
Short Paper

The Developer’s Dilemma:

Factors affecting the Decision to Repay Code Debt

Theodoros Amanatidis1, Nikolaos Mittas2, Alexander Chatzigeorgiou1, Apostolos Ampatzoglou1, Lefteris Angelis2

1Department of Applied Informatics, University of Macedonia, Greece
2Department of Computer Science, Aristotle University of Thessaloniki, Greece

tamanatidis@uom.edu.gr, nmittas@csd.auth.gr, achat@uom.gr, apostolos.ampatzoglou@gmail.com, lef@csd.auth.gr

ABSTRACT

The set of concepts collectively known as Technical Debt assume

that software liabilities set up a context that can make a future

change more costly or impossible; and therefore repaying the debt

should be pursued. However, software developers often disagree

or even dislike an automatically generated list of improvement

suggestions, which they consider not fitting or important for their

own code. To shed light into the reasons that drive developers to

adopt or reject refactoring opportunities (i.e., technical debt

repayment), we have performed an empirical study on the

potential factors that affect the developers’ decision to agree with

the removal of a specific Technical Debt liability. The study has

been addressed to the developers of four well-known open-source

applications. To increase the response rate, a personalized

assessment has first been sent to each developer, summarizing

his/her own contribution to the technical debt of the

corresponding project. Responds have been collected through a

custom built web application that presented code fragments

suffering from violations as identified by SonarQube along with

information that could possibly affect their level of agreement to

the importance of resolving an issue. These factors include data

such as the frequency of past changes in the module under study,

the number of bugs, the type and intensity of the violation, the

level of involvement of the developer and whether he/she is a

contributor in the corresponding project. Multivariate statistical

analysis methods have been used to understand the importance

and the underlying relationships among these factors and the

results are expected to be useful for researchers and practitioners

in Technical Debt Management.

CCS CONCEPTS

Software and its engineering → Software creation and

management → Software post-development issues: Maintaining

software

KEYWORDS

Technical Debt Management, refactoring, empirical study

1 INTRODUCTION

According to A. Hunt and D. Thomas many developers are

reluctant to start ‘ripping up’ their code (a.k.a. refactor) just

because it isn’t quite right [1]. As they vividly put it, going to a

boss or client and saying that a working piece of code needs

another week to refactor it, would probably cause a response that

cannot be printed. However, deferring a refactoring might incur

technical debt (TD) requiring greater time investment to fix the

problem down the road.

Previous studies have shown that developers perceive and handle

TD in different ways [2] and have distinct motivations for

applying refactorings [3]. To shed light into the factors that drive

developers to accept or reject automated suggestions for TD

removal we have carried out a study targeting developers of open-

source PHP projects with the following two main characteristics:

(a) to increase their motivation for participating in the study we

have provided to each participant, prior to requesting his

feedback, a personalized report on the TD that he/she has incurred

to the project, and (b) to facilitate the collection of data a web

application has been implemented to present individual code

fragments suffering from an identified TD issue along with

information on the parameters that might affect the developers

decision to repay the TD or not.

2 RELATED WORK

There is a limited number of studies providing insights on the

developer’s perception regarding the urgency to resolve code

violations, which in turn lead to the accumulation of TD. In a

recent study [4], the authors sent surveys to explore whether

issues involving architectural elements lie among the most

significant sources of TD. A number of 536 respondents replied

(leading to a response rate of 29%) and the results showed that

architectural issues are the greatest source of TD. Such issues are

difficult to cope with and they dragged on for many years.

Another explored subject was the existence of effective tools for

managing TD. Respondents claimed that existing tools do not

capture the key areas of accumulated problems related to TD.

