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Abstract 

Dielectric continuum models are popular for modeling solvent effects in quantum 

chemical calculations. The polarizable continuum model (PCM) was originally 

published exploiting the exact dielectric boundary condition. This is nowadays called 

DPCM. The conductor-like screening model (COSMO) introduced a simplified and 

slightly empirical scaled conductor boundary condition, which turned out to reduce 

the errors resulting from outlying charge. This was implemented in PCM as CPCM. 

Later the integral equation formalism (IEFPCM) and the formally identical SS(V)PE 

model of Chipman introduced a modified dielectric boundary condition combining 

the dielectric exactness of DPCM with the reduced outlying charge sensitivity of 

COSMO. In this paper we demonstrate on two huge datasets of neutral and ionic 

solutes that no significant difference can be observed between the COSMO and 

IEFPCM, if the correct scaling factor is chosen for COSMO.  

Introduction 

The dielectric continuum approach is the most widely used class of methods for  

modeling solvent effects in quantum chemical calculations and the apparent surface 

charge (ASC) models comprise the most popular subclass of these.1 Its first 

representative is the polarizable continuum model (PCM)2, which was originally 

published using the exact dielectric boundary condition (EDBC) for the calculation of 

the vector of polarization charge densities  on the surface segments of the solute 

cavity . Later this original version got named  DPCM. In 1993 Klamt and 



Schüürmann presented the completely independently derived conductor-like 

screening model (COSMO)3, which makes use of the much simpler boundary 

condition of a conductor and takes into account the reduction of the polarization 

charge densities occurring at finite permittivity by a slightly empirical scaling x  
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where x was argued to be optimally chosen as 0.5 for neutral solutes, while for ions x 

= 0 should be the best choice. Theoretically COSMO is exact in the limit of , 

but the finite  behavior is slightly approximate. A big advantage of COSMO over the 

EDBC was the fact that it only requires the solute electrostatic potential X on the 

cavity of solute X, while the EDBC requires the normal component of the solute 

electric field E
X 

 n, which is much more complicated to calculate and more sensitive to 

numerical noise. But the main advantage was only detected later: COSMO suffers 

much less from outlying charge errors (OCE)4 than solvation models using the EDBC, 

because X is an order of magnitude less influenced than E
X 

 n by the fact, that in 

continuum solvation models almost inevitably some small part of the total electron 

density of the solute is located outside the solute cavity, while the dielectric 

continuum approach assumes to find all solute charge inside the cavity. These 

advantages of the COSMO method motivated Barone and Cossi to implement the 

COSMO boundary condition within the PCM framework, resulting in the so-called 

CPCM model5. Unfortunately the default value for x in the COSMO scaling function 

was set to zero in CPCM, and not to 0.5 as in the original COSMO. Cossi et al. later 

showed that the agreement of the results of DPCM and CPCM improves, if for neutral 

compounds a value of x=0.5 is chosen, i.e. they confirmed that the original COSMO 

choice of x is preferable.6 But the official releases of CPCM in the Gaussian program7 

do not allow the user to set this value. Hence CPCM is most often used with an 

unfavorable scaling function.  

 

In 1997 Chipman8 started to develop a number of alternative boundary conditions for 

ASC continuum solvation models with the special focus of taking into account the 

volume polarization caused by the charge density outside the cavity. As the 

computationally most practical result he derived the SS(V)PE model, in which the (V) 

denotes approximate volume polarization. As COSMO, this model does only require 



the electrostatic potential vector X on the cavity and avoids using the electrostatic 

field normal components E
X 

 n. At the costs of being numerically more expensive than 

COSMO, it does not require any empirically adjusted parameter beyond the cavity 

definition itself, which is empirical in all CSMs. 

