
Ten Years of JDeodorant: Lessons Learned from the
Hunt for Smells

Nikolaos Tsantalis
Department of Computer Science and

Software Engineering
Concordia University

Montreal, Canada
nikolaos.tsantalis@concordia.ca

Theodoros Chaikalis
Department of Applied Informatics

University of Macedonia
Thessaloniki, Greece

chaikalis@uom.gr

Alexander Chatzigeorgiou
Department of Applied Informatics

University of Macedonia
Thessaloniki, Greece

achat@uom.gr

Abstract—Deodorants are different from perfumes, because
they are applied directly on body and by killing bacteria they
reduce odours and offer a refreshing fragrance. That was
our goal when we first thought about “bad smells” in code:
to develop techniques for effectively identifying and removing
(i.e., deodorizing) code smells from object-oriented software.
JDeodorant encompasses a number of techniques for suggesting
and automatically applying refactoring opportunities on Java
source code, in a way that requires limited effort on behalf of the
developer. In contrast to other approaches that rely on generic
strategies that can be adapted to various smells, JDeodorant
adopts ad-hoc strategies for each smell considering the particular
characteristics of the underlying design or code problem. In this
retrospective paper, we discuss the impact of JDeodorant over
the last ten years and a number of tools and techniques that have
been developed for a similar purpose which either compare their
results with JDeodorant or have built on top of JDeodorant.
Finally, we discuss the empirical findings from a number of
studies that employed JDeodorant to extract their datasets.

Index Terms—Code Smells, Refactoring, Object-Oriented Soft-
ware

I. INTRODUCTION

Over the last decade, JDeodorant contributed refactoring
recommendation techniques for a variety of code smells [1],
including FEATURE ENVY [2], [3], STATE CHECKING and
TYPE CHECKING [4], [5] LONG METHOD [6], [7], GOD
CLASS [8]–[10], DUPLICATED CODE [11]–[13], and RE-
FUSED BEQUEST [14]. Our main philosophy was to create
a tool that can provide a holistic solution for the practice of
refactoring by supporting all refactoring-related activities as
defined by Mens and Tourwé [15], namely:
1) Identify where the software should be refactored.
2) Determine which refactoring(s) should be applied to the

identified places.
3) Guarantee that the applied refactoring preserves behavior.
4) Apply the refactoring.
5) Assess the effect of the refactoring on quality character-

istics of the software (e.g., complexity, understandability,
maintainability) or the process (e.g., productivity, cost,
effort).

6) Maintain the consistency between the refactored program
code and other software artifacts (such as documentation,
design documents, requirements specifications, tests, etc.).

To this end, we gave great emphasis not only in the
implementation of code smell detection techniques (to support
activity #1 and #2), but also in the implementation of refactor-
ing mechanics (to support activity #4), the implementation of
refactoring preconditions, which ensure that all recommended
refactorings will preserve program behavior (to support ac-
tivity #3), the implementation of software metrics to pre-
assess the impact of all recommended refactorings on design
quality and rank them accordingly (to support activity #5), and
finally the automatic update of Javadoc comments whenever
possible (to support activity #6). At the same time, we tried
to provide an easy-to-use and minimal user interface, an easy
installation process with minimal configuration (JDeodorant is
available as an Eclipse plug-in through Eclipse Marketplace1,
since November 2007), code smell visualizations, and video
tutorials2, as a means to make the tool more attractive to prac-
titioners, researchers, and educators. JDeodorant was open-
sourced in August 20143 (before that date its source code was
available only for research groups and educators through an
academic license agreement), and in June 2015 a command-
line version4 was released allowing to execute JDeodorant in
headless mode without opening the Eclipse IDE.

Along the way, several research groups proposed and
developed competitive code smell detection and refactoring
recommendation techniques. Bavota et al. [16] provide a
comprehensive coverage of the state-of-the-art in refactoring
recommendation systems until 2013. Al Dallal [17] conducted
a Systematic Literature Review including 47 primary studies
identifying refactoring opportunities in object-oriented code,
which were published before the end of 2013. In many
cases, JDeodorant was used as the state-of-the-art baseline
to evaluate the accuracy of newly proposed techniques.

Moreover, several empirical researchers studied the evolu-
tion trends of code smells, and the relation of code smells
with software quality attributes, such as change-proneness,
error-proneness, and maintainability. Al Dallal and Abdin [18]
conducted a Systematic Literature Review including 76 pri-

1https://marketplace.eclipse.org/content/jdeodorant
2https://www.youtube.com/channel/UCp-NaYVqKOERLreXxwCgWzg
3https://github.com/tsantalis/JDeodorant
4https://github.com/tsantalis/jdeodorant-commandline



mary studies investigating the impact of refactoring on several
internal and external quality attributes, which were published
before the end of 2015. In many cases, JDeodorant was used
to extract code smell datasets from open-source projects.

Finally, several research groups built their tools on top of
JDeodorant, or used a static source code analysis feature
offered by JDeodorant. For instance, [19]–[21] built their tools
on top of JDeodorant to implement automated refactoring
to the Strategy, Null Object, and Template Method design
patterns [22], respectively. The MUSE (Method USage Ex-
amples) tool [23], an approach for mining and ranking actual
code examples that show how to use a specific method, used
the static slicer provided by JDeodorant to compute intra-
procedural, backward slices.

The public availability of JDeodorant and its continuous
support and maintenance over the years made possible its
comparison with competitive tools, as well as its use in various
empirical studies. It is worth noting that in the meantime, the
Java Language Specifications5 were updated 3 times to add
new language features, such as the varags parameter in method
declarations (JLS7), type inference for generic instance cre-
ation (JLS7), try statement with resource management (JLS7),
catching multiple exception types with a Union type (JLS7),
strings in switch statement (JLS7), lambda expressions (JLS8),
and module declarations (JLS9), for which JDeodorant was
updated to support them.

In this paper, we examine the impact of JDeodorant on
research and practice over the last ten years. In Section II, we
investigate the evolution in the number of citations and applied
refactorings by JDeodorant users. In Section III, we present
competitive code smell detection and refactoring recommen-
dation techniques that include a comparison with JDeodorant
in their evaluation. In Section IV, we present the findings of
empirical studies that used JDeodorant to extract code smells
and refactoring opportunities from software systems. Finally,
in Section V, we present a retrospective of our experience
from the development and maintenance of JDeodorant, which
can serve as a guide for graduate students and research teams
interested in investing on the development of new tools.

II. IMPACT IN NUMBERS

To demonstrate the impact of JDeodorant on research and
practice, we use two proxies, namely the number of citations,
as counted by Google Scholar, received by 12 papers related
to JDeodorant features [2]–[12], [24], which were published
between 2007 and 2015, and received at least 20 citations
between 2011 and 2017, and the number of unique refactorings
recommended by JDeodorant and actually applied by its
users (applications). Whenever a user applies a refactoring
suggested by JDeodorant, a key is created based on the
signature of the code element that was refactored combined
with a unique machine ID. If the same user re-applies the
same refactoring (e.g., by undoing and redoing it), only the
application timestamp will be updated for the previously
recorded refactoring application.