In a 2014 study [5], the authors investigated which bad smells are

considered by the developers as the most harmful. The developers

were given code snippets from three systems with twelve kinds of

bad smells and were asked to rank the severity of the smells. Both

original developers from the systems and outsiders (industrial

developers) were included in the survey (a response rate of 40%

was achieved). The results suggested that smells related to

complex code are considered an important threat by developers. In

another exploratory study [6], comments of four large open-

source systems were used to identify self-admitted TD. The

authors found that more experienced developers introduce most of

mailto:tamanatidis@uom.edu.gr
mailto:nmittas@csd.auth.gr
mailto:achat@uom.gr
mailto:apostolos.ampatzoglou@gmail.com
mailto:lef@csd.auth.gr

the self-admitted TD while time pressure and code complexity do

not relate to the amount of self-admitted debt.

In another study in 2013 [7], 20 developers were interviewed in

order to investigate the reasons why static analysis tools are not

used during development process. Participants claimed that static

analysis tools are beneficial, but false positives, poorly presented

output and low customizability deter their use. Spinola et al. [8]

chose 14 statements regarding TD and asked from 37 practitioners

if they agree with them. The statement that says “Not all technical

debt is bad” lies among the statements with the maximum

consensus. In other words developers believe that there is a

healthy level of TD in every software system.

Kim et al. [9] conducted a survey to examine developers’

perception regarding code refactoring. Participants responded that

refactoring hides substantial cost and risks and further support is

needed beyond automated refactoring within IDEs. However, a

case study on Windows 7 highlighted the benefits of refactoring.

The results showed that “refactored modules experienced higher

reduction in the number of inter-module dependencies and post-

release defects than other changed modules”.

In another study which debated developers’ position about code

refactoring [10], 20 refactoring practitioners were interviewed.

Participants recognized the added value of a refactoring (code

reusability), however if too much effort is needed they may be

reluctant to make refactoring decisions. Mäntylä and Lassenius

[11] studied the refactoring decisions made by 37 students on a

small Java application. According to participants’ responses,

‘Long method’ was the top driver for refactoring decision and

poor readability along with poor understanding of the code were

also among the most important drivers.

3 STUDY DESIGN

The purpose of the current study is to shed light on the factors that

drive developers to resolve TD Items (TDIs) identified in their

own code. To achieve this, four PHP open source projects on

GitHub were analyzed to obtain commit activity and code debt

information. Specifically, Composer, CakePHP, Laravel1 and Yii2

were included. Composer (composer/composer) is a dependecy

manager for PHP, CakePHP (cakephp / cakephp) is a framework

to build PHP applications and Laravel (laravel / framework) and

Yii2 (yiisoft / yii2) are also well known PHP frameworks. The

criteria for selecting the aforementioned projects are as follows:

- Projects had to be open source so as to have direct access to

their code base.

- Projects had to be actively maintained up until the time of

this study.

- Projects had to be widely used by the PHP community:

Composer has 5 millions downloads, CakePHP has 2

millions, Laravel has 6 millions and Yii2 has 1 million.

- Projects had to be maintained by many contributors:

Composer has 600+ contributors, CakePHP has 500,

Laravel has 400 and Yii2 has 800.

1 Laravel core (laravel/framework)

- Projects had to be widely recognized by the PHP

community: Composer has 11k stars on GitHub, CakePHP

has 7k, Laravel has 35k and Yii2 has 11k.

The history of the commit activity of the projects was retrieved

via the GitHub API and their code base was analyzed by

SonarQube 2 in order to measure their TD at every commit

snapshot. It should be noted that the commit history includes the

last year’s commit data of the projects for two main reasons: The

aim of the study is to track the most recent developers’ activity in

order to ask currently active developers to evaluate the importance

of the code violations that SonarQube detected. For example, it

would not be reasonable to approach a developer that pushed

some commits two or three years ago without any recent activity,

since he may be currently inactive. The second reason is that the

analysis process with SonarQube is costly in terms of time and

resources, especially in cases when the TD is measured for every

single commit of the project.

As in any similar study, the major challenge was to retrieve

sufficient responses as previous experience has shown that people

outside the academic community are not always willing to spare

time to contribute to academic studies. To increase the likelihood

of obtaining a response, the developers have been approached in a

way that could potentially attract their interest, as described next.

