2.4 2.4436 0.0436 2.6 2.4455 0.0455 

aniline 1.8 1.8593 0.0593 0.9 1.3711 -0.4289 

3-methylphenylacetanilide 1.4 1.4658 0.0658      

toluene 2.1 2.1684 0.0684 2.7 2.5087 0.4087 

carbofuran 1.8 1.8719 0.0719 2 2.0663 0.2663 

4-biphenylmethanol 2.6 2.6738 0.0738       

2-chlorobenzamide 1.5 1.5774 0.0774       

simazine 2.1 2.1806 0.0806 2.1 2.1295 0.0295 

2,4,6-trichlorophenol 3 3.0817 0.0817 3.8 3.2039 0.2039 

2-methoxy-3,5,6-trichloropyridine 3 3.0877 0.0877 4.3 3.5199 0.5199 

pyrazon 2.1 2.1965 0.0965 1.1 1.4975 -0.6025 

4-methoxyacetanilide 1.4 1.4969 0.0969 1.1 1.4975 0.0975 



 

 

16 

16 

4-methoxyacetanilide 1.4 1.4969 0.0969 1.1 1.4975 0.0975 

diallate 3.3 3.4038 0.1038       

methyl N-(3,4-dichlorophenyl)carbonate 2.7 2.8045 0.1045 3.3 2.8879 0.1879 

hexachlorobenzene 3.7 3.8054 0.1054 5.4 4.2151 0.5151 

4-nitrobenzoic acid 1.5 1.6112 0.1112 1.6 1.8135 0.3135 

terbacil 1.7 1.8123 0.1123 1.9 2.0031 0.3031 

2-fluorophenylurea 1.3 1.4171 0.1171 0.9 1.3711 0.0711 

methyl parathion 3 3.1192 0.1192 3 2.6983 -0.3017 

EPTCl 2.4 2.5237 0.1237 3.2 2.8247 0.4247 

2-chloroacetanilide 1.6 1.7242 0.1242 1.3 1.6239 0.0239 

dichlorobenil 2.4 2.527 0.127 2.8 2.5719 0.1719 

2,6-dinitro-n-propyl-??????trifluoro-p-toluidine 3.6 3.7303 0.1303       

1,2-dimethylbenzeneg 2.2 2.3342 0.1342 3.1 2.7615 0.5615 

disulfoton 3.2 3.3382 0.1382 3 2.6983 -0.5017 

ethyl N-phenylcarbamate 1.8 1.9409 0.1409 2.3 2.2559 0.4559 

ethyl phenylacetate 1.9 2.0435 0.1435 2.3 2.2559 0.3559 

dinitramine 3.6 3.744 0.144       

1,2,4-trichlorobenzene 3.1 3.2486 0.1486 4.1 3.3935 0.2935 

1-naphthalenemethanol 2.2 2.3488 0.1488 2.4 2.3191   

propachlort 2.4 2.5494 0.1494 2.2 2.1927 -0.2073 

trietazine 2.8 2.9535 0.1535 3.3 2.8879 0.0879 

carbophenothion 4.7 4.8563 0.1563 5.3 4.1519 -0.5481 