 

In 1997 Cances et al.9 published a new and rather general framework for ASC 

continuum solvation models, the so-called integral equation formalism IEF, which 

even allowed for the description of anisotropic dielectric continua. A year later a 

simplified and computationally much more efficient version of the IEF was presented 

by Mennucci et al.,10 which was now again restricted to isotropic solvents, but 

avoided the use of the problematic E
X 

 n. Later it turned out that this method, which is 

nowadays used under the name IEFPCM, is identical with Chipman’s SS(V)PE, as 

proven in the excellent theoretical comparison of the different ASC solvation models 

by Chipman. A third, COSMO-based derivation of the same equation was proposed 

by Klamt while studying the original IEFPCM publication in 1997. This derivation, 

which was published in Chipman’s paper, elucidates the close similarity between 

COSMO and SS(V)PE/IEFPCM11.  

 

Summarizing the situation, the SS(V)PE/IEFPCM equation has been independently 

derived by three groups and is currently considered as the best available boundary 

condition for ASC isotropic dielectric continuum solvation models, combining a 

robustness with respect to outlying charge effects and computational efficiency. From 

the theoretical equations it is obvious that in the limit of  SS(V)PE/IEFPCM 

must be identical to the older COSMO model, which is the algorithmically simplest 

and computationally least demanding of all ASC models. For finite values of  

COSMO is slightly more empirical. But it is not known, how big the deviations of 

COSMO and SS(V)PE/IEFPCM are in practice and whether the additional 

complexity of SS(V)PE/IEFPCM is really warranted by more accurate results. 

Therefore, in this paper we investigate systematically the practical differences of 

COSMO and SS(V)PE/IEFPCM solvation models. 

 

Theory 

 



Using the notations introduced in the COSMO paper, the three methods considered 

here can be described as follows. Let us start with a solute X and a closed cavity  

defining the boundary of the dielectric continuum of strength  embedding X. Let  

be represented by m sufficiently small surface segments. Let  be the vector of the m 

polarization charge densities on the segments and S shall be a diagonal matrix of the 

m segment areas. Let A be the symmetric Coulomb interaction matrix of the charges 

on the segments, with diagonal elements representing the self-interactions. Let X be 

the vector of the solute electrostatic potential on the m segments, and E
X 

 n the 

corresponding vector of the electrostatic field normal components. Then the exact 

dielectric boundary condition used in DPCM reads 
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where D is the non-symmetric matrix generating the electric field normal vectors 

resulting from the polarization charges on the m segments. The COSMO boundary 

condition reads 
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For = this simply is the grounded conductor boundary condition of vanishing total 

potential on the conductor surface.  

 

As mentioned above, the SS(V)PE/IEFPCM boundary condition can be easily derived 

from a combination of the EDBC and the COSMO boundary condition. If we 

introduce * as the polarization charge densities produced in the limit of infinite  

and if we make use of the fact that under the assumption of all solute charge being 

inside the cavity the polarization charges arising from the conductor boundary 

condition must be identical with those resulting from the EDBC, then we get 

  *4  SDIE
X

n          (4) 

and 
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Inserting eq. 5 into eq. 4 we get 
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Now we can use this expression for replacing the problematic electric field normal 

vector E
X 

 n in the EDBC, i.e. in eq. 2, yielding 
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which after short reorganization yields the SS(V)PE/IEFPCM boundary condition 
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This derivation clearly shows that the more favorable behavior of SS(V)PE/IEFPCM 

compared to the EDBC and thus DPCM, which sometimes is argued to result from 

taking into account volume polarization, just arises from replacing the problematic 

electric field normal vector E
X 

 n based on a COSMO expression. It also shows that 

SS(V)PE/IEFPCM is algorithmically much more complicated and expensive and 

more sensitive to numerical noise than COSMO, because it requires the non-

symmetric D-matrix of the normal electric field components generated by the 

screening charges in addition to the symmetric COSMO matrix A. 

