

Ostbayerische Technische Hochschule Amberg-Weiden

Fakultät Elektrotechnik, Medien und Informatik

Studiengang Medieninformatik

Bachelorarbeit

von

Arina Antskaitis

Routenoptimierung für deutschlandweite Dienstleistungen im

betrieblichen Gesundheitsmanagement

Route optimization for Germany-wide services in occupational health

management

Ostbayerische Technische Hochschule Amberg-Weiden

Fakultät Elektrotechnik, Medien und Informatik

Studiengang Medieninformatik

Bachelorarbeit

von

Arina Antskaitis

Routenoptimierung für deutschlandweite Dienstleistungen im

betrieblichen Gesundheitsmanagement

Route optimization for Germany-wide services in occupational health

management

Bearbeitungszeitraum: von 17.10.2022

 bis 16.03.2023

1. Prüfer: Prof. Dr.-Ing. Christoph P. Neumann

2. Prüfer: Prof. Dr.-Ing. Gerald Pirkl

Ostbayerische Technische Hochschule Amberg-Weiden

Fakultät Elektrotechnik, Medien und Informatik

iv

Selbstständigkeitserklärung

Name und Vorname

der Studentin/des Studenten: Antskaitis, Arina

Studiengang: Medieninformatik

Ich bestätige, dass ich die Bachelorarbeit mit dem Titel:

Routenoptimierung für deutschlandweite Dienstleistungen im betrieblichen Gesund-
heitsmanagement

selbständig verfasst, noch nicht anderweitig für Prüfungszwecke vorgelegt, keine anderen als die
angegebenen Quellen oder Hilfsmittel benützt sowie wörtliche und sinngemäße Zitate als solche
gekennzeichnet habe.

Datum: 16.03.2023

Unterschrift:

Ostbayerische Technische Hochschule Amberg-Weiden

Fakultät Elektrotechnik, Medien und Informatik

v

Bachelorarbeit Zusammenfassung

Studentin/Student (Name, Vorname): Antskaitis, Arina
Studiengang: Medieninformatik
Aufgabensteller, Professor: Prof. Dr.-Ing. Christoph P. Neumann
Durchgeführt in (Firma/Behörde/Hochschule): wellabe GmbH
Betreuer in Firma/Behörde: Dr. Sebastian Dünnebeil
Ausgabedatum: 17.10.2022
Abgabedatum: 16.03.2023

Titel:

Routenoptimierung für deutschlandweite Dienstleistungen im betrieblichen Gesund-
heitsmanagement

Zusammenfassung:

Im Rahmen der vorliegenden Arbeit wird ein Lösungsansatz für die Optimierung der Routenpla-
nung innerhalb einer Firma im gesundheitlichen Bereich entwickelt. Das zugrundeliegende ent-
fernungsbeschränkte Routenplanungsproblem wird auf das notwendige Minimum reduziert und
schrittweise gelöst. Auf Basis der Unternehmensdaten werden die mögliche Implementierungsop-
tionen untereinander verglichen und mit Testszenarien getestet. Die Ein- und Ausgabe erfolgt
mittels einer benutzerfreundlichen Weboberfläche. Die Implementierung erstellt einen optimalen
Routenplan innerhalb einer angemessenen Zeitspanne vor. Die Kostenfunktion und die Gesamt-
länge der gefahrenen Strecken wird minimiert. Auf dessen Basis ist die Implementierung für wei-
tere Entwicklung und Anpassung an geschäftliche Zwänge und Anforderungen möglich.

Schlüsselwörter: TSP, VRP, Routenoptimierung, Operational Research

Arina Antskaitis Bachelorarbeit

vi

Abstract:

In the context of the present work, a solution approach for the optimization of route planning
within a company in the health management sector is developed. The underlying distance-con-
strained route planning problem is reduced to the necessary minimum and solved step by step.
Based on the company data, the possible implementation options are compared with each other,
and test scenarios are built. Interaction with the program, as well input and output are made pos-
sible by a user-friendly web interface. The implementation pre-determines an optimal route plan
within a reasonable period of time. The cost function and the total length of the driven routes are
minimized. Based on this, the implementation is ready for further development and adaptation to
business constraints and requirements.

Keywords: TSP, VRP, Route Optimization, Operational Research

Arina Antskaitis Bachelorarbeit

7

Table of Contents

List of Abbreviations ... 9

List of Figures ... 10

List of Tables .. 11

1. Introduction .. 12

1.1. Goal of the Thesis ... 13

1.2. Research Structure ... 14

2. Methodology ... 17

2.1. On the Tour Planning Problem... 19

2.2. Route Planning for Multiple Start Depots and Capacitated Resources 19

2.3. Complexity Analysis .. 21

2.3.1. First Case .. 23

2.3.2. Second Case ... 24

2.3.3. Third Case .. 25

2.4. VRP Model ... 26

2.5. Model Relaxation ... 31

2.6. Heuristics for the Optimisation Problem .. 32

2.7. Clustering Approach ... 35

2.7.1. OPTICS .. 41

2.7.2. K-Means ... 42

2.7.3. Gaussian Mixture Model .. 45

2.7.4. Agglomerative Clustering ... 47

2.7.5. Clustering Choice .. 49

2.8. Route Construction ... 49

2.9. Local optimization ... 50

3. Technologies for the Implementation .. 53

4. Solution Approach ... 56

4.1. Route with no Constraints ... 56

4.2. Date Assignment ... 59

4.3. Route with more Nodes ... 60

4.3.1. Planning a Weekly Route ... 60

4.3.2. Local Paths’ Optimization ... 62

5. Outcomes .. 71

Arina Antskaitis Bachelorarbeit

8

References ... 73

Appendices .. 78

Appendix A: TSP Solver ... 78

Appendix B: KNN Algorithm ... 79

Appendix C: Random VRP Path Generation .. 80

Appendix D: UI of the Web Application ... 81

Arina Antskaitis Bachelorarbeit

9

List of Abbreviations

AIC Akaike Information Criterion

BIC Bayesian Information Criterion

CVRP Capacitated Vehicle Routing Problem

DB Database

DBI Davis-Bouldin Index

DCVRP Distance-Constrained Vehicle Routing Problem

GMM Gaussian Mixture Model

ILP Integer Linear Programming

IP Integer Programming

MDVRP Multiple Depots Vehicle Routing Problem

MILP Mixed Integer Linear Programming

MIP Mixed Integer Programming

NNA Nearest Neighbor Algorithm

OR Operation Research

RVRP Rich Vehicle Routing Problem

TSP Travelling Salesman Problem

UI User Interface

VRP Vehicle Routing Problem

VRPPD Vehicle Routing Problem with Pickup and Delivery

VRP-SL Vehicle Routing Problem with Service Level Constraints

VRPTW Vehicle Routing Problem with Time Windows

Arina Antskaitis Bachelorarbeit

10

List of Figures

Figure 1 Difference between (left) TSP and (right) VRP ... 12

Figure 2 Stages of thesis .. 14

Figure 3 VRP basic scheme .. 19

Figure 4 Trip for the first case .. 23

Figure 5 Trip for the second case .. 24

Figure 6 Trip for the third case .. 25

Figure 7 Case with factors affecting the routes’ feasibility ... 29

Figure 8 Clustering phase .. 36

Figure 9 Routing phase .. 36

Figure 10 Customers’ distribution ... 37

Figure 11 Alternative depot distribution ... 37

Figure 12 Cluster preparation process .. 38

Figure 13 Depots’ distribution together with K-Means centroids .. 39

Figure 14 Clustering and optimization phases ... 39

Figure 15 OPTICS clustering result .. 42

Figure 16 Elbow method .. 43

Figure 17 K-means++ clustering result .. 44

Figure 18 GMM clustering result ... 46

Figure 19 GMM clustering with pre-set centroids .. 47

Figure 20 Agglomerative clustering results ... 48

Figure 21 Agglomerative clustering with pre-set centroids .. 48

Figure 22 Initial unoptimized route ... 51

Figure 23 Route after 2-opt swap .. 51

Figure 24 Optimization framework ... 53

Figure 25 Nodes location .. 57

Figure 26 Distance matrix ... 57

Figure 27 Result of TSP approach ... 58

Figure 28 Distance matrix from API response .. 58

Figure 29 Duration matrix from API response ... 58

Figure 30 Generated use-case plan .. 59

Figure 31 Plan with opt-in weekends .. 59

Figure 32 Visual plan improvement .. 60

Figure 33 Plan generated including long weekends or holidays .. 61

Figure 34 Plan generated for the start date as holiday or weekend .. 62

Figure 35 Plan generated for regular working day as start date ... 62

Figure 36 Plan generated for a longer time period .. 63

Figure 37 LK applied to the route with 10 nodes ... 63

Figure 38 With Lin-Kernighan generated route .. 64

Figure 39 Best randomly generated route ... 65

Figure 40 With NN generated route ... 65

Figure 41 Algorithm applied to all cluster data .. 69

Arina Antskaitis Bachelorarbeit

11

List of Tables

Table 1 Example of route nodes and calculation time it takes .. 13

Table 2 Costs for the first case ... 24

Table 3 Costs for the second case ... 25

Table 4 Costs for the third case ... 26

Table 5 Requirements to time constraints .. 29

Table 6 Variable tour costs ... 31

Table 7 Comparison of problem-related approaches ... 35

Table 8 Comparison of clustering algorithms .. 40

Table 9 Comparison of DBI values for k number of clusters ... 44

Table 10 K-Means++ clustering results ... 45

Table 11 K-Means clustering with custom centroids .. 45

Table 12 K-Means++ with depots .. 45

Table 13 Agglomerative clustering results .. 48

Table 14 Overview of the distribution for each depot ... 49

Table 15 Case scenario test ... 52

Table 16 Data structure for depots DataFrame ... 54

Table 16 Data structure for depots DataFrame ... 54

Table 17 Bets path acquired with random generation .. 64

Table 18 Comparison of time complexity .. 66

Table 19 Comparison of route optimality .. 66

Table 20 Comparison of approaches for a longer route .. 67

Table 21 Minimal routes found with different approaches .. 69

Arina Antskaitis Bachelorarbeit

12

1. Introduction

Global supply chains have been imposed to the biggest challenges due to the tragic spread of coro-
navirus since the end of year 2019. Its impact was immense as it uncovered supply chain vulnera-
bilities most businesses were unaware of. World spread forced isolation was a necessity, which
inevitably led to long term changes: shifting to more flexible and resilient business models. Priority
was given to speed of decision-making, greatly facilitated by specialized IT solutions. Business
leaders are more than ever responsible for sustainable operations, satisfied customers and wellbeing
of their employees. Recent Accenture research has shown that 75 % of fortune 1000 companies
experienced a negative to severe impact of COVID-19 on its performance [1]. It also indicates the
growing cost of supply chains and operations, which commonly account for the largest part of all
costs.

Labor shortages, short-term changes and demand changes are most challenging in the field of OR.
The analysis of requirements and current business processes should result in recommendations for
consistent and adaptive planning. In our case we see a big potential of improving the way the
current scheduling is being planned. This can be achieved after a comprehensive analysis of current
processes and comparison of existing successful solutions for the similar problem.

The optimization problem of operational planning and scheduling has been studied since 1930 and
first formulated as a TSP, which served as a starting point for further complex problem formula-
tions in various fields of Mathematics, Computer Science etc. The main idea is to define the short-
est path, which goes through all the nodes once and terminates in the start node. Since Karp in
1972 has proven the TSP to be NP-hard, the research around it has started to evolve, resulting in
new algorithmic approaches. Another problem, considered as a generalization of TSP, is called
VRP, and compared to TSP, generates multiple routes.

Figure 1 Difference between (left) TSP and (right) VRP

Since the first formal introduction of the VRP in 1959 [2], various approaches to solve it have been
introduced to the scientific world, for example VRPTW, VRPPD [3], CVRP. Its classical definition
and spawned variations have found its high practical demand in such areas as transportation, logis-
tics, healthcare etc. The classical solution to the problem includes designed routes with the least
total cost, start and end depots (location in which the route starts/ends), visiting each node exactly
once with the capacitated vehicle of specific type [4]. Those are examples of requirements that are
common for such a type of problem, but its complexity grows with additional constraints like
delivery times, maximal distance, resource bottlenecks and others.

Various research has been done in order to find a close to optimum solution. It is however not
possible due to its NP-hard nature, meaning the number of possible solutions to the VRP is of the

Arina Antskaitis Bachelorarbeit

13

order of n! where n is the number of nodes (locations the vehicle must visit) in the overall graph
[5]. If the power of the polynomial gets too large, the problem instance cannot be solved even in
average cases or most of the times. Although there is no known polynomial-time algorithm, there
is no proof that algorithms for NP-hard problems cannot exist [6].

All approaches can roughly be categorized into classical heuristics (till 1990) and metaheuristics [4].
Some of the most efficient algorithms tend to be the latest heuristics like Tabu Search, genetic
algorithms, or Simulated Annealing, which are consistently delivering better results in terms of
solution quality and time complexity. Despite worst-case solutions being possible, these algorithms
yield quick solutions that are near to optimum or even optimal. With the help of optimization or
simulation models, operational planning becomes easier to solve using OR.

As pointed out by W. Domschke et al [7], a designated software ensures the most reliable decision-
making. Software products, often used for planning or scheduling, are for example spreadsheet
programs such as Excel, commercial simulation or computing platforms, or open-source developer
tools which could be adjusted to the business needs. Market offered commercial software can be
best described as a framework as they often require additional customization and modification.
Each individual business has its own constraints and requirements that reflect actual challenges in
production and delivery processes. Every requirement limits either delivery time, resource distri-
bution or capacity etc., which directly increases the hardness of the problem. When planning routes,
we obviously want to get the best result possible. The simplest approach, known as a Brute-Force
or exhaustive algorithm, is an enumeration of all nodes possible and its check for problem require-
ments satisfaction. Thus, it always gives the best solution, but even when computed on a software,
it can lead to enormous computational costs when the number of nodes is growing. Below is the
time complexity directly related to the number of nodes to solve a TSP, which is applied to a single
vehicle, visiting multiple destinations or nodes in a single ride.

Number of nodes Approximate Solution Time

10 3 milli-seconds

20 77 years

25 490 million years

30 8.4 * 10^15 years

Table 1 Example of route nodes and calculation time it takes

The solution time spikes instantly alone with the growing number of route nodes. This can be
avoided with either hybrid approaches or the latest metaheuristics and a limited set of most signif-
icant costs and other metric functions.

1.1. Goal of the Thesis

This work focuses on the analysis of the algorithms and latest heuristic and metaheuristic algo-
rithms and finding the optimal solution to solve routing vehicle problem on the example of one
healthcare company, which provides Germany-wide services.

Contribution to the route construction and optimization requires deep analysis of the problem
specific to the company: what requirements and constraints do stakeholders have, what data is
required for input and what output is expected, which stages and actors are involved. The work
pipeline consists of following stages:

Arina Antskaitis Bachelorarbeit

14

Figure 2 Stages of thesis

Understanding the core problem involves analysis of the current limitations and available resources
as well as already existing solutions. At the initial stage it is extremely important not to complicate
the conditions of the problem and to proceed from the ideal situation, not including other input
parameters that determine the level of stability and realism of the model. All requirements and
problem associated conditions will be described in later sections.

The general formulation states that input parameters consist of a set of predefined destinations,
located in a coordinate system, and a fleet - a limited number of available identically capacitated
vehicles. The goal is to allocate all starting points, so called depots, and to calculate all routes so
that all requirements are satisfied, and the overall cost is set to minimum. The result is a constant-
factor approximation algorithm for a distance-capacitated VRP.

The first and most crucial step is to correctly limit these parameters which then later affect com-
putation time and overall accuracy. All information provided is legally obtained from the wellabe
GmbH and can be used for further research. Goal of the thesis and expected outcomes were de-
fined together with stakeholders. Main priorities for the company are its employees’ comfort and
the cost minimization. Corporates see the study as a technical support prospect for project man-
agers and foundation for further development and implementation. The knowledge, models and
recommendations obtained from the study can be further used for the company's own purposes.

1.2. Research Structure

Daily planning is performed by an operations manager with data retrieved from .xls sheets. The
document is daily maintained and updated but is not straightforward when it comes to fast deci-
sions. There is also no clear process on how the trips will be organized, but more often it is man-

aged by the “first came, first served” principle.

In order to build a reliable algorithm to use for real operations planning and satisfy stakeholders’
expectations, following steps are needed:

 define the constant set of the input variables - resources and its characteristics: vehicle
quantity, vehicle capacity, number of start depots, number of destinations, time constraints,
distance constraints, any other requirements etc.;

 considering the specific of this particular case, choose the routing strategy which can max-
imally cut the overall costs;

 simulate the build routing model;

 optimize model, making hypotheses for changing the input variables;

Arina Antskaitis Bachelorarbeit

15

 run the new simulation and by comparing results, choose the most optimal solution.

The problem is considered as middle-sized with 154 nodes in total. Thus, the solution should be
resistant enough in case the number of nodes grows. Ideally, we get an algorithm which will support
managers in tour planning. It should provide a schedule for all nodes and use the maximum of
resources, not taking any risks into account yet. After literature analysis, we would follow one of
the defined guidelines from the latest research done in the similar field. Before starting to work
with the data, it should be prepared for the actual analysis. This will be ensured by the fulfillment
of a few steps listed below:

 gather relevant data;

In our case the data is currently stored in several Excel spreadsheets, so the retrieved raw data can
be further processed in the IDE and turned into a readable format to perform any further prepro-
cessing operations.

 cleanse and format the data;

As documents are maintained by employees, it is not excluded to have typos or missing data.
Therefore, validation and profiling are required. After that it should be ready to be organized into
complete and accurate data sets.

 combine the data;

Data will be transformed and enriched to become more useful and insightful. It can be appended,
categorized to form more holistic datasets.

 analyze the data.

Any change to the dataset should be carefully considered. Chosen algorithms should be compared
to get optimal results.