5https://docs.oracle.com/javase/specs/

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0

20

40

60

80

100

120

140

160

180

2011 2012 2013 2014 2015 2016 2017

citations

applications

Linear (citations)

Linear (applications)

Fig. 1. Impact of JDeodorant.

Figure 1 shows the evolution of citations and applications
over the period 2011-2017 (y-axis has two different scales).
We are focusing on this particular period of time, because we
started collecting usage information for JDeodorant in Novem-
ber 2010, and thus we have complete yearly information for
both citations and applications only for the period 2011-2017.

We can observe from Figure 1 that there is an almost linear
growth in the number of citations and refactoring applications.
There is only a small discrepancy in the number of refactoring
applications for year 2015, which is lower than the trendline.
This was due to networking issues with the machine hosting
the JDeodorant usage statistics database, and thus we believe
a significant number of applied refactorings was not recorded
due to server downtime.

The number of applied refactorings increased 9 times within
a period of seven years (starting from 1,000 refactorings in
2011, and ending with 9,000 refactorings in 2017, i.e., 25
unique refactoring applications per day). It should be noted
that the refactoring applications count in Figure 1 includes
4 different types of refactorings, namely Move Method (for
Feature Envy), Extract Method (for Long Method), Extract
Class (for God Class) and Replace Conditional Logic with
Polymorphism (for State-checking and Type-checking), which
were all offered by JDeodorant before 2011. Figure 2 shows
the number of applied refactorings per refactoring type for the
period 2011-2017.

0

1000

2000

3000

4000

5000

6000

2011 2012 2013 2014 2015 2016 2017

Extract Method Extract Class Move Method Polymorphism

Fig. 2. Number of applied refactorings per refactoring type.

Out of the 35,000 refactorings applied in the period 2011-
2017, 50% correspond to Extract Method, 25% correspond to
Extract Class, 16% correspond to Move Method, and only 9%
correspond to Replace Conditional Logic with Polymorphism
refactorings. Despite the fact that Extract Method and Extract
Class refactorings were introduced last in JDeodorant, we
can see that they had a much greater user adoption than the



other two refactoring types that were introduced much earlier.
There are two possible explanations for this phenomenon.
First, there are significantly more opportunities for Extract
Method and Extract Class refactorings compared to the other
two refactoring types. Second, users might be more interested
in decomposing long methods and large classes, than moving
methods to other classes and replacing conditional logic with
polymorphism. This finding is critical for researchers who
are interested in developing new refactoring recommendation
systems, because it can help them to focus their attention and
effort on refactoring types that are considered more important
by developers.

By performing an analysis on the package prefixes of the
refactored code entities, we can observe that 22% of the
applied refactorings take place in projects with org. prefix,
17.5% take place in projects with com. prefix, 5.5% take
place in projects with net. prefix, and 3% take place in
projects with edu. prefix. The remaining 50% of the applied
refactorings correspond to projects, which have a country-
based prefix, such as de. (2.2%), ca. (2%), br. (1.2%),
or a project-specific prefix. These projects are a mix of
commercial and educational projects. More detailed analysis
about JDeodorant usage trends can be found at our statistics
webpage6.

With respect to the number of citations received by 12
papers related to JDeodorant, we can observe an almost perfect
linear growth. The number of citations increased 3 times
within a period of seven years (starting from 54 citations in
2011, and ending with 164 citations in 2017). This growth can
be explained from the new JDeodorant articles that were pub-
lished in or after 2011 (three were published in 2011, and three
were published after 2011). Typically, it takes 1-2 years for a
paper to receive its first citations. The most cited paper is [3]
with 200 citations in total, which steadily receives around 30
citations per year, since 2013 (4 years after its publication). It
should be noted that the tool demonstration papers [2], [4], [9]
receive a gradually increasing number of citations over the last
3 years (ranging from 10 to 25 citations per year). This perhaps
shows a preference of researchers to cite a tool demonstration
paper as representative publication for a research work, when
using or referring to a tool. Another important note is that as
a tool gets more established, there is an increasing number of
citations to the tool’s website either in the form of footnotes or
references in the citing papers. According to Google Scholar,
there are 60 documents citing www.jdeodorant.com, 12 doc-
uments citing www.jdeodorant.org, and 18 documents citing
marketplace.eclipse.org/content/jdeodorant. Although it is dif-
ficult to assess if these documents cite one of the published
JDeodorant papers as well, we can expect that some of them
cite only the tool’s website. This phenomenon demonstrates
the difficulties in assessing a tool’s impact from the academic
point of view (i.e., citation count), because several works,
which are clearly impacted by a tool, but do not cite a related
paper, cannot be tracked by citation analysis engines.

6https://users.encs.concordia.ca/∼nikolaos/stats.html

III. COMPETITIVE WORKS

In this section, we present the tools and techniques that
were published concurrently with, or after JDeodorant, up
to date. The majority of these works, include a comparison
with JDeodorant in their evaluation. Figure 3 shows the most
important milestones in the evolution of code smell detection
and refactoring recommendation systems, up to date. These
milestones refer to novel sources of information and novel
methods/algorithms that have not been used before in the con-
text of code smell detection and refactoring recommendation.
It should be noted that JDeodorant relies solely on structural
information for the detection of refactoring opportunities.

Pure
Structural

+
Metrics
based

2009 2010

Structural
+ Seman�c

Bavota et al.

2013

Change
History based
Palomba et al.

2011 2012 2016

Pure
Textual

Palomba et al.

2014 2015 2017

Learning
based

Xu et al.

Feedback
based

Liu et al.

Interac�ve
Gene�c 

algorithm
Bavota et al.

Game
Theory based
Bavota et al.

Fig. 3. Important milestones in the evolution of code smell detection and
refactoring recommendation systems.

A. Move Method Refactoring

MethodBook [25] is the first work to combine structural and
semantic (i.e., textual) information to identify Move Method
refactoring opportunities and remove the Feature Envy bad
smell from source code. In addition, it was also the first
work based on Relational Topic Models (RTM), a hierarchical
probabilistic model for representing and modeling topics, doc-
uments, and known relationships among these. The advantage
of RTM is that it considers both document context and links
among the documents, while other topic modeling techniques,
such as Latent Dirichlet Allocation (LDA) or Latent Semantic
Indexing (LSI), only consider textual information from the
documents to model. The evaluation on 6 open-source systems
showed that MethodBook always outperforms JDeodorant
on the improvement of semantic metrics, while it is able
to perform better than JDeodorant only on three systems
regarding the improvement of structural metrics. Moreover,
the evaluation performed with developers on their own sys-
tems, revealed that developers are more willing to apply the
refactorings recommended by MethodBook compared to those
recommended by JDeodorant.

HIST [26], [27] (Historical Information for Smell deTec-
tion) is the first code smell detection approach to employ
change history information to detect instances of five different
code smells, namely Divergent Change, Shotgun Surgery,
Parallel Inheritance, Blob, and Feature Envy. HIST relies on
association rule discovery to find classes/methods frequently



co-changing in the commit history of software systems. HIST
was evaluated on 9 projects belonging to the Apache ecosys-
tem, 5 projects belonging to the Android APIs, and 6 other
open-source systems, including Eclipse Core, Google Guava,
jEdit, and MongoDB. With respect to Feature Envy code smell,
HIST achieved a precision of 78% and a recall of 77%, while
JDeodorant achieved a precision of 65% and a recall of 71%.
Moreover, there was a 54% overlap between the Feature Envy
code smells detected by HIST and JDeodorant.