3.1 Providing a personalized report to

participants

Prior to the request for participating in the evaluation of TD items

(even just a single one), developers have been provided with a

personalized report of their current activity including their commit

density, contribution to the overall TD of the project (relatively to

the rest of the developers) and the top-five code violations they

insert into the code. The report for a random developer (with

anonymized information) for project Yii2 is shown in Figure 1.

The obtained response rate in our study was 35%.

Figure 1: Anonymized TD report of a developer in Yii2.

3.2 Set-up of the study

At the end of the report each developer was asked to evaluate TD

items detected in the project under study. In the evaluation screen

the developer was presented with a code violation (assessed TD

2 https://www.sonarqube.org/

item) as detected by SonarQube along with some information

regarding the violation itself and the file in which the violation

was found, so as to provide a spherical view of the TD item before

answering. In particular, the evaluator was given the following

information regarding the violation (see Figure 2):

- Short description of the TD item

- Suggested solution of the TD item

- Tag categorization (serving as keywords of the TD item)

- Severity of the TD item

- Estimated time to fix the TD item

- The name of the file in which the TD was detected

- The revision of the file

- The code snippet where the TD item was detected

- 3The change frequency of the file (as percentage)

- 4The issue fixing frequency of the file (as percentage)

- 5The total technical debt of the file (as percentage)

Figure 2: Evaluation screen for a TD item in project Yii2.

At the bottom of the screen the developers were asked to evaluate

the urgency of the TD item to be fixed in a Likert scale (from 1 to

5), with 1 meaning “no need to solve it” and 5 corresponding to “it

is urgent to solve it”. The developers’ response to this question

served as the dependent variable in the statistical analysis.

4 RESULTS AND DISCUSSION

4.1 Statistical Analysis

In this subsection we present the descriptive statistics on the

involved variables and inferential statistics regarding the

relationship between the factors that have been considered

(explanatory variables) and the agreement of a developer on the

resolution of a TDI (dependent variable).

Table 1 summarizes the distributions for the categorical variables

of the study, whereas Table 2 provides the univariate descriptive

statistics of the continuous variables, in which results were

expressed as mean (M), standard deviation (SD), median (Mdn),

minimum (min) and maximum (max). (Developer Participation

3 This indicates how often the file gets modified, relatively to other files. A

percentage of 100% means that the file is the most frequently modified file.
4 This indicates how often the file gets modified for issue fixing, relatively to other

files. A percentage of 100% means that the file produces the most issues.
5 This indicates the technical debt of the file, relatively to other files. A percentage of

100% means that the file has the highest technical debt.

indicates whether the participant was a contributor to the project

in which the TD item was found, or not).

Table 1: Frequency distributions for categorical variables

 N %

Developer

Evaluation

(Dependent)

Very low 74 27.2

Low 38 14

Moderate 60 22.1

High 49 18

Very high 51 18.8

Severity Info 15 5.5

Minor 58 21.3

Major 189 69.5

Critical 10 3.7

Debt characterization Changeability 14 5.3

Maintainability 157 59.2

Reliability 70 26.4

Security 5 1.9

Testability 19 7.2

Missing 7

Developer Participation
No 105 38.6

Yes 167 61.5

Table 2: Descriptive statistics for continuous variables

N M SD min max

Time to fix (in min) 272 10.71 14.28 1 60

TD file (in min) 272 274.63 441.30 2 2828

File modifications ranking 272 84.97 17.47 6 100

File corrections ranking 272 36.18 40.91 0 100

In order to examine the relationship between explanatory

variables and outcome responses (Developer Evaluation), the

Generalized Estimation Equations (GEE) approach is adopted.

GEE introduced by Liand and Zeger [12] can be considered as the

extension of the Generalized Linear Model, suitable for taking

into account the dependence among observations. As in our

survey eighteen developers provided their evaluations, each one

for one up to eighty-three TD items, there is an imperative need to

handle the inherent dependence (or "developer effect"), stemming

from the evaluations of the same developers to TD items.