After preparing the data, we want to see if it builds natural groupings or not. As we have more than
150 destinations across all Germany, we want to identify if and what clusters can be formed and
assign each of them to start depots. The clustering strategy is later to be defined. It will be the first
preprocessing step to simplify the complex routing problem.

With the information obtained this way, the entire service area is divided into individual smaller
areas, according to certain criteria defined by the algorithm. A vehicle driver is responsible for one
cluster and starts his tour at an optimal point called central depot, which will be marked by the

computing algorithm. Within each area, a route must be found for the driver so that the route is
kept, if possible, within predefined timeframes and the costs incurred by the company are kept as
low as possible. The time of drivers traveling should not exceed the predefined value as well.

This thesis deals with the latter point of the overall project, finding the optimal route in each cluster.
An additional complexity could be added due to the condition that drivers, which are company
employees, should not work longer than 6 days a week and 8 hours a day, including the time on
the road. Sometimes it is impossible though to satisfy demands of all stakeholders, therefore some
requirements may be compromised or should be neglected, there is also a chance to find an alter-
native and change the model respectively.

The following phases arise in the context of this work:

1. Preparing data and defining solution constraints.

By providing an accurate set of constraints specific to the situation, it is possible to screen out most

algorithms easily. The aim is to break down the complexity into single, observable steps that can

Arina Antskaitis Bachelorarbeit

16

be iteratively applied to achieve the best possible calculation. To define expected outcomes, stake-

holders should set metrics, and the main goal can serve as an objective function in the model.

2. Creation of a mathematical model.

According to the problem described above, a mathematical model is to be formulated that includes
all necessary conditions so that it can be used as the basis of the post-delivery control to be solved.
In doing so, a model from the general theory of route planning is adapted to the test case.

3. Aligning the model with requirements.

Considering the input set, an algorithm for a CVRP is to be defined to model an initial simplified
solution. A higher-level metaheuristic is to be used in case of additional complexity.

4. Programming and parameter analysis.

The developed solution approach is to be implemented and tested with the programming language
python. An analysis of the parameters occurring in the algorithms is to be carried out and a recom-
mendation for the most suitable choice of these variables is to be made.

Arina Antskaitis Bachelorarbeit

17

2. Methodology

To understand the difficulties inherent in the VRP, it is important to realize that today instances of
the TSP with several thousand locations can be solved exactly using Branch-and-Cut methods,
whereas with the VRP, instances with more than 70 nodes are already a major challenge. There are
two classes of algorithms that can contribute to the optimization, depending on the specifics of the
problem: exact algorithms and modern heuristics. For that reason, we were analyzing time-proved
algorithms, as well as the latest heuristics and metaheuristics like Tabu search, genetic algorithms
etc., which are proved to be successful in solving both problems.

IP methods provide possibilities to find an exact solution for problems with linear objective func-
tion. If the objective function is linear, methods of ILP contribute to the solution of the problem.
Such optimization problems of IP and ILP are generally using permutations, sequence, and assign-
ment to determine optimal routes. Also, the decomposition into single problem subsets falls into
this task area. Decomposition is a method of breaking down a complex problem into smaller, more
manageable subproblems, and solving them individually. This can be useful in solving optimization
problems like TSP and VRP because it can reduce the size of the problem and make it easier to
solve. For example, in TSP, one common decomposition method is the divide-and-conquer ap-
proach, where the problem is divided into smaller subproblems, and the solutions to these sub-
problems are combined to find a solution to the original problem. Another decomposition ap-
proach for TSP is the Lagrangean relaxation, where the problem is relaxed by adding constraints,
and then the solution is refined using a heuristic approach.

Similarly, in VRP, decomposition can be used to break down the problem into smaller subprob-
lems, such as finding the optimal route for a single vehicle or finding the best way to allocate
customers to vehicles. This can be useful in reducing the complexity of the problem and making it
easier to solve using optimization techniques. Overall, decomposition can be a powerful tool in
solving TSP and VRP, as it can simplify the problem and make it easier to solve. However, it is
important to choose an appropriate decomposition method for a specific problem, as some meth-
ods may not be suitable for all situations. These optimization problems can be very complex and
computationally intensive, so sophisticated algorithms and techniques are often required to find
near-optimal solutions in a reasonable amount of time.

Exact algorithms and heuristics can have varying time complexities, depending on the problem
they are solving. Exact algorithms are algorithms that provide a guaranteed optimal solution to a
problem. They typically have a higher time complexity than heuristics, and as a result, they are often
impractical for larger inputs. Examples of exact algorithms for the VRP and TSP include Branch
and Bound, Branch and Cut, and Dynamic Programming. These algorithms work by systematically
exploring all possible solutions to the problem and selecting the best one.

Heuristics, on the other hand, are algorithms that aim to provide near-optimal solutions to prob-
lems in a more efficient manner than exact algorithms. They typically have a lower time complexity
than exact algorithms, but the solutions they provide are not guaranteed to be optimal. The time
complexity of heuristics can range from linear to exponential, depending on the problem and the
specific heuristic being used. Examples of heuristics for the VRP and TSP include the NN algo-
rithm, the Greedy algorithm, the 2-opt algorithm, and genetic algorithms. These algorithms work
by making intuitive decisions or making random mutations to find a good solution to the problem.

Before solving a VRP, we must first understand the TSP. In the last decades TSP heuristics have
made remarkable advances in computational time and optimality. Below are definitions of those

Arina Antskaitis Bachelorarbeit

18

widely used algorithms, which will be later considered for the implementation of the algorithm of
the stated problem.

1. Minimum Spanning Tree (MST) algorithm - This algorithm starts by sorting all edges in
increasing order of their weights and then selecting the smallest edge that does not cause a
loop. The MST is used as a preprocessing step for other VRP algorithms, such as the Chris-
tofides algorithm.

2. Nearest Neighbor (NN) algorithm - The NN algorithm starts at the depot, selects the near-
est node that has not yet been visited, and continues in this way until all nodes have been
visited and the tour ends at the starting depot.

3. Greedy Algorithm - This algorithm involves selecting the best option from a subset in the
current step, which is not always optimal and can lead to a longer route. Some successful
applications of the greedy approach are Dijkstra's algorithm and Huffman coding.

4. Nearest Insertion (NI) algorithm - This algorithm selects the closest node from the starting
point, and when selecting the next node, it should be the closest to those already in the
selection and inserted so as to cause the smallest increase in length.

5. Farthest Insertion (FI) algorithm - This algorithm selects the farthest node from the starting
point and when selecting the next node, it should be the farthest from those already in the
selection and inserted so as to cause the smallest increase in length.

6. Christofides Algorithm - This algorithm first finds the minimum spanning tree, then selects
the best node that has an odd number of connected nodes and excludes the repeated nodes
to form a Hamiltonian cycle.

All of these methods can be used in a combination with a heuristic in order to solve a VRP. The
choice will depend on the specific requirements and constraints of the problem. To be able to
model a possible solution of any real-world problem, the problem should be simplified and broken
down into several steps. When a solution for the core complexity is found, remains stable in tests,
and allows flexibility, then an additional complexity can be added.

In this thesis various approaches and algorithms to solve the VRP will be researched to propose a
viable implementation solution for distance-constrained routing problem. The minimum final cost
of the route must be ensured and serves as a measure of the implementation quality. The solution
must always be guaranteed and available in a readable format to the operator. Research shows the
advantage of heuristics over classical methods, first of all in the speed. We assume that latest heu-
ristics could deliver best results for the problem introduced in this work.

Tour planning focuses on creating the most cost-effective schedule possible, the so-called tour
plan, by concretely assigning each customer to a tour, which can be used to regulate the collection
or delivery of certain goods. A tour is identified by a precise order in which the driver serves his
customers.

Depending on whether each edge is to be visited at least once or each node (customer), a distinction
is made between edge-oriented and node-oriented planning problems. If there are a lot of nodes
close to each other, it makes sense to combine them as an edge. An example of this is waste disposal
in individual streets. If, on the other hand, there are rather large distances between the customers,
these are considered as individual points of the plan to be approached. This thesis deals with such
a node-oriented problem. The solution of a route planning problem usually has two aspects: Clus-
tering specifies which destinations can be grouped into a tour. Routing defines in which order
customers at each destination are served within a tour. Depending on which aspect is executed
first, a distinction is made between performing route calculation first or the clustering. In the first

Arina Antskaitis Bachelorarbeit

19

case, an overall tour is first created that includes all nodes and then this is broken down into indi-
vidual shorter tours. In the second case, nodes are combined into meaningful clusters and then the
optimal sequence of customers is searched for within the clusters. Literature research in a later
chapter should result in a clear preference between these two methods.

2.1. On the Tour Planning Problem

The tour planning problem is one of the most researched topics in operational research due to its
relevance especially in logistics. To illustrate the situation, let's imagine the following set of given
vehicles (V), nodes (N), cost of the associated route from depot arc (c), resource demands of each
node (d). Here each start depot is assigned to a vehicle, that is why we mark those with V.

Figure 3 VRP basic scheme

Even with the latest methods, we cannot guarantee that the solution found would have the best
outcomes possible. Multiple depots or route duration restrictions already make this problem NP-
hard. To simplify the problem, we construct routes scheduled in advance, not including in-time or
dynamic optimization. The complexity can be as well minimized by planning for the short term
and for a smaller number of customers, which should be served during this time period.

2.2. Route Planning for Multiple Start Depots and Capacitated Resources

Operational research literature confirms the importance of the initial planning procedure. The cur-
rent routing planning is suboptimal as it often includes unexpected, short-term changes, which
leads to inconsistency and misleading information. In general, it is worth considering automated
approaches such as heuristics, mathematical programming, or metaheuristics, especially for large-
scale VRP problems. These approaches can provide more efficient and reliable solutions and can
help to save time and reduce the risk of human errors. However, the choice of method depends
on the specific requirements of the problem and the available resources.

The usual planning process follows below steps:

1. Customer initiates a call and asks about the availability of service on specific dates. Each
customer has an agreement on a certain number of service units (from here “check-up”)
he can book in the service provider company.

2. One customer asks for N numbers of check-ups for N number of employees, so that one
check-up is performed with an individual employee.

3. In one day, a maximum of 16 check-ups can be performed. Thus, with a minimum one
working day, but no more than 6 days of providing a service in the customer location.

4. Each customer has its own location, where the service should be provided.

Arina Antskaitis Bachelorarbeit

20

5. The number of provided check-ups (maximum 16 per day) depends on the customer, if
more is desired, days of service on the customer site are extended.

6. Customer and service provider negotiate the dates and number of service days.

7. After the agreement is met, the service provider starts to plan the resources amount re-
quired for a service provision.

Each point in more detail:

 The B2B customer (from here - customer) is the initiator of the call. This can be an existing
customer, or a customer interested through referral marketing. The call is made without a
specific rule. Following types are possible:

o The customer is not new, and the location is already in the DB / list;

o The customer is not new, and the location is not in the DB / list.

 The customer names a location that can provide necessary rooms, parking space, etc.;

 Depending on the number of check-ups, a compromise for the number of days on the
customer site is found;

 The service provider can either reject or accept the proposal. Nevertheless, he always tries
to take the customer's wishes into account;

 The service provider can either give initial approval (and make an agreement at the second
contact) or cancel if there is not enough time or resources for planning before the assign-
ment;

 The priority in planning generally remains the profit from services offered - this should
cover the costs;

 As resources: workforce (coaches), equipment (software, materials, etc.), time (enough time
between the assignments themselves).

Factors that can hinder the route planning and are not included in the formulation of the current
problem, as they drastically increase the overall complexity:

 Missing data

o Number of checkup days are not / cannot be pre-planned for all customers;

 Sudden events

o External factors

 customer cancels checkup at short notice;

 customer wants a checkup, but the time does not fit;

o Internal factors

 Employee / driver (coach) is absent due to illness (before or during the
assignment);

 Car is out of order;

 Equipment (hardware) is out of order;

 Materials are out;

Arina Antskaitis Bachelorarbeit

21

 Lack of resources

o There are not enough resources (the time period is already occupied, manpower
occupied, etc.).

Further restrictions can be applied in order to get a more realistic optimization model:

 The duration of the mission should be a maximum of 5-6 days (time limit);

 The journey in one direction should take a maximum of 2 hours (distance limit);

 An employee (“driver”) cannot overnight at the hotel on the weekends, but must drive
back to the start depot and back to the assigned customer;

 It is extremely useful to have a "backup" employee in case of an emergency.

2.3. Complexity Analysis

The goal of this work is to explore the discipline of OR in order to develop mathematical and then
computational methods to the optimization routing problem of the company providing preventive
healthcare services. Proposed implementation approach should show the prospect and benefit of
using modern heuristics and automation versus manual intuitive planning, which can be bad be-
cause it may not always result in the optimal solution and may be subject to human biases and
limitations. Additionally, it can be time-consuming and error-prone, especially for large-scale VRP
problems. An underlying RVRP cannot be solved in the scope of this work as it entails extra con-
straints and objectives that make it more complex and challenging to solve. In a Rich VRP, the
vehicle routes must not only minimize the total distance traveled, but also consider a variety of
additional constraints and objectives, such as time windows, capacities, delivery priorities, and mul-
tiple depots. This leads to a more intricate optimization problem, which requires the use of sophis-
ticated algorithms and heuristics to solve efficiently.

Therefore, an expected outcome of this work is to develop both full RVRP and relaxed DCVRP
mathematical models. The latter doesn’t consider the capacity constraint of the vehicle or the fact
that customers may be served from multiple depots. In addition, it is mandatory to visit all desti-
nations and end at the depot unless the maximum permissible length of the route or its duration is
exceeded. The problem is to find the optimal routes for the vehicles that minimize the total distance
traveled, subject to the distance constraint for each vehicle. There are numerous approaches that
were developed in the last fifty years, so we need to have clear expectations on what we want to
achieve and which limitations a particular VRP has before solving it. Classification distinguishes
exact approaches like Branch and Bound or Branch and Cut algorithms and heuristic algorithms.
For problems containing more than 30 nodes, heuristic is a more reasonable choice in finding a
solution.

Helena R. Lourenço et al. outlines the importance of the metaheuristic simplicity, both in design
and practice [8]. Ideally, we get an effective algorithm, which solves generalized routing problems
independently from any additional specifics. There are several approaches to simplify a MDVRP,
including the following:

 Aggregation: One approach is to aggregate the customers into clusters based on their prox-
imity to each other, and then treat each cluster as a single customer. This simplifies the
problem by reducing the number of customers to be serviced, and also makes it easier to
solve the problem computationally.

 Fixed routes: Another approach is to use a fixed route structure, where each depot is as-
signed a specific set of customers to serve. This simplifies the problem by reducing the

Arina Antskaitis Bachelorarbeit

22

number of routes that need to be considered, making it easier to solve the problem com-
putationally.

 Relaxation of constraints: Another approach to simplify the MDVRP is to relax some of
the constraints, such as the maximum vehicle capacity or the maximum distance that a
vehicle can travel. Relaxing these constraints can make the problem easier to solve but may
result in sub-optimal solutions.

 Heuristics: Heuristics are approximate algorithms that can be used to find near-optimal
solutions to the MDVRP. They can be used to simplify the problem by providing a fast
and efficient solution, even if the solution is not guaranteed to be optimal.

 Approximation algorithms: Another approach is to use approximation algorithms, which
can provide a guaranteed bound on the quality of the solution. Approximation algorithms
can be used to simplify the problem by providing a fast and efficient solution that is close
to optimal.

Relaxation of constraints is what will be achieved with the formulation of the relaxed mathematical
model in a later section.

Capacitated VRP with time windows, which is referred to as a multi-depot VRP and the location
routing problem, was successfully solved by Laporte et al. [9]. Fermín Cueto et al present their own
terminology for the term “trip” to address a multi-trip problem, where a vehicle drives from the
depot to the customer and back. The term route they use to describe a single path the vehicle
follows during a trip [10].

The initial step will be to find optimal routes for a single depot. The goal is to optimize route
planning for given start-depots and destinations, distributed across Germany. With the imple-
mented model, we would like to get an optimized routing plan for a given period of time and
consequently achieve a cost reduction of feasible routes.

To handle big-sized problems, they are often solved in multiple sequential steps to make them
more feasible and less constrained. The principle of cluster-first route-second is widely used for
solving VRP and is proposed as a solution for reducing complexity of the assignment problem. In
the following sections a stated VRP will be broken down to local TSP problems.

Below we will define mathematical formulations for both RVRP and its simplified version –
DCVRP. A full mathematical model is a complete formulation of the problem, including all of the
constraints and objective function. Full mathematical models are typically more complex and
harder to solve, but they provide a more accurate representation of the problem and can lead to
better solutions.

A relaxed mathematical model, on the other hand, is a simplified formulation of the problem that
relaxes some of the constraints or makes approximations in the objective function. Relaxed math-
ematical models are typically easier to solve, but the solutions may not be as accurate or optimal as
those from full mathematical models.

It is necessary to define the objective function, the constraints, and the variables as both problems
are optimization problems. In the VRP, the objective function typically expresses the total cost of
the routes, which can be a combination of the distance traveled, the fuel consumed, the time spent,
or some other measure of the cost of the routes. The constraints typically denote the limits on the
resources available to the vehicles, such as the maximum capacity, the maximum distance that can
be traveled, or the maximum time that can be spent. The variables represent the decisions that
need to be made, such as the order in which the customers are visited, the routes taken by the
vehicles, and the allocation of customers to vehicles.

Arina Antskaitis Bachelorarbeit

23

In the TSP, the objective function typically characterizes the total distance traveled by the salesman,
and the constraints represent the limits on the travels, such as the maximum distance that can be
traveled or the maximum time that can be spent. The variables affect the order in which the cities
are visited.

A well-defined mathematical formulation is essential to the solution of the VRP and TSP, as it
provides a precise and unambiguous definition of the problem. This allows for the development
of algorithms that can be used to find optimal or near-optimal solutions to the problems.

