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ABSTRACT 

The set of concepts collectively known as Technical Debt assume 

that software liabilities set up a context that can make a future 

change more costly or impossible; and therefore repaying the debt 

should be pursued. However, software developers often disagree 

or even dislike an automatically generated list of improvement 

suggestions, which they consider not fitting or important for their 

own code. To shed light into the reasons that drive developers to 

adopt or reject refactoring opportunities (i.e., technical debt 

repayment), we have performed an empirical study on the 

potential factors that affect the developers’ decision to agree with 

the removal of a specific Technical Debt liability. The study has 

been addressed to the developers of four well-known open-source 

applications. To increase the response rate, a personalized 

assessment has first been sent to each developer, summarizing 

his/her own contribution to the technical debt of the 

corresponding project. Responds have been collected through a 

custom built web application that presented code fragments 

suffering from violations as identified by SonarQube along with 

information that could possibly affect their level of agreement to 

the importance of resolving an issue. These factors include data 

such as the frequency of past changes in the module under study, 

the number of bugs, the type and intensity of the violation, the 

level of involvement of the developer and whether he/she is a 

contributor in the corresponding project. Multivariate statistical 

analysis methods have been used to understand the importance 

and the underlying relationships among these factors and the 

results are expected to be useful for researchers and practitioners 

in Technical Debt Management. 
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1 INTRODUCTION 

According to A. Hunt and D. Thomas many developers are 

reluctant to start ‘ripping up’ their code (a.k.a. refactor) just 

because it isn’t quite right [1]. As they vividly put it, going to a 

boss or client and saying that a working piece of code needs 

another week to refactor it, would probably cause a response that 

cannot be printed. However, deferring a refactoring might incur 

technical debt (TD) requiring greater time investment to fix the 

problem down the road. 

Previous studies have shown that developers perceive and handle 

TD in different ways [2] and have distinct motivations for 

applying refactorings [3]. To shed light into the factors that drive 

developers to accept or reject automated suggestions for TD 

removal we have carried out a study targeting developers of open-

source PHP projects with the following two main characteristics: 

(a) to increase their motivation for participating in the study we 

have provided to each participant, prior to requesting his 

feedback, a personalized report on the TD that he/she has incurred 

to the project, and (b) to facilitate the collection of data a web 

application has been implemented to present individual code 

fragments suffering from an identified TD issue along with 

information on the parameters that might affect the developers 

decision to repay the TD or not. 

2 RELATED WORK 

There is a limited number of studies providing insights on the 

developer’s perception regarding the urgency to resolve code 

violations, which in turn lead to the accumulation of TD. In a 

recent study [4], the authors sent surveys to explore whether 

issues involving architectural elements lie among the most 

significant sources of TD. A number of 536 respondents replied 

(leading to a response rate of 29%) and the results showed that 

architectural issues are the greatest source of TD. Such issues are 

difficult to cope with and they dragged on for many years. 

Another explored subject was the existence of effective tools for 

managing TD. Respondents claimed that existing tools do not 

capture the key areas of accumulated problems related to TD. 

In a 2014 study [5], the authors investigated which bad smells are 

considered by the developers as the most harmful. The developers 

were given code snippets from three systems with twelve kinds of 

bad smells and were asked to rank the severity of the smells. Both 

original developers from the systems and outsiders (industrial 

developers) were included in the survey (a response rate of 40% 

was achieved). The results suggested that smells related to 

complex code are considered an important threat by developers. In 

another exploratory study [6], comments of four large open-

source systems were used to identify self-admitted TD. The 

authors found that more experienced developers introduce most of 
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the self-admitted TD while time pressure and code complexity do 

not relate to the amount of self-admitted debt. 

In another study in 2013 [7], 20 developers were interviewed in 

order to investigate the reasons why static analysis tools are not 

used during development process. Participants claimed that static 

analysis tools are beneficial, but false positives, poorly presented 

output and low customizability deter their use. Spinola et al. [8] 

chose 14 statements regarding TD and asked from 37 practitioners 

if they agree with them. The statement that says “Not all technical 

debt is bad” lies among the statements with the maximum 

consensus. In other words developers believe that there is a 

healthy level of TD in every software system. 