JMove [28], [29] compares the similarity of the dependen-
cies established by a method with the dependencies established
by the methods in possible target classes, in order to detect
Move Method refactoring opportunities. JMove is the first
approach that uses type reference information (i.e., declaring
class of method call, accessed field type, local variable dec-
laration type, instantiated object type, exception type, method
return type, and annotation type) to determine the similarity
of two method declarations. The precision and recall was
evaluated on 10 synthesized versions of open-source systems,
in which random methods were moved to random classes. A
recommendation system is supposed to suggest the inverse
move of these randomly moved methods. JMove precision
ranges from 21% (small methods) to 32% (large methods) and
its median recall ranges from 21% (small methods) to 60%
(large methods), while JDeodorant has a maximum precision
of 15% (large methods) and a maximum median recall of 40%
(small methods).

TACO [30], [31] is the first pure textual analysis approach
for code smell detection. It is able to detect a family of smells
of different nature and different levels of granularity, such as
Long Method, Feature Envy, Blob, Promiscuous Package and
Misplaced Class. TACO relies on Latent Semantic Indexing
(LSI), which models code components as vectors of terms
occurring in a given software system. The textual similarity
among software components is measured as the cosine of the
angle between the corresponding vectors. The precision and
recall of TACO was evaluated on 10 open-source projects. For
Feature Envy code smell, TACO achieved a precision of 67%
and a recall of 72%, while JDeodorant achieved a precision of
57% and a recall of 69%. Moreover, there was a 48% overlap
between the Feature Envy code smells detected by TACO and
JDeodorant.

RefactoringNavigator [32] is an interactive recommendation
system for aiding architectural refactoring. It takes a given
implementation as the starting point, a desired high-level
design as the target, and iteratively recommends a series
of refactoring steps. Moreover, it allows the user to accept,
reject, or ignore a recommended refactoring step, and uses
the users feedback in further refactoring recommendations. To
evaluate RefactoringNavigator, Lin et al. designed a controlled
experiment in which the experimental group (EG) used all
the features of RefactoringNavigator, while the control group
(CG) used a customized version without the recommendation
function and JDeodorant. The goal of the experiment was
to assess whether RefactoringNavigator can help developers
perform architectural refactoring faster and more correctly. On

average, the experimental group accomplished the refactoring
task much faster (13.270m for EG vs. 58.619m for CG), more
accurately (all 50 test cases passed for EG vs. 36.44 for CG),
and with much less effort (6.0 LOC for EG vs. 354.1 LOC
for CG).

DominoEffect [33] is a new approach to identify mov-
ing method opportunities based on conducted move method
refactorings. Whenever a method is moved from source class
to another destination class, the approach looks for methods
within the source class that may also need to be moved to
the destination class. The rationale behind DominoEffect is
that if two methods are strongly coupled and closely related
in business logic, when one of them is moved the other
may need to be moved as well. The evaluation has shown
that DominoEffect is accurate in recommending methods to
be moved (average precision 76%) and in recommending
destinations for such methods (average precision 83%), and
surpasses the precision of JDeodorant.

Liu et al. [34] proposed the first feedback-based code
smell detection technique. It extends the traditional metric-
based code smell detection with a threshold adaption phase,
which collects feedback from the developers based on the
code smells they decide to refactor or skip, and adjusts
automatically the threshold setting of the metric-based rule
used for detecting code smells. To evaluate the proposed
technique Liu et al. created an oracle of code smells by asking
three engineers to manually examine the methods of five open-
source systems exceeding a conservative threshold (in order
to avoid examining all methods), and assess whether these
methods are involved in code smells. They concluded that the
proposed approach outperforms the tuning machine approach,
which infers the optimal threshold setting from a fixed set of
reference applications.

c-JRefRec [35] identifies Move Method refactoring oppor-
tunities based on four heuristics using static and semantic
program analysis. c-JRefRec employs a semantic analysis to
identify move method refactoring candidates by extracting all
code identifiers including names of packages, classes, meth-
ods, attributes, and parameters for each class as well as the
method to be moved. Then, it computes the cosine similarity
between a method and a class, using tf-idf vectors, where
methods and classes are regarded as individual documents. The
evaluation on 3 open-source systems showed that c-JRefRec
achieves an average precision for detecting Feature Envy code
smells of 0.48 and an average recall of 0.73, while JDeodorant
achieves an average precision of 0.38 and an average recall
of 0.25. Regarding the accuracy of Move Method refactoring
recommendations, c-JRefRec achieves an average precision of
0.42 and an average recall of 0.68, while JDeodorant achieves
an average precision of 0.38 and an average recall of 0.25.

B. Extract Method Refactoring

JExtract [36] determines the statements to be extracted from
a method based on the similarity of their dependency sets.
In particular, JExtract considers variable, type, and package
dependency sets extracted from each individual statement.



JExtract limits the code fragments suggested for extraction
to complete blocks of code and continuous statements. To
evaluate the accuracy of JExtract, Silva et al. created an
oracle by randomly inlining methods in two open-source
projects. A recommendation system is supposed to suggest
the extraction of these randomly inlined methods. JExtract
achieved a precision of 48% for project JUnit and 38% for
project JHotDraw.

SEMI [37] is an approach that aims at identifying source
code chunks that collaborate to provide a specific functionality
by calculating the cohesion between pairs of statements. Two
statements are characterized as coherent, if they access the
same variable, if they call a method for the same object,
and if they call the same method for a different object of
the same type. Based on this definition, SEMI identifies all
possible sets of successive statements that are coherent to each
other, regardless of their size. SEMI was evaluated against
JDeodorant and JExtract using as benchmarks the original
studies in which JDeodorant and JExtract have been evaluated.
The results showed that SEMI presents the most accurate
approach in terms of F-measure, whereas JDeodorant in terms
of precision and JExtract in terms of recall, when taking into
account all methods in the benchmarks. By focusing only on
methods with more than 30 lines of code, SEMI presents the
best precision, recall, and F-measure.

GEMS [38] is the first learning-based approach for recom-
mending Extract Method refactorings. GEMS extracts struc-
tural and functional features, which encode the concepts of
complexity, cohesion and coupling in a probabilistic model.
Then, this model is trained to extract suitable code fragments
from a given source of a method. To evaluate GEMS, Xu
et al. created two training sets. The first set includes 267
Extract Method refactorings from open-source projects that
were confirmed from the developers who applied them [39].
The second set includes 5598 inlined methods that were in-
voked only once in the source code of the projects. Next, they
compared the accuracy of GEMS against JExtract, SEMI, and
JDeodorant. With respect to recall, GEMS achieves slightly
better results compared to JExtract. With respect to precision,
GEMS achieves a 5-7% improvement over the tool with the
second highest precision, namely JDeodorant. When focusing
only on methods with more than 30 lines of code, SEMI has
the best precision and recall at 1% and 2% tolerance levels,
while GEMS has the best precision and recall at 3% tolerance
level. Tolerance is a permissible limit of variation in lines of
code when evaluating the correctness of an Extract Method
candidate.