There are a few cases, which can be differentiated by the number of customers to be visited in one
trip and service days to be performed for a single customer. The minimum number of days spent
at the customer site - one, the maximum depends on the units of service, which are concluded
under the contract and the number of working hours of the employee providing the service. All
travels can be divided into three types: routes with short distances, routes that include long dis-
tances and require hotel overnight and traveling from one node to another. Below described cases
include real estimated costs but a few main cost factors are important to consider when running
an optimization algorithm. A few parameters will be added for the total cost calculation, for exam-
ple a fuel price, which has a direct impact on the overall route cost. These cases describe a travel
for one vehicle, which serves its allocated customers.

2.3.1. First Case

A route, consisting of short paths and beginning at the start depot, continues to a single node,
which stands for a customer, and returns back to the depot on the same day. The travel distance
between nodes is not exceeding 2 hours. In addition, we have restrictions on the amount of work-
ing hours, which should not exceed ten hours. This condition is a great factor, affecting the em-
ployees’ satisfaction. Thus, we would like to be able to find the most optimized route with shortest
paths.

Below are costs, that represent a typical one-day case:

 fuel spent for the ride - 80 euro;

 employees’ wage – 330 euro;

 overall expenses included in the service maintenance - 237 euro.

Total cost for the use-case is 647 euros for 8,3 working hours, including time spent on the road
and on providing service on customer site.

Figure 4 Trip for the first case

Below are fixed costs, associated with the case, regardless of the number of check-ups provided in
one day or time spent on the site. They can be used for modeling a similar scenario. Information
on expenditures has been estimated and provided by the company, therefore cannot be described
in detail.

Depot Customer

40€

40€

567€

Arina Antskaitis Bachelorarbeit

24

Name of expense Amount in euro

Materials 125

Fuel 80

Starting or finishing preparations 45

Amortization 67

Table 2 Costs for the first case

By going to a new node, the employee (the driver) is responsible for preparing the room and equip-
ment before starting the working day, which requires both time and costs each time it is a new
location. Preparation and finishing costs are made only once in the first and the last day of per-
forming a service. Therefore, if a customer is served for a few days in a row and the vehicle doesn’t
have to be returned to the start-depot, then these costs would be counted only once.

This case is possible if some of below statements are true:

 only one day of service is to be performed on the customer site;

 the total time needed to reach the destination and return back to the depot takes less than

2 hours;

 hotel overnight is more expensive than the travel cost.

2.3.2. Second Case

The second case includes unoptimized or just longer routes, which last 2 hours or more. As there
are 7 depots, from which a vehicle drives to the customer, and 154 customers total located in
Germany, the distance between routes varies. In our interest is to look for shortest possible routes,
which reduce the transportation cost and are more beneficial to employees’ health.

Figure 5 Trip for the second case

In this case, the driver starts his way from the depot, but as it takes 2 hours and the working day
starts at eight o’clock in the morning, he would have to come to the destination the day before to
overnight at the hotel. Transportation from the hotel to the customer is a default value set to ten
euros in the scope of this work. Working time increases up to 9,83 hours. Wages correspond to

Depot

Customer

Hotel

100€

567€
10€

80€

14€

80€

Arina Antskaitis Bachelorarbeit

25

previous first case – 330 euro. The daily provision cost is included as well. All costs presented in
the table below are constant, so the main goal is to affect traveling expenses.

Name of expense Amount in euro

Preparation for service on site 45

Finishing preparations 45

Amortization 67

Hotel overnight 100

Provision 20

Table 3 Costs for the second case

An optimization that could be suggested here is as follows: can customer nodes be evenly distrib-
uted between depots, so that a single ride in one direction won’t take more than 2 hours? A possible
assumption would be to form clusters, where each of them is served by a single depot. What rules
determine if a node should be visited, and the route stays optimal. Total costs for one customer
served in this use-case: 851 euros, which accounts for 33% of the profit.

2.3.3. Third Case

The following scheme shows costs for four days service which is a full working week or forty
working hours. This case illustrates visiting four customers, one each day. This case is the most
expensive as visiting a new customer is associated with travel costs, preparations before and after
service and employee maintenance budget. It also requires extra time for software preparations and
cleanup afterwards. Additional costs can be avoided if all services for a particular customer can be
provided at once, as it won’t cause extra installation costs.

Here the main focus is on minimizing total travel time thus finding shortest routes between nodes.
Staying at the hotel should be more profitable than going back to the depot, but we should also
take the employee’s wellbeing into account and do not allow working overtime.

Figure 6 Trip for the third case

Below costs will apply each day as the service will be provided to the new customer.

Chemnitz

Zwickau

Leipzig

Berlin

Meissen

Hotel 3

Hotel 2

Hotel 1

Arina Antskaitis Bachelorarbeit

26

Name of expense Amount in euro

Preparation for service on site 45

Finishing preparations 45

Amortization 67

Table 4 Costs for the third case

The implementation should be able to cover all the above use-cases and provide an output in a
form of the plan file, readable for the operations manager. The proposed solution must be benefi-
cial and more advantageous to use than former planning methods and tools. Its main criterion must
have a direct positive effect on the total cost.

From the above problem description, it is obvious, that there is a strong need for optimization that
directly affects the profitability growth, which can be calculated as:

Contribution margin = Revenue - Variable Costs

To avoid loss in contribution margin, variable costs must be optimized and/or the sales price ad-
justed.

2.4. VRP Model

Below mathematical model serves to describe an objective function of the asymmetrical RVRP. In
an Asymmetric VRP, the cost of traveling from one customer to another can be different in dif-
ferent directions, i.e., the cost of traveling from A to B can be different from the cost of traveling
from B to A. Symmetric VRP is generally easier to solve compared to the asymmetric version, as
the symmetry of the problem leads to simpler mathematical models and algorithms. However, in
real-world applications, it is often the case that the cost of traveling between 2 points is asymmetric,
so the asymmetric version of the problem is more appropriate to model the problem. As for the
objective of RVPR, it is defined as a combination of goals such as finding the maximum profit,
keeping customers and employees satisfied subject to constraints such as the capacity of the vehi-
cles, the time window for customer visits, and the maximum distance that each vehicle can travel.

Linear programming formulation is widely used in the OP to obtain an optimal solution for a given
set of limitations. A fleet of V homogeneous vehicles, each located at the depot d. Each customer
q has a non-negative demand expressed by the number of service days S(q) allocated to this cus-
tomer. Each customer is serviced by a single vehicle within its capacity. Each route must start at
the depot and end at the same depot. The following mathematical formulation has an objective of
defining a set of vehicle routes with minimal total travelling costs. Below notation expresses our
constraints in terms of decision variables.

Sets:

 D = {d1, d2, …, dn}for a depot set, represented by its geolocations;

 V = {v1, v2, …, vn} for a vehicle set of equal capacity;

 Q= {q1, q2, …, qn} for a set, represented by customer geolocations.

Cost variables:

 Cm for fixed material costs;

 CL for hardware maintenance costs;

Arina Antskaitis Bachelorarbeit

27

 Cp for variable service preparation costs;

 Cf for fixed fuel cost per km;

 Cw for an hourly wage of the employee;

 Ca for accommodation costs;

 Cn for provision costs.

Variable costs associated with service:

 production supplies – materials needed to provide a service;

 freight in/out costs – transportation expense incurred for the service;

 hardware operating costs – expenses for the hardware maintenance before and after the

service was performed.

Parameters:

 U represents a number of performed service units (so called “check-up” must be taken as

a single unit);

 T(e) represents a time or workload available for the particular employee (driver) on a work-

ing day d;

 S(q) represents a number of service days, booked by the particular customer q;

 kij represents a distance in km between customer i and j or the edge ij – here is more abstract

notation of customer nodes is used to represent an edge between 2 vertices;

 kdq represents a distance in km between depot and the customer considering the direction

of the route;

 T(k) is a time equivalent to the distance k;

 xvij represents a binary variable, where 1 means the vehicle v starts its route at node i and

ends at node j, otherwise set to 0;

 y represents a binary variable, where 1 is set for the working day, otherwise is a holiday or

weekend then set to 0.

The model's objective is to minimize total cost, which is the sum of total traveling cost from depot
to all customers and the total fixed cost of the vehicle. Total cost mathematically expressed in the
equation below. Thus, the objective can be formulated as follows:

Minimize the total cost of the service provided to customers in a given time period while using all
the allocated resources:

∑ 𝐶𝑝𝐶𝑤𝑘𝑖𝑗𝑥𝑣𝑖𝑗

𝑆(𝑞)

𝑒=1
, ⅈ ≠ 𝑗 ∈ 𝑄 (2.1)

Subject to

∑ 𝑥𝑣𝑖𝑗 = 1
𝑛

𝑗=1
 (ⅈ = 1, ⋯ , 𝑛′ ∀ 𝑛 ∈ 𝑄) (2.2)

Arina Antskaitis Bachelorarbeit

28

and

∑ 𝑥𝑣𝑖𝑗 = 1
𝑛

𝑖=1
 (𝑗 = 1, ⋯ , 𝑛′ ∀ 𝑛 ∈ 𝑄) (2.3)

Here we specify the assignment of vehicles and employees to the route:

𝑓(𝑣, ⅈ, 𝑗) = {
1 ⅈ𝑓 𝑣𝑒ℎⅈ𝑐𝑙𝑒 𝑣 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑓𝑟𝑜𝑚 ⅈ 𝑡𝑜 𝑗,

0 ⅈ𝑓 𝑜𝑡ℎ𝑒𝑟𝑤ⅈ𝑠𝑒

∀ⅈ, 𝑗 ∈ 𝑄, 𝑣 ∈ 𝑉 (2.4)

An equation of fixed costs for a working day according to the Case 1, excluding transportation

costs:

𝐶𝐿𝐶𝑝𝐶𝑚 ∑ 𝐶𝑤
𝑇(𝑒)
𝑢=1 (2.5)

An equation of fixed costs for a working day according to the Case 2 or Case 3, excluding trans-

portation costs:

𝐶𝐿𝐶𝑝𝐶𝑚𝐶𝑎𝐶𝑛 ∑ 𝐶𝑤
𝑇(𝑒)
𝑢=1 (2.6)

Further we specify additional constraints applied to the case described in the Figure 7 below. If the

route implies more than one service days, for example Sq = 4 for the customer q1, at the end of

each day it should checked whether going back to the depot is more profitable than staying in the

hotel at the same location. On the one hand, there are costs associated with staying at the hotel, on

the other hand going back and forth is causing extra travelling costs. Arriving and leaving the node

is associated with service preparations which require a fixed amount of time, which is expressed

through a variable prep. In the real case scenario multiple factors such as in advance booked hotels,

sudden cancelations (hotel, customer unavailability), emergency with software or employees etc.

can affect this decision and are impossible to predict or fully consider in order to construct the best

route or reduce expenses at most.

Arina Antskaitis Bachelorarbeit

29

Figure 7 Case with factors affecting the routes’ feasibility

To minimize unproductive time gaps, a decision is made on each working day whether to continue

the route to the depot or not, and whether going back to the depot is more profitable than driving

straight to the next customer location, as explained in the figure above. This decision is strongly

dependent on the remaining working time of the employee on that day. The employee's well-being

is a high-priority decision variable that should be taken into account first.

Certain costs associated with time are shown in the table below:

Requirement Duration

One check-up 0,5 hours

Working day 10 hours

Maximum daily time in travel 2 hours in one direction

Maximum working days in a week 5 days

Maximum weekly workload 50 hours

Preparation before service 1 hour

Preparation after service 0,5 hours

Table 5 Requirements to time constraints

Below are some additional constraints, which impose constant conditions on variables V, C:

Arina Antskaitis Bachelorarbeit

30

 the speed of the vehicle used in calculations depends on the road, weather, and other rele-

vant conditions;

 each start-depot can be serviced with different vehicles;

 returning back to the depot depends on the employee workload capacity;

 customer can be visited more than once, if the service cannot be fully performed, depend-

ing on the employee workload capacity;

 one vehicle is assigned to one driver;

 if a driver is not able to serve customers, reassign its vehicle to another driver;

 the transportation cost of each vehicle depends on the traveled distance;

 vehicle fixed costs such as amortization are included in the equation;

 time window limitations are defined according to each customer demand;

 in the real-world distance between 2 nodes is often asymmetric;

 the number of vehicles, depots and customers are given but can dynamically change:

o initial number of vehicles: 7;

o initial number of start depots: 7;

o initial number of hardware equipment needed to serve a customer: 7;

o initial number of total customer locations: 154.

Time windows, that are also present for the stakeholder:

 time windows are proposed by customers and compromised together with the service pro-

vider;

 the period of time during which a service can be started, e.g., accept service hours only

from 8 to 10 o’clock;

 duration of each customer visit equals to the booked service units;

 work break should also be included and planned;

 non-productive time windows not related to work should be minimized.

As VRP with time windows is hard to solve when containing anything bigger than 100-150 nodes,
we have decided not to include them into the current problem definition.

In the table below we define some variable costs which are used in some of the scenarios outlined
later. The total cost per km is reduced to a fixed constant variable per km, excluding the mainte-
nance cost. This is set for the vehicle type Caddy with an average consumption of 7 liters / 100 km
of fuel “Super” [11]. Cost accuracy can be later enhanced by obtaining real-time fuel prices, for
example from the website “Tankerkönig” with the data from more than 14000 gas stations, yet this
is out of scope for the stated problem.

Arina Antskaitis Bachelorarbeit

31

Name of expense Price in euro

Fuel per km 0.2

Daily provision 20

Daily accommodation 100

Table 6 Variable tour costs

One full day, which is considered to be the least costly, has a certain number of service units, each
of which lasts half an hour. In total, a worker must complete 16 units in 8 hours, which leaves 2
hours for the transportation to the customer and back, if needed. Though it cannot be guaranteed
that there is a solution that satisfies these time constraints, there is a chance to find the most optimal
solution possible or at least the most satisfying. The quality of the solution found will be measured
by the total number of distances traveled in km, as well as by the time required for the calculation
of the route. The main criterion remains the total cost for the overall trip.

2.5. Model Relaxation

This model is a relaxation of a previously formulated model. The objective stays the same while
eliminating constraints in order to make the problem simpler to solve. Redundant parameters were
taken out as well.

Sets:

 S for total service days;

 Q for node set.

Cost variables:

 Cf for fixed fuel cost per km;

 Cw for an hourly wage of the “driver”;

Parameters:

 U for number of performed service units (so called “check-up” must be taken as a single

unit) is set to a constant of 16 and considered to be performed during one full working day

Sq;

 D for one depot for which a route will be constructed;

 Sq for a full working day servicing a customer q from the set of Q.

 V(dn) for one vehicle assigned to a depot d ∈ D;

 T(e) represents a time or workload available for the particular employee (driver) on a work-

ing day d, here set to a constant of 10 hours. Time limitations will not be considered in the

model;

 S(q) represents a number of service days, booked by the particular customer q and is set to

one day;

 kij represents a distance in km between customer i and j or the edge ij – here is more abstract

notation of customer nodes is used to represent an edge between 2 vertices;

Arina Antskaitis Bachelorarbeit

32

 kdq represents a distance in km between depot and the customer not considering the di-

rection of the route;

 T(k) is a time equivalent to the distance k;

 xvij is a binary variable, where 1 means the vehicle v starts its route at node i and ends at

node j, otherwise set to 0;

 y is a binary variable, where 1 is set for the working day, otherwise is a holiday or weekend

then set to 0.

Minimize the total cost of the service provided in a given time period, at the same time using all
the allocated resources:

∑ 𝐶𝑓𝐶𝑤𝑑𝑖𝑗𝑥𝑣𝑖𝑗

𝑆𝑞

𝑒=1
, ⅈ ≠ 𝑗 ∈ 𝑄 (2.7)

Subject to the formulations (2.2, 2.3). The assignment of vehicles and employees to the route ac-

cording to (2.4).

And a cost equation for a working day, excluding transportation costs is equal to equation (2.5).

Below relaxations of constraints should provide more flexibility to the optimization problem:

 the speed of the vehicle used in calculations is constant;

 each start-depot is assigned to one vehicle;

 customer can be visited only once;

 one vehicle is assigned to one driver;

 time window limitations are not taken into account;

 distance between 2 nodes is considered symmetric;

 the number of vehicles, depots and customers are predefined and remain unchanged:

o number of vehicles: 7;

o number of start depots: 7;

o number of software needed for serving a customer: 7;

o number of customers total: 154.

The next section includes a comparison of heuristics for deciding on an appropriate strategy and

specific algorithms to achieve optimization for the formulated problem.

2.6. Heuristics for the Optimisation Problem

Most real-world problems, that require optimization, cannot be solved with a single method or
strategy and they often have a huge number of input variables involved. As the problem scale is
large, because nodes are distributed all over Germany, more sophisticated routes are needed.
Among them are multiple routes as well, which implies solving a VRP, either classical formulation
or its variations [12]. The challenges of the VRP have gained a lot of attention from academics due
to its variety of dependent variables such as availability of vehicles and its capacity, multiple trips,
pickups and deliveries, time-windows and often the combination of those. Solution approaches

Arina Antskaitis Bachelorarbeit

33

can be roughly divided into three categories: mathematical programing, heuristic methods, and
metaheuristics - heuristics, which include MILP models. In this thesis, we consider the variant of
the VRP known as multi-depot VRP in which more than one depot is considered (see Fig. 2). The
reader must note that most exact algorithms for solving the classical VRP model are difficult to be
adapted for solving the MDVRP.

Related research starting from 2010 till today has shown a strong increase for addressing environ-
mental issues, including e-vehicle utilization, CO2 emissions’ reduction etc. Sustainability is our
major concern today, which can and should be supported through vehicle route optimization. Qian
et al. used real London traffic jam data, consisting of 60 nodes, one depot and one vehicle. He
solved this problem by using a column generation based tabu search algorithm.