4-methylaniline 1.9 2.0582 0.1582 1.4 1.6871 -0.2129 

benzene 1.8 1.9604 0.1604 2.1 2.1295 0.3295 

metolachlor 2.5 2.6605 0.1605 3.3 2.8879 0.3879 

n-propyl N-phenylcarbamate 2.1 2.2606 0.1606 2.8 2.5719 0.4719 

pirimicarb 1.9 2.0619 0.1619 1.7 1.8767 -0.0233 

chlornitrofen 3.9 4.064 0.164 4.2 3.4567 -0.4433 

1-dodecanol 3.5 3.6671 0.1671 5.2 4.0887 0.5887 

trichlorfon 1.9 2.0702 0.1702 0.5 1.1183 -0.7817 

prometryn 2.9 3.0752 0.1752 3.4 2.9511 0.0511 

cycloate 2.5 2.6769 0.1769 4.1 3.3935 0.8935 

3-methoxyphenyl-1,1-dimethylurea 1.7 1.884 0.184      

1,3-dimethylbenzeneh 2.2 2.3857 0.1857 3.2 2.8247 0.6247 

3-(3-chlorophenyl)-1-methylurea 1.9 2.0928 0.1928       

monolinuron 2.1 2.2964 0.1964 2.3 2.2559 0.1559 

acetanilide 1.4 1.5976 0.1976 1.2 1.5607 0.1607 

pentachlorobenzene 3.5 3.6993 0.1993 5.1 4.0255 0.5255 

3-(3-chloro-4-methoxyphenyl)-1-methylurea 1.8 2.0001 0.2001       

3-phenyl-1-methylurea 1.3 1.5094 0.2094 1.1 1.4975 0.1975 

3,4-dichloronitrobenzene 2.5 2.7101 0.2101 3.1 2.7615 0.2615 

1,2-dichlorobenzene 2.6 2.8178 0.2178 3.4 2.9511 0.3511 

chlorbromuron 2.7 2.9236 0.2236 3.1 2.7615 0.0615 

ethylbenzene 2.2 2.4237 0.2237 3.1 2.7615 0.5615 

maleic hydrazine 0.5 0.7241 0.2241 -0.8 0.2967 -0.2033 

triallate 3.4 3.6245 0.2245      

p,p'-DDEr 4.7 4.9253 0.2253 6.2 4.7207 0.0207 

n-pentyl N-phenylcarbamate 2.6 2.8325 0.2325 3.8 3.2039 0.6039 

dipropetryn 3.1 3.3361 0.2361       

molinate 1.9 2.1366 0.2366 3.2 2.8247 0.9247 

n-butyl N-phenylcarbamate 2.3 2.5385 0.2385 3.3 2.8879 0.5879 

diphenylamine 2.8 3.0402 0.2402 3.4 2.9511 0.1511 

acetic acid 0 0.2414 0.2414 -0.3 0.6127 0.6127 

3-(trifluroromethyl)acetanilide 1.8 2.0578 0.2578 2.4 2.3191   
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3-chloro-4-bromonitrobenzene 2.6 2.8609 0.2609 3.2 2.8247 0.2247 