Methods 

 

For a comparison of the different ASC boundary conditions it is required to use an 

otherwise identical implementation of the dielectric continuum solvation methods in a 

quantum chemical package, because any differences in the cavity construction can 

easily cause much larger deviations than those arising from different choices of the 

boundary conditions. For that reason we have chosen the Gaussian09 software which 

offers DPCM, CPCM and IEFPCM as options. Since SS(V)PE and IEFPCM are 

identical and since IEFPCM is the name of the method in Gaussian097, we will denote 

the SS(V)PE/IEFPCM method shortly as IEFPCM further on. Unfortunately there is 

no explicit keyword to change the x-parameter in the COSMO scaling function, which 

is set to zero in Gaussian09.  Nevertheless, this lack can be easily overcome by using 

an effective value ~ (x) of the dielectric permittivity , which results in the same 

value of the scaling function as if a special value of x would have been used. It is 

defined by: 
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and thus yields 
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In this way we considered three variants of CPCM, one corresponding to the 

Gaussian09 default (CPCM with x=0), one corresponding to the x = 0.5, as suggested 

in the original COSMO implementation, and one with an optimized value of x in 

order to achieve optimal agreement with IEFPCM.  

 

In addition to the variation of the methods and x-parameter we modified the radii 

scaling parameter in 0.1 steps from 0.9 to 1.3. The default value is 1.1. By choosing 

the smaller radii we could study the behavior of the different methods in the limit of 

large amounts of outlying charge, and with the large radii the amount of outlying 

charge is reduced to very small amounts.  

 

All quantum calculations have been performed using the density functional theory 

using the BVP86/TZVP/DGA1 computational level.12-14 

 
 All dielectric solvation energies are reported as differences between total energies in 

vacuum and in the dielectric continuum, employing the different dielectric continuum 

models. 

Data sets 

 

In order to perform a rigorous comparison we looked for representative and unbiased 

set of compounds to be considered in the study. We decided to consider the 318 

neutral solutes in the SM8 solvation free energy data set15, which has been considered 

in other comparisons of solvation models before.16 This choice should guarantee that 

all major compounds classes, for which experimental solvation data are available, are 

represented. The geometries were taken from the BP-TZVP gas phase geometry 

optimizations recently published in a study on the D-COSMO-RS solvation model.17 

 

For the ions we selected a set of 20 diverse anions and 20 diverse cations from the 

COSMObaseIL database for ionic liquids18.  

 



The coordinates for all 358 compounds are given in the Supporting Information. 

 

The differences between the dielectric solvation energy obtained by the continuum 

models were quantified by calculating the root mean square deviation (RMSD) using 

IEFPCM as reference: 

𝑅𝑀𝑆𝐷 = √
∑(𝐸−𝐸𝐼𝐸𝐹𝑃𝐶𝑀)2

𝑛
     (11) 

 

 

Results 

 

Neutral solutes  

 

For all 318 neutral solutes first the vacuum energy was calculated. Then dielectric 

continuum solvation models were performed for 50 different parameter combinations:  

 

1) dielectric permittivity  2 and  (represented as 9999) 

2) radii scaling factor :      0.9, 1.0, 1.1, 1.2, 1.3 

3) CSM variant:      IEFPCM, DPCM, CPCM (x=0.0,0.5,0.45, 0.37, 0.43) 

 

Thus in total 51*318 = 16218 quantum calculations have been performed for the 

neutral compounds. All results are reported in table SI1, except for CPCM with x = 

0.37 and 0.43, which are considered as intermediate results for finding the optimal x-

value of 0.45. Table 1 shows the statistical measures for all calculations for neutrals. 



 

 

Figure 1: a) Dielectric solvation energies for DPCM, CPCM(x=0, 0.5, 0.45) for 318 

neutral compounds at dielectric permittivity of 2. b) Same differences for dielectric 

permittivity . Only one CPCM line is plotted, because the different x values yield 

identical results in this limit. All data points are plotted vs. the IEFPCM result. 

 

  RMSD (kcal/mol) r2 

  0.9 1 1.1 1.2 1.3 0.9 1 1.1 1.2 1.3 

IEFPCM 

ε=2 

CPCM 

x = 0.50 
0.151 0.107 0.078 0.059 0.045 0.992 0.993 0.993 0.993 0.993 

CPCM 

x = 0.45 
0.130 0.094 0.071 0.056 0.044 0.992 0.993 0.993 0.993 0.993 

CPCM 

x = 0 
0.660 0.484 0.373 0.294 0.235 0.993 0.993 0.993 0.993 0.994 

DPCM 0.505 0.212 0.118 0.061 0.030 0.914 0.960 0.982 0.992 0.997 

IEFPCM 

ε=∞ 

CPCM   0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 

DPCM 1.268 0.758 0.419 0.210 0.103 0.894 0.945 0.976 0.990 0.996 

Table 1: Statistical measures for the comparison of dielectric solvation energy of neutral 

compounds obtained by CPCM and DPCM to those by IEFPCM. 