Contardo et al. used the column generation approach strengthened with the so-called strong ca-
pacity constraints and clique inequalities. They do not consider the inclusion of the route length
constraint and so experiments are conducted only on those instances without such a requirement.
He proposed the solution for a multi-depot VRP (MDVRP) by losing single period VRP, where
depots can be modeled as multiple periods. Therefore, any algorithm that solves the PVRP can
also solve the MDVRP [13]. This leads to an idea of solving the multi-depot problem with single
capacitated VRP. The subproblem is solved by finding the shortest path - an algorithm is going
through all possible subsets and marks the route with the least cost and within given capacity
bounds. We can simplify our model by making all vehicles homogeneous and not taking its capacity
into account, paying attention to the vehicle availability first.

Ramos, Gomez and Barbosa-Póvoa solve the multi-product and MDVRP with an additional limit
on route duration. They propose a heuristic, hybrid approach for a medium size problem, with 50
nodes and 3 depots. Optimal optimization results were obtained with the MIP model with the
condition that certain restrictions are removed, not violating variables given [14].

Bulhões et al. address the VRP-SL, introducing a pair of an ILP code solution and a branch-and-
price algorithm, suitable for small- and medium-scale sized-problems [15]. It can be successfully
applied to a profitable CVRP with a set of private fleets, operated by a single driver.

Laporte et al. found an optimal solution for routes not exceeding a specified distance upper bound,
in which they formulated an integer program with a constraint relaxation procedure [16].

Dufay, Mathieu and Zhou prove the distance tree can be reduced with the bounded space online
bin packing problem [17]. Meanwhile, there are various ways to extend the bin-packing model to
be more general in terms of cost and loading.

Garside and Laili propose a two-phased approach, achieved by the integer programming imple-
mentation. The heuristic includes a Cluster-First Route-Second strategy, in which clustering is ap-
plied, followed by the route building, with regard to existing constraints [18].

The same strategy was used by Choudhari, Ekbote and Chaudhuri: for the clustering method they
performed a DBSCAN algorithm and Christofides algorithm for finding an optimal path for each
cluster [19]. Below is the comparison table that sums up the approaches used in the last decades
for solving VRP with constraints.

Arina Antskaitis Bachelorarbeit

34

Autor

Constraints

Goal

Implemented
method

n
o

d
es

ti
m

e
w

in
-

d
o

w
s

d
is

ta
n

ce

v
eh

ic
le

s

Meng et
al. [20]

11 + +
Minimization of

fuel consumption
and emissions

Two-phase optimi-
zation, fuzzy clus-

tering

Shi et al.
[21]

22 + +
Minimization of the
total transportation

distance

Closest distance
search and sector

combination optimi-
zation

Gong et
al. [22]

18 + +
Minimization of the
number of vehicle

routes

Particle swarm opti-
mization (PSO) al-

gorithm

Ramos et
al. [14]

50 + +
Finding local op-

tima

Mixed-integer lin-
ear

programming mod-
els

Geetha et
al. [23]

10 + +

Minimization of the
total travel length
along with route
and load balance
among the depots

and vehicles

Clustering first and
route second meth-

odology

Ho et al.
[24]

14 +
Minimization of to-

tal routing cost

Combination of two
hybrid genetic algo-

rithms

Choudha
ri et al.

[19]
10 +

Minimize traveling
distance and/or
time among cus-

tomers

Cluster first and
route second algo-
rithm, integer linear

programming.

Qian et
al. [25]

60 + +
Minimization of

fuel consumption

Column generation
based tabu search

algorithm

Islam et
al. [26]

138 +
Finding local op-

tima.

Particle swarm opti-
mization (PSO) and
variable neighbour-
hood search (VNS)

Arina Antskaitis Bachelorarbeit

35

Autor

Constraints

Goal

Implemented
method

n
o

d
es

ti
m

e
w

in
-

d
o

w
s

d
is

ta
n

ce

v
eh

ic
le

s

Cassettari
et al. [27]

>100 + + +

Maximizing trans-
portation costs and
maximize the work-
load according to
customer demand

Algorithm based on
Saving Algorithm

Heuristic and 2-Opt

Table 7 Comparison of problem-related approaches

As the solution time proportionally increases with the size of the problem, finding all n! possible
solutions, where n is the number of nodes, is not optimal for a big enough n. It will result in a long
computation time, including infeasible routes as well or a worst-case scenario. The algorithm must
remain stable even with a growing number of nodes. Optimal computational time should also be
guaranteed. Most scientists prove that complexity of the problem should be minimized to the most
possible extent in order to get insightful results. It can be achieved by elimination of certain rules
or requirements related to time windows, vehicle and load capacity, type of fleet, which tend to
create complex code structure. The set of requirements can be supplemented after the implemen-
tation solves the core routing problem. [28] claim that the two-stage strategy helped them to “re-
duce the overall complexity for the optimization mechanisms by dividing the solution space into
two individual problems”. In our case we would break the problem down into cluster problems,
where we get separate VRPs, which can be solved with one and the same strategy. The cluster first
and route second (CFRS) algorithm strategy is a popular approach for solving the VRP, including
the multi-depot VRP. We found that the above-mentioned researchers, who used this particular
strategy, have achieved positive results in minimizing the objective function, which represents the
performance measure that the algorithm is trying to optimize. As the objective function defined in
this thesis is equal to ones compared in Table 7, we can consider for example integer linear pro-
gramming or local search heuristics like 2-Opt suitable for route construction.

2.7. Clustering Approach

The decision in favor of clustering was taken because of the widely used and successfully estab-
lished cluster-first route-second approach, first addressed by [29] and used for solving VRP by [30]
and [31]. This technique successfully uses the clustering method to simplify the assignment prob-
lem, that is dividing customers into different clusters. In the second step it is practical to use weights
or similar selection criteria for the path construction and selecting the best one. Due to the routing
problems’ nature, most approaches are designed according to this concept. First phase of clustering
is depicted by a simple example below.

Arina Antskaitis Bachelorarbeit

36

Figure 8 Clustering phase

CVRP or in this case distance constrained VRP is classically solved in this order, where the parti-
tioning is determined first and can be performed by a MILP solution. Route sequencing is then
solved for each cluster by any suitable TSP algorithm, for example Lin-Kernighan or Sweep Algo-
rithm. The cluster formation should be flexible to allow adding new destinations, as business is
expected to have a continuous growth and should be scalable. The route construction is illustrated
for the previously used example below.

Figure 9 Routing phase

Similar approach implemented by Du and He [32] consists of 2 stages, where after clustering with
the traditional k-Nearest Neighbor Search algorithm follows the Tabu Search algorithm, which
defines optimal intra-routes.

In conclusion, the algorithm for the formulated problem will be split into 2 successive stages. The
first stage serves for data refinement and clustering, to attempt solving a complex multi-depot VRP
as a single depot VRP, second stage involves building and optimizing routes. We define the prob-
lem stated in this work as a middle size VRP problem, including 154 nodes. A predefined condition
prescribes 7 depots, thus 7 centroids (not marked in blue on the image below) that serve all other
nodes, representing customers, which are marked blue on the image below.

The first step to reduce the complexity of the problem would be to look at the distribution of the
network, as noted in work of Montoya-Torres et al., a VRP with multiple depots can be solved as
a multiple individual single depot VRP. For that a requirement of evident nodes clustering around
each centroid should be fulfilled. Alternatively, nodes should be served from available depots using
available vehicles [33].

Arina Antskaitis Bachelorarbeit

37

Figure 10 Customers’ distribution

We want to divide all nodes and assign them to a particular centroid, so that clusters can be evenly
formed. A related question we would like to answer in this thesis: what is the best strategy to form
these clusters that ensure a successful route optimization algorithm?

In this section we will create clusters of customer locations, which will be assigned to particular
depots, shown on the picture below. Before clustering an additional data, manipulation is required:
based on provided geographical data (latitude and longitude) and using an open-source geocoding
software with OpenStreetMaps data, exact address information like city or street name can be ob-
tained, added and used later.

Figure 11 Alternative depot distribution

The process of data preparation and clustering starts from the clean and formatted data saved in
xlsx file. This data will then serve as an input for the function, performing a reverse geocoding,
that is finding a location name and its address. These addresses will be then accessible for the
operations manager or operator to track the scheduling. A distance matrix will be formed for each
cluster, as it is required by the algorithm to calculate and compare weights of a pair of nodes. The

Arina Antskaitis Bachelorarbeit

38

cluster will be formed when following the assignment rules all nodes get a label, associated with
the particular cluster.

Figure 12 Cluster preparation process

Successful clustering is essential for the optimal route assignment. The clustering approach used in
this work is chosen to meet already existing limitations and is based on finding nearest nodes to
one of seven cluster centers. These cities will be associated with the cluster and form it:

1. Berlin,

2. Munich,

3. Dresden,

4. Bonn,

5. Duisburg,

6. Hamburg,

7. Stuttgart.

Current depot locations were mapped on the Leaflet map via folium library in the Jupyter Note-
book. From the data visualization only a subjective assessment of the distribution and placement
of starting points is possible, therefore an additional technique of data cluster analysis is needed.

To evaluate how good depots are located, a K-means clustering from open-source python library
scikit-learn was applied. To get predicted centroids for all customer locations we set the default
“Lloyd” algorithm, number of clusters to 7, which we want to get and all locations, represented as
geographic coordinates. The output cluster centers can be obtained with kmeans.cluster_centers_
attribute, which returns all generated cluster centroids in an N-dimensional array of geolocations.
When mapped together with depots, we can see that current distribution of depots is close to
optimal.

Arina Antskaitis Bachelorarbeit

39

Figure 13 Depots’ distribution together with K-Means centroids

Therefore, we can expect satisfying clustering results, and expect customer locations to be almost
evenly spread over all 7 clusters. Further steps, outlined below, are focused on building routes and
optimizing trips, consisting of single routes.

Figure 14 Clustering and optimization phases

When selecting a suitable algorithm, stakeholder requirements should be kept in mind, namely, to
reduce travel time as much as possible and to ensure the shortest and best possible route from start
to finish. Firstly, it should be possible to set the exact number of clusters to be formed as those
already exist and cannot be changed in the near future. Secondly, it is important to have evenly
formed clusters, as it will ultimately determine the workload of the employee who is servicing the
cluster.

For this reason, the first cluster iteration should exclude nodes located too far away from the cen-
troid. The distance from the depot to the node can be limited to 125 km, which is roughly 1,5
hours ride. All nodes outside the 125 km radius can be added to the most geographically suitable
cluster.

To assess the distribution of customer nodes, a manual clustering with above requirements was
made. First, the algorithm has to traverse all destinations. All nodes that did not meet the distance
criterion, were labeled in the additional column “Longer route”, where “0” means to be in the
radius and “1” to be outside. The biggest and most resource-demanding cluster was identified for
the “Duisburg” depot. “Stuttgart” cluster has the longest routes to some of its nodes, but it can be
explained by the fact that all cities, which were not clearly assigned to any cluster as they were
outside the radius boundary, were included in the nearest cluster. This approach is similar to the

K-Means method and should be tested for optimality. For this purpose, algorithms based on other
clustering rules will be tested and compared as well.

Algorithms for clustering are a part of unsupervised learning, which can discover patterns in the
unlabeled data. Given this it is important to keep in mind that there is no absolute “right” or
“wrong” answer. The quality of the clustering solution will depend on the specific use case and the

Arina Antskaitis Bachelorarbeit

40

goals of the analysis. Hence, it is common to experiment with different parameters and approaches
to find the best solution for a particular problem. Algorithms chosen for analysis are divided into
hierarchical, distribution-based, density-based and partitional clustering. Only those were consid-
ered, that are suitable to process spatial, in our case geographical, data.

Algorithm k-means OPTICS GMM
Agglomerative

clustering

Applica-
tion ob-
jective

Forming clusters
with the nearest

mean

Detecting
meaningful
clusters in

data of vary-
ing density

Clustering and density esti-
mation with data as a mix-

ture of several Gaussian dis-
tributions

Each data point
– a cluster on its

own - gets
merged into big-

ger cluster
groups

Clustering
type

Partitional
Density-

based
Density-based

Hierarchical

Centroids
initialisa-

tion
Random Random Random

Can be set man-
ually

Ad-
vantages

Linear time
complexity;

Number of cen-
troids can be ini-
tialized with k-

means++ setting

Identifies
noise data
while clus-

tering

Suitable for modelling com-
plex; Multi-modal distribu-
tions quality remains good
with time, memory con-

straints

Good cluster
quality after a
single scan;

Improves the
quality with a
few additional

scans.

Disad-
vantages

Not suitable for
very big datasets;
Dependent on
initialization of

centroid;
Impossible to

see cluster outli-
ers

Number of
clusters de-
pends on ra-

dius

Limitations such as sensitiv-
ity to initialization; difficulty

in estimating the optimal
number of components, and
difficulty in assigning a data

point to a specific cluster

Not suitable for
very big datasets,

causing O(𝑛2

log(𝑛)) complex-
ity

Table 8 Comparison of clustering algorithms

Although there is a predefined number k=7 of clusters, it is still useful to find the optimal number

of clusters, which is achievable by using one of the model selection methods such as BIC or AIC,

because the optimal number of clusters is not always clear from the data.

BIC and AIC are model selection criteria used to choose the best model among a set of models

with different complexities. These criteria are used in many different machine learning and statis-

tical models, including Gaussian Mixture Models for clustering.

BIC is a measure of the quality of a model that balances the likelihood of the data given the model

with the complexity of the model. BIC penalizes models with a large number of parameters, making

it a viable choice for models with a large number of candidate models, such as clustering models.

Arina Antskaitis Bachelorarbeit

41

AIC is another measure of the quality of a model that balances the likelihood of the data given the

model with the complexity of the model. AIC also penalizes models with a large number of pa-

rameters, but is less stringent than BIC, making it a good choice for models with a moderate num-

ber of candidate models.

In practice, when choosing the best model among a set of models, BIC or AIC values of the models

can be compared to choose the one with the lowest value. The model with the lowest BIC or AIC

value is considered to be the best model, as it provides the best balance between the accuracy of

the model and its complexity.

The relationship between the number of clusters and the error of the clustering solution can be

found by evaluating the performance of the clustering algorithm for different numbers of clusters.

A general outline includes the following steps:

1. Choosing a clustering algorithm: algorithms that can be used are for example K-Means,

Hierarchical Clustering, or DBSCAN.

2. Choosing an evaluation metric: the quality of the clustering solution will be evaluated by

the metric. Common metrics include the silhouette score, the Calinski-Harabasz index, and

the Davies-Bouldin Index.

3. Choosing a range of values for the number of clusters: the initial number of clusters can be

small, e.g., 2 or 3, and then increased incrementally.

4. Running the clustering algorithm and clustering quality evaluation by using the chosen eval-

uation metric.

5. Plotting the results: visualization of results shows the relationship between the number of

clusters and the error of the clustering solution.

6. Interpreting the results: interpreting the relationship between the number of clusters and

the error of the clustering solution. Suitable methods are the Elbow method or other heu-

ristics to determine the optimal number of clusters.

Below we take a closer look at the definition and application of chosen clustering algorithms and
decide on the most fitting approach to solve the problem.

To inspect the quality of each clustering algorithm, we will visualize it on the plot in the Jupyter
Notebook using the matplotlib library. Visualization will help examining whether the clusters ap-
pear to be well separated and internally homogeneous. Figures visualizing the distribution of the
dataset will have following characteristics: data points will be assigned to the cluster and have a
distinguishing color, a depot will be marked with a red star for a clear difference from nodes. Axis
labels correspond to the latitude and longitude as on the map. Labels for Y axis will represent
longitude of the customer or depot geolocation and are displayed reversed on the plot. Labels for
X axis stand for latitude of the customer or depot geolocation.

2.7.1. OPTICS

This method falls into the category of density-based algorithms and is similar to the DBSCAN
algorithm. Compared to it, it has an advantage of identifying clusters for data with differing density.
Although this method wasn’t developed for clustering, it shows the structure of the dataset. Its
name stands for Ordering points to identify the clustering structure. The algorithm was initially
tested with calculated cluster centers.

Arina Antskaitis Bachelorarbeit

42

Figure 15 OPTICS clustering result

OPTICS and DBSCAN can be very efficient for clustering and show qualitatively good clustering
results, for example in the studies mentioned in the table 7. In our case, clusters are spread une-
venly. It is clear that data in the cluster, marked with dark violet color, for the most part was not
assigned to any specific cluster and that is the reason for its chaotic distribution. Only those data
points with a clear distance similarity were merged into clusters. Due to its density-based clustering
logic, this method extracts clusters of arbitrary shape and size by setting a threshold on the reach-
ability distance, which makes it unsuitable to use for our specific problem.

2.7.2. K-Means

This method belongs to the partitional clustering group and has a goal of partitioning the data into

clusters by its proximity to the centroids (intra-class similarity). Classical K-Means belongs to the

class of unsupervised algorithms and is aimed to find similarities among data and form it into k

clusters. K-means can produce different clustering results for the same dataset because it is a sto-

chastic algorithm, meaning that the results can vary each time the algorithm is run, even on the

same data. The final clustering result depends on the initial centroid locations, which are randomly

assigned in K-Means. If the initial centroids are positioned in such a way that they create uneven

clusters, the final clustering result will also be uneven.

To mitigate this issue, a common technique is to run K-Means multiple times with different initial

centroids and choose the best solution based on a criterion such as the sum of squared distances

between the data points and their nearest centroid. This is known as the "K-Means++" initializa-

tion method. This option will be used to set centroids to already existing depots.

Eventually it can be useful to predict best positioning of centroids if the company scales. One

method to predict the optimal k number is the Elbow curve method, which is based on the sum

of squared distance between data points and clusters assigned to them. It is a heuristic for deter-

mining the optimal number of clusters in a clustering algorithm. It is based on the idea that the

optimal number of clusters is the one where adding more clusters does not significantly decrease

the error or "inertia" of the clustering solution. In the Elbow method, a plot is created that shows

the relationship between the number of clusters and the error or inertia of the clustering solution.

The number of clusters is increased from 1 to some maximum value, and the corresponding error

or inertia is calculated for each number of clusters. The plot of the error or inertia versus the

number of clusters is then examined to find the "Elbow point", which is the point at which the

error or inertia begins to level off and adding more clusters has a diminishing effect on the error.