Describing briefly, consider a random sample of observations

from 𝑛 subjects (responses on TD items). Let 𝑶𝑖
𝑇 =

(𝑂𝑖1, … , 𝑂𝑖𝑛𝑖)
𝛵

 be the column vector of ordinal responses

provided by subject 𝑖 = {1, . . . 𝑠} where 𝑂𝑖𝑟 takes values in

{1,… , 𝐶}. Also let 𝑿𝑖 = (𝑿𝑖1, … , 𝑿𝑖𝑛𝑖
)𝑇 be a 𝑛𝑖 × 𝑝 dimensional

matrix of repeated 𝑝 covariates for subject 𝑖 . Then, the model

describing the correlation between the set of covariates and the

conditional probabilities of each ordinal response is given by

𝑙[𝑃(𝑂𝑖𝑟 ≤ 𝑐|𝑿𝑖𝑟 = 𝒙𝑖𝑟)] = 𝛽0𝑐 + 𝒙𝑖𝑟𝜷1
𝑇 (1)

For 𝑐 = 1,… , 𝐶 − 1, 𝛽0𝑐 the threshold parameter for level 𝑐 , 𝜷1

the row vector of regression coefficients corresponding to

covariates and with 𝑙 we denote a known link function (logit

function in our case). The selection of the explanatory variables

was based on a backward elimination.

The backward elimination procedure indicated that the covariates

File Modifications Ranking, χ2(1) = 0.030, p = 0.863, Time to Fix

(in minutes), χ2(1) = 0.512, p = 0.474 and TD Files (in minutes),

χ2(1) = 1.482, p = 0.223 do not present a statistically significant

main effect on responses and for this reason they were dropped

out from any further analyses. The final model, after omitting

insignificant predictors, indicated that Severity, χ2(3) = 15.625, p

= 0.001, Debt Characterization, χ2(4) = 12.669, p = 0.013,

Developer Participation (Binary), χ2(1) = 6.625, p = 0.009 and

File Corrections Ranking, χ2(1) = 3.418, p = 0.064 presented

statistically significant main effects on the developer evaluation

for TD items. The parameters of the final model are presented in

Table 3, in which the reference categories for factors Severity,

Debt Characterization and Developer Participation are "Critical",

"Maintainability" and "Yes", respectively. Interpreting the

parameter estimates of the model for the factor Severity, the

coefficient for the level Info (b = -3.070, SE = 1.374) indicates

that the ordered logit for Info TD items, being into a higher

evaluation response is -3.070 (χ2(1) = 4.990, p = 0.025) less than

the reference category (Critical TD items). In other words, the

odds for a Critical TD item to be evaluated into a higher category

are 21.5 (1 𝑒−3.070⁄) times higher compared to an Info TD item.

In addition, the model reveals a statistically significant difference

between the odds ratio (OR) of Minor and Critical Severity, χ2(1)

= 7.407, p = 0.006. Regarding Debt Characterization, the findings

suggest that Testability debt (b = 1.363, SE = 0.539) is 3.9 times

more likely to be evaluated into higher categories compared to

Maintainability debt, χ2(1) = 6.391, p = 0.011. In addition, the

parameter of the binary predictor Developer Participation, (b =

1.120, SE = 0.430) indicates that TD items presented to

developers that have not participated in the project under study at

all are almost 3 times more likely to be evaluated to higher

categories compared to TDIs presented to developers who

contributed to the project. Finally, the coefficient for the covariate

File Corrections Ranking, (b = 0.007, SE = 0.004) indicates a

marginally significant positive correlation between File

Corrections Ranking and Developer Evaluation, χ2(1)=3.418,

p=0.06.

4.2 Discussion of the results

The distribution of developer responses to the question on

whether they agree with the need to resolve a particular TD item

are rather uniform, as in 41% of the violations their level of

agreement was ‘very low’ or ‘low’, in 22% of the cases their level

of agreement was ‘moderate’, while in 36% of the cases they

agreed on the need to apply a refactoring for resolving an issue

(level of agreement was ‘high’ or ‘very high’).