Kim et al. [9] conducted a survey to examine developers’ 

perception regarding code refactoring. Participants responded that 

refactoring hides substantial cost and risks and further support is 

needed beyond automated refactoring within IDEs. However, a 

case study on Windows 7 highlighted the benefits of refactoring. 

The results showed that “refactored modules experienced higher 

reduction in the number of inter-module dependencies and post-

release defects than other changed modules”. 

In another study which debated developers’ position about code 

refactoring [10], 20 refactoring practitioners were interviewed. 

Participants recognized the added value of a refactoring (code 

reusability), however if too much effort is needed they may be 

reluctant to make refactoring decisions. Mäntylä and Lassenius 

[11] studied the refactoring decisions made by 37 students on a 

small Java application. According to participants’ responses, 

‘Long method’ was the top driver for refactoring decision and 

poor readability along with poor understanding of the code were 

also among the most important drivers. 

3 STUDY DESIGN 

The purpose of the current study is to shed light on the factors that 

drive developers to resolve TD Items (TDIs) identified in their 

own code. To achieve this, four PHP open source projects on 

GitHub were analyzed to obtain commit activity and code debt 

information. Specifically, Composer, CakePHP, Laravel1 and Yii2 

were included. Composer (composer/composer) is a dependecy 

manager for PHP, CakePHP (cakephp / cakephp) is a framework 

to build PHP applications and Laravel (laravel / framework) and 

Yii2 (yiisoft / yii2) are also well known PHP frameworks. The 

criteria for selecting the aforementioned projects are as follows: 

- Projects had to be open source so as to have direct access to 

their code base. 

- Projects had to be actively maintained up until the time of 

this study. 

- Projects had to be widely used by the PHP community: 

Composer has 5 millions downloads, CakePHP has 2 

millions, Laravel has 6 millions and Yii2 has 1 million. 

- Projects had to be maintained by many contributors: 

Composer has 600+ contributors, CakePHP has 500, 

Laravel has 400 and Yii2 has 800. 

                                                                 
1 Laravel core (laravel/framework) 

- Projects had to be widely recognized by the PHP 

community: Composer has 11k stars on GitHub, CakePHP 

has 7k, Laravel has 35k and Yii2 has 11k. 

The history of the commit activity of the projects was retrieved 

via the GitHub API and their code base was analyzed by 

SonarQube 2  in order to measure their TD at every commit 

snapshot. It should be noted that the commit history includes the 

last year’s commit data of the projects for two main reasons: The 

aim of the study is to track the most recent developers’ activity in 

order to ask currently active developers to evaluate the importance 

of the code violations that SonarQube detected. For example, it 

would not be reasonable to approach a developer that pushed 

some commits two or three years ago without any recent activity, 

since he may be currently inactive. The second reason is that the 

analysis process with SonarQube is costly in terms of time and 

resources, especially in cases when the TD is measured for every 

single commit of the project. 

As in any similar study, the major challenge was to retrieve 

sufficient responses as previous experience has shown that people 

outside the academic community are not always willing to spare 

time to contribute to academic studies. To increase the likelihood 

of obtaining a response, the developers have been approached in a 

way that could potentially attract their interest, as described next. 

3.1 Providing a personalized report to 

participants 

Prior to the request for participating in the evaluation of TD items 

(even just a single one), developers have been provided with a 

personalized report of their current activity including their commit 

density, contribution to the overall TD of the project (relatively to 

the rest of the developers) and the top-five code violations they 

insert into the code. The report for a random developer (with 

anonymized information) for project Yii2 is shown in Figure 1. 

The obtained response rate in our study was 35%.  

 
Figure 1: Anonymized TD report of a developer in Yii2. 

3.2 Set-up of the study 

At the end of the report each developer was asked to evaluate TD 

items detected in the project under study. In the evaluation screen 

the developer was presented with a code violation (assessed TD 
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item) as detected by SonarQube along with some information 

regarding the violation itself and the file in which the violation 

was found, so as to provide a spherical view of the TD item before 

answering. In particular, the evaluator was given the following 

information regarding the violation (see Figure 2): 

- Short description of the TD item 

- Suggested solution of the TD item 

- Tag categorization (serving as keywords of the TD item) 

- Severity of the TD item 

- Estimated time to fix the TD item 

- The name of the file in which the TD was detected 

- The revision of the file 

- The code snippet where the TD item was detected 

- 3The change frequency of the file (as percentage) 

- 4The issue fixing frequency of the file (as percentage) 

- 5The total technical debt of the file (as percentage) 

 
Figure 2: Evaluation screen for a TD item in project Yii2. 