Arina Antskaitis Bachelorarbeit

43

The Elbow method is a quick and easy way to get an estimate of the optimal number of clusters,

but it is not guaranteed to give the best solution for every dataset. It may not always be clear where

the "Elbow point" is, and different datasets may have different shapes to their error versus number

of clusters plot, making it difficult to determine the optimal number of clusters.

Based on the distribution of 154 nodes, the optimal number of clusters would be k=3, as we can

see in the Figure 16. This number cannot be accepted as being too small as the distance between

nodes in each cluster would exceed our distance upper boundary and therefore maximum travel

duration. A gray line is added to show the elbow the function decreasing at point 3. Greater number

of k will not cause any significant change, which is represented by a flattened curve closer to the

top. Our initial setting of k=7 must be met.

Figure 16 Elbow method

Another method often used to find optimal number of clusters based on the dataset: the DBI

method. It is a commonly used evaluation metric in cluster analysis to measure the similarity be-

tween the clusters in a clustering solution. The DBI is a scalar value that ranges from 0 to infinity,

with lower values indicating more desirable cluster solutions. The DBI is calculated as the average

similarity between each cluster and its most similar cluster, where similarity is defined as the maxi-

mum similarity between any 2 points in the 2 clusters. The similarity between 2 clusters is given by

the formula:

sim(Ci, Cj) = (d(Ci, Cbar) + d(Cj, Cbar)) / d(Ci, Cj) (2.1)

where Ci and Cj are 2 clusters, Cbar is the centroid of the cluster, and d is the distance metric used

to calculate the distance between the centroids of the 2 clusters.

In practice, the DBI is used to compare different clustering solutions and select the one with the

lowest DBI score. The DBI is sensitive to the number of clusters and the distribution of the data,

so it should be used in combination with other evaluation metrics and with a thorough understand-

ing of the problem and the data being analyzed.

To identify the optimal number of clusters for the given dataset a range of [2,7] was set as an input.

The output is a DBI value for each k number of clusters.

Arina Antskaitis Bachelorarbeit

44

Number of clusters DBI value

2 0.9356217481604577
3 0.7602312148279567
4 0.6076015907747261
5 0.6205491058955721
6 0.6588628266310895
7 0.6977902909186143

Table 9 Comparison of DBI values for k number of clusters

According to the DBI method, the most suitable number for clusters is k=4, which is not satisfying

our business requirements.

Nevertheless, we can set our predefined custom centers by using the K-Means++ option. This

algorithm is best suited to generate a small number of clusters. Compared to K-Means, centroids

are not chosen randomly, so there will be no “empty” cluster or 2 multiple centroids in one and

the same cluster, which significantly decreases the quality of clustering. For the same reason the

time it takes to form a cluster is drastically reduced. Each cluster is represented by its center or so-

called centroid which equals the arithmetic average value of all data points added to the cluster. So,

the centroid’s value might not be a data point itself. Data points will be iteratively assigned to its

nearest cluster. The following distribution is generated by randomly initialized centroids, which

were mapped earlier.

Figure 17 K-means++ clustering result

Following the initialization procedure described above and considering a set of requirements we

have, we set our depots as centroids. This way centroids will be in different, separate clusters, each

of them containing data points. Clustering has run successfully, outlining 7 centroids and its clus-

ters. K-Means optional parameters include an additional method “minit” for centroids initializa-

tion. So, the K-Means model can be initialized with our own centroids numpy array with geographic

coordinates. Overall, 6 tests were run and resulted in following clusters:

Test ID

Cluster
1 2 3 4 5 6

Berlin 22 24 25 21 15 22
Bonn 32 23 30 26 12 32

Duisburg 25 34 16 25 33 26

Arina Antskaitis Bachelorarbeit

45

Test ID

Cluster
1 2 3 4 5 6

Stuttgart 21 23 23 32 30 25
Hamburg 26 30 33 22 16 13
Munich 15 15 15 15 23 15
Dresden 13 5 12 13 25 21

Table 10 K-Means++ clustering results

Overall, distributions are evenly spread and can be used to form clusters that satisfy problem re-

quirements. Next tests were run with depots that already exist and should be considered for better

routing construction within one cluster.

Table 11 K-Means clustering with custom centroids

Running the algorithm showed that clustering remains stable and deliver the same result under

same conditions. Below are our initial depots and nodes assigned to them.

Depot Cluster size

Munich 22
Bonn 13

Hamburg 26
Dresden 15
Duisburg 32
Stuttgart 21
Berlin 25

Table 12 K-Means++ with depots

Important to notice that this algorithm is characterized by the formation of spherical shaped data

groups, which might negatively impact clustering outcomes. If clusters are expected to have more

complicated geometrical shapes, they will more likely be unsatisfying for further processing. In

such a situation Agglomerative Clustering might produce more desirable clusters.

2.7.3. Gaussian Mixture Model

The GMM is a probabilistic model that assumes that the data is generated from a mixture of several

Gaussian distributions. Each Gaussian distribution is characterized by its mean, covariance matrix,

Arina Antskaitis Bachelorarbeit

46

and weight. The weight represents the proportion of the data that is generated by each Gaussian

distribution.

GMM is a soft clustering method, meaning that each data point is assigned a probability of belong-

ing to each cluster. This contrasts with hard clustering methods, such as K-Means, where each data

point is assigned to exactly one cluster.

The GMM can be used for a variety of tasks, including density estimation, anomaly detection, and

clustering. To fit a GMM to a dataset, the algorithm iteratively estimates the parameters of the

Gaussian distributions (means, covariances, and weights) that best fit the data. This is typically

done using the Expectation-Maximization (EM) algorithm.

In terms of clustering, the GMM can be used to find clusters of similar data points by assuming

that the data points within each cluster are generated from a single Gaussian distribution. The

number of clusters can be specified or estimated from the data.

One advantage of the GMM is its ability to model more complex distributions than other clustering

methods, such as K-Means. For example, GMM can model multi-modal distributions, where mul-

tiple clusters have different shapes and sizes. Another advantage is that GMM can assign non-

uniform weights to each cluster, allowing it to capture the different densities of data points within

each cluster.

On the other hand, again compared to K-means, this method can produce different clustering

results with the same dataset. If different initial parameters are used, the model may converge to

different solutions, resulting in different clustering results.

Figure 18 GMM clustering result

The outcome has shown good clustering results, clearly dividing data points into nearest clusters.
Nevertheless, resulted centroids are not aligned with preset centroids that already exist and those
cannot be changed, so this algorithm is not suitable for the current solution.

GMM provides an option to set own predefined cluster centers. If custom centroids are specified
as the initial mean vectors, GMM uses these centroids as the starting point for the estimation of
the Gaussian parameters. In this case, the clustering results should be consistent each time the
algorithm is run, as the starting point for the estimation of the Gaussian parameters is fixed.

Arina Antskaitis Bachelorarbeit

47

However, it is important to note that the clustering results may still be affected by the choice of
the custom centroids. If the custom centroids are not representative of the underlying data struc-
ture, the GMM algorithm may produce suboptimal results. Additionally, the choice of the number
of Gaussian distributions in the mixture model can also impact the clustering results. Several cluster
variations were obtained and evaluated. Below distribution can be considered as a good option.

Figure 19 GMM clustering with pre-set centroids

Apart from setting own depots this method can be used to make a prediction for the most optimal
location of a new centroid, in case number of depots will grow.

2.7.4. Agglomerative Clustering

The Agglomerative Clustering is the most common type of hierarchical clustering used to group

objects in clusters based on their similarity. It uses a "bottom-up" approach with each observation

being its own cluster. With every merge of a cluster pair the algorithm is building a cluster hierarchy

until k number of clusters is obtained. The algorithm is provided with the sklearn.cluster.Agglom-

erativeClustering method and must be configured to meet clustering expectations. The k number

of clusters can be set as for K-Means++ or left as None, which sets the k=2. The default linkage

metric is set to Euclidean, which is used for the current implementation. The linkage criterion

should be chosen carefully as it can make a major impact on cluster results. The choice of linkage

sets the distance, which will be applied on all given observations and eventually determine the shape

of each cluster. It will merge those data points that minimize this criterion. Below is the description

of each linkage option:

 “average” - uses the average of the distances of each observation of the 2 sets;

 “complete” - uses the minimum distance between all observations in a pair comparison.

Produces more “spherical-like” clusters, compared to “single” option;

 “ward” - merges 2 data sets with the minimum variance;

 “single” - is the simplest merging criterion, it uses the minimum distance between all ob-

servations in a pair comparison.

Predefined depots were added to the nodes’ set to calculate means as well, so the result dataset

entails 166 nodes. Below clusters are built for every linkage type with cluster number k=7, Euclid-

ean metric and connectivity=False, we get different results that can be easily visually evaluated. The

“ward” linkage seems to be the most appropriate for our clustering intentions. The clustering with

this method is performed in less than a second.

https://en.wikipedia.org/wiki/Top-down_and_bottom-up_design

Arina Antskaitis Bachelorarbeit

48

Figure 20 Agglomerative clustering results

With this algorithm we can evaluate how good depots are positioned. Below figure illustrates cen-
troids that are calculated as a mean of a cluster and is marked with a cyan star. Really existing depots
are marked with an orange star.

Figure 21 Agglomerative clustering with pre-set centroids

From the illustration above it is obvious that actual depots are not optimally placed for the clusters
formed with this particular algorithm, but the nodes’ distribution is reasonable and cluster borders
are clear to see. Calculated centroids and nodes were assigned to its clusters.

Centroid’s optimal location
Number of

nodes

Berching 28
Grassau 37
Neritz 16

Heidhausen 35
Hagenburg 15

Niedernhausen 13
Tübingen 22

Table 13 Agglomerative clustering results

Arina Antskaitis Bachelorarbeit

49

2.7.5. Clustering Choice

For more detailed and precise clustering analysis all results of fitting algorithms were represented
in the table below.

Cluster ID City K-Means++ GMM

1 Munich 22
18

2 Bonn 13 12

3 Hamburg 26 28

4 Dresden 15 36

5 Duisburg 32
31

6 Stuttgart 21
15

7 Berlin 25 14

Table 14 Overview of the distribution for each depot

OPTICS algorithm is applicable to identify clusters of arbitrary shape and size, especially when
dealing with complex and noisy data sets. It is based on the density of points, not on their proximity
to cluster centers or means. Therefore, it results in clusters that have more diffuse boundaries since
the algorithm's grouping of points depends on their relative density to the surrounding points. This
approach makes OPTICS effective for clustering data with complex, non-spherical shapes, and
varying densities, but it also means that resulting clusters may not have well-defined borders. In
our case, clusters built with this algorithm, cannot satisfy our needs as they have too indistinct
borders.

We can expect that cluster centers formed with Agglomerative Clustering will not match our needs,
because they were originally calculated based on the average of all the data in the cluster. This
method can be used for predicting the location of a next depot, if the number of nodes will grow.

GMM and K-Means are both appropriate to cluster geodata with more than 150 locations. From
the visualization, K-Means produces better clusters as it assumes clusters are spherical. This ap-
proach will be used in the first phase of data clustering.

After selecting the most appropriate clustering method the next phase can be started, namely the
route sequencing.

2.8. Route Construction

To solve the symmetric VRP, we have to define a strategy of building routes for each cluster.

Solution finding is often split into 2 stages: route construction and route improvement. First stage

is designed in a way where one or more rule-compliant routes are iteratively compiled and saved.

During the second stage these routes are improved with the chosen local optimization function,

the most optimal will be selected. Route construction itself is a process, which can contain various

Arina Antskaitis Bachelorarbeit

50

steps and approaches. If any additional constraints apply, it can be solved iteratively with any mod-

ern heuristic. Results in the work of Uchoa et al. point to the fact that classical or so called “exact”

algorithms, compared to heuristics or metaheuristics, are not efficient to solve a VRP problem with

more than 200 nodes [34]. Therefore, new heuristic approaches were developed to solve large-

scaled problems. Some of the examples are Simulated Annealing (1983), Tabu Search (1986), iter-

ated local search. Another way to solve a VRP is to reduce its complexity to a TSP. Both problems,

as previously mentioned, are NP-hard, but VRP often contains additional constraints and can be

particularly large (with more than 1000 nodes), which can only be solved, if optimal, with multi-

phased heuristic or metaheuristic approaches. Taking that into account, the following procedure is

proposed: find a single optimal tour, including all cluster nodes and split it into single routes. As

mentioned in the work of Beasley - each capacitated VRP can be recycled to TSP [35]. Each cluster

VRP can be reduced to TSP with the splitting logic: giant tour will be separated into multiple routes.

This method, opposite to the cluster-first route-second, is described in Beasley’s research of 1983,

where he outlines the advantages of splitting the overall tour with an optimal procedure called

“Split”. An optimal TSP tour can be found with any chosen heuristic as final split paths are subject

to the splitting procedure. Work of [36] proves a CVRP tour in the best case can be shortened by

half with the splitting procedure. Overall, it is typically used in combination with other methods,

such as meta-heuristics or exact algorithms, to find good solutions to these problems.

2.9. Local optimization

The simplest example of a tour construction can be implemented with a NN algorithm, which

belongs to greedy algorithms. The tour starts at the depot and, as the name implies, the sequence

of nodes is built based on their distance from each other. The tour is constructed when all the

nodes are included, returning to the start mode. The implementation of this approach is simple but

can result in very long routes at the end, which doesn’t lead to an optimal solution. It can be

however improved afterwards. Weiqi Lie states that the running-time factor can be sufficiently

improved by the k-interchange heuristic [37]. His solution includes a 2-opt search optimization

technique, which is highly effective in local search. Local optimization can be applied to both sym-

metric and asymmetric neighborhood structure. This heuristic is a great choice for middle to big

size problems with more than 100 nodes. It iteratively improves a given solution by disconnecting

2 edges, swapping their positions, and then reconnecting them as long as the resulting route is

shorter than the original one. The initial solution can be also a random tour, which will be then

optimized by a series of 2-opt moves until it reaches a local optimum. It is guaranteed to find a

local optimum, but it may not necessarily find the global optimum, which is the shortest possible

route. To improve the chances of finding the global optimum, the 2-opt algorithm can be com-

bined with other optimization techniques. Local optimization can consider not only 2-opt moves,

but also 3-opt and k-opt moves. Since real-world scenarios allow for the possibility of sudden

changes, there may be a need to improve a section of the route. In the example below a route

optimization is achieved by swapping 2 neighboring nodes. It can be especially useful when its

edges are crossed.

Arina Antskaitis Bachelorarbeit

51

Figure 22 Initial unoptimized route

After swapping edges of pairs of nodes (2, 3) and (5, 6), we get a local optimization resulting in a
shorter route.

Figure 23 Route after 2-opt swap

The program implementation follows below steps:

1. Call the Solver function on input I and obtain an initial route sequence S = S0.

2. Repeat until S is the most optimal solution found:

a. Call subroutine B on inputs I and S.

b. If it returns a better solution S,’ set S = S’.

3. Return S and set it as a final solution.

3-opt is a more advanced version of the 2-opt optimization technique and is used to further im-

prove a solution by swapping three edges in a route. The basic idea behind 3-opt is to find three

edges in the route that cross each other and replace them with three new edges that result in a

shorter total route length. The 3-opt move can be applied when the current solution to the route

optimization problem has a suboptimal structure, such as a long detour or a suboptimal ordering

of the nodes. By making small changes to the solution using 3-opt, it is possible to improve the

solution and find a shorter route. Like 2-opt, 3-opt can be effective in finding short routes, but it

is not guaranteed to find the optimal solution.

Overall, 2-opt is a good starting point for solving the TSP or VRP and is simple to implement but

may get stuck in a local optimum. 3-opt can improve the solution found by 2-opt but is more

computationally expensive. Another algorithm that is based on 2-opt and is often applied for local

Arina Antskaitis Bachelorarbeit

52

optimization, was implemented by Brian W. Kernighan and Shen Lin in 1973 and is called a Lin-

Kernighan (LK) algorithm. It is considered the best for solving TSP. In general, LK is considered

to be the best [38] of the three for finding optimal solutions, but it is also the most computationally

expensive. It is a combination of the greedy construction heuristic and the local search heuristic.

The algorithm starts with a random solution and iteratively improves it by swapping the position

of 2 nodes in the route. The algorithm terminates when no further improvement can be made to

the current solution.

To compare some of the simple approaches that can be easily implemented for the solution, a case

scenario for 13 nodes was created. This specific number of nodes is set as a benchmark, as it is a

size of the minimal cluster, thus the tests should be successful in order to be stable for bigger

clusters. Below each scenario is run with an algorithm, comparing total time and distance required

to traverse all of the cities in the TSP route. Calculation time is expressed as a function of the size

of the input, usually denoted by "n" (i.e., the number of cities in the TSP problem), time complexity

refers to the actual amount of time taken by the algorithm to solve the TSP problem for a given

set of inputs.

Algorithm
Total traveling time

(hours)
Total
km

Calculation time
Worst time com-

plexity

Brute-Force 12.6 686.6188
4 hours, 48.73

seconds
O(n!)

K-Nearest Neigh-
bours

15.67 879.6279
3734 microsec-

onds
O(nlogn)

Lin-Kernighan and
k-opt

12.85 688.0483
16778 microsec-

onds
O(n2)

Table 15 Case scenario test

It is clear that the LK algorithm produces an optimal solution, which is indicated by the travel

duration and route distance. A Brute-Force and its solution as global optimum takes significantly

more time than other algorithms and is therefore not suitable for the task, but rather fits problems

with smaller set of nodes. Scenario testing has proven the effectiveness of LK approach. Keld

Helsgaun demonstrates effectiveness of his TSP-heuristic implementation, where k-opt is comple-

mented by LKH-2 (Lin-Kernighan algorithm variation) [48]. The computation complexity was sig-

nificantly minimized to be almost linear O(n), that is proportional to the input size. This hybrid

algorithm was chosen to be used to solve the formulated problem.