 

Figure 1 shows the results for the default cavity size ( = 1.1) and dielectric 

permittivity of  = 2 and , respectively. Table 1 shows the statistical measures for all 
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calculations for neutrals, except for CPCM with x = 0.37 and 0.43, which are 

considered as intermediate results for finding the optimal x-value of 0.45.As 

theoretically expected, in the limit of  =  a perfect agreement of CPCM and 

IEFPCM is achieved. DPCM shows substantial deviations resulting from the outlying 

charge problem. The largest deviation of DPCM arises for methyl 3-methyl-4-

thiomethoxyphenylthiophosphate, for which DPCM underestimates the screening 

energy by more than 25%. At the lower limit of solvent dielectric constants, i.e. for  

= 2, CPCM with x=0, i.e. the default CPCM in Gaussian, overestimates the dielectric 

solvation energies systematically, resulting in a RMSD of 0.37 kcal/mol, but with an 

excellent correlation of r² = 0.993, while CPCM with the original COSMO default x = 

0.5, yields the same excellent correlation, but a RMSD of only 0.073 kcal/mol. The 

best agreement between IEFPCM and CPCM can be achieved using x = 0.45, 

reducing the RMSD to 0.071 kcal/mol. Nevertheless, we do not consider this small 

increase to be relevant. We thus propose to stay with x = 0.5 for neutral solutes.  



 

Figure 2: Same data as shown in figure 1, but here for smaller cavity radii, i.e.  = 0.9 

 

 

Figure 3: Same data as shown in figure 1, but here for larger cavity radii, i.e.  = 1.3 

 

 

Figures 2 and 3 show the same plots as Figure 1, but now at reduced cavity radii ( = 

0.9) and increased cavity radii ( = 1.3). At reduced cavity radii all solvation energies 

are increased, and the amount of outlying charge is much larger than for  = 1.1. For 

the larger cavities, i.e.  = 1.3, the deviations and the correlation between DPCM and 
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IEFPCM strongly increase at both  = 2 and  = . But the effect of the outlying 

charge on the CPCM and IEFPCM is nearly identical. At  =  there still is no 

difference, and at  = 2 the correlation coefficients between all CPCM variants and 

IEFPCM stay the same as they were at  = 1.1. They also stay unchanged for  = 1.3. 

As clearly visible in Figure 3, DPCM converges against IEFPCM in the limit of 

almost vanishing outlying charge. 

 

Ionic solutes  

 

For the 40 ions again  = 2 and  =  are considered, but for CPCM only x = 0 is 

considered, since this is the default of CPCM and it agrees with the x-value for ions 

suggested in the original COSMO publication. As for the neutral solutes five values 

of the radii scaling factor  are considered. 

 

Figure 4: Dielectric solvation energies for 40 ions for (a) default radii with =1.1 and 

(b) reduced cavity radii with = 0.9. 
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  0.9 1 1.1 1.2 1.3 0.9 1 1.1 1.2 1.3 

IEFPCM 

ε=2 

CPCM 0.96 0.58 0.48 0.43 0.40 0.966 0.991 0.994 0.994 0.994 

DPCM 18.73 9.40 4.76 2.40 1.22 0.158 0.102 0.046 0.673 0.926 

IEFPCM 

ε=∞ 

CPCM 0.00 0.00 0.00 0.00 0.00 1.000 1.000 1.000 1.000 1.000 

DPCM 38.55 19.10 9.60 4.81 2.46 0.289 0.147 0.047 0.709 0.937 

 

Table 2: Statistical measures for the comparison of dielectric solvation energy of ionic 

solutes obtained by CPCM and DPCM to those by IEFPCM. 