C. Extract Class Refactoring

ARIES [40]–[43] was among the first recommendation
systems for Extract Class refactoring, and was developed
concurrently with JDeodorant.

The approach presented in [41] represents a candidate class
for refactoring as a graph, where the nodes correspond to the
methods of the class, and the edges connect all the pairs of
methods of the class. The edges have weights representing

the structural and semantic (i.e., textual) similarity of the
connected methods. Then, a MaxFlow-MinCut algorithm is
applied on the graph in order to split the class in two classes
ensuring that the number of dependencies between the two
extracted classes is low (due to the min cut).

The approach presented in [43] constructs a n× n matrix,
called method-by-method matrix, where n is the number of
methods in the class to be refactored. A generic entry ci,j
of the method-by-method matrix represents the likelihood that
method mi and method mj should be in the same class. This
likelihood is obtained combining three different (structural and
semantic) measures, i.e., Structural Similarity between Meth-
ods (SSM), Call-based Interaction between Methods (CIM),
and Conceptual Similarity between Methods (CSM). The
extraction of chains of methods is obtained computing the
transitive closure of the method-by-method matrix.

The approach was evaluated with two empirical studies. In
the first study, Bavota et al. asked 50 Master’s students to
rate the refactoring solutions suggested by ARIES on existing
Blobs identified in two open-source systems. They also eval-
uated the impact of the refactoring operations proposed by
ARIES on the cohesion and coupling of the object systems.
In the second study, they identified and selected 11 classes
in different versions of open source systems that actually un-
derwent extract class refactoring by their original developers.
Then, they asked 15 Master’s students to refactor these classes
and compared the refactorings proposed by ARIES and the
refactorings performed by the students with the refactorings
performed by the original developers. The results show that the
refactoring solutions proposed by ARIES (i) strongly increase
the cohesion of the refactored classes without leading to
significant increases in terms of coupling; (ii) are considered
useful by developers performing extract class refactoring; and
(iii) are able to approximate manually performed refactorings
at 91%, on average. In addition, a comparison with the former
approach [41] showed that ARIES outperforms the MaxFlow-
MinCut algorithm.

Bavota et al. [44] proposed the first approach based on
game theory to identify refactoring solutions that provide
a compromise between the desired increment in cohesion
and the undesired increment in coupling. The Extract Class
Refactoring (ECR) problem is modelled as an iterative multi-
round game between n players. Each player represents a class
to be extracted from a given class and seeks to maximize its co-
hesion while maintaining its coupling as low as possible. The
players begin the refactoring process with one seed method
each, taken from the original class to be refactored; then, they
contend for the remaining methods to create new classes. The
chosen methods correspond to the Nash equilibrium computed
on a payoff matrix that uses similarity measures between
methods to assess the effect of the players’ choice on the
cohesion and coupling of their classes. The candidate number
of players and a candidate seed method for each player are
determined by a heuristic based on the analysis of the topics
captured in the source code of the class to be refactored,
using Latent Dirichlet Allocation (LDA). The evaluation of



the approach was conducted on two cases studies. In the first
case study, classes with high cohesion from three open-source
systems have been merged to create artificial Blobs and then
refactored with the aim of reconstructing the original classes.
In the second case study, seven Blobs of an open-source
system, namely GanttProject, were refactored to evaluate the
usefulness of the proposed approach for actual developers.
The case study results showed that the proposed approach can
refactor Blob classes into new meaningful classes with higher
cohesion and marginal increment of coupling.

MethodSimilarity [45] is a novel approach for identifying
and decomposing class responsibilities using method similarity
based on both the internal and external class relationships.
It measures method similarity for four types of the internal
method relationships (internal attribute sharing, internal direct
call dependency, internal indirect call dependency, and inter-
nal method sharing), and two types of the external method
relationships (external indirect call dependency, and external
call dependency). The candidate classes for refactoring are
decomposed based on measured similarity using hierarchical
agglomerative clustering, which is a widely used clustering
method for its flexibility in determining the level of gran-
ularity and clustering basis (e.g., method similarity). Lee et
al. evaluated MethodSimilarity on three open-source systems,
namely JMeter, JHotDraw, and ArgoUML. First, they asked
a group of experienced software engineers to evaluate the
results of MethodSimilarity on classes haivng multiple respon-
sibilities. Second, they introduced classes simulating multi-
responsibility classes by merging single responsibility classes,
and evaluated how precisely MethodSimilarity can decompose
the merged classes into the original classes. The results showed
that MethodSimilarity (with an average F-measure of 79.53%)
outperforms the distance-based approach used by JDeodorant
in [10] (with an average F-measure of 69.88%) and the text-
based conceptual similarity approach used by ARIES in [43]
(with an average F-measure of 47.89%).

ExtC [46] applies various clustering approaches for the
detection of Extract Class refactoring opportunities. The first
approach is Betweenness clustering, i.e., the clustering is based
on the analysis of communication patterns within a class. The
second approach is Dual clustering, i.e., a graph-based divisive
clustering based on structural information, followed by an
agglomerative clustering based on semantic information. The
first clustering algorithm splits the members of the class into at
least two clusters. Afterwards, the second clustering algorithm
connects any additional small clusters with the two largest
clusters. The evaluation has shown that dual clustering enabled
the refactoring of more classes than betweenness clustering.
On the other hand, based on the average cohesion scores
of the modified and extracted classes, betweenness clustering
generally produced more cohesive classes than dual clustering.

IV. EMPIRICAL EVIDENCE FROM THE USE OF
JDEODORANT

Various empirical studies relying on code smell identifica-
tion techniques and tools have been presented in the literature

with a diverse set of research goals. Broadly speaking, such
studies aimed at analyzing: a) the relation between smells and
other software qualities (internal or external) and b) properties
of the smells themselves (e.g. diffuseness, persistence, ability
to be detected, etc.) including their perception by development
teams. Next, we focus on studies that have used JDeodorant
(either the tool as is, or its individual components) for the
creation of their datasets.

An overview of the findings and the context in which
empirical studies have been performed is provided in Table I.
The landscape of empirical studies that have been performed
with JDeodorant is visually depicted in Figure 4.

Width represents the Number of Studies

H
ei

gh
t 

re
p

re
se

n
ts

 N
u

m
b

er
 o

f 
A

n
al

yz
ed

 S
ys

te
m

s

Rela�on of smells 
with metrics and 
other so�ware 

quali�es

smells in the 
context of

mobile apps & 
energy 

consump�on
Other Studies

Proper�es of smells

Some smells are correlated 
Structural smells are perceived as more severe

Smells can predict change-proneness
Several smells are related with cohesion 

metrics

Resolving smells increases energy consump�on

Fig. 4. Landscape of empirical studies on smells using JDeodorant (summits
refer to representative findings).

Most techniques for code smell detection are based on
the analysis of structural properties of source code. However,
textual techniques that rely on the analysis of textual content
of methods and statements can be very effective, especially
for certain smells. For example, a Blob can be detected
by computing the textual cohesion reflected in the lexical
similarity among methods of a class. Palomba et al. [31]
conducted a repository mining study and a user study to
understand how code smells detected using textual analysis
are perceived and refactored by developers. The former study
revealed that the intensity of textual code smells tends to
decrease over time in contrast to structural code smells whose
intensity increases. The responses by industrial developers in
the latter study revealed that textual code smells are perceived
as actual design problems and therefore tend to be refactored
over time. On the other hand, structural code smells are often
perceived as more severe.