Arina Antskaitis Bachelorarbeit

53

3. Technologies for the Implementation

As a result, the following optimization framework is expected to be efficient for the formulated
problem and is to be realized with the proposed algorithm. It excludes the clustering process and
describes only the route construction and optimization phases. Cluster formation can be applied
when a customer or depot locations’ dataset was changed and requires update. In this case a clus-
ter algorithm based on K-Means method can be run, resulting in .csv files containing locations
assigned to each cluster.

Figure 24 Optimization framework

The implementation is to be designed with a user-friendly interface, so that every employee could
use it. It is intended to be used by the operational manager in planning weekly trips. The initial file
required for input, is based on the file system and standards of the company. The .csv or .xlsx file
contains multiple columns, relevant to the operations team, like the address of the customer, num-
ber of service units booked etc. This file is constantly and manually maintained and updated by the
employee. Data processing step happens in the Jupyter Notebook environment to eliminate false
or duplicated data. Cleaned data is then used to construct multiple routes in advance for chosen
customers in one particular cluster. Ideally it can also dynamically update a route when a change in
the route needed. Its construction is based on constraints and objective function: minimizing the
overall trip distance. The found solution goes through the postprocessing step in which it is
brought to the readable format such as a .csv file or visual schedule representation on the screen
for the user.

The choice of technological stack was made in favor of rich open-source and established software.
Operations research tools of Google (OR-tools) provide free access to its software libraries and
APIs with minimal restrictions to registered users. They are commonly used for constraint optimi-
zation, linear optimization, and flow and graph algorithms [39].

Python programming language and Jupyter Notebook make a natural combination for major func-
tionality we would need such as data cleaning, filtering, visualization, and analysis. We also expect
the IDE to be ideal for the number of calculations needed while data preparation and experiment-
ing itself.

This technological stack has proven itself to be a rational choice as it was used in the scientific
literature devoted to the VRP, for example by Kumar and Munagekar [40].

Arina Antskaitis Bachelorarbeit

54

The interface is implemented with a Flask web application framework, which is a good choice for
building web interfaces in Python. Flask is a lightweight and flexible web framework that allows
developers to quickly build web applications with minimal boilerplate code. It provides a simple
and intuitive way to handle HTTP requests and responses and supports many popular web devel-
opment features such as URL routing, template rendering, and session management. Flask is also
highly customizable, which means that developers can easily add their own functionality and third-
party libraries to their Flask applications. Additionally, Flask has a large and supportive community
of developers who provide many useful extensions and plugins to enhance the framework's capa-
bilities. Overall, Flask is a powerful and versatile web framework that can be used and is enough
for a web interface of our implementation. Implemented web UI can be seen in appendix D.

Following input is required to ensure data processing in the Jupyter lab development environment
and further export in a document file:

input needed from the user:

 customer and depot locations in .csv files;

The .scv file for drivers locations (file name used in the implementation: “coaches.csv”) was con-
verted to a DataFrame “coaches” for further manipulation and has a following structure:

Column
name

Coach City Latitude Longitude Address

Data type string string float float string

Table 16 Data structure for depots DataFrame

 nodes chosen for route construction;

 date, on which the route should start (“dd-mm-yyyy” format).

Data retrieved from imported files and input information from the user:

 distance and time matrices, built for all chosen cluster nodes;

 customer nodes’ geolocation;

A sheet from .xlsx file for customer locations (file name used in the implementation: “e2023.xlsx)
was extracted in order to convert it to a DataFrame “df_clean” for further manipulation. Final
DataFrame has a following structure, where “Kunde” represents a customer company name,
“Standort” the name of the customer geolocation, “PLZ” is a postal code:

Column
name

K
u
n

d
e

S
ta

n
d

o
rt

P
L

Z

C
h

ec
k
-

u
p

s

la
ti

tu
d
e

lo
n

gi
tu

d
e

ad
d
re

ss

Data type string string integer float float float string

Table 17 Data structure for depots DataFrame

 days labeled with data and status of either working or weekend day.

Minimal expected output as .csv file including:

 best found route path, consisting of node sequence;

Arina Antskaitis Bachelorarbeit

55

 total route travel time;

 total route length in km.

Arina Antskaitis Bachelorarbeit

56

4. Solution Approach

In this chapter the route sequencing step will be tested in cases of different scale and complex-
ity. Solution results will be first recorded and compared before applying the previously defined
approach of k-opt in combination with Lin-Kernighan algorithm. Its performance and adaptability
will be first tested on a bigger number of nodes - at the moment the calculation time will take too
long, for example more than 20 seconds. It will be applied on the case with continuously growing
complexity, thus increasing the number of nodes to visit and daily time limitations. The heuristic
approach mentioned above is an implementation of research fellow at Monash university in Mel-
bourne, Arthur Mahéo [41]. As mentioned by the author, his algorithm implementation is based
on the report of K. Helsgaun.

4.1. Route with no Constraints

To break down the complexity, we will start with a real use case, which can be solved as a TSP.
The solution should provide the most optimal route in terms of distance. At this stage we don’t
have any capacity or time constraint, for the input we need to know the nodes to visit and a depot.

Use Case 1: visiting four nodes labeled with the cluster “Hamburg”.

Description: four full working days, visiting four clients total.

Requirements:

 each node should be visited by the driver before going back to the depot;

 each node is visited only once;

 the route is built for one vehicle;

 route should start and end in the depot;

 route should be the most optimal (short).

Below are nodes to be visited and represented by its cities. When calculating distances, more accu-
rate addresses will be used, and distances retrieved with precise geolocation input:

1. Office location in Hamburg;

2. Bad Doberan;

3. Schwerin;

4. Wismar;

5. Lübeck.

Below are the nodes and depot illustrated on the map. In the next steps we will define a strategy to
find the optimal route and represent it in a visually appealing way.

Arina Antskaitis Bachelorarbeit

57

Figure 25 Nodes location

As TSP has been widely researched over the last 90 years, there is a variety of classical algorithms
and its variations. With a small number of nodes, we can use an implementation which traverses
all possible routes, which start and end in the depot. This can be accomplished with a Brute-Force
Algorithm, which is suitable for a rather small number of nodes and in this case able to generate a
solution within a reasonable period of time. One route consists of multiple trips. For now, there
are no constraints for a trip, except that only one trip can be done per day. The solution should be
simple to understand and guarantee the most optimal result possible. The algorithm of searching
for the best route can be described as follows:

1. Set the first node in the matrix as a depot - starting and ending point.

2. Generate all possible permutations (routes) of nodes excluding the depot, using iter.tools

library.

3. Add up all distances of each permutation and save the last found minimum sum.

4. Return the permutation sequence and its sum value.

The distance matrix is calculated with a separate dist() function, which takes a pair of geolocations
as input and returns the circle distance between them, applying a haversine formula. This formula
is more accurate for geolocations, in comparison to a Euclidean distance, which draws a straight
line between 2 points.

 Depot Bad Doberan Schwerin Wismar Lübeck

Depot 0 134.2802 90.4428 99.4743 49.8975
Bad Doberan 134.2802 0 61.4851 36.6110 84.4292

Schwerin 90.4428 61.4851 0 29.3484 49.4468
Wismar 99.4743 36.6110 29.3484 0 50.4468
Lübeck 49.8975 84.4292 49.5786 50.4468 0

Figure 26 Distance matrix

Result returned is a minimum value of 288.8832 km for the route [0, 2, 1, 3, 4, 0]. Nodes will be
visited in the following sequence: Hamburg - Schwerin - Bad Doberan - Wismar - Lübeck- Ham-
burg.

Arina Antskaitis Bachelorarbeit

58

Figure 27 Result of TSP approach

Tests were run thirty times and their times were saved in an array time_arr. Average time for build-
ing the route for this case resulted in 262.7 microseconds. The mode is however null, so although
the algorithm traverses all the routes possible, for a rather small problem it works really fast, satis-
fying our requirements.

To get more precise results we will use Google OR Tools to build a more accurate distance matrix
and prove if the route is truly most optimal. It provides a more comprehensive overview of the
distance and time amounts, as an API request is getting live data using geo coordinates of origin
and destination addresses. From the API response we then retrieve needed distance information
and build a new matrix, which we use as an input for our TSP function.

 Depot Bad Doberan Schwerin Wismar Lübeck

Depot 0 166.674 108.459 124.829 69.304
Bad Doberan 180.382 0 77.893 42.293 114.786

Schwerin 107.537 76.238 0 45.025 75.141
Wismar 124.718 42.921 49.562 0 59.122
Lübeck 69.491 101.77 75.174 59.925 0

Figure 28 Distance matrix from API response

With the new matrix we get the most reliable data which proves that the suggested route is indeed
the most efficient, which results in 355,603 km, which is pretty accurate, compared to the total
distance we get on www.google.de/maps.

Time matrix with values in hours shows the time duration for traveling between each of the 2
nodes and it satisfies our requirements as long as routes last less than 2 hours in one direction.

 Depot Bad Doberan Schwerin Wismar Lübeck

Depot 0 1.93 1.45 1.44 0.87
Bad Doberan 1.92 0 1.11 0.71 1.17

Schwerin 1.41 1.05 0 0.66 1.02
Wismar 1.38 0.73 0.69 0 0.64
Lübeck 0.84 1.17 1.04 0.68 0

Figure 29 Duration matrix from API response

Total time duration of the route according to the google API lasts 4,69 hours. In later steps, when
more nodes are added, the algorithm can be optimized in a way it builds the route considering the
upper travel duration boundary, in order to drop most uncomfortable routes for drivers.

Arina Antskaitis Bachelorarbeit

59

4.2. Date Assignment

A date assignment described here is not a classical time constraint, which is typical for the VRP
with time windows, but is useful to be able to plan and generate a timetable. We want to assign
each working day a specific date, excluding public holidays and weekends (Saturday and Sunday).
In python we can use an open-source library “holidays” to filter days which are officially holidays,
also a python “weekday” function of class date, which returns the day of the week as an integer.
For example, zero stands for Sunday and five stands for Saturday. Later it will be possible to build
longer routes, for example, which last several weeks.

We have created a Pandas DataFrame - a two-dimensional table-like data structure with labeled
axes (rows and columns) to store and manipulate data. Here we define seven columns:

1. "start" - node where a single trip starts.

2. "destination" - node where a single trip ends.

3. "duration" - travel time between 2 nodes in hours.

4. "km" - distance between 2 nodes in km.

5. "day" - date of each day of the travel route.

6. "week" - integer (numbers 1-4) for a week number.

7. "weekend" - binary value (0 or 1) defines if the date is a weekend or a working day.

For input we need a start date, on which the route will start, further days will be generated and
added to the DataFrame accordingly. Example for the route starting on 19-12-2022, which is Mon-
day.

Figure 30 Generated use-case plan

For comparison we input the date of the next day, 20-12-2022, as a start day. We can see that labels
for the “weekend” column changed accordingly, as days from 24-12-2022 to 26-12-2022 are public
holidays and rows were filled with almost no data. A designated column “week” shows the order
of weeks, increased by one, once a value in a column “day” is Monday. Work-free days were filled
with 0 in the “km” column to show no work trips should take place on holidays.

Figure 31 Plan with opt-in weekends

Arina Antskaitis Bachelorarbeit

60

Now it is important to add the next constraint, which does not allow the driver to stay at the
destination over weekends or public holidays. In this situation, the driver should always come back
to the depot. On the last working day before the weekend or holiday, the row will be marked with
the same date as previous day as the driver is going back to the depot after performing a service to
the customer. For that purpose, a new variable last_node will be added to save its index. Therefore,
an additional rule is needed, which can be described by following code, where isItHoliday(date)
function checks whether the next day is a public holiday or a weekend and if so, it duplicates the
previous date and calculates the distance between the current node and the depot:

if isItHoliday(next_day) == True:

 last_date = last_node.getLastWorkingDay() #get last date saved in the dataframe

 new_row = dataframe.addNewRow() #add new row to the dataframe

 new_row[“day”] = last_date # save the date in the new row

 new_row[“km”].append(getDistanceBetween(last_node, Depot) # save distance

Listing 1 Function function for defining weekends and weekdays

After adding these rules, we get a clearer view of the daily trips we have in the route as shown in
the Figure 32, including distance and time duration, retrieved with google API. The driver is going
back to the depot at the same working day when the last service was provided. With the python
module “datetime” we can easily manipulate the date, visualize it and use it for easier planning.

This way we get a more readable and clearer schedule, indicating weekends and holidays as non-

working days. On these days no trips are scheduled therefore start and destination locations are

marked as depot. Travel distance in km and time duration will be marked in its columns accord-

ingly.

Figure 32 Visual plan improvement

In this case, total route traveling distance, calculated with haversine formula, equals 338.780 km.
With google API we get (in the given moment) a total of 424.907 km. From now on we will save
distances in the “km” column, which were calculated with the google OR tools.

4.3. Route with more Nodes

Next, we simulate constructing routes for more nodes, considering holidays or weekends.

4.3.1. Planning a Weekly Route

We will test the robustness of the current implementation with more nodes, adding six more nodes,
which results in 11 nodes and a 11x11 distance matrix. Following dictionary was used for the im-
plementation:

Arina Antskaitis Bachelorarbeit

61

city_names = {0:"Depot", 1:"Bad Doberan",2:"Schwerin",3:"Wismar", 4:"Lübeck",

5:"Kobrow",6:"Mühlen Eichsen",7:"Greven",8:"Hevenbruch", 9:"Klütz", 10:"Hohen Sprenz"}

Listing 2 Dictionary with city names as input

This data was used for testing purposes only and is generated within the Solver function as input
for the optimization part. These indexes, here - keys, will be used to identify each particular node.
In the final implementation customer or depot geolocation data will be retrieved and processed
dynamically from the .csv file.

Extended TSP algorithm accepted 11 nodes and built the best route [0, 7, 6, 2, 5, 10, 1, 3, 9, 4, 8,
0] with 351.1295 km total traveling distance. This time route calculation took longer - 37.72 seconds
on average.

As the computation time rises with the number of nodes, a more efficient solving algorithm should
be used. The solution can be found much faster with the k-opt, optimized by the Lin–Kernighan
heuristic. It is more stable for big-sized problems and can be edited with additional constraints.
The algorithm procedure consists of 2 phases: first, a 2-opt move is made, which is swapping action
of 2 edges that optimizes the route. Number of swapped edges can be increased to 3-opt and more
until there is no optimization possible. With the Lin-Kernighan heuristic the precise number of
movies can be defined. It is known that route length N is optimal if no N-opt improvement move
exists. This number of moves will not be covered due to complexity O(nn).

Lin-Kernighan approach considers smaller moves, that constitute the k-move and includes the
lowest possible, while selecting the maximal k. The final solution includes new moves only in case
of the optimization, thus saving computation time. For the input it needs a start depot.

This approach was tested with the previously tested set of nodes (N=11) and succeeded to build
the same route, which is the most optimal, and showing significantly smaller time complexity: it
took less than 0,0022 seconds on average.

Below case is tested with another start_date input “2022-12-22”. As the route should be interrupted
by going back to the depot because of the holidays, the total distance has increased from 338,780
km to 486.0267, that is additional 147,25 km. It makes the built route suboptimal and does not
satisfy the requirement of minimizing the total travel cost. The trip distance from Bad Doberan
and Depot is the biggest and should be avoided. Thus, an additional refinement step, for example
local optimization or integer linear programming technique, is required.

Figure 33 Plan generated including long weekends or holidays

The most optimal path with the existing k-opt and Lin-Kernighan algorithm can be obtained in
case there are no weekends or holidays that can interrupt the planned route. Former can be avoided
with a weekly planning, starting on Monday or Tuesday and ending Thursday or Friday accordingly,
so that no weekends are included. A proposed relaxation is therefore to start weekly planning on
Monday or if it is a holiday, on Tuesday or any following day otherwise. The latter cannot be

Arina Antskaitis Bachelorarbeit

62

avoided unless the route is optimized by another approach. Below we modeled 2 scenarios for a
week, the first one starts on holiday and the second starts on a working Monday.

First scenario with the start day as holiday on 26 December 2022.

Figure 34 Plan generated for the start date as holiday or weekend

Second scenario with the start day as regular day on 2 January 2023.

Figure 35 Plan generated for regular working day as start date

Thus, total traveled distance remains the same and the algorithm is adapted for weekly planning
with or without holidays.

4.3.2. Local Paths’ Optimization

Next, we want to see if the algorithm can be adapted for longer routes, which involves two or more
weeks planning. The main goal is to optimize an algorithm if its initial planning is disrupted by
going back to the depot due to the weekly working time overload. This sequence can be visualized
as an array of indexes. The new route consists of more nodes – 10 and a depot. A sequence gener-
ated for TSP with the Lin-Kernighan algorithm implementation, would take 351.1295km total.
Now the simulation will include weekends or holidays, on which the driver has to go back to the
depot. Therefore, the route sequence will be divided into 3 parts: {1: [0, 7, 6, 2, 5, 10, 0]}, {2: [0,
1, 3, 9, 4, 0]}, {3: [0, 8, 0]}. Keys 1-3 indicate a calendar week and array numbers indicate geoloca-
tions, which they get according to their initial position in the list related to the particular cluster.
Zero represents a depot. Below we can see the splitting of the route by weeks.

Arina Antskaitis Bachelorarbeit

63

Figure 36 Plan generated for a longer time period

One approach that can be applied here can be seen as a local search and optimization, in which
each single path, consisting of more than 3 nodes, will be used as an input for the local iterative
optimization. The function we used for the initial route can be used for its parts as well to see if a
shorter path can be found. It can be simply achieved by the enumeration of nodes’ permutations
or Brute-Force algorithm, which always finds the best permutation among all generated. Its code
implementation was taken from [42] and is listed in the appendix A. It will not affect the calculation
time much, as the search space remains low. Function accepts a distance matrix and number of
nodes to build the route as an input. The difference after applying the optimization for this route
is shown in Figure 37, route visualization is shown in Figure 38.

Figure 37 LK applied to the route with 10 nodes

The improvement of the path after optimization resulted in 2.725 % or 18.15 km. Paths are visu-

alized below: first path is coloured red, second – with blue colour, third – black colour.