At the bottom of the screen the developers were asked to evaluate 

the urgency of the TD item to be fixed in a Likert scale (from 1 to 

5), with 1 meaning “no need to solve it” and 5 corresponding to “it 

is urgent to solve it”. The developers’ response to this question 

served as the dependent variable in the statistical analysis. 

4 RESULTS AND DISCUSSION 

4.1 Statistical Analysis 

In this subsection we present the descriptive statistics on the 

involved variables and inferential statistics regarding the 

relationship between the factors that have been considered 

(explanatory variables) and the agreement of a developer on the 

resolution of a TDI (dependent variable).  

Table 1 summarizes the distributions for the categorical variables 

of the study, whereas Table 2 provides the univariate descriptive 

statistics of the continuous variables, in which results were 

expressed as mean (M), standard deviation (SD), median (Mdn), 

minimum (min) and maximum (max). (Developer Participation 

                                                                 
3  This indicates how often the file gets modified, relatively to other files. A 

percentage of 100% means that the file is the most frequently modified file. 
4 This indicates how often the file gets modified for issue fixing, relatively to other 

files. A percentage of 100% means that the file produces the most issues. 
5 This indicates the technical debt of the file, relatively to other files. A percentage of 

100% means that the file has the highest technical debt. 

indicates whether the participant was a contributor to the project 

in which the TD item was found, or not). 

Table 1: Frequency distributions for categorical variables 

  N % 

Developer  

Evaluation 

(Dependent) 

Very low 74 27.2 

Low 38 14 

Moderate 60 22.1 

High 49 18 

Very high 51 18.8 

Severity Info 15 5.5 

Minor 58 21.3 

Major 189 69.5 

Critical 10 3.7 

Debt characterization Changeability 14 5.3 

Maintainability 157 59.2 

Reliability 70 26.4 

Security 5 1.9 

Testability 19 7.2 

Missing 7 
 

Developer Participation 
No 105 38.6 

Yes 167 61.5 

Table 2: Descriptive statistics for continuous variables 

 
N M SD min max 

Time to fix (in min) 272 10.71 14.28 1 60 

TD file (in min) 272 274.63 441.30 2 2828 

File modifications ranking 272 84.97 17.47 6 100 

File corrections ranking 272 36.18 40.91 0 100 

In order to examine the relationship between explanatory 

variables and outcome responses (Developer Evaluation), the 

Generalized Estimation Equations (GEE) approach is adopted. 

GEE introduced by Liand and Zeger [12] can be considered as the 

extension of the Generalized Linear Model, suitable for taking 

into account the dependence among observations. As in our 

survey eighteen developers provided their evaluations, each one 

for one up to eighty-three TD items, there is an imperative need to 

handle the inherent dependence (or "developer effect"), stemming 

from the evaluations of the same developers to TD items. 

Describing briefly, consider a random sample of observations 

from 𝑛  subjects (responses on TD items). Let 𝑶𝑖
𝑇 =

(𝑂𝑖1, … , 𝑂𝑖𝑛𝑖)
𝛵

 be the column vector of ordinal responses 

provided by subject 𝑖 = {1, . . . 𝑠}  where 𝑂𝑖𝑟  takes values in 

{1,… , 𝐶}. Also let 𝑿𝑖 = (𝑿𝑖1, … , 𝑿𝑖𝑛𝑖
)𝑇 be a 𝑛𝑖 × 𝑝 dimensional 

matrix of repeated 𝑝  covariates for subject 𝑖 . Then, the model 

describing the correlation between the set of covariates and the 

conditional probabilities of each ordinal response is given by 

𝑙[𝑃(𝑂𝑖𝑟 ≤ 𝑐|𝑿𝑖𝑟 = 𝒙𝑖𝑟)] = 𝛽0𝑐 + 𝒙𝑖𝑟𝜷1
𝑇              (1) 

For 𝑐 = 1,… , 𝐶 − 1, 𝛽0𝑐  the threshold parameter for level 𝑐 , 𝜷1 

the row vector of regression coefficients corresponding to 

covariates and with 𝑙  we denote a known link function (logit 

function in our case). The selection of the explanatory variables 

was based on a backward elimination.  