The co-existence of smells has also been the focus of
research efforts since evidence on the correlation among smells
can assist both their detection as well as their refactoring.
Lozano et al. [47] employed JDeodorant for the identification
of Feature Envy, God Class, Long Method and Type Checking
bad smells in several releases of three open-source applica-
tions. The findings confirm that correlations exist: for example,
almost all methods suffering from Feature Envy reside in Long
Methods and Feature Envy methods were very often located
in God Classes.

Some of the most prominent approaches for smell detection
rely on the use of metrics. However, the empirical validation



TABLE I
EMPIRICAL EVIDENCE RELYING ON JDEODORANT

Finding Context Support
a. Textually detected smells are easier to identify and refactor
b. Structural smells are often perceived as more severe

20 OSS systems
19 developers and 5 quality experts

[31]

a. Strong correlation between Feature Envy and Long Method
b. Mild correlation between Long Method and God Class
c. Mild correlation between Feature Envy and God Class

3 OSS systems [47]

One size (LOC) and three cohesion metrics (LCOM1, LCOM2 and Coh) can accurately predict
Long Method smells

4 OSS systems [48]

a. Extract method refactoring has a positive impact on software metrics except for LCOM
b. All refactorings have a positive impact on Tight Class Cohesion

1 OSS system [49]

Code smells form better predictors of change-proneness compared to object-oriented software
metrics.

1 OSS application [50]

Refactoring application in mobile apps increases energy consumption from 8% to 70% 4 mobile apps [51]
Long Method and Type Checking code smells are twice as likely to occur in mobile applications 14 mobile apps [52]
Refactoring application in standalone apps increases energy consumption 3 OSS systems [53]
Code smells (except for “Duplicated Code”) are not influenced by the underlying application
domain

118 Java applications from 6 domains [54]

a. Extract Method refactoring has a negative effect on traceability
b. Move Method refactoring does not affect requirements traceability

1 proprietary & 2 OS applications [55]

Approximately 42-44% of Self-Admitted Technical Debt incurs positive interest One Apache Project [56]
Comments that imply design problems constitute the majority (42%-84%) of self-admitted
technical debt

5 OSS projects [57]

Code examples illustrating the use of specific methods can be automatically selected and ranked 6 libraries [23]

of these metrics as reliable indicators for the existence of
smells is rather limited. Charalampidou et al. [48] empirically
explored the ability of size and cohesion metrics to predict
the existence and the intensity of long method occurrences.
JDeodorant was used to identify Extract Method refactoring
opportunities in a study on 4 OSS systems. The results
suggest that one size and three cohesion metrics are capable
of predicting Long Method issues, confirming the intuitive
connection among cohesion and the presence of long methods.

Apart from the use of metrics as a means of identifying
smells, they can also be used to assess the impact of refactoring
applications for smell removal on the design quality of a
software system. This has been the goal of an empirical study
by Fontana and Spinelli [49] where 6 cohesion, coupling
and complexity metrics have been used to assess the impact
of refactorings on an OSS system. JDeodorant was one of
the three employed tools (JDeodorant, PMD, InFusion) to
identify Feature Envy, Large Class, Long Method and Shotgun
surgery smells, and one of the two tools (JDeodorant and
IntelliJ IDEA) to perform automatic refactoring. The results
showed that all aforementioned refactorings have a positive
impact on cohesion as captured by the Tight Class Cohesion
metric. Furthermore, applying the Extract Method refactoring
to resolve Long Method smells appears to have a positive
impact on all metrics except for LCOM.

Change proneness is another major indicator of design qual-
ity. A software system that demands extensive modifications
during new feature additions, witnesses poor design quality. To
this end, Kaur et al. [50], studied the relationship between code
smells and metrics with change-prone classes in an attempt to
find the optimal predictor of change proneness. They used 10
code smells as predictors, including 3 classic smells (Long
Method, Feature Envy and God Class) that were identified
by JDeodorant and 7 exception handling smells. The results

suggest that code smells form better predictors of change-
proneness compared to object-oriented software metrics.

Although code and design quality have been mostly studied
in the context of desktop and enterprise applications, main-
tainability is a concern for software in all domains, including
mobile applications. However, in such application areas, run-
time qualities, such as energy consumption, matter most. The
trade-off between object-oriented design quality, as reflected
in the number of smells and energy consumption has been
the focus of the study by Rodriguez et al. [51]. In particular,
the authors studied on four mobile applications the energy
impact of refactorings on Java source code and JDeodorant
has been used to identify refactoring opportunities. The results
confirm the findings of previous studies showing that assuring
important features of object-oriented design through removing
bad smells increases energy consumption, sometimes as much
as 70%.

The tremendous growth of the mobile application industry
and the extreme frequency of updates, call for increased
attention to design and code quality. Moreover, mobile appli-
cations have shorter software delivery cycles in order to remain
competitive and therefore maintainability issues form a crucial
factor for their viability. In this context, Verloop [52] employed
JDeodorant in order to identify possible differences in code
smell density between mobile and non-mobile applications.
The results reveal that Long Method and Type Checking code
smells are twice as likely to occur in mobile applications,
while God class and Feature Envy mobile software smells
yield equal probability to those of non-mobile systems.

The impact of refactorings on energy consumption has
also been studied with the help of JDeodorant in the context
of standalone applications by Dhaka and Singh [53], where
the results once again verify the fact that improvements of
software architecture tend to increase energy consumption.



It is widely acknowledged that software smells are ubiqui-
tous, but an interesting hypothesis is whether smell character-
istics vary across different application domains. dos Reis et al.
[54] investigated the hypothesis that application domain has a
statistically significant impact on the presence of code smells.
The conducted a quasi-experiment using 118 Java software
systems, classified into 6 application domains. JDeodorant was
used to identify Long Method, Large Class and Feature Envy
smells, while four more smells were identified by another
tool. The results show that the incidence of most code smells
does not depend on the application domain, except for the
Duplicated Code smell.

JDeodorant has also facilitated research in the field of
Requirements Traceability, i.e. the process of tracking source
code artifacts that implement specific functional requirements.
Specialized software that usually employs Information Re-
trieval methods identifies the traces of requirements in source
code for a given snapshot of a software system. However,
software evolution acts detrimentally on the identified traces
and causes distorted traceability tracks. According to Mah-
moud and Niu [55], these “broken” traces could be restored
by refactoring maintenance. To this end, JDeodorant has been
employed for the identification and elimination of Feature
Envy smells in 3 software systems. Other tools have also been
used for the detection and elimination of code clones as well as
the restoration of previous identifier names. Results indicate
that restoring previous identifier names has positive impact
in feature traceability effectiveness. On the contrary, Extract
Method refactoring appeared to negatively affect traceability
whereas Move Method yielded no significant impact.