fenamiphos 2.5 2.7623 0.2623 3.2 2.8247 0.3247 

3,5-dimethyl-4-bromophenyl-1,1-dimethylurea 2.5 2.7657 0.2657       

3,4-dichloroacetanilide 2.3 2.571 0.271 2.8 2.5719 0.2719 

di-2-ethylhexyl phthalate 4.9 5.1787 0.2787 6.5 4.9103 0.0103 

ametryn 2.6 2.8876 0.2876 3 2.6983 0.0983 

3-phenyl-1-cyclopropylurea 1.7 2.0045 0.3045 1.6 1.8135 0.1135 

1,3-dichlorobenzene 2.6 2.9093 0.3093 3.5 3.0143 0.4143 

methyl N-(3-chlorophenyl)carbamate 2.1 2.4107 0.3107      

tetrachloroethylene 2.4 2.7108 0.3108 3.1 2.7615 0.3615 

napropamide 2.8 3.1117 0.3117 3.4 2.9511 0.1511 

4-bromoacetanilide 1.9 2.212 0.312 2.2 2.1927 0.2927 

ethion 4.1 4.4142 0.3142 5.1 4.0255 -0.0745 

alachlor 2.3 2.6153 0.3153 3.5 3.0143 0.7143 

tetrachloroguaiacol 2.9 3.2176 0.3176 4.6 3.7095 0.8095 

1,4-dichlorobenzene 2.6 2.9228 0.3228 3.4 2.9511 0.3511 

3-aminonitrobenzene 1.7 2.0242 0.3242 1.4 1.6871 -0.0129 

parathion 3.2 3.5262 0.3262 3.7 3.1407 -0.0593 

2,3,4,2',5'-PCBo 4.5 4.8289 0.3289 6.4 4.8471 0.3471 

1,2,3,5-tetrachlorobenzene 3.2 3.5404 0.3404 4.6 3.7095 0.5095 

captan 2.3 2.6428 0.3428 2.4 2.3191   

2,4,5,2',5'-PCBo 4.6 4.9434 0.3434 6.5 4.9103 0.3103 

atrazine 2.2 2.5488 0.3488 2.5 2.3823 0.1823 

3-fluoroacetanilide 1.6 1.9497 0.3497 1.6 1.8135 0.2135 

chlorobenzene 2.1 2.4604 0.3604 2.8 2.5719 0.4719 

3-(trifluoromethyl)phenylurea 2 2.3605 0.3605 2.3 2.2559 0.2559 

linuron 2.6 2.962 0.362 3 2.6983 0.0983 

leptophos 4.5 4.8621 0.3621 6.2 4.7207 0.2207 

niclosamide 3.4 3.7799 0.3799      

sec-phenethyl alcohol 1.5 1.8831 0.3831      

bromacil 1.9 2.2904 0.3904 2.1 2.1295 0.2295 

ipazine 2.9 3.2976 0.3976 3.9 3.2671 0.3671 

3-phenyl-1-cyclopentylurea 1.9 2.2982 0.3982 2.6 2.4455 0.5455 

propoxur 1.7 2.1016 0.4016 1.5 1.7503 0.0503 

6-chloropicolinic acid 0.9 1.3025 0.4025 -1.7 -0.2721 -1.1721 

BMPCb 1.7 2.1097 0.4097 2.9 2.6351 0.9351 

3-methyl-4-bromoaniline 2.3 2.7119 0.4119 2.5 2.3823 0.0823 

4-methoxyphenyl-1,1-dimethylurea 1.4 1.8124 0.4124      

4-fluoroacetanilide 1.5 1.9207 0.4207 1.4 1.6871 0.1871 

3-fluorophenyl-1,1-dimethylurea 1.8 2.2262 0.4262 1.4 1.6871 -0.1129 

1,3,5-trichlorobenzene 2.9 3.3268 0.4268 4.2 3.4567 0.5567 

permethrin 4.8 5.2296 0.4296 6.6 4.9735 0.1735 

1,2-dichloropropane 1.7 2.1356 0.4356       

3-methylaniline 1.6 2.04 0.44 1.4 1.6871 0.0871 

methyl chlorpyrifos 3.5 3.948 0.448 4.2 3.4567 -0.0433 

diuron 2.4 2.8487 0.4487 2.8 2.5719 0.1719 

anisole 1.5 1.9523 0.4523 2.1 2.1295 0.6295 

dimeton-S-methyl 1.5 1.9626 0.4626 1 1.4343 -0.0657 

fenuron 1.4 1.8741 0.4741 1 1.4343 0.0343 

3-phenyl-1-cycloheptylurea 2.4 2.8819 0.4819 3 2.6983 0.2983 

4-chloroaniline 2 2.4897 0.4897 1.8 1.9399 -0.0601 

benzoic acid butyl ester 2.1 2.594 0.494 3.8 3.2039 1.1039 

metobromuron 2.1 2.5953 0.4953 2.4 2.3191   

1,2-dibromoethane 1.7 2.1997 0.4997 2 2.0663 0.3663 
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3-chloro-4-methoxyaniline 1.9 2.4067 0.5067 1.9 2.0031 0.1031 