The backward elimination procedure indicated that the covariates 

File Modifications Ranking, χ2(1) = 0.030, p = 0.863, Time to Fix 

(in minutes), χ2(1) = 0.512, p = 0.474 and TD Files (in minutes), 



 

 

χ2(1) = 1.482, p = 0.223 do not present a statistically significant 

main effect on responses and for this reason they were dropped 

out from any further analyses. The final model, after omitting 

insignificant predictors, indicated that Severity, χ2(3) = 15.625, p 

= 0.001, Debt Characterization, χ2(4) = 12.669, p = 0.013, 

Developer Participation (Binary), χ2(1) = 6.625, p = 0.009 and 

File Corrections Ranking, χ2(1) = 3.418, p = 0.064 presented 

statistically significant main effects on the developer evaluation 

for TD items. The parameters of the final model are presented in 

Table 3, in which the reference categories for factors Severity, 

Debt Characterization and Developer Participation are "Critical", 

"Maintainability" and "Yes", respectively. Interpreting the 

parameter estimates of the model for the factor Severity, the 

coefficient for the level Info (b = -3.070, SE = 1.374) indicates 

that the ordered logit for Info TD items, being into a higher 

evaluation response is -3.070 (χ2(1) = 4.990, p = 0.025) less than 

the reference category (Critical TD items). In other words, the 

odds for a Critical TD item to be evaluated into a higher category 

are 21.5 (1 𝑒−3.070⁄ ) times higher compared to an Info TD item. 

In addition, the model reveals a statistically significant difference 

between the odds ratio (OR) of Minor and Critical Severity, χ2(1) 

= 7.407, p = 0.006. Regarding Debt Characterization, the findings 

suggest that Testability debt (b = 1.363, SE = 0.539) is 3.9 times 

more likely to be evaluated into higher categories compared to 

Maintainability debt, χ2(1) = 6.391, p = 0.011. In addition, the 

parameter of the binary predictor Developer Participation, (b = 

1.120, SE = 0.430) indicates that TD items presented to 

developers that have not participated in the project under study at 

all are almost 3 times more likely to be evaluated to higher 

categories compared to TDIs presented to developers who 

contributed to the project. Finally, the coefficient for the covariate 

File Corrections Ranking, (b = 0.007, SE = 0.004) indicates a 

marginally significant positive correlation between File 

Corrections Ranking and Developer Evaluation, χ2(1)=3.418, 

p=0.06. 

4.2 Discussion of the results 

The distribution of developer responses to the question on 

whether they agree with the need to resolve a particular TD item 

are rather uniform, as in 41% of the violations their level of 

agreement was ‘very low’ or ‘low’, in 22% of the cases their level 

of agreement was ‘moderate’, while in 36% of the cases they 

agreed on the need to apply a refactoring for resolving an issue 

(level of agreement was ‘high’ or ‘very high’). 

According to results of the Generalized Estimation Equations 

approach developers appear to be largely influenced by the 

severity of a TD issue (i.e. Critical, Major, Minor and Info as no 

Blocking issues were identified). For example, it is 21.5 times 

more probable that a Critical issue will be classified as needing 

resolution compared to an Info issue. This finding is reasonable, 

as the categorization of severity by SonarQube already 

distinguishes between issues. In other words, it is reasonable that 

a Critical code issue like “String literals should not be duplicated” 

is perceived as more urgent to be resolved than an Info code issue 

like “Comments should not be located at the end of lines of code”.  