According to results of the Generalized Estimation Equations

approach developers appear to be largely influenced by the

severity of a TD issue (i.e. Critical, Major, Minor and Info as no

Blocking issues were identified). For example, it is 21.5 times

more probable that a Critical issue will be classified as needing

resolution compared to an Info issue. This finding is reasonable,

as the categorization of severity by SonarQube already

distinguishes between issues. In other words, it is reasonable that

a Critical code issue like “String literals should not be duplicated”

is perceived as more urgent to be resolved than an Info code issue

like “Comments should not be located at the end of lines of code”.

Table 3: Parameters of the final model

Parameter b SE

Hypothesis Test

OR

95% OR

χ2 df p Lower Upper

Threshold6 Very low -2.103 1.154 3.318 1 0.069 0.122 0.013 1.173

Low -1.323 1.126 1.381 1 0.240 0.266 0.029 2.419

Moderate -0.223 1.044 0.046 1 0.831 0.800 0.103 6.191

High 0.861 1.053 0.669 1 0.413 2.366 0.301 18.615

Severity: Info -3.070 1.374 4.990 1 0.025 0.046 0.003 0.686

Severity: Minor -2.984 1.096 7.407 1 0.006 0.051 0.006 0.434

Severity: Major -1.409 0.963 2.144 1 0.143 0.244 0.037 1.612

DebtCharacterization: Changeability 0.481 0.290 2.742 1 0.098 1.617 0.915 2.857

DebtCharacterization: Testability 1.363 0.539 6.391 1 0.011 3.908 1.358 11.241

DebtCharacterization: Security -0.653 1.047 0.389 1 0.533 0.520 0.067 4.049

DebtCharacterization: Reliability 0.143 0.266 0.288 1 0.591 1.153 0.685 1.942

Developer Participation: No 1.120 0.430 6.783 1 0.009 3.066 1.319 7.123

File Corrections Ranking 0.007 0.004 3.418 1 0.064 1.007 1.000 1.014

Notes: Reference categories Severity: Critical, Debt Characterization: Maintainability, Developer Participation: Yes

6 In this type of models threshold parameters that define transition points between adjacent categories are estimated for C-1 levels

Short Paper

The broader characterization of the TD issue also seems to have

an effect on the developer’s decision. For example, if an issue

pertains to Testability (like “Expressions should not be too

complex”) it is 3.9 times more probable to be considered as

needing resolution than an issue related to Maintainability (like

“Sections of code should not be "commented out”). Considering

that the scanner employed for identifying rule violations in PHP

code relied on static analysis, it is reasonable that issues related to

Testability, Changeability and Maintainability are considered as

more ‘real’ compared to security/reliability issues which in order

to be accurate require further validation by run-time analysis.

Finally, developers do not tend to accept suggestions for revising

their own code: it is 3 times more likely that a developer who has

not participated in a project agrees with a suggestion to remove a

TD issue, than a developer who is a contributor. This might be

related to the particular practices within the community of a

software project where certain violations are not considered as

harmful because the evolution of the project might have been

unaffected by their presence.

On the other hand, developers’ decisions appear to be unaffected

by factors such as the frequency of modifications to the file under

study (reflected in the Files Modifications Ranking variable), the

time required to fix an issue and the total TD in the examined file.

The last two findings could be related to a latent belief that

automated quality analysis tend to overestimate the magnitude of

problems and thus these factors might be subconsciously

overlooked. The frequency by which a file undergoes

modification, under normal circumstances, should be driving

factor; for example, for a file that has never been the subject of

maintenance there is probably limited urgency to resolve its TD

issues. However, it appears that developers tend to focus on the

problem per se, rather than the surrounding context. Of course, a

relevant threat is related to whether the respondents really

understood the concept of the presented variables. These findings

can be valuable to researchers and practitioners by guiding the

design of more efficient tools that suggest refactorings with a

higher probability of being adopted by the developers.

