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Abstract  

Objectives The fact that novel drug candidates are becoming increasingly insoluble is a major problem of 

current drug development. Computational tools may address this issue by screening for suitable solvents or 

by identifying potential novel cocrystal formers that increase bioavailability. In contrast to other more 

specialized methods the fluid phase thermodynamics approach COSMO-RS allows for a comprehensive 

treatment of drug solubility, solvate and cocrystal formation and many other thermodynamics properties in 

liquids. The basic idea of COSMO-RS consists of using the screening charge density as computed from first 

principles calculations in combination with fast statistical thermodynamics in order to compute the chemical 

potential of a compound in solution. 

This article gives an overview of recent COSMO-RS developments that are of interest for drug development 

and contains several new application examples for solubility prediction and solvate/cocrystal screening. 

Key finding The fast and accurate assessment of drug solubility and the identification of suitable solvents, 

solvate or cocrystal formers is nowadays possible and may be used to complement modern drug 

development. 

Summary COSMO-RS theory can be applied to a range of physico-chemical properties which are of interest 

in rational crystal engineering. Most notably, in combination with experimental reference data accurate 
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quantitative solubility predictions in any solvent or solvent mixture are possible. Additionally, COSMO-RS 

can be extended to the prediction of cocrystal formation which results in considerable predictive accuracy 

concerning coformer screening. In its recent variant COSMOquick costly quantum chemical calculations are 

avoided resulting in a significant speed-up and ease-of-use.  

  

Keywords: Solubility Prediction, COSMO-RS, Liquid Phase Thermodynamics, Cocrystals. Solvates 

 

Introduction 

The fact that new drug candidates as generated by high-throughput screening methods are of increasingly 

poor aqueous solubility poses a major problem for modern drug research.
1
 Thus, an important task during 

drug development is to find ways to solubilize such compounds. For computational methods to be supportive 

in this regard they need to be of reliable predictivity and at the same time be efficient enough to save real lab 

work. Although many in-silico models and prediction methods have been developed targeting different 

individual aspects in drug development, only a few approaches allow for a comprehensive treatment of a 

broader range of thermodynamic properties. Since its development in the early 1990ies the liquid phase 

thermodynamics theory COSMO-RS (Conductor like Screening Model for Real Solvents) has been applied 

in variety of fields such as solubility prediction,
2
 solvent screening,

3
 excipient ranking,

4
 computation of 

micellar systems
5
 and ionic liquids,

6
 prediction of pKa

7
 and redox potentials

8
 and calculation of partitioning 

coefficients.
9
 

Recently, crystal engineers re-discovered the technique of co-crystallizing an excipient compound with an 

active pharmaceutical ingredient (API) as an alternative route to address the problem of poor drug 

solubility.
10

  In this context, the COSMO-RS method has been demonstrated to be able to guide the choice of 

promising co-crystal formers (coformers) by the prediction of the relative probability that such a coformer 

forms a cocrystal with a given active.
11

 The same approach could also be applied to estimate the tendency of 

solvents to form crystalline solvates. 

In addition and also with direct relation to crystal engineering, the effect of milling on the surface energetics 

of molecular crystals was analyzed with COSMO-RS.
12
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A few other quite specialized methods have been developed to screen for potential coformers.
13,14

 However, 

apart from the fact that the COSMO-RS approach performs at least comparably
15

 they have the disadvantage 

of not being embedded in a general theory, and thus are not transferable to other thermodynamic properties. 

 

Overall, it has been shown in many cases that COSMO-RS theory offers a rich choice of methods to aid drug 

developers finding a suitable solid form for a new drug. This article presents for the first time a general 

overview of recent COSMO-RS developments which may be of particular interest for crystal engineering 

and solid form selection based on many novel application examples. It is sectioned as follows. First, a short 

overall introduction into COSMO-RS theory is given. Then, recent examples for solubility prediction of 

some typical drug and coformers in different solvents and solvent mixtures are evaluated. This is followed by 

a case study concerning solvate screening and finally results of several cocrystal screenings are presented. 