666,0076

647,8585

635
640
645
650
655
660
665
670

10

D
is

ta
n

ce
 in

 k
m

Number of nodes

LK applied to the route

No optimization Optimization applied

Arina Antskaitis Bachelorarbeit

64

Figure 38 With Lin-Kernighan generated route

To test a random approach each time paths’ initialization was run 1000 times and the shortest route

permutation among them was found. For random paths’ generation there are total of 10! nodes’

permutations possible which is 3,628,800 variations. All routes’ total distances were calculated and

sorted. The shortest route has resulted in the bigger overall route distance compared to the ap-

proach of combining Lin-Kernighan and Brute-force algorithms proposed in this thesis. Shortest

randomly generated route is marked green in the table below.

Test ID VRP paths Total km

1 [0, 4, 10, 1, 2, 7, 0], [0, 3, 5, 9, 6, 0], [0, 8, 0] 699.6973
2 [0, 2, 10, 1, 9, 6, 0], [0, 8, 3, 5, 7, 0], [0, 4, 0] 693.8483
3 [0, 8, 2, 6, 3, 7, 0], [0, 5, 1, 10, 9, 0], [0, 4, 0] 697.5169
4 [0, 2, 3, 1, 10, 9, 0], [0, 8, 6, 5, 4, 0], [0, 7, 0] 683.5454
5 [0, 7, 2, 10, 5, 4, 0], [0, 9, 6, 3, 1, 0], [0, 8, 0] 692.1587
6 [0, 10, 1, 5, 3, 6, 0], [0, 4, 9, 2, 7, 0], [0, 8, 0] 659.5953
7 [0, 7, 6, 1, 10, 9, 0], [0, 4, 5, 2, 3, 0], [0, 8, 0] 686.263
8 [0, 2, 10, 5, 6, 7, 0], [0, 8, 3, 1, 9, 0], [0, 4, 0] 694.448
9 [0, 4, 3, 5, 10, 9, 0], [0, 7, 6, 1, 2, 0], [0, 8, 0] 699.8399
10 [0, 6, 1, 10, 5, 8, 0], [0, 4, 2, 3, 9, 0], [0, 7, 0] 656.1643

Table 18 Bets path acquired with random generation

Paths of the shortest route found are visualized below: first path is coloured red, second – with

blue colour, third – black colour.

Arina Antskaitis Bachelorarbeit

65

Figure 39 Best randomly generated route

A NN algorithm was implemented for testing its quality and comparison to other approaches.

Function get_neighbors() accepts a distance matrix of all nodes and returns a sequence of visited

nodes and a list of distances which are then summed up to get the total route length. Its implemen-

tation can be found in the Appendix B.

Route generated with the NN algorithm was constructed once as a starting point is set to depot

and remains the same. Hamiltonian cycle or completed graph built with this algorithm resulted in

the route with following paths’ indexes: [0, 8, 4, 6, 2, 3, 9, 1, 10, 5, 7, 0]. The total route distance

is 389.6222 km. After applying splitting procedure considering as previously weekends and holi-

days, we get paths with lengths of [234.5517, 322.0256, 95.3552] and more than the doubled

overall route distance of 651.9325 km as driver has to go back to depot. Routes obtained after

Split procedure are visualized below: first path is coloured red, second – with blue colour, third –

black colour.

Figure 40 With NN generated route

In order that splitting has the least negative effect on the overall route length, specific constraints

and requirements of the problem instance should be evaluated in the context of the overall opti-

mization objective. It can be used in perspective for the simulation of real-case scenarios. In the

scope of this work a relaxed model can therefore not solve the real VRP but can serve as a basis

Arina Antskaitis Bachelorarbeit

66

for further model improvement and specification. Tests for chosen algorithms were run with fol-

lowing settings to achieve consistent observations:

Algorithm
Number of itera-

tions
Average calculation time (microsec-

onds)

Random 1000 42126
NN 1 1580

Lin-Kernighan + Brute-
Force

1 10091

Table 19 Comparison of time complexity

Each TSP route generated by compared algorithms was split into weekly trips and formed fol-

lowing VRP paths, each of them were calculated with the implementation that can be found in

appendices B, C.

Algorithm Path
Paths’ length

(km)
Total length

(km)

Random
{[0, 6, 1, 10, 5, 8,
0], [0, 4, 2, 3, 9,

0], [0, 7, 0]}

[328.0606,
232.7485,
95.3552]

656.1643

NN
{[0, 8, 4, 6, 2, 3,
0], [0, 9, 1, 10, 5

0], [0, 7, 0]}

[234.5517,
322.0256,
95.3552]

651.9325

Lin-Kernighan +
Brute-Force

{[0, 7, 6, 2, 5, 10,
0], [0, 1, 3, 9, 4,

0], [0, 8, 0]}

[309.4935,
270.4311,
67.934]

647.8586

Table 20 Comparison of route optimality

Overall, proposed algorithm found the most optimal route for a cluster, outperforming NN algo-

rithm by 0.62% and randomly generated and iteratively found shortest route by 1.27%.

Generating random routes and searching for the best permutation can be a useful heuristic to find

a feasible solution. However, this approach may not always guarantee an optimal solution.

To test a bigger problem, tests were run for a cluster, formed with the previously selected K-means

algorithm, which consists of 22 nodes and has its depot set as an address located in Munich. The

following dictionary with keys for ID and values for cities was created. Addresses are intentionally

not fully shown and represent only the city or district name, therefore names may show up multiple

times.

 0: 'Depot';

 1: 'Regensburg';

 2: 'Passau';

 3: 'Bayreuth';

 4: 'Nuremberg';

 5: 'Munich';

 6: 'Rosenheim';

Arina Antskaitis Bachelorarbeit

67

 7: 'Augsburg';

 8: 'Weilheim';

 9: 'Ingolstadt';

 10: 'Landshut';

 11: 'Munich';

 12: 'Munich';

 13: 'Fürstenfeldbruck';

 14: 'Nuremberg';

 15: 'Fürth';

 16: 'Ingolstadt';

 17: 'Rummelsberg';

 18: 'Munich';

 19: 'Pegnitz';

 20: 'Cham';

 21: 'Nuremberg';

 22: 'Ismaning'.

These nodes and its geodata will be used further to tests chosen approaches for building a TSP

route, as well as VRP paths after applying a Split procedure. From the table below it is clear that

the TSP route construction is best performed by the last listed algorithm. It can be assumed that is

can be also a good option to use in solving a VRP.

Route construc-
tion algorithm

TSP route
length (km)

VRP paths
VRP route
length (km)

Random + sort 1604.71
[0, 22, 6, 12, 11, 9, 0], [0, 1, 17, 7, 5, 13, 0],
[0, 20, 2, 3, 16, 19, 0], [0, 14, 4, 15, 21, 8, 0],

[0, 18, 10, 0]
2025.44

NN 1126.84
[0, 12, 5, 18, 11, 22, 0], [0, 13, 7, 16, 9, 1, 0],
[0, 20, 10, 6, 8, 17, 0], [0, 14, 4, 21, 15, 19,

0], [0, 3, 2, 0]
1935.64

Lin-Kernighan
+ Brute-Force

851.09
[0, 22, 10, 2, 20, 1, 0], [0, 14, 21, 15, 3, 19,
0], [0, 16, 9, 17, 4, 7, 0], [0, 18, 11, 6, 8, 13,

0], [0, 5, 12, 0]
1359.8

Table 21 Comparison of approaches for a longer route

Despite the given results it cannot be claimed that the proposed algorithm will always result in the

most optimal solution compared to other algorithms mentioned and listed above. Further tests

might reveal that there is an even better solution possible. To test this assumption, we run tests for

all clusters, found previously with the K-Means algorithms and find VRP routes, modelling a

Arina Antskaitis Bachelorarbeit

68

weekly planning with five working days and two weekends. Each working day driver visits a single

customer and performs a service. Throughout the work week, driver visits all customers, and re-

turns to the depot at the weekend.

In the case of TSP, NN algorithm can simulate one way of manual route planning. It can be a

simple and effective method for finding an initial tour. However, it is not guaranteed to generate

an optimal tour. The quality of the solution produced by NN depends on the order in which the

cities are visited, which can be influenced by the number of nodes and the starting location. Such

approach can be used to construct a route for up to a few hundreds of nodes, above that limit it

becomes computationally infeasible to compute the distances between all pairs of nodes. The NN

approach was initially considered as not efficient enough to solve the VRP as it is alone not suffi-

cient since it does not take into account the capacity constraints or time windows that are typically

present in VRP instances.

A hybrid approach proposed here has shown good results, especially when applying the local op-

timization. LK algorithm is highly recommended for TSP problems of any size, because of the

quality of the solution and time performance. An additional local optimization has improved the

length of the resulting route.

The Split procedure is a heuristic commonly used in VRPs to convert a single tour, which repre-

sents the solution to the TSP, into multiple sub-tours that can be assigned to individual vehicles.

This procedure involves identifying a set of nodes in the TSP tour that can serve as natural break-

points to split the tour into multiple sub-tours. In our case, the tour was split to create paths rep-

resenting weeks, including weekends when the driver does not make trips. These sub-tours are

easier to manage and perform service for individual vehicles.

However, the Split procedure does not take into account the remoteness of the last node to the

depot, which can lead to suboptimal solutions. To address this issue, we applied local optimization

using enumeration. This approach can improve the sub-tours, but it may get stuck in a local opti-

mum. A local optimum is a solution that is better than all nearby solutions, but not necessarily

better than all possible solutions to the problem. In other words, it's a point in the search space

where the objective function has the highest (or lowest) value in a particular neighbourhood of that

point, but not necessarily the overall highest (or lowest) value.

Arina Antskaitis Bachelorarbeit

69

Figure 41 Algorithm applied to all cluster data

One way to show the difference between the results of a proposed hybrid approach and manual
planning for solving VRPs is to compare the objective function values of the two approaches. The
objective function is to minimize the total distance travelled by the vehicles and serves as a quan-
titative measure of the quality of a solution. It will be used to compare the efficiency and effective-
ness of different planning methods. The lower the total distance is, the more efficient is the solu-
tion. An average route improvement for all clusters after local optimization with Lin-Kernighan
approach reached 2.06% or 185.88 km overall shorter trips.

Cluster
Cluster size

(nodes)
Random genera-

tion
KNN

LK+ local opti-
mization

Munich 22 1880.66 1935.64 1359.8
Dresden 15 1305.79 1245.71 1267.25
Stuttgart 21 1438.48 1402.99 1246.54
Duisburg 32 1354.06 1134.986 817.4

Berlin 25 2047.17 1798.72 1607.93
Hamburg 26 2545.27 1895.1 1697.77

Bonn 13 1084.16 1211.957 1119.7

Table 22 Minimal routes found with different approaches

The proposed approach was able to outperform other algorithms in five cases out of seven to find

an optimal VRP trip. The problem with local optima is that they can trap optimization algorithms

and prevent them from finding the global optimum, which is the best possible solution to the

problem. If an optimization algorithm gets stuck in a local optimum, it may not be able to escape

and find a better solution. That can be noticed for single paths of the route – as they are con-

structed, they can be optimized only in scope of nodes they consist of, but not in scope of the

whole set of nodes. This approach can be improved to avoid local optima by considering following

techniques:

 Stochastic search algorithms: Stochastic search algorithms, such as genetic algorithms, Sim-

ulated Annealing, or Tabu Search, use randomized search strategies to explore the search

1381,7
1346,69

1247,06

845,38

1635,36
1720,98

1128,76
1359,8

1267,26 1246,54

817,4

1611,56
1697,77

1119,7

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Munich Dresden Stuttgart Duisburg Berlin Hamburg Bonn

D
is

ta
n

ce
, k

m

Cluster name

Cluster routes

No optimization Optimization applied

Arina Antskaitis Bachelorarbeit

70

space more broadly and avoid getting trapped in local optima. These algorithms can be

particularly effective when the search space is complex and has many local optima.

 Multiple starting points: Running the optimization algorithm from multiple starting points

can help to increase the chances of finding a global optimum rather than getting trapped

in a local optimum. This approach can be especially effective when there are multiple good

solutions to the problem.

 Neighbourhood search: Neighbourhood search algorithms work by starting with a good

solution and iteratively making small changes to the solution to explore nearby solutions.

This approach can help to avoid local optima by gradually moving away from suboptimal

solutions.

 Problem-specific constraints: Incorporating domain-specific constraints into the optimiza-

tion problem can help to reduce the number of local optima and make the search space

easier to navigate. For example, including constraints such as time windows or capacity

limits can help to eliminate infeasible solutions and reduce the size of the search space.

 Machine learning and data-driven methods: Machine learning and data-driven methods can

be used to learn from historical data and identify patterns in the data that can be used to

guide the optimization process. For example, using machine learning to predict which cus-

tomers are likely to order similar items or to predict traffic patterns can help to improve

the efficiency of the optimization algorithm and avoid local optima.

Lin-Kernighan algorithm is a more advanced method that has been shown to produce high-quality

solutions for TSP. The algorithm is based on a local search technique that iteratively improves an

initial solution by exchanging pairs of edges in a way that reduces the length of the tour. The

algorithm has been widely used in the literature for most optimal TSP solution. In our case it has

shown the best results to construct a TSP solution within a considerable time period and can be

used in planning routes consisting of one day trips to different customers. In contrast to the Brute-

Force algorithm, which takes hours to solve TSP for 13 nodes, it can be easily used to construct a

route for hundreds of nodes.

In order to solve a VRP, Lin-Kernighan algorithm can be leveraged by conditional constraints,

which would be incorporated into the search process. This can be done by modifying the cost

function or by pre-computing certain costs using dynamic programming. With dynamic program-

ming, the cost of certain subsets of the cities can be precomputed and these pre-computed costs

can be used to guide the search for a better tour. The cost function in Lin-Kernighan is usually

based on the distance between cities. However, it can be modified with additional constraints, such

as time windows or capacity constraints. This can be done by adding penalty terms to the cost

function, which increase the cost of violating the constraints.

In summary, while generating random routes and searching for the best permutation can be a useful

heuristic for VRP, the Lin-Kernighan algorithm is a more advanced and reliable method that is

likely to produce high-quality solutions.

Arina Antskaitis Bachelorarbeit

71

5. Outcomes

The profitability of a business that provides business-to-business services is directly impacted by

workforce planning and route building. These tasks are critical for eliminating unproductive time

gaps and reducing fuel costs. The objective of this thesis was to identify opportunities for enhanc-

ing and automating route planning, with the implemented algorithm tested across various scenar-

ios. While the implementation of the reduced VRP was successful, the capacitated multi-depot

problem requires more extensive research and programming efforts.

This thesis focused on the VRP in the context of a healthcare services company, exploring the

specific constraints and requirements of the industry. An objective function was developed and

incorporated into a mathematical formulation to guide the analysis. The dataset provided by the

company was formatted for a proper analysis. It revealed the need of a clustering method in order

to group the data based on its similarity. With predefined cluster centres, all data points were as-

signed to a particular cluster with a K-Means method. It also shown to be useful in predicting

further centroids in case the dataset will grow and there will be a need in a new depot. From the

business view it is highly profitable as it simplifies and speeds up a hiring process for the HR and

reduces overall driving costs.

Next a full and relaxed versions of a realistic VRP were developed and implemented. These could

serve as a basis for the development of a two-phased algorithm. With the decomposition, problem

was divided into subproblems, making it more tractable. It was attempted to apply a route first -

cluster second approach to solve each single VRP problem – a big tour was first constructed with

a Lin-Kernighan implementation and then locally optimized with an enumeration of all node se-

quences. This approach was compared to other two – NN and random paths generation and sort-

ing approaches, which can be seen as a quick alternative to solve a relaxed VRP, but are unproduc-

tive for real VRP, where the complexity and search scope grows with a number of limitations.

We came to a conclusion that a Lin-Kernighan approach successfully solves middle and big size
TSP and can be practically used for scheduling vehicle routes, considering constraints this specific
problem might have. It can be used to solve the VRP as well, but first, it should be adapted to the
specifics of the VRP by introducing additional constraints, such as vehicle capacity and time win-
dows. This can be done by modifying the cost function used by Lin-Kernighan to take into account
these constraints. For example, the cost function can include penalty terms for violating capacity
constraints or time windows.

Arina Antskaitis Bachelorarbeit

72

Another approach is to use Lin-Kernighan as a local search method within a larger metaheuristic

framework, such as the Clarke and Wright savings algorithm or the Sweep algorithm. In this ap-

proach, Lin-Kernighan is used to improve the quality of the initial solution generated by the me-

taheuristic, by iteratively modifying the tour to decrease its length.

There are also other variations of Lin-Kernighan that have been specifically designed to solve the

VRP, such as the Vehicle Routing Problem Lin-Kernighan Heuristic (VRP-LKH) and the Capaci-

tated VRP Lin-Kernighan Heuristic (CVRP-LKH).

Overall, while Lin-Kernighan was originally developed for the TSP, it can be adapted to solve the

VRP by introducing additional constraints or using it as a local search method within a larger me-

taheuristic framework.

Arina Antskaitis Bachelorarbeit

73

References

[1] Accenture, "Coronavirus: Supply Chain Disruption. Accenture Consulting," 16 March 2020.

[Online]. Available: https://www.accenture.com/be-en/insights/consulting/coronavirus-

supply-chain-disruption. [Accessed 2 November 2022].

[2] G. Dantzig and J. Ramser, "The truck dispatching problem," Management science, vol. 6, no. 1,

pp. 80-91, 1959.

[3] M. M. Solomon and J. Desrosiers, "Survey paper—time window constrained routing and

scheduling problems," Transportation science, vol. 22, no. 1, pp. 1-13, 1988.

[4] G. Laporte, M. Gendreau, J. Y. Potvin and F. Semet, "Classical and modern heuristics for the

vehicle routing problem," International transactions in operational research, vol. 7, no. 4-5, pp. 285-

300, 2000.

[5] Opex Analytics, "OPEX 101: Vehicle Routing Problems," Medium, 6 September 2019.