propazine 2.4 2.9122 0.5122 3 2.6983 0.2983 

4,5,6-trichloroguaiacol 2.8 3.3174 0.5174 3.8 3.2039 0.4039 

monuron 1.9 2.4272 0.5272 2 2.0663 0.1663 

1,1,1-trichloroethane 1.9 2.4431 0.5431 2.5 2.3823 0.4823 

4-methylphenyl-1,1-dimethylurea 1.5 2.0483 0.5483      

dimethyl phthalate 1.6 2.1538 0.5538 1.7 1.8767 0.2767 

profluralin 3.9 4.4602 0.5602 6.3 4.7839 0.8839 

4-bromoaniline 2 2.5619 0.5619 2.1 2.1295 0.1295 

trichloroethylene 2 2.5682 0.5682 2.5 2.3823 0.3823 

1,2-dichloroethane 1.5 2.0686 0.5686 1.5 1.7503 0.2503 

3-trifluoromethyl-4-nitrophenol 2.1 2.6691 0.5691 2.3 2.2559 0.1559 

chlortoluron 2 2.571 0.571 2.4 2.3191   

propylene glycol methyl ether acetate 0.4 0.9717 0.5717      

benzyl alcohol 1.1 1.6736 0.5736 1.1 1.4975 0.3975 

diazinon 2.8 3.3815 0.5815 3.3 2.8879 0.0879 

3,5-dimethylphenyl-1,1-dimethylurea 1.7 2.2824 0.5824       

dicambaf 1.5 2.0886 0.5886 2.2 2.1927 0.6927 

chlorimuron 2 2.59 0.59       

butyranilide 1.7 2.2906 0.5906 1.9 2.0031 0.3031 

3,5-dichloroaniline 2.5 3.0908 0.5908 2.7 2.5087 0.0087 

fenitrothion 2.6 3.1938 0.5938 3.4 2.9511 0.3511 

metoxuron 1.7 2.2944 0.5944 1.6 1.8135 0.1135 

azinphos methyl 2.3 2.9059 0.6059 2.6 2.4455 0.1455 

IBPm 2.1 2.7096 0.6096 3.3 2.8879 0.7879 

tetrachloromethanez 1.9 2.5115 0.6115 2.7 2.5087 0.6087 

2,6-dinitro-??????trifluoro-p-toluidine 2.6 3.2147 0.6147 2.3 2.2559 -0.3441 

dichloromethane 1.4 2.0229 0.6229 1.2 1.5607 0.1607 

3-(trifluoromethyl)aniline 2.4 3.0271 0.6271 2.4 2.3191   

phorate 2.7 3.3309 0.6309 3.6 3.0775 0.3775 

crotoxyphos 2 2.6377 0.6377 3.3 2.8879 0.8879 

3-chlorophenyl-1,1-dimethylurea 1.8 2.4378 0.6378       

oxadiazon 3.5 4.1389 0.6389 4.8 3.8359 0.3359 

picloram 1.3 1.9626 0.6626 0.3 0.9919 -0.3081 

1,2-dibromo-3-chloropropane 2.1 2.7723 0.6723       

2,3,4,5-tetrachloroaniline 3 3.6742 0.6742 4.2 3.4567 0.4567 

3,4-dichloroaniline 2.3 2.9776 0.6776 2.6 2.4455 0.1455 

3,5,6-trichloro-2-pyridinol 2.1 2.8022 0.7022 2.7 2.5087 0.4087 

2,3,4-trichloroaniline 2.6 3.3084 0.7084 3.4 2.9511 0.3511 

EPNk 3.1 3.8086 0.7086 4.6 3.7095 0.6095 

trichloroacetamide 1 1.7251 0.7251 1 1.4343 0.4343 

terbuthylazine 2.3 3.0319 0.7319 3.1 2.7615 0.4615 

3,5 dinitrobenzoic aicd 1.5 2.2354 0.7354 1.6 1.8135 0.3135 

propham 1.8 2.5531 0.7531 2.4 2.3191   

1,1,2-trichloroethane 1.9 2.6623 0.7623 1.9 2.0031 0.1031 

piperophos 3.4 4.1702 0.7702      

4-fluorophenyl-1,1-dimethylurea 1.4 2.1862 0.7862      

gamma-BHC 3.3 4.0867 0.7867 3.7 3.1407 -0.1593 

dichlorvos 1.7 2.4874 0.7874 1.4 1.6871 -0.0129 

trifluralin 4.1 4.9012 0.8012 5.3 4.1519 0.0519 

2,4-Dd 1.6 2.4177 0.8177 2.7 2.5087 0.9087 

nitrapyrin 2.5 3.3382 0.8382 3.2 2.8247 0.3247 

terbufos 2.8 3.6469 0.8469 3.9 3.2671 0.4671 

alpha-BHC 3.3 4.168 0.868 3.8 3.2039 -0.0961 
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fluometuron 2 2.9207 0.9207 2.3 2.2559 0.2559 