 

COSMO-RS Theory 

COSMO-RS theory was developed by Klamt on top of the quantum chemical COSMO solvation model 

(Conductor like Screening Model) in order to overcome some of the limitations inherent to all dielectric 

continuum solvation models. One shortcoming of the continuum models is for example to account for 

differences between molecules with identical dielectric constants  but quite different solvent properties like 

benzene and cyclohexane.
16

 This finding led to the novel concept of COSMO-RS, a combination of COSMO 

with the statistical thermodynamics treatment of interacting surface segments.
17

  

COSMO-RS starts from the polarization charges on the COSMO surfaces, as obtained by individual 

COSMO calculations for solute and solvent molecules. Those surfaces are defined by the molecular cavity 

separating the solute volume from the embedding dielectric continuum.  Intermolecular interactions in 

COSMO-RS are calculated as local contacts of COSMO surfaces and quantified by the polarization charge 

densities  and ’ of the two surface segments. For this purpose histograms of polarization  charge densities, 

the so-called -profile (Figure 1), are considered. 

Instead of deriving macroscopic properties from an ensemble of interacting molecules like in a Molecular 

Dynamics simulation for example, COSMO-RS uses an ensemble of interacting surface segments. This 

approximation leads to a significant improvement of the overall efficiency: Once the -profile is determined 
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from a quantum-chemical calculation (usually density functional theory (DFT) is employed) the 

intermolecular thermodynamics is evaluated within fractions of a second. Nevertheless, due to the rigorous 

statistical thermodynamics applied, one obtains a good and thermodynamically consistent approximation for 

the free energy and the chemical potential of the compound of interest and hence has access to all related 

physico-chemical properties in the liquid phase. 

 

 

COSMO-RS theory takes into account the most important modes of molecular interactions, electrostatics, 

hydrogen bonding and slightly more empirically also Van der Waals interactions. The so-called hydrophobic 

interactions are well represented as a result of electrostatics and hydrogen bonding.  For more details of the 

approach we refer to a recent review.
16

    

 

Figure 1 -profiles for some drug (artemisinin) and its coformer (5-methylresorcinol). Hydrogen bond 

donor regions are coloredblue, whereas hydrogen bond acceptor regions are colored red. The overlay of the 

two profiles shows the complementarity of the hydrogen bond donating coformer and the hydrogen bond 

accepting drug.  
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Although nowadays the necessary quantum-chemical results are readily available for small to medium sized 

molecules, the generation of the -profiles is still the rate-determining step of the overall COSMO-RS 

workflow. However, this issue can be mitigated by deploying precomputed quantum-chemical COSMO 

calculation in a large database. Currently, a database with more than 100000 molecules is available, which 

allows the instantaneous generation of -profiles via the composition out of molecular fragments 

(COSMOquick approach).
18

 This comes at the cost of a somewhat reduced accuracy, but further improves 

the efficiency and the ease of use of the approach. It allows for thermodynamic property prediction using as 

input just the molecular topology as generated from a usual 2-dimensional molecule sketching program.  

 

 

 

Computational details 

All COSMO-RS calculations presented in this article have been carried out with COSMOquick. 

COSMOquick is a JAVA-based software tool and graphical user interface which internally calls FORTRAN 

routines for the generation of -profiles and the COSMOtherm code
21

 for the subsequent thermodynamic 

computations.
22

 Approximate -profiles are generated by accessing a database containing about 100,000 

diverse chemical compounds, which avoids costly quantum-chemical calculations.  Structures for those 

database constituents have been obtained by AM1/COSMO geometry optimization followed by a single 

point DFT/COSMO calculation (BP-SVP level of theory) with TURBOMOLE
23

 in order to obtain the -

surface. 

The final -profile is then generated by matching one or several database fragments to the topology of the 

molecule under scrutiny. The chemical potentials in the liquid phase are then calculated according to 

standard COSMO-RS theory. 

 

Solubility prediction of drugs and coformers 

The solubility of liquid compounds can be readily obtained from the chemical potential in the liquid phase. 

For solids, i.e. for almost all drug compounds, additional information about the transfer from the liquid to the 
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solid state is necessary. This information is contained in the free energy of fusion Gfus which is related to 

the melting point Tm and the melting enthalpy (enthalpy of fusion) Hfus , under the assumption that the 

change in heat capacity may be neglected: 

m

fus

fusfus
T

H
THG


    

 

The mole fraction solubility is then calculated from the free energy difference:: 

 

  RTGx fusSXS /)ln(    

 

Here, X and S are the chemical potentials of the pure drug and the drug in solution, i.e. in some solvent, 

respectively; R is the gas constant and T the temperature. The chemical potential of the drug in solution is of 

course concentration dependent and thus the last equation has to be solved iteratively. However, working 

with a chemical potential S  at infinite dilution and solving for xs is a sensible approximation as long as the 

drug solubility is sufficiently low as it is the case for most current drugs anyway.  