5 THREATS TO VALIDITY

In this section we briefly list major threats to the validity of the

present study. With regard to statistical conclusion validity we

should stress that the small sample size unavoidably affects the

conclusions regarding the extent of the observed relationships

between the explanatory and output variables. Further

investigation by collecting a larger set of responses is required to

increase our confidence in the identified relationships. With

regard to the construct validity of the study we should

acknowledge that despite our efforts to facilitate the work of the

study participants by offering an easy-to-use web application, it is

not certain that they have correctly interpreted the presented

pieces of information around the examined code fragment and TD

issues. Finally, the conclusions should be cautiously generalized

to other projects, languages, development models as this kind of

studies are subject to external validity threats.

6 CONCLUSIONS

Existing software quality tools can yield extremely long lists of

refactoring suggestions, deterring developers from adopting them.

Thus, there is a need to determine which refactoring opportunities

make sense for the developers depending on their background,

nature and importance of the problem, surrounding code context,

etc. In this paper we present results from an ongoing study on

various factors that potentially drive open-source software

developers to accept or reject a suggestion to resolve a TD item.

ACKNOWLEDGMENTS

Work reported in this paper has received funding from the

European Union’s Horizon 2020 research and innovation

programme under grant agreement No 780572 (project SDK4ED).

REFERENCES
[1] A. Hunt and D. Thomas, The Pragmatic Programmer: From

Journeyman to Master. Addison-Wesley Professional, 1999.

[2] T. Amanatidis, A. Chatzigeorgiou, A. Ampatzoglou, and I.

Stamelos, “Who is Producing More Technical Debt?: A
Personalized Assessment of TD Principal,” Proceedings of the

XP2017 Scientific Workshops, USA, 2017, p. 4:1–4:8.

[3] D. Silva, N. Tsantalis, and M. T. Valente, “Why We Refactor?

Confessions of GitHub Contributors,” in Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of

Software Engineering, New York, NY, USA, 2016, pp. 858–870.

[4] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton,

“Measure It? Manage It? Ignore It? Software Practitioners and
Technical Debt,” in Proceedings of the 2015 10th Joint Meeting on

Foundations of Software Engineering, USA, 2015, pp. 50–60.

[5] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, and A. D. Lucia,

“Do They Really Smell Bad? A Study on Developers’ Perception of
Bad Code Smells,” in 2014 IEEE International Conference on

Software Maintenance and Evolution, 2014, pp. 101–110.

[6] A. Potdar and E. Shihab, “An Exploratory Study on Self-Admitted

Technical Debt,” in 2014 IEEE International Conference on
Software Maintenance and Evolution, 2014, pp. 91–100.

[7] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why

don’t software developers use static analysis tools to find bugs?,” in

35th International Conference on Software Engineering (ICSE),
2013, pp. 672–681.

[8] R. O. Spínola, A. Vetrò, N. Zazworka, C. Seaman, and F. Shull,

“Investigating technical debt folklore: Shedding some light on

technical debt opinion,” in 4th International Workshop on Managing
Technical Debt (MTD), 2013, pp. 1–7.

[9] M. Kim, T. Zimmermann, and N. Nagappan, “A Field Study of

Refactoring Challenges and Benefits,” in Proceedings of the ACM

SIGSOFT 20th International Symposium on the Foundations of
Software Engineering, New York, NY, USA, 2012, p. 50:1–50:11.

[10] Y. Wang, “What motivate software engineers to refactor source

code? evidences from professional developers,” IEEE International

Conference on Software Maintenance, 2009, pp. 413–416.

[11] M. V. Mäntylä and C. Lassenius, “Drivers for Software Refactoring
Decisions,” in Proceedings of the 2006 ACM/IEEE International

Symposium on Empirical Software Engineering, New York, NY,

USA, 2006, pp. 297–306.

[12] K.-Y. Liang and S. L. Zeger, “Longitudinal data analysis using

generalized linear models,” Biometrika, vol. 73, no. 1, pp. 13–22,

Apr. 1986.

