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Abstract

“Nucleus for European Modelling of the Ocean” as NEMO is a state-of-
the-art modelling framework of ocean-related engines for research activi-
ties and forecasting services in oceanography and climatology, developed
in a sustainable way since 2008 by a European consortium of 5 institutes
(CMCC | CNRS | Mercator Océan | Met Office | NOC). It is intended
to be a flexible tool for studying the physical and biogeochemical phe-
nomena in the ocean circulation, as well as its interactions with the
components of the Earth climate system, over a wide range of space and
time scales.
Concerning the physics, the fundamental engine for the “blue ocean”
solves the primitive equations of the ocean {thermo}dynamics. It can be
supplemented by the “white ocean” for sea-ice {thermo}dynamics, brine
inclusions and subgrid-scale thickness variations (SI3), and also by the
“green ocean” for {on,off}line oceanic tracers transport and biogeochem-
ical processes (TOP-PISCES). External alternative models can be used
instead of the core engines (e.g. BFM). Regarding the numerics, main
features include versatile data assimilation interface, agile diagnostics
generation thanks to XIOS software, ocean-atmosphere coupling via the
OASIS library, and seamless embedded zooms with the AGRIF 2-way
nesting package.
The primitive equation model is adapted to regional and global ocean
circulation problems down to kilometric scale. Prognostic variables are
the three-dimensional velocity field, a non-linear sea surface height, the
Conservative Temperature and the Absolute Salinity. In the horizontal
direction, the model uses a curvilinear orthogonal grid and in the ver-
tical direction, a full or partial step z-coordinate, or s-coordinate, or a
mixture of the two. The distribution of variables is a three-dimensional
Arakawa C-type grid. Various physical choices are available to describe
ocean physics, along with various HPC functionalities to improve perfor-
mances.

http://doi.org/10.5281/zenodo.1464816
http://orcid.org/0000-0002-6447-4198
http://orcid.org/0000-0003-1530-6371
http://orcid.org/0000-0001-5454-0131
http://orcid.org/0000-0003-3677-414X
http://orcid.org/0000-0001-5114-693X
http://orcid.org/0000-0002-0456-129X
http://orcid.org/0000-0001-9267-7390
http://orcid.org/0000-0002-6408-1335
http://orcid.org/0000-0003-1815-377X
http://orcid.org/0000-0002-3484-7619
http://orcid.org/0000-0002-9377-7542
http://orcid.org/0000-0002-3472-8273
http://orcid.org/0000-0001-5132-7255
http://orcid.org/0000-0001-5862-6469
http://orcid.org/0000-0002-1694-8117
http://orcid.org/0000-0002-2001-0762
http://orcid.org/0000-0002-3665-0078
http://orcid.org/0000-0002-9489-0985
http://orcid.org/0000-0001-8653-9258
http://orcid.org/0000-0001-7559-2993
http://orcid.org/0000-0002-9722-3969
http://orcid.org/0000-0001-7481-6369
http://www.cmcc.it
http://www.cnrs.fr
http://www.mercator-ocean.fr
http://www.metoffice.gov.uk
https://noc.ac.uk
https://bfm-community.github.io/www.bfm-community.eu
http://forge.ipsl.jussieu.fr/ioserver 
https://oasis.cerfacs.fr/en/oasis3-coupled-models
https://www.nemo-ocean.eu/framework/components/interfaces
http://www.cmcc.it
http://www.cnrs.fr
http://www.mercator-ocean.fr
http://www.metoffice.gov.uk
https://noc.ac.uk


Disclaimer

Like all components of the modelling framework, the NEMO core engine is developed under the CECILL
license, which is a French adaptation of the GNU GPL (General Public License). Anyone may use it freely for
research purposes, and is encouraged to communicate back to the development team their developments and
improvements.
The model and the present document have been made available as a service to the community. We cannot

certify that the code and its manual are free of errors. Bugs are inevitable and some have undoubtedly survived
the testing phase. Users are encouraged to bring them to our attention using the Discourse platform or by
opening an issue on the NEMO Forge.
The authors assume no responsibility for problems, errors, or incorrect usage of NEMO.

Other resources

Additional information can be found on:

•  the website of the project

•  the development platform of the model with the code repository for the shared reference and the last
stable release (suggested download for users)

•  the Zenodo archive delivering the publications issued by the consortium and the NEMOOpen Collection
of reports, datasets and demonstrators.

•  The newsletter for announcements and calls from the project
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Introduction

The Nucleus for European Modelling of the Ocean (NEMO) is a framework of ocean related engines, namely the
aforementioned for the ocean dynamics and thermodynamics, SI3∗ for the sea-ice dynamics and thermodynamics,
TOP† for the biogeochemistry (both transport and sources minus sinks (PISCES‡ )). The ocean component
has been developed from the legacy of the OPA§ model, described in Madec et al. (1998). This model has been
used for a wide range of applications, both regional or global, as a forced ocean model and as a model coupled
with the sea-ice and/or the atmosphere.
This manual provides information about the physics represented by the ocean component of NEMO and the

rationale for the choice of numerical schemes and model design. Advice for users of the modelling framework is
provided in the NEMO User Guide.