The liquid phase chemical potentials X and S can be computed with a high accuracy by COSMO-RS 

theory. Gfus may be attained either via experimental melting point and fusion enthalpies, via the 

combination of a reference solubility measurement and a COSMO-RS computation (i.e. solving the last 

equation for Gfus), or via a quantitative structure property relationship (QSPR) model. The use of 

experimental data is certainly to be preferred and delivers more accurate results. Using a QSPR model for the 

fusion data should be applied only with care as it is accompanied usually by a large error bar. 

Recently, a new solubility prediction algorithm based on COSMO-RS theory was introduced, using 

experimental reference solubilities in several different solvents in order to get the free energy of fusion and 

additionally a correction term for the chemical potential of the drug in solution for each specific solvent.
18

  

Using the information from 3 or 4 reference solubility measurements this approach allows for a very accurate 

prediction of solubility in additional solvents or solvent mixtures. 
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There exists plenty of literature data on solubility measurements in different solvents. An excellent collection 

of solubility datasets has been compiled by the open notebook sciene (ONS) project
24

 and may be used to get 

access to the original literature sources. Table 1 shows some results of drug and coformer solubility 

predictions using 3 to 4 reference solvents as compared with experimental data. Reference solvent selection 

was guided by the objective to include a balanced set consisting of hydrogen bond acceptors, hydrogen bond 

donors and non-polar solvents. Apart from that the selection was carried out arbitrarily. As an error measure 

the root mean squared error (RMSE) in relation to the experiment is specified. The average RMSE is of 

similar magnitude for drugs and for coformers and amounts to about ~0.5 log units. This is compares quite 

favorable to other state-of-the-art methods which rarely exceed this threshhold.
18

 Details of the solubility 

predictions are listed in the supplement (Table S1).  

The large RMSE of cinchonidine (0.87) is mostly due to its solubility in triethylamine, showing a strong 

deviation between experiment (log10(x)=-2.84) and prediction (log10(x)=0.0, i.e. complete solubility).  This 

strong deviation is in part due to shortcomings of the prediction method, which at the employed level of 

theory (BP-SVP) is known to be less accurate for tertiary amines. Increasing the theory level by using 

COSMOtherm at the TZVP-FINE level
21

 reduce the deviation significantly for triethylamine (log10(x)=-3.0), 

but the overall deviation over all solvents still amounts to RMSE=0.78.  Finally, omitting this single value 

from the error analysis yields a significantly reduced RMSE for this dataset of 0.67. 

An extension to solvent mixtures is straight-forward and in the following a few representative cases are 

presented. For solvent mixtures, the compositions with mole fraction x=0.0 and x=1.0 are fed as reference 

into the model in order to estimate the free energy of fusion and the corresponding correction to the chemical 
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potential. Other more empirical methods like  NRTL-SAC
19

 need more than just two reference points for a 

reliable parameter fit and thus additional measurements in other solvents are necessary before a specific 

solvent mixture can be addressed.  

Figure 2 and Figure 3 present solubility data for sulfadiazine, salicylic acid, prednisolone and paracetamol in 

different binary solvent mixtures. As it is evident from Figure 2 and 3 the shape of the solubility curves in 

binary mixtures can be qualitatively very different. The system sulfadiazine in water/DMF
39

 is most easily 

handled as its curve is monotonically decreasing (Figure 2 (a)). The systems salicylic acid
40,41

 and 

prednisolone
42

 in water/ethanol show a shallow maximum in the experiments, which cannot be reproduced as 

such by the prediction method, however the overall shape of the curve is met quite well (Figure 2 (c) and 

(d)). The systems paracetamol in water/dioxane
43,44,45

 and sulfadiazine in water/dioxane
46

 exhibit pronounced 

solubility maxima, which are predicted qualitatively correct (Figure 2 (b) and Figure 3), though the location 

of the maxima is not met exactly. Water rich phases are predicted not as well, which is mostly due to the 

intricacies of the strong hydrogen bonding network of water, which is not described perfectly at the 

employed level of theory. The case of paracetamol as shown in Figure 3 is in particular interesting, as three 

sets of experiments from different groups have been reported and the difference among those is already quite 

large. This shows, that concerning the evaluation of predictions one has to consider the fact that experiments 

may be subject to a somebackground noise, for example due to not well specified experimental conditions. 
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An interesting application of this pure and mixed solvent prediction approach is the computational screening 

over a large set of solvents in order to identify the best possible solvent mixture for a given drug. This is 

combinatorial problem and even for binary solvents can become extremely costly. However, as solubility 

predictions can be done within fractions of a second, such vast screenings become feasible at a reasonable 

amount of time and resources.   