[Online]. Available: https://medium.com/opex-analytics/opex-101-vehicle-routing-

problems-262a173f4214. [Accessed 24 October 2022].

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to algorithms, MIT

press., 2022.

[7] D. Pisinger and S. Ropke, "A general heuristic for vehicle routing problems," Compu-ters &

operations research, vol. 34, no. 8, pp. 2403-2435, 2007.

[8] H. R. Lourenço, O. C. Martin and T. Stützle, "Iterated local search," Handbook of metaheuristics,

pp. 129-168, 2019.

[9] G. Laporte, Y. Nobert and S. Taillefer, "Solving a family of multi-depot vehicle routing and

location-routing problems," Transportation science, vol. 22, no. 3, pp. 161-172, 1988.

[10] P. Fermin Cueto, I. Gjeroska and A. Sola Vilalta, "A solution approach for multi‐trip vehicle

routing problems with time windows, fleet sizing, and depot location," Networks, vol. 78, no.

4, pp. 503-522, 2021.

[11] ADAC, "VW Caddy - Model Overview," ADAC Autokatalog, 2021. [Online]. Available:

https://www.adac.de/rund-ums-fahrzeug/autokatalog/marken-modelle/vw/vw-caddy/.

[Accessed 12 November 2022].

[12] G. Laporte, P. Toth and D. Vigo, "Vehicle routing: historical perspective and recent

contributions," EURO Journal on Transportation and Logistics, vol. 2, pp. 1-4, 2013.

[13] C. Contardo and R. Martinelli, "A new exact algorithm for the multi-depot vehicle routing

problem under capacity and route length constraints," Discrete Optimization, vol. 12, pp. 129-

146, 2014.

Arina Antskaitis Bachelorarbeit

74

[14] T. R. P. Ramos and I. G. Maria, "Solving a multi-product, multi-depot vehicle routing

problem by a hybrid method.," in Proc. of the 13th Portuguese Conf. on Artificial Intelligence (EPIA),

Lisbon, Portugal, 2011.

[15] T. Bulhoes, M. H. Ha, R. Martinelli and T. Vidal, "The vehicle routing problem with service

level constraints," European Journal of Operational Research, vol. 265, no. 2, pp. 544-558, 2018.

[16] G. Laporte, M. Desrochers and Y. Nobert, "Two exact algorithms for the distance‐

constrained vehicle routing problem," Networks, vol. 14, no. 1, pp. 161-172, 1984.

[17] M. Dufay, C. Mathieu and H. Zhou, "An Approximation Algorithm for Distance-

Constrained Vehicle Routing on Trees," arXiv preprint arXiv:2210.03811, 2022.

[18] A. K. Garside and N. R. Laili, “A cluster-first route-second heuristic approach to solve the

multi-trip periodic vehicle routing problem,” Jurnal Teknik Industri, vol. 20, no. 2, pp. 172-181,

2019.

[19] A. Choudhari, A. Ekbote and P. Chaudhuri, "Capacitated Vehicle Routing Problem Using

Conventional and Approximation Method," arXiv preprint arXiv:2208.00046.

[20] F. Meng, Y. Ding, W. Li and R. Guo, "Customer-oriented vehicle routing problem with

environment consideration: two-phase optimization approach and heuristic solution,"

Mathematical Problems in Engineering, vol. 2019, pp. 1-15, 2019.

[21] Y. Shi, L. Lv, F. Hu and Q. Han, "A heuristic solution method for multi-depot vehicle

routing-based waste collection problems," Applied Sciences, vol. 10, no. 7, p. 2403, 2020.

[22] Y. J. Gong, J. Zhang, O. Liu and R. Z. Huang, "Optimizing the vehicle routing problem with

time windows: A discrete particle swarm optimi-zation approach," IEEE Transactions on

Systems, Man, and Cybernetics, vol. 42, no. 2, pp. 264-267, 2011.

[23] S. Geetha, G. Poonthalir and V. T. Vanathy, “A Hybrid Particle Swarm Optimization with

Genetic Operator for Vehicle Routing Problem,” Journal of Advances in Information Technology,

vol. 1, no. 4, pp. 181-188, 2010.

[24] W. Ho, G. T. Ho, P. Ji and H. C. Lau, "A hybrid genetic algorithm for the multi-depot vehicle

routing problem," Engineering applications of artificial intelligence, vol. 21, no. 4, pp. 548-557, 2008.

[25] J. Qian and R. Eglese, "Fuel emissions optimization in vehicle routing problems with time-

varying speeds," European Journal of Operational Research, vol. 248, no. 3, pp. 840-848, 2016.

[26] M. A. Islam, Y. Gajpal and T. Y. ElMekkawy, "Hybrid particle swarm optimization algorithm

for solving the clustered vehicle routing problem," IEEE Transactions on Intelligent

Transportation Systems, vol. 21, no. 2, pp. 632-642, 2020.

[27] L. Cassettari, M. Demartini, R. Mosca, Reve, R. Revetria and F. Tonelli, "A multi-stage

algorithm for a capacitated vehicle routing problem with time constraints," Algorithms, vol.

11, no. 5, p. 69, 2018.

[28] V. Lesch, M. König, S. Kounev and A. Stein, "Tackling the rich vehicle routing problem with

nature-inspired algorithms," Applied Intelligence, vol. 52, no. 8, pp. 9476-9500, 2022.

Arina Antskaitis Bachelorarbeit

75

[29] J. Ramchandran and F. Marshall L., “A generalized assignment heuristic for vehicle routing,”

Networks, vol. 11, no. 2, pp. 109-124, 1981.

[30] T. Paolo and V. Daniele, “The vehicle routing problem,” Society for Industrial and Applied

Mathematics, 2002.

[31] B. Golden, S. Raghavan and E. Wasil, The Vehicle Routing Problem: Latest Advances and

New Challenges, New York, NY: Springer, 2008.

[32] L. Du and R. He, “Combining nearest neighbor search with tabu search for large-scale vehicle

routing problem,” Physics Procedia, vol. 25, pp. 1536-1546, 2012.

[33] J. R. Montoya-Torres, J. L. Franco, S. N. Isaza, H. F. Jiménez and N. Herazo-Padilla, "A

literature review on the vehicle routing problem with multiple depots," Computers & Industrial

Engineering, vol. 79, pp. 115-129, 2015.

[34] E. Uchoa, D. Pecin, A. Pessoa, M. Poggi and A. Subramanian, "New benchmark instances

for the capacitated vehicle routing problem," European Journal of Operational Research, vol. 257,

no. 3, pp. 845-858, 2017.

[35] J. E. Beasley, "Route first—cluster second methods for vehicle routing," Omega, vol. 11, no.

4, pp. 403-408, 1984.

[36] C. Archetti and M. G. Speranza, "A survey on matheuristics for routing problems," EURO

Journal on Computational optimization, vol. 2, no. 4, pp. 223-246, 2014.

[37] W. Li, "A parallel multi-start search algorithm for dynamic traveling salesman problem," in

Experimental Algorithms: 10th International Symposium, SEA 2011, Kolimpari, Chania, Crete, Greece,

May 5-7, 2011. Proceedings 10, Springer, 2011, pp. 65-75.

[38] H. K. Tsai, J. M. Yang, Y. F. Tsai and C. Y. Kao , "An evolutionary algorithm for large

traveling salesman problems," IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), vol. 34, no. 4, pp. 1718-1729, 2004.

[39] "Google OR-Tools documentation," Google Developers, [Online]. Available:

https://developers.google.com/optimization/. [Accessed 25 November 2022].

[40] A. Kumar and A. Munagekar, Inventory, Storage and Routing Optimization with

Homogenous Fleet in the Secondary Distribution Network Using a Hybrid VRP, Clustering

and MIP Approach, Springer, 2022, pp. 413-427.

[41] A. Mahéo, "Implementing Lin-Kernighan in Python," Arthur Maheo, 2021. [Online].

Available: https://arthur.maheo.net/implementing-lin-kernighan-in-python/. [Accessed 8

December 2022].

[42] N. Singh, “Traveling Salesman Problem (TSP) Implementation,” GeeksForGeeks, 31 January

2023. [Online]. Available: https://www.geeksforgeeks.org/traveling-salesman-problem-tsp-

implementation/. [Accessed 2 February 2023].

[43] C. Prins, P. Lacomme and C. Prodhon, "Order-first split-second methods for vehicle routing

problems," Transportation Research Part C: Emerging Technologies, vol. 40, pp. 179-200, 2014.

Arina Antskaitis Bachelorarbeit

76

[44] K. C. Tan, L. H. Lee, Q. L. Zhu and K. Ou, "Heuristic methods for vehicle routing problem

with time windows," Artificial intelligence in Engineering, vol. 15, no. 3, pp. 281-295, 2001.

[45] T. Kanungo, D. M. Mount, N. S. Netanyahu, A. Y. Wu, R. Silverman and C. D. Piatko, "An

efficient k-means clustering algorithm: Analysis and implementation," IEEE transactions on

pattern analysis and machine intelligence, vol. 24, no. 7, pp. 881-892, 2002.

[46] T. Ellinger, G. Beuermann and R. Leisten, Operations research: eine Einführung, Springer,

2013.

[47] M. Mirabi, N. Shokri and A. Sadeghieh, "Modeling and solving the multi-depot ve-hicle

routing problem with time window by considering the flexible end depot in each route,"

International Journal of Supply and Operations Management, vol. 3, no. 3, pp. 1373-1390, 2016.

[48] R. He, W. Xu, J. Sun and B. Zu, "Balanced k-means algorithm for partitioning areas in large-

scale vehicle routing problem," Third International Symposium on Intelligent Information Technology

Application, vol. 3, pp. 87-90, 2009.

[49] L. Schrage, "Formulation and structure of more complex/realistic routing and scheduling

problems," Networks, vol. 11, no. 2, pp. 229-232, 1981.

[50] R. Russell and W. Igo, "An assignment routing problem," Networks, vol. 9, no. 1, pp. 1-17,

1979.

[51] A. Pessoa, R. Sadykov, E. Uchoa and F. Vanderbeck, "A generic exact solver for vehicle

routing and related problems," Mathematical Programming, vol. 183, pp. 483-523, 2020.

[52] K. Helsgaun, "General k-opt submoves for the Lin–Kernighan TSP heuristic," Mathematical

Programming Computation, vol. 1, pp. 119-163, 2009.

[53] F. Cavaliere, E. Bendotti and M. Fischetti, "An integrated local-search/set-partitioning

refinement heuristic for the Capacitated Vehicle Routing Problem," Mathematical Programming

Computation, vol. 14, no. 4, pp. 749-779, 2022.

[54] C. Prins, N. Labadi and M. Reghioui, "Tour splitting algorithms for vehicle routing

problems," International Journal of Production Research, vol. 47, no. 2, pp. 507-535, 2009.

[55] C. Archetti, M. W. P. Savelsbergh and M. G. Speranza, "Worst-case analysis for split delivery

vehicle routing problems," Transportation science, vol. 40, no. 2, pp. 226-234, 2006.

[56] C. Jean-François, L. Gilbert, S. Martin and V. Daniele, “Vehicle Routing,” in Transportation,

Elsevier, 2007, pp. 195-224.

[57] Y.-M. Shen and R.-M. Chen, “Optimal multi-depot location decision using particle swarm

optimization,” Advances in Mechanical Engineering, vol. 9, no. 8, 2917.

[58] J. Sajaykumar, "Vehicle Routing Problem and Its Variants," 3 July 2019. [Online]. Available:

https://www.linkedin.com/pulse/vehicle-routing-problem-its-variants-sajaykumar-j/.

[Accessed 26 October 2022].

Arina Antskaitis Bachelorarbeit

77

[59] R. Gour, "Heuristic Search in Artificial Intelligence - Python," 5 October 2018. [Online].

Available: https://medium.com/@rinu.gour123/heuristic-search-in-artificial-intelligence-

python-3087ecfece4d. [Accessed 2 November 2022].

[60] K. Helsgaun, "An effective implementation of the Lin–Kernighan traveling salesman

heuristic," European journal of operational research, vol. 126, no. 1, pp. 106-130, 2000.

[61] A. Jungwirth, M. Frey and R. Kolisch, The vehicle routing problem with time windows,

flexible service locations and time-dependent location capacity, 2020.

Arina Antskaitis Bachelorarbeit

78

Appendices

Appendix A: TSP Solver

from sys import maxsize

from itertools import permutations

from datetime import datetime

time_arr = []

function to implement TSP

def TSPSolution(graph, s, cities):

 # keep all vertex other than the starting point

 vertex = []

 # traverse the diagram

 for i in range(cities):

 if i != s:

 vertex.append(i)

 # keep minimum weight

 min_path = maxsize

 next_permutation = permutations(vertex)

 best_path = []

 for i in next_permutation:

 # store current Path weight(cost)

 current_pathweight = 0

 # compute current path weight

 k = s

 for j in i:

 current_pathweight += graph[k][j]

 k = j

 current_pathweight += graph[k][s]

 # update minimum

 if current_pathweight < min_path:

 min_path = current_pathweight

 best_path = [s]

 best_path.extend(list(i))

 best_path.append(s)

 return min_path, best_path

Listing A. 1 Algorithm to find TSP based on Brute-Force approach

Arina Antskaitis Bachelorarbeit

79

Appendix B: KNN Algorithm

import random

def get_neighbors(cluster,city_name):

 distances = []

 indexes = []

 indexes.append(0)

 matrix = addDepot(cluster, city_name) # function to add the depot and create a dis-

tance matrix

 for row in matrix:

 row_values = matrix["point_"+str(indexes[-1]+1)]

 sorted_row = sorted(row_values)

 row_list = row_values.tolist()

 for i in range(len(row_list)): #finding the smallest weight in the matrix

 second_smallest = sorted_row[i]

 second_smallest_index =row_list.index(second_smallest)

 if(second_smallest_index not in indexes and i>0):

 dist = row_values["point_"+str(second_smallest_index+1)]

 distances.append(dist)

 indexes.append(second_smallest_index)

 break

 distances.append(matrix["point_"+str(indexes[-1]+1)]["point_1"])

 indexes.append(0)

 k=0

 p=6

 sum_arr = []

 while k < len(indexes): # create an array of indexes

 arr = indexes[k:p]

 k=p

 p+=5

 sum_arr.append(arr)

 for i in sum_arr: # adding 0 to indicate a depot

 if i[0]!=0:

 i.insert(0,0)

 if i[-1]!=0:

 i.append(0)

 cluster = {}

 cl_key = 0 # create a dictionary to assign paths to weeks

 for i in range(1,len(sum_arr)):

 cluster[cl_key] = sum_arr

 cl_key+=1

Arina Antskaitis Bachelorarbeit

80

 NN_paths_total = calcAll(cluster,matrix) # function to calculate total distance of

the trip

 return sum(NN_paths_total) #Overall paths' distances sum

Listing B. 1 Algorithm for finding NN

Appendix C: Random VRP Path Generation

def findShortestRand(n, city, city_name):

 results = []

 # adding a depot to build a distance matrix

 depot = coaches.loc[coaches["City"]==city_name]

 d_list = depot[["Latitude","Longitude"]].values

 d_list = d_list[0].flatten().tolist()

 lat = d_list[0]

 lon = d_list[1]

 lat = np.float64(lat)

 lon = np.float64(lon)

 new_row = pd.DataFrame({'latitude': [lat], 'longitude': [lon]})

 city = pd.concat([new_row, city]).reset_index(drop=True)

 matrix =createDistanceMatrix(city)

 #finding the best route in 1000 iterations

 for i in range(1000):

 path = genRandpaths(n)

 result = calcAll(path, matrix)

 results.append([path, result])

 for i in range(len(results)):

 results[i][1] = sum(results[i][1])

 sorted_results = sorted(results, key=lambda x: x[1])

 return sorted_results[0]

#generating VRP paths representing weeks

def genRandpaths(n):

 rand_path = genRan(n)

 k=0

 p=6

 sum_arr = []

 while k < len(rand_path)-1 :

 arr = rand_path[k:p]

 k=p

 p+=5

 sum_arr.append(arr)

 for i in sum_arr:

Arina Antskaitis Bachelorarbeit

81

 if i[0]!=0:

 i.insert(0,0)

 if i[-1]!=0:

 i.append(0)

returning an array of VRP paths

 return sum_arr

Listing C. 1Algorithm for random path generation

Appendix D: UI of the Web Application

The application can be started from the desktop with the path to the .bat file which starts the main

.py programm, so that the employee does not need to start the file from the command-line

interface.

Figure D. 1 Start screen

Figure D. 2 Choosing a cluster from the list of available depots

Arina Antskaitis Bachelorarbeit

82

Figure D. 3 Choosing nodes and a start date of the route

	List of Abbreviations
	List of Figures
	List of Tables
	1. Introduction
	1.1. Goal of the Thesis
	1.2. Research Structure

	2. Methodology
	1.
	2.
	2.1. On the Tour Planning Problem
	2.2. Route Planning for Multiple Start Depots and Capacitated Resources
	2.3. Complexity Analysis
	1.
	2.
	2.1.
	2.2.
	2.3.
	2.3.1. First Case
	2.3.2. Second Case
	2.3.3. Third Case

	2.4. VRP Model
	2.5. Model Relaxation
	2.6. Heuristics for the Optimisation Problem
	2.7. Clustering Approach
	2.4.
	2.5.
	2.6.
	2.7.
	2.7.1. OPTICS
	2.7.2. K-Means
	2.7.3. Gaussian Mixture Model
	2.7.4. Agglomerative Clustering
	2.7.5. Clustering Choice

	2.8. Route Construction

	3. Technologies for the Implementation
	4. Solution Approach
	3.
	4.
	4.1. Route with no Constraints
	4.2. Date Assignment
	4.3. Route with more Nodes
	4.3.1. Planning a Weekly Route
	4.3.2. Local Paths’ Optimization

	5. Outcomes
	References
	Appendices
	Appendix A: TSP Solver
	Appendix B: KNN Algorithm
	Appendix C: Random VRP Path Generation
	Appendix D: UI of the Web Application