Manual outline
Chapters
The manual mirrors the organization of the model and it is organised in as follows: after the presentation of
the continuous equations (primitive equations with temperature and salinity, and an equation of seawater) in
the next chapter, the following chapters refer to specific terms of the equations each associated with a group of
modules.

Model Basics presents the equations and their assumptions, the vertical coordinates used, and the subgrid scale
physics. The equations are written in a curvilinear coordinate system, with a choice of vertical coordinates
(z, s, z⋆, s⋆, z̃, s̃, and a mix of them). Momentum equations are formulated in vector invariant or flux
form. Dimensional units in the meter, kilogram, second (MKS) international system are used throughout.
The following chapters deal with the discrete equations.

Time Domain presents the model time stepping environment. It is a three level scheme in which the tendency
terms of the equations are evaluated either centered in time, or forward, or backward depending of the
nature of the term.

Space Domain (DOM) presents the model DOMain. It is discretised on a staggered grid (Arakawa C grid)
with masking of land areas. Vertical discretisation used depends on both how the bottom topography
is represented and whether the free surface is linear or not. Full step or partial step z-coordinate or s-
(terrain-following) coordinate is used with linear free surface (level position are then fixed in time). In
non-linear free surface, the corresponding rescaled height coordinate formulation (z⋆or s⋆) is used (the
level position then vary in time as a function of the sea surface height).

Ocean Tracers (TRA) and Ocean Dynamics (DYN) describe the discretisation of the prognostic equations for
the active TRAcers (potential temperature and salinity) and the momentum (DYNamic). Explicit and
split-explicit free surface formulations are implemented. A number of numerical schemes are available for
momentum advection (according to ”flux” or ”vector” formulations), for the computation of the pressure

∗Sea-Ice modelling Integrated Initiative
†Tracer in the Ocean Paradigm
‡Pelagic Interactions Scheme for Carbon and Ecosystem Studies
§Océan PArallélisé (French)
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gradients, as well as for the advection of tracers (second or higher order advection schemes, including
positive ones).

Surface Boundary Condition (SBC, SAS, TDE) can be implemented as prescribed fluxes, or bulk formula-
tions for the surface fluxes (wind stress, heat, freshwater). The model allows penetration of solar radiation.
There is an optional geothermal heating at the ocean bottom. Within the NEMO system the ocean model
is interactively coupled with a sea ice model (SI3) and a biogeochemistry model (PISCES). Interactive
coupling to Atmospheric models is possible via the OASIS coupler. Two-way nesting is also available
through an interface to the AGRIF package, i.e. Adaptative Grid Refinement in Fortran (Debreu et al.,
2008).

Land Ice Ocean interactions (ISF and ICB) describes the Land Ice Ocean interactions available in NEMO.
Land ice / ocean interactions mostly take place in Greenland and Antarctica. These include ice-shelves
melting, glacier termini, icebergs melting, and surface and sub-glacial runoff from the ice sheet. This
chapter describes how each of these processes can be explicitly represented, parametrised or specified in
NEMO and how NEMO can be coupled to an ice sheet model.

Lateral Boundary Condition (LBC) presents the Lateral BounDarY Conditions. Global configurations of the
model make use of the ORCA tripolar grid, with special north fold boundary conditions. Free-slip or
no-slip boundary conditions are allowed at land boundaries. Closed basin geometries as well as periodic
domains and open boundary conditions are possible.

Lateral Ocean Physics (LDF) and Vertical Ocean Physics (ZDF) describe the physical parameterisations (Lateral
DiFfusion and vertical Z DiFfusion) The model includes an implicit treatment of vertical viscosity and
diffusivity. The lateral Laplacian and biharmonic viscosity and diffusion can be rotated following a geopo-
tential or neutral direction. There is an optional eddy induced velocity (Gent and McWilliams, 1990) with
a space and time variable coefficient Tréguier et al. (1997). The model has vertical harmonic viscosity and
diffusion with a space and time variable coefficient, with options to compute the coefficients with Blanke
and Delécluse (1993), Pacanowski and Philander (1981), or Umlauf and Burchard (2003) mixing schemes.

Output and Diagnostics (IOM, DIA, TRD) describes model In-Outputs Management and specific online DIAgnostics.
The diagnostics includes the output of all the tendencies of the momentum and tracers equations, the
output of tracers TRenDs averaged over the time evolving mixed layer, the output of the tendencies of
the barotropic vorticity equation, the computation of on-line FLOats trajectories...