 

 

 

 

 

 

Figure 2 Predicted versus experimental solubility of sulfadiazine in a water/DMF mixture (a), sulfadiazine 

in a water/dioxane mixture (b), salicylic acid in a water/ethanol mixture (c), and prednisolone in 

water/ethanol (d). 
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Figure 3 Predicted versus experimental solubility of paracetamol in a water/dioxane mixture. 
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Solvate and cocrystal screening 

 

Solvate and cocrystal formation are closely related phenomena. In both cases crystals are formed from two or 

more organic moieties with a defined stoichiometry that mostly have modified solubility and dissolution 

properties. For solvates one of the constituents is however liquid at room temperature (Gfus(298K)=0), 

whereas for cocrystal both components are solid (Gfus(298K)>0). The formation of solvates and cocrystals 

can be described via liquid phase thermodynamics according to the assumption that the interactions in the 

crystal are similar to a virtual supercooled liquid. Thus, the strength of the interactions in the cocrystal as 

compared with the pure reactants can be estimated via the mixing enthalpy (or equivalently the excess 

enthalpy) Hmix of the API-coformer or API-solvent mixture with given stoichiometry. In other words, the 

mixing enthalpy is a rough approximation to the free energy of cocrystal formation Gcc:  

 

mixfusmixmixcc HGSTHG   

 

Smix is the entropy of mixingand Gfus is the difference between the free energy of fusion of the cocrystal 

and the reactants. The overall entropy change between reactant and cocrystal and also Gfus are assumed to 

be close to zero. For the overall entropy change between related crystalline states (of reactants and cocrystal) 

this seems to be reasonable assumption at least concerning the accuracy of the approach. For the remaining 

fusion enthalpy part this is a far more severe approximation because this corresponds to neglecting any 

enthalpic change due to the solid state order.  The mixing enthalpy is given according to: 

 

BBAAABmix HxHxHH   

 

With HAB being the enthalpy of the supercooled stoichiometric mixture of API A and coformer B and HA 

(HB) the enthalpy of the pure (supercooled) liquid A (B) and x being the respective mole fractions. 
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Though this approach neglects the solid state order it performs surprisingly well and usually an excellent 

enrichment is obtained as compared to a random trial of manually selected coformers.
 11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 shows computed excess enthalpies of the experimentally identified solvates of the sulfonamide 

antibacterial sulfamerazine (marked red) together with FDA class 1, 2 and 3 solvents.
48

 The reported solvates  

cyclopentanone, 1,4-dioxane, dimethylacetamide, dimethylformamide and 3-picoline all show a strongly 

negative Hmix due to their strong enthalpic interaction with sulfamerazine. Thus, in this hypothetical 

screening, a significant enrichment is obtained, and for example just by trying out the five top solvents 

having the most negative excess enthalpy one would have found already three solvates. The fact that 

dimethyl sulfoxide and N-methylpyrrolidone are not known to form solvates in spite of their large negative 

excess enthalpies is probably due to an unfavorable crystal packing which is not taken into account by the 

excess enthalpy screening. 

 

Figure 4 Solvate screening case study for sulfamerazine using experimentally known 

solvates
47

 and FDA class 1,2 and 3 solvents.  
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As a quantitative measure to assess the performance of a screening a receiver operating characteristics 

(ROC) diagram is quite useful. An ROC curve plots the true positive rate (number of true positive 

predictions/ total number of positive observations) versus false positive rate (number of false-positive 

predictions/ total number of negative observations) for a binary classifier system (cocrystal screening results) 

as its discrimination threshold (Hmix cutoff) is varied from small to higher values. The area under the curve 

(AUC) measures the overall performance of the model. Predictions with higher AUCs are generally better 

with an AUC=1.0 being a perfect prediction and should always be higher than 0.5, indicating the model is 

better than random selection. An example on how to evaluate the statistics for the case of piracetam is given 

in the supplement (Table S1). 