Code smells are directly related to the Technical Debt
metaphor which assumes that software liabilities set up a
context that can make a future change more costly or im-
possible. A holy grail in the Technical Debt community is
the quantification of interest, that is, the increased work effort
incurred by the presence of Technical Debt. A case study on
the Apache JMeter project [56] found that approximately 42
- 44% of the technical debt incurs positive interest, which
indeed costs more to pay off in the future. In particular,
the paper focuses on self-admitted technical debt (SATD)
which refers to the situation where developers admit that the
current implementation is not optimal and write comments
alerting the inadequacy of the solution. For the identification of
SATD JDeodorant was used to perform the parsing of source
code in order to extract comments and map them to their
corresponding method.

Self-admitted Technical Debt has also been the focus of a
study examining 33K code comments [57]. It was found that
self-admitted technical debt can be classified into five main
types, namely design, defect, documentation, requirement and
test debt, with design debt being the most common type.
JDeodorant has been used to parse the source code of five OSS
systems and extract comments through the extracted Abstract
Syntax Tree of the target code.

Code examples are source code fragments whose purpose is
to illustrate how a programming language element, a library,

or a specific function should be used. Moreno et al. [23]
proposed MUSE (Method USage Examples) as an approach
for mining and ranking code examples that show how to use
a specific method. MUSE combines static slicing (to simplify
examples) with clone detection (to group similar examples),
and eventually selects and ranks the best examples in terms
of reusability, understandability, and popularity. JDeodorant’s
static slicer has been used to develop an Example Extractor
that parses the source code of the client projects in order to
search for invocations (and the associated backward slice) of
a target method. The approach has been empirically evaluated
using examples from six libraries. The results indicate that it
is possible to automatically select and rank examples close to
how humans do while most of the code examples (82%) are
perceived as useful.

V. LESSONS LEARNED

Through our experience with the development and mainte-
nance of JDeodorant and the interaction with several research
groups in the field of smell detection as well as with users
of JDeodorant, we have reached a number of conclusions
regarding the merits of a successful tool that aids software
engineering practice and research. From the list of desirable
properties listed below, not all were present in JDeodorant
from the beginning; however, we acknowledged their impor-
tance and strove to address them:

1) The design of a tool should be guided by empirical evidence
about developers’ practices, so that the tool is tailored to
the actual needs of the developers. For example, a recent
study [39], investigated the motivations behind refactoring
by asking developers the reasons they applied specific
refactoring operations, right after pushing their commits
in public repositories. The study revealed that refactorings
are mainly applied to make easier the completion of a
maintenance task (i.e., bug fix, or feature request), rather
than eliminating code smells in the software. If we had this
knowledge before designing JDeodorant, we would adopt
a maintenance-task-oriented design and user interface, in-
stead of a code-smell-oriented one.

2) All source code analysis techniques implemented by a
tool should depend on a higher-level abstraction of the
source code, rather than the Abstract Syntax Tree (AST)
representation typically created by programming language
parsers. The reason is that as the programming language
evolves the AST representation has to be changed or
updated to support new language features. If the imple-
mented source code analysis techniques depend on the AST
representation, these changes might have to be propagated
to the tool’s codebase. On the other hand, depending on
a higher-level abstraction of the source code, provides
shielding against the propagation of such changes. For
example, JDeodorant went through 3 major updates in the
Java Language Specification (JLS7, JLS8, JLS9) which,
however, required minimal changes in its codebase to
support the new language features.



3) Tool usage statistics should be recorded as early as possi-
ble, to allow focusing on improvements targeting the most
popular tool features. For example, if we knew from early
on that the most popular refactoring applied by JDeodorant
users is Extract Method, we would focus our research
and development on improving the performance of the
algorithms related to the recommendation of this type of
refactoring, so that the user experience and appreciation
of the tool is better. Focused improvements based on user
needs help in building a good reputation for the tool.

4) A tool should be offered as an IDE plug-in instead of a
standalone application. Building JDeodorant as an Eclipse
plug-in was perhaps the wisest decision we could have
made. The Eclipse Update Site infrastructure not only
makes the installation of plug-ins very easy through the
Eclipse Marketplace Client, but it also makes the update of
existing clients to the latest release of the plug-in very easy
by receiving notifications for updates directly in the IDE.
In addition, having a tool running in the same environment
where developers work and perform their daily tasks,
makes the use of the tool much more convenient.

5) A tool should require minimum installation and configura-
tion effort. Installation and configuration are part of the
first experience of a new user with a tool. If they are
problematic, it is very likely that the user will abandon
any further attempt to make the tool work. JDeodor-
ant offers a smooth installation process through Eclipse
Marketplace and does not require any configuration. In
addition, JDeodorant has a very simple user interface.
Essentially, the user has just to select the code element to be
analyzed and click on a button to perform the detection of
refactoring opportunities. If some refactoring opportunities
are found, the user can apply the corresponding refactorings
and preview the refactoring changes before they end up in
the source code. These features helped a lot in the adoption
of the tool by researchers for conducting experiments and
empirical studies, by practitioners for finding and applying
refactoring opportunities in their daily development and
maintenance tasks, by educators for teaching refactoring
in a practical way, and by students for using the tool in
their projects and assignments.

6) A tool should be tested in an industrial setting. Per-
formance and reliability are key characteristics for the
adoption of a tool in the industry. Testing a tool only on
open-source projects does not guarantee that the tool will
be able to scale to the size and characteristics of industrial
projects. In addition, developers working on industrial
projects may provide very useful feedback about possible
tool improvements, especially regarding the integration of
the tool in their infrastructure automation process.

7) A tool should be open-sourced as early as possible, even if
it is not as mature and stable. Unfortunately, JDeodorant
was open-sourced in 2014, 7 years after its initial release
in 2007. Between 2010 and 2014, JDeodorant source
code was available only for research groups and educators
through an academic license agreement. The reason for this

late decision to open-source it, was the lack of consensus
among its contributors about turning JDeodorant into a
commercial product, or keeping it as an academic tool. The
benefits we experienced after open-sourcing the tool are
numerous, including an increased number of bug reports,
an increased number of external contributions through pull
requests, and over 30 forks of the project on GitHub.

8) A tool should be accompanied with documentation, tuto-
rials, and code snippets demonstrating the use of its API.
This is essential for the adoption of the tool, because the
information provided in relevant publications might not be
sufficient for particular needs. One of our mistakes was that
we neglected the documentation of the project. The first
public document describing the architecture of JDeodorant
was released in 2010, three years after the first release
of the tool. Moreover, it would have been much more
convenient if we incorporated the tool’s manual into the
JDeodorant Eclipse plug-in, instead of having it available
on the tool’s website, because the information needed by
the user to work with the tool would be less scattered.

VI. CONCLUSION

Software development practice has acknowledged the im-
portance of code and design quality as a prerequisite for build-
ing maintainable and sustainable software projects. Among
all methodologies for ensuring quality in code, the notion
of smells and refactorings have been widely embraced by
practitioners and researchers, possibly due to the fact that
they refer to individual, identifiable and actionable issues.
JDeodorant has contributed to the developers’ arsenal through
a set of techniques for the identification of code smells in
Java code and the suggestion of refactoring opportunities that
can be automatically applied. Our main philosophy was to
create a tool that supports all refactoring-related activities,
is easy-to-use and configure and provides sufficient accuracy
by exploiting the particular characteristics of the target code
smell/refactoring.