Table 3: Parameters of the final model 

Parameter b SE 

Hypothesis Test 

OR 

95% OR 

χ2 df p Lower Upper 

Threshold6 Very low  -2.103 1.154 3.318 1 0.069 0.122 0.013 1.173 

Low -1.323 1.126 1.381 1 0.240 0.266 0.029 2.419 

Moderate -0.223 1.044 0.046 1 0.831 0.800 0.103 6.191 

High 0.861 1.053 0.669 1 0.413 2.366 0.301 18.615 

Severity: Info -3.070 1.374 4.990 1 0.025 0.046 0.003 0.686 

Severity: Minor -2.984 1.096 7.407 1 0.006 0.051 0.006 0.434 

Severity: Major -1.409 0.963 2.144 1 0.143 0.244 0.037 1.612 

DebtCharacterization: Changeability 0.481 0.290 2.742 1 0.098 1.617 0.915 2.857 

DebtCharacterization: Testability 1.363 0.539 6.391 1 0.011 3.908 1.358 11.241 

DebtCharacterization: Security -0.653 1.047 0.389 1 0.533 0.520 0.067 4.049 

DebtCharacterization: Reliability 0.143 0.266 0.288 1 0.591 1.153 0.685 1.942 

Developer Participation: No 1.120 0.430 6.783 1 0.009 3.066 1.319 7.123 

File Corrections Ranking 0.007 0.004 3.418 1 0.064 1.007 1.000 1.014 

Notes: Reference categories Severity: Critical, Debt Characterization: Maintainability, Developer Participation: Yes 

                                                                 
6 In this type of models threshold parameters that define transition points between adjacent categories are estimated for C-1 levels 
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The broader characterization of the TD issue also seems to have 

an effect on the developer’s decision. For example, if an issue 

pertains to Testability (like “Expressions should not be too 

complex”) it is 3.9 times more probable to be considered as 

needing resolution than an issue related to Maintainability (like 

“Sections of code should not be "commented out”). Considering 

that the scanner employed for identifying rule violations in PHP 

code relied on static analysis, it is reasonable that issues related to 

Testability, Changeability and Maintainability are considered as 

more ‘real’ compared to security/reliability issues which in order 

to be accurate require further validation by run-time analysis.  

Finally, developers do not tend to accept suggestions for revising 

their own code: it is 3 times more likely that a developer who has 

not participated in a project agrees with a suggestion to remove a 

TD issue, than a developer who is a contributor. This might be 

related to the particular practices within the community of a 

software project where certain violations are not considered as 

harmful because the evolution of the project might have been 

unaffected by their presence. 

On the other hand, developers’ decisions appear to be unaffected 

by factors such as the frequency of modifications to the file under 

study (reflected in the Files Modifications Ranking variable), the 

time required to fix an issue and the total TD in the examined file. 

The last two findings could be related to a latent belief that 

automated quality analysis tend to overestimate the magnitude of 

problems and thus these factors might be subconsciously 

overlooked. The frequency by which a file undergoes 

modification, under normal circumstances, should be driving 

factor; for example, for a file that has never been the subject of 

maintenance there is probably limited urgency to resolve its TD 

issues. However, it appears that developers tend to focus on the 

problem per se, rather than the surrounding context. Of course, a 

relevant threat is related to whether the respondents really 

understood the concept of the presented variables. These findings 

can be valuable to researchers and practitioners by guiding the 

design of more efficient tools that suggest refactorings with a 

higher probability of being adopted by the developers. 

5 THREATS TO VALIDITY 

In this section we briefly list major threats to the validity of the 

present study. With regard to statistical conclusion validity we 

should stress that the small sample size unavoidably affects the 

conclusions regarding the extent of the observed relationships 

between the explanatory and output variables. Further 

investigation by collecting a larger set of responses is required to 

increase our confidence in the identified relationships. With 

regard to the construct validity of the study we should 

acknowledge that despite our efforts to facilitate the work of the 

study participants by offering an easy-to-use web application, it is 

not certain that they have correctly interpreted the presented 

pieces of information around the examined code fragment and TD 

issues. Finally, the conclusions should be cautiously generalized 

to other projects, languages, development models as this kind of 

studies are subject to external validity threats. 

6 CONCLUSIONS 

Existing software quality tools can yield extremely long lists of 

refactoring suggestions, deterring developers from adopting them. 

Thus, there is a need to determine which refactoring opportunities 

make sense for the developers depending on their background, 

nature and importance of the problem, surrounding code context, 

etc. In this paper we present results from an ongoing study on 

various factors that potentially drive open-source software 

developers to accept or reject a suggestion to resolve a TD item. 
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