In addition to the surprisingly well results of just using the excess enthalpy / mixing enthalpy for screening 

we empirically found out that the number of rotatable bonds of API and coformers n is a further significant 

descriptor concerning the formation of cocrystals. We currently incorporate n by fitting a single parameter a 

to a set of experimental cocrystal screening results to obtain an effective screening function:  

 

),1max(),( naHnHf mixmix   

 

 

For the sake of simplicity the parameter a also takes into account stoichiometry of the system which for an 

unknown cocrystal is assumed to be always 1:1. The training set consists mostly out of experimental data we 

have used in one of our previous studies.
11

 The coformer ranking according to f usually gives somewhat 

improved results in particular if the coformers vary with respect to the number of rotatable bonds.  
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Figure 5 ROC plot of COSMO-RS cocrystal screenings using the mixing enthalpy and the 

number of rotatable bonds for some drugs. Experimental data as used in reference 15. 
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In Figure 5 shows some recent examples of COSMO-RS based cocrystal screenings using data from the 

validation study of Hunter and co-workers
15

. Table 2 shows some additional details about the calculations, in 

particular a comparison between screenings using quantum-chemical derived -profiles (AUC,FULL-CRS) 

and instantaneously, i.e. database generated -profiles (COSMOquick approach, AUC,CQ).  

Please note that the number of tested coformers for acetazolamide is only 34 in Table 2, because from the 

original set comprising 36 coformers as given in reference 15 two duplicates have been removed (nicotinic 

acid=3-pyridinecarboxylic acid and isonicotinic acid=4-pyridinecarboxylic acid).  

A significant enrichment is obtained in all cases (the AUC value is larger than 0.5), except for acetazolamide 

using COSMOquick, where a virtual screening would not have been better than a random trial. This is 

partially due to the fact that the thiadiazole group of the acetazolamide is not properly represented in the 

COSMOquick database used to generate the -profile. In most cases the software allows to identify such an 

underrepresented molecule/functional group by a score related to the quality of the as generated -profile 

prior to property calculation. The missing group/molecule can then eventually be added to the database. For 

the case of acetazolamide this gives a slight improvement (AUC=0.56). The remaining deviation from the 

experiment is due to the underlying approximations made, i.e. neglect of the fusion enthalpy differences 

between drug and coformers. 

 

Conclusion 

COSMO-RS as a thermodynamic theory provides a number of useful tools in order to support solid form 

selection and crystal engineering. With the ability to compute the chemical potential of a drug in its pure 

liquid state, in a solvent, or a solvent mixture, a broad variety of thermodynamic properties are accessible. 
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The prediction of solubility needs additional information about the solid state of a drug. Usually some 

experimental reference data as solubilities in one or several solvents or as the fusion enthalpy/melting point 

of the drug is sufficient to obtain quite accurate quantitative predictions. 

Applications to solvate and cocrystal screening using the excess/mixing enthalpy of a supercooled API-

coformer mixture have been proven to be surprisingly predictive, yielding good enrichments in most cases as 

compared to manual coformer selection. 

The capability to screen for suitable solvents, solvates or cocrystals, accurately and efficiently, within a 

single theoretical framework and software, is particularly well suited to second rational drug development. 
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Table 1 Results of solubility predictions for different drugs and typical cocrystal formers. Deviation from 

experiment is given as root mean squared error (RMSE). The RMSE is given relative to solubilities 

measured in logarithmic mole fractions (log10(x)).  Number of reference solvents (#no refs) and total 

solvents (#no solvents) are also specified. 

drug/coformer #no refs #no solvents RMSE source exptl. data 

sulfadiazine 3 19 0.42 18 25 

paracetamol 4 23 0.48 18 26 

fluorenone 3 21 0.34 18 27 

saccharin 3 9 0.42 18 28 

cinchonidine 3 23 0.87 18 29 

4-aminobenzoic acid 4 23 0.58 this work 30,31 

adipic acid 4 16 0.51 this work 32,33,34,35 

benzoic acid 4 29 0.27 this work 36 

salicylic acid 4 26 0.51 this work 31,37 

4-hydroxy benzoic acid 4 20 0.34 this work 38 
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Table 2 Results of different computational cocrystal screenings. Experimental data as used in 

reference 15. Screening scores have been measured using the area under the ROC curve (AUC) value. 

Results for the method as used in reference 15 (SSIP), the full COSMO-RS level using quantum-

chemical computed-profiles (CRS) and the COSMOquick level using database generated -profiles 

are given (CQ). CRS and CQ take into account the number of rotatable bonds of API and coformers. 

The final two columns give the number of coformers in the test set and the number of experimentally 

confirmed cocrystals, respectively.  

 

drug AUC,SSIP AUC, CRS  AUC,CQ n,test set n,cocrystals 

piracetam 0.93 0.88  0.92 29 10 

pyrazinecarboxamide 0.79 0.78  0.69 45 15 

acetazolamide 0.78 0.62  0.47 34 6 

furosemide 0.65 0.95  0.94 28 8 

nalidixic acid 1.0 1.00  1.00 22 6 

AUC,mean 0.83 0.85  0.80   