dimethoate 1.2 2.1231 0.9231 0.7 1.2447 0.0447 

DCIPe 1.7 2.63 0.93       

benefin 4 4.9328 0.9328 5.3 4.1519 0.1519 

beta-BHC 3.5 4.4338 0.9338 3.8 3.2039 -0.2961 

chloramben 1.3 2.2396 0.9396       

trichloromethaneab 1.6 2.5921 0.9921 1.9 2.0031 0.4031 

chlorthiamid 2 3.0259 1.0259       

silvex 1.8 2.8363 1.0363      

methyl isothiocyanate 0.8 1.9126 1.1126 0.9 1.3711 0.5711 

pronoamide 2.3 3.4512 1.1512      

fluchloralin 3.6 4.7817 1.1817      

2,4,5-Tw 1.9 3.0921 1.1921 3.1 2.7615 0.8615 

triclopyr 1.4 2.7087 1.3087      

chlorfenvinphos 2.5 3.8367 1.3367       

1,1,2,2-tetrachloroethane 1.9 3.2845 1.3845 2.4 2.3191   

methidathion 1.5 3.1187 1.6187 2.3 2.2559 0.7559 

phosalone 2.6 4.5778 1.9778 4.3 3.5199 0.9199 

Test set       

aldicarb sulfoxide 0.6 0.319 -0.281    

amitrole 1.2 0.1575 -1.0425    

bromodichloromethane 1.8 2.6337 0.8337    

butachlor 2.9 3.536 0.636    

butylate 2.1 2.869 0.769    

carbophenothion methyl 4.7 4.3688 -0.3312    

catechol 2 1.4468 -0.5532    

dalapon 0.4 1.8117 1.4117    

dibromochloromethane 1.9 2.7072 0.8072    

1,2-dibromoethene 1.6 2.2964 0.6964    

2,4-dichloroaniline 2.7 3.0021 0.3021 

2,6-dichloroaniline 3.2 2.9342 -0.2658 

2,6-dichlorobenzamide 0.5 1.9728 1.4728 

1,1-dichloroethane 1.5 2.1213 0.6213 

1,1-dichloroethene 1.8 2.172 0.372 

dicrotophos 1.7 1.2303 -0.4697 

3,4-dinitrobenzoic acid 1.5 2.418 0.918 

dinoseb 2.1 3.0829 0.9829 

dyfonate 3.4 3.4827 0.0827 

endosulfan 4.1 3.4952 -0.6048 

ethoprophos 1.8 2.6113 0.8113 

3-ethylphenylcarbamate 1.7 1.8304 0.1304 

fenac 1.8 2.6122 0.8122 

imazalil 3.7 3.4646 -0.2354 

isouron 2.5 1.334 -1.166 

isoxaben 2.4 3.3421 0.9421 

malathion 3.1 3.2777 0.1777 

meobal 1.7 1.6356 -0.0644 

metalaxyl 1.6 1.8729 0.2729 

metamitron 0 1.3751 1.3751 

2-methoxyphenol 1.6 1.9008 0.3008 

3-methoxyphenylcarbamate 1.4 1.4397 0.0397 

oryzalin 3.4 2.1871 -1.2129 

pentachloroaniline 4.6 3.8724 -0.7276 

pentafluorophenyl methyl sulfone 1.5 2.1506 0.6506 
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profenophos 3 3.7267 0.7267 

propiconazole 3.4 3.2941 -0.1059 

propyleneglycol 0.4 0.6345 0.2345 

siduron 2.3 2.6706 0.3706 

sulfometuron methyl 1.6 1.038 -0.562 

4-t-butylphenylcarbamate 2.1 2.2118 0.1118 

terbufos sulfone 2.2 3.1643 0.9643 

terbufos sulfoxide 2.2 2.9532 0.7532 

terbutryn 2.9 3.3228 0.4228 

2,3,5,6-tetrachloroaniline 3.9 3.6731 -0.2269 

2,6,2',6'-tetrachlorobiphenyl 5 4.264 -0.736 

2,3,4,5-tetrachloronitrobenzene 4.2 3.1664 -1.0336 

2,3,5,6-tetrachloronitrobenzene 4 3.4705 -0.5295 

tetrachlorophthalate 3.3 2.5566 -0.7434 

triadimefon 2.7 2.7969 0.0969 

tribromomethane 2.1 2.7851 0.6851 

tricyclazol 3.1 1.6113 -1.4887 

vernolate 2.3 2.758 0.45 