JDeodorant publications have received an increasing number
of citations over the years but more importantly, the tool is
being used by an increasing number of developers to refactor
their code. A total of 35,000 refactorings has been recorded
for the period 2011-2017, with the majority of them targeting
long, complex and non-cohesive methods through the Extract
Method refactoring. Along the way, several sophisticated smell
detection and refactoring recommendation techniques have
been proposed, outperforming the accuracy of JDeodorant in
some of the cases. However, the reliability, straightforward
installation and use, and integration within an IDE rendered
JDeodorant a popular baseline for accuracy evaluation, as
well as a convenient smell detector for performing empirical
studies. Through our experience with the development and
maintenance of JDeodorant, we have identified a number of
desirable properties (several of which were missing in the
early stages of JDeodorant) for tools aiming at supporting
developers and researchers.



ACKNOWLEDGMENT

We would like to thank the research community for ap-
preciating JDeodorant and the Most Influential Paper Award
committee at SANER 2018 for the honour of selecting our pa-
per. Work reported in this paper has received funding from the
European Unions Horizon 2020 research and innovation pro-
gramme under grant agreement No 780572 (project SDK4ED),
as well as from the Natural Sciences and Engineering Research
Council of Canada (NSERC grant 435480-2013).

REFERENCES

[1] M. Fowler, Refactoring: Improving the Design of Existing Code.
Boston, MA, USA: Addison-Wesley, 1999.

[2] M. Fokaefs, N. Tsantalis, and A. Chatzigeorgiou, “Jdeodorant: Identifi-
cation and removal of feature envy bad smells,” in Proceedings of the
23rd IEEE International Conference on Software Maintenance, 2007,
pp. 519–520.

[3] N. Tsantalis and A. Chatzigeorgiou, “Identification of move method
refactoring opportunities,” IEEE Transactions on Software Engineering,
vol. 35, no. 3, pp. 347–367, May 2009.

[4] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou, “JDeodorant: Identifi-
cation and removal of type-checking bad smells,” in Proceedings of the
12th European Conference on Software Maintenance and Reengineering,
ser. CSMR ’08, 2008, pp. 329–331.

[5] N. Tsantalis and A. Chatzigeorgiou, “Identification of refactoring oppor-
tunities introducing polymorphism,” Journal of Systems and Software,
vol. 83, no. 3, pp. 391–404, Mar. 2010.

[6] ——, “Identification of extract method refactoring opportunities,” in
Proceedings of the 13th European Conference on Software Maintenance
and Reengineering, 2009, pp. 119–128.

[7] ——, “Identification of extract method refactoring opportunities for the
decomposition of methods,” Journal of Systems and Software, vol. 84,
no. 10, pp. 1757–1782, Oct. 2011.

[8] M. Fokaefs, N. Tsantalis, A. Chatzigeorgiou, and J. Sander, “Decom-
posing object-oriented class modules using an agglomerative clustering
technique,” in Proceedings of the 25th IEEE International Conference
on Software Maintenance, 2009, pp. 93–101.

[9] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou, “Jdeodor-
ant: Identification and application of extract class refactorings,” in Pro-
ceedings of the 33rd International Conference on Software Engineering,
ser. ICSE ’11, 2011, pp. 1037–1039.

[10] ——, “Identification and application of extract class refactorings in
object-oriented systems,” Journal of Systems and Software, vol. 85,
no. 10, pp. 2241–2260, Oct. 2012.

[11] G. P. Krishnan and N. Tsantalis, “Unification and refactoring of clones,”
in Proceedings of the IEEE Conference on Software Maintenance,
Reengineering and Reverse Engineering, 2014, pp. 104–113.

[12] N. Tsantalis, D. Mazinanian, and G. P. Krishnan, “Assessing the
refactorability of software clones,” IEEE Transactions on Software
Engineering, vol. 41, no. 11, pp. 1055–1090, Nov. 2015.

[13] N. Tsantalis, D. Mazinanian, and S. Rostami, “Clone refactoring with
lambda expressions,” in Proceedings of the 39th International Confer-
ence on Software Engineering, ser. ICSE ’17, 2017, pp. 60–70.

[14] E. Ligu, A. Chatzigeorgiou, T. Chaikalis, and N. Ygeionomakis, “Iden-
tification of refused bequest code smells,” in Proceedings of the IEEE
International Conference on Software Maintenance, ser. ICSM ’13,
2013, pp. 392–395.

[15] T. Mens and T. Tourwé, “A survey of software refactoring,” IEEE
Transactions on Software Engineering, vol. 30, no. 2, pp. 126–139, Feb.
2004.

[16] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, Recommending
Refactoring Operations in Large Software Systems. Springer Berlin
Heidelberg, 2014, pp. 387–419.

[17] J. A. Dallal, “Identifying refactoring opportunities in object-oriented
code: A systematic literature review,” Information and Software Tech-
nology, vol. 58, pp. 231 – 249, 2015.

[18] J. A. Dallal and A. Abdin, “Empirical evaluation of the impact of object-
oriented code refactoring on quality attributes: A systematic literature
review,” IEEE Transactions on Software Engineering, vol. 44, no. 1, pp.
44–69, Jan 2018.

[19] A. Christopoulou, E. Giakoumakis, V. E. Zafeiris, and V. Soukara,
“Automated refactoring to the strategy design pattern,” Information and
Software Technology, vol. 54, no. 11, pp. 1202 – 1214, 2012.

[20] M. A. G. Gaitani, V. E. Zafeiris, N. Diamantidis, and E. Giakoumakis,
“Automated refactoring to the null object design pattern,” Information
and Software Technology, vol. 59, pp. 33 – 52, 2015.

[21] V. E. Zafeiris, S. H. Poulias, N. Diamantidis, and E. Giakoumakis, “Au-
tomated refactoring of super-class method invocations to the template
method design pattern,” Information and Software Technology, vol. 82,
pp. 19 – 35, 2017.

[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-oriented Software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995.

[23] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, and A. Marcus,
“How can i use this method?” in Proceedings of the 37th International
Conference on Software Engineering - Volume 1, ser. ICSE ’15, 2015,
pp. 880–890.

[24] N. Tsantalis and A. Chatzigeorgiou, “Ranking refactoring suggestions
based on historical volatility,” in Proceedings of the 15th European
Conference on Software Maintenance and Reengineering, 2011, pp. 25–
34.

[25] G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia,
“Methodbook: Recommending move method refactorings via relational
topic models,” IEEE Transactions on Software Engineering, vol. 40,
no. 7, pp. 671–694, Jul. 2014.

[26] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and
D. Poshyvanyk, “Detecting bad smells in source code using change his-
tory information,” in Proceedings of the 28th IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE’13, 2013, pp.
268–278.

[27] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, D. Poshyvanyk, and
A. D. Lucia, “Mining version histories for detecting code smells,” IEEE
Transactions on Software Engineering, vol. 41, no. 5, pp. 462–489, May
2015.

[28] V. Sales, R. Terra, L. F. Miranda, and M. T. Valente, “Recommending
move method refactorings using dependency sets,” in Proceedings of the
2013 20th Working Conference on Reverse Engineering (WCRE), Oct
2013, pp. 232–241.