 

Figure 4 shows the dielectric solvation energies of all ions calculated with CPCM 

(x=0) and DPCM at  = 2 and  = , plotted versus the respective IEFPCM results. 

The statistics of all ion results is given in Table 2. Again a perfect agreement of 

CPCM and IEFPCM is achieved at  = , and with a correlation coefficient of r² = 

0.993 an almost perfect agreement of the two methods is also achieved at  = 2. 

DPCM again suffers dramatically from the outlying charge effect. The correlation 

coefficient of the DPCM results vs. the IEFPCM results is as low as r² = 0.047 at both 

values of  All dielectric solvation energies for anions are underestimated by DPCM, 

because the complete neglect of the outlying electron density reduces the effective 

charge of anions. The opposite happens for cations. For the reduced cavity radii the 

outlying charge errors of DPCM become so large that even an inverse correlation with 

IEFPCM occurs. 

 

Zwitterionic solutes  

After finishing our project the interesting question was raised which choice of the x-

parameter should be used for neutral and charged zwitterions, respectively. Therefore 

we added a small study on 4 neutral zwitterionic aminoacids and two charged 

zwitterions. For all of them we performed calculations with IEFPCM and CPCM with 

x=0.5 and x=1. The results are shown in Figure 5 and detailed data are given in table 

SI1. When using the default value of x according the overall charge of the solute, i.e. 

x=0.5 for the neutral zwitterions and x=0 for the ionic zwitterions, a correlation 

coefficient of r² = 0.9977 is achieved between the CPCM and IEFPCM results. 

Forcing the regression line to zero offset still leaves an excellent correlation of 



r²=0.988. Therefore it appears that the choice of x should be made according to the 

overall charge of the solute even for zwitterions. 

 

Figure 5: Dielectric solvation energies (kcal/mol) for 4 neutral and 2 charged 

zwitterions. The data for glutamine and glycine are indistinguishably close.  

 

Conclusions 

The integral equation formalism in its second version, as implemented in Gaussian09, 

and the formally identical SS(V)PE formalism are widely accepted as the currently  best 

compromise between theoretical exactness and computational efficiency for dielectric 

solvation models. Nevertheless, almost identical dielectric solvation energies can be 

achieved by the simpler COSMO method when using the originally proposed dielectric 

scaling factor with the empirical parameter x=0.5 for neutral solutes and x=0 for ions. 

With this choice of x, COSMO is essentially as good as IEFPCM/ SS(V)PE not only in 

highly dielectric solvents, but also in non-polar solvents. Furthermore, the general 

identity of IEFPCM/ SS(V)PE and COSMO in the limit of  =  and the excellent 

agreement of COSMO and IEFPCM/ SS(V)PE at  = 2 even at large amounts of 

outlying charge disproof the assumption that SS(V)PE (and thus IEFPCM) would in 

any way be better in taking into account the outlying charge effects by some kind of 

approximate volume polarization term. The huge advantage of these methods over the 

classical DPCM just results from the elimination of the problematic normal electric 
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field component from the boundary condition by making use of the conductor limit 

which was avoided from the beginning in COSMO model.  

 

All other parameters of continuum solvation methods, e.g. the choice of the 

construction method and radii for the cavities, the choice of the quantum chemical 

method and basis set, and the non-electrostatic contributions will have a much larger 

influence on the quality of continuum solvation calculations than the choice of the 

theoretically slightly better justified IEFPCM/ SS(V)PE. Considering the facts that the 

entire dielectric continuum solvation concept is only a crude approximation to the 

situation in real solvents19 , and that the currently best overall agreement between 

calculated and experimental solvation free energies is in the order of 0.5 – 1 kcal/mol 

(RMSD)16,17, the small theoretical accuracy gain of ~0.07 kcal/mol (RMSD) of 

IEFPCM/ SS(V)PE vs. COSMO found in our benchmark lets the justification for the 

considerable additional algorithmic and computational expenses of the advanced 

methods appear questionable. 

Supporting information 

The supporting information contains the names and geometries in xyz format of all 

used solutes in the dataset. Furthermore, all calculated total energies are reported in 

Table SI1.  
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