[29] R. Terra, M. T. Valente, S. Miranda, and V. Sales, “JMove: A novel
heuristic and tool to detect move method refactoring opportunities,”
Journal of Systems and Software, vol. 138, pp. 19 – 36, 2018.

[30] F. Palomba, A. Panichella, A. D. Lucia, R. Oliveto, and A. Zaidman,
“A textual-based technique for smell detection,” in Proceedings of the
2016 IEEE 24th International Conference on Program Comprehension
(ICPC), May 2016, pp. 1–10.

[31] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. D. Lucia,
“The scent of a smell: An extensive comparison between textual and
structural smells,” IEEE Transactions on Software Engineering, vol. PP,
no. 99, pp. 1–1, 2017.

[32] Y. Lin, X. Peng, Y. Cai, D. Dig, D. Zheng, and W. Zhao, “Interactive and
guided architectural refactoring with search-based recommendation,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2016, 2016, pp. 535–
546.

[33] H. Liu, Y. Wu, W. Liu, Q. Liu, and C. Li, “Domino effect: Move
more methods once a method is moved,” in Proceedings of the 2016
IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), vol. 1, March 2016, pp. 1–12.

[34] H. Liu, Q. Liu, Z. Niu, and Y. Liu, “Dynamic and automatic feedback-
based threshold adaptation for code smell detection,” IEEE Transactions
on Software Engineering, vol. 42, no. 6, pp. 544–558, June 2016.

[35] N. Ujihara, A. Ouni, T. Ishio, and K. Inoue, “c-JRefRec: Change-based
identification of move method refactoring opportunities,” in Proceedings
of the 2017 IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering (SANER), Feb 2017, pp. 482–486.

[36] D. Silva, R. Terra, and M. T. Valente, “Recommending automated
extract method refactorings,” in Proceedings of the 22nd International
Conference on Program Comprehension, ser. ICPC 2014, 2014, pp. 146–
156.

[37] S. Charalampidou, A. Ampatzoglou, A. Chatzigeorgiou, A. Gkortzis, and
P. Avgeriou, “Identifying extract method refactoring opportunities based
on functional relevance,” IEEE Transactions on Software Engineering,
vol. 43, no. 10, pp. 954–974, Oct 2017.



[38] S. Xu, A. Sivaraman, S. C. Khoo, and J. Xu, “Gems: An extract
method refactoring recommender,” in Proceedings of the 2017 IEEE 28th
International Symposium on Software Reliability Engineering (ISSRE),
Oct 2017, pp. 24–34.

[39] D. Silva, N. Tsantalis, and M. T. Valente, “Why we refactor? confessions
of github contributors,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
FSE 2016, 2016, pp. 858–870.

[40] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, “A two-step
technique for extract class refactoring,” in Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
’10, 2010, pp. 151–154.

[41] G. Bavota, A. De Lucia, and R. Oliveto, “Identifying extract class refac-
toring opportunities using structural and semantic cohesion measures,”
Journal of Systems and Software, vol. 84, no. 3, pp. 397 – 414, 2011.

[42] G. Bavota, A. De Lucia, A. Marcus, R. Oliveto, and F. Palomba,
“Supporting extract class refactoring in eclipse: The ARIES project,”
in Proceedings of the 34th International Conference on Software Engi-
neering, ser. ICSE ’12, 2012, pp. 1419–1422.

[43] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, “Automating extract
class refactoring: an improved method and its evaluation,” Empirical
Software Engineering, vol. 19, no. 6, pp. 1617–1664, Dec 2014.

[44] G. Bavota, R. Oliveto, A. D. Lucia, A. Marcus, Y. G. Guehnuc, and
G. Antoniol, “In medio stat virtus: Extract class refactoring through
nash equilibria,” in Proceedings of the 2014 Software Evolution Week -
IEEE Conference on Software Maintenance, Reengineering, and Reverse
Engineering (CSMR-WCRE), Feb 2014, pp. 214–223.

[45] J. Lee, D.-K. Kim, S. Kim, and S. Park, “Decomposing class responsi-
bilities using distance-based method similarity,” Frontiers of Computer
Science, vol. 10, no. 4, pp. 612–630, Aug 2016.

[46] K. Cassell, “Using clustering techniques to guide refactoring of object-
oriented classes,” Ph.D. dissertation, Victoria University of Wellington,
2012.

[47] A. Lozano, K. Mens, and J. Portugal, “Analyzing code evolution to
uncover relations between bad smells,” in Proceedings of the IEEE
2nd International Workshop on Patterns Promotion and Anti-patterns
Prevention, ser. PPAP 2015, March 2015, pp. 1–4.

[48] S. Charalampidou, A. Ampatzoglou, and P. Avgeriou, “Size and cohe-
sion metrics as indicators of the long method bad smell: An empirical
study,” in Proceedings of the 11th International Conference on Predic-
tive Models and Data Analytics in Software Engineering, ser. PROMISE
’15, 2015, pp. 8:1–8:10.

[49] F. A. Fontana and S. Spinelli, “Impact of refactoring on quality code
evaluation,” in Proceedings of the 4th Workshop on Refactoring Tools,
ser. WRT ’11, 2011, pp. 37–40.

[50] A. Kaur, K. Kaur, and S. Jain, “Predicting software change-proneness
with code smells and class imbalance learning,” in Proceedings of the
2016 International Conference on Advances in Computing, Communi-
cations and Informatics (ICACCI), Sept 2016, pp. 746–754.

[51] A. Rodriguez, M. Longo, and A. Zunino, “Using bad smell-driven
code refactorings in mobile applications to reduce battery usage,” in
Proceedings of the 16 Simposio Argentino de Ingeniera de Software
(ASSE), Sep 2015, pp. 56–68–486.

[52] D. Verloop, “Code Smells in the Mobile Applications Domain,” Master’s
thesis, Delft University of Technology, 2013.

[53] G. Dhaka and P. Singh, “An empirical investigation into code smell
elimination sequences for energy efficient software,” in Proceedings of
the 2016 23rd Asia-Pacific Software Engineering Conference (APSEC),
Dec 2016, pp. 349–352.

[54] J. P. dos Reis, F. B. e Abreu, and G. de F. Carneiro, “Code smells
incidence: Does it depend on the application domain?” in Proceedings
of the 2016 10th International Conference on the Quality of Information
and Communications Technology (QUATIC), Sept 2016, pp. 172–177.

[55] A. Mahmoud and N. Niu, “Supporting requirements to code traceability
through refactoring,” Requirements Engineering, vol. 19, no. 3, pp. 309–
329, Sep 2014.

[56] Y. Kamei, E. da S. Maldonado, E. Shihab, and N. Ubayashi, “Us-
ing analytics to quantify interest of self-admitted technical debt,” in
Joint Proceedings of the 4th International Workshop on Quantitative
Approaches to Software Quality (QuASoQ 2016) and 1st International
Workshop on Technical Debt Analytics (TDA 2016), 2016, pp. 68–71.

[57] E. d. S. Maldonado and E. Shihab, “Detecting and quantifying different
types of self-admitted technical debt,” in Proceedings of the 2015 IEEE
7th International Workshop on Managing Technical Debt (MTD), Oct
2015, pp. 9–15.