Observation and Model Comparison (OBS) describes a tool which reads in OBServation files (profile tem-
perature and salinity, sea surface temperature, sea level anomaly and sea ice concentration) and calculates
an interpolated model equivalent value at the observation location and nearest model timestep. Originally
developed for data assimilation, it is a fantastic tool for model and data comparison.

Apply Assimilation Increments (ASM) describes how increments produced by data AsSiMilation may be ap-
plied to the model equations.

Stochastic Parametrization of EOS (STO)

Miscellaneous Topics (including solvers)

Configurations provides a list of the reference configurations, text cases, known well documented regional
configurations (and links to further details) along with a summary of the ORCA (global) family of con-
figurations.

Appendices
Curvilinear s−Coordinate Equations

Diffusive Operators

Discrete Invariants of the Equations

Iso-Neutral Diffusion and Eddy Advection using Triads

A brief guide to the DOMAINcfg tool

Coding Rules

2

https://oasis.cerfacs.fr/en/oasis3-coupled-models
https://www.nemo-ocean.eu/framework/components/interfaces


1
Model Basics

Table of contents
1.1. Primitive equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1. Vector invariant formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2. Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2. Horizontal pressure gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1. Pressure formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2. Free surface formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3. Curvilinear z-coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1. Tensorial formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2. Continuous model equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4. Curvilinear generalised vertical coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.1. S-coordinate formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.2. Curvilinear z⋆-coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.3. Curvilinear terrain-following s–coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.4. Curvilinear z̃-coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5. Subgrid scale physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5.1. Vertical subgrid scale physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.2. Formulation of the lateral diffusive and viscous operators . . . . . . . . . . . . . . . . . . 14

Changes record

Release Author(s) Modifications
5.0 Sébastien Masson, Katherine Hutchinson and Gurvan Madec Full review completed
4.0 Mike Bell Review
3.6 Tim Graham and Gurvan Madec Updates
≤ 3.4 Gurvan Madec and Sébastien Masson First version



Sect. 1.1 Primitive equations

1.1. Primitive equations
1.1.1. Vector invariant formulation
The ocean is a fluid that can be described to a good approximation by the primitive equations, i.e. the Navier-
Stokes equations along with a nonlinear equation of state which couples the two active tracers (temperature
and salinity) to the fluid velocity, plus the following additional assumptions made from scale considerations:

Spherical Earth approximation The geopotential surfaces are assumed to be oblate spheroids that fol-
low the Earth’s bulge; these spheroids are approximated by spheres with
gravity locally vertical (parallel to the Earth’s radius) and independent of
latitude (White et al., 2005, section 2).

Thin-shell approximation The ocean depth is neglected compared to the earth’s radius

Turbulent closure hypothesis The turbulent fluxes (which represent the effect of small scale processes on
the large-scale) are expressed in terms of large-scale features

Boussinesq hypothesis Density variations are neglected except in their contribution to the buoy-
ancy force

ρ = ρ (T, S, p) (1.1)

Hydrostatic hypothesis The vertical momentum equation is reduced to a balance between the ver-
tical pressure gradient and the buoyancy force (this removes convective
processes from the initial Navier-Stokes equations and so convective pro-
cesses must be parameterized instead)

∂p

∂z
= −ρ g (1.2)

Incompressibility hypothesis The three dimensional divergence of the velocity vector U is assumed to
be zero.

∇ · U = 0 (1.3)

Neglect of additional Coriolis terms The Coriolis terms that vary with the cosine of latitude are neglected.
These terms may be non-negligible where the Brunt-Väisälä frequency N
is small, either in the deep ocean or in the sub-mesoscale motions of the
mixed layer, or near the equator (White et al., 2005, section 1). They can
be consistently included as part of the ocean dynamics (White et al., 2005,
section 3(d)) and are retained in the MIT ocean model.

Because the gravitational force is so dominant in the equations of large-scale motions, it is useful to choose
an orthogonal set of unit vectors (i, j, k) linked to the Earth such that k is the local upward vector and (i, j) are
two vectors orthogonal to k, i.e. tangent to the geopotential surfaces. Let us define the following variables: U
the vector velocity, U = Uh+w k (the subscript h denotes the local horizontal vector, i.e. over the (i, j) plane),
T the potential temperature, S the salinity, ρ the in situ density. The vector invariant form of the primitive
equations in the (i, j, k) vector system provides the following equations:

− the momentum balance
∂Uh
∂t

= −
[
(∇× U)× U +

1

2
∇
(
U2
)]
h

− f k × Uh −
1

ρo
∇hp+DU + FU (1.4a)

− the heat and salt conservation equations
∂T

∂t
= −∇ · (T U) +DT + FT (1.4b)

∂S

∂t
= −∇ · (S U) +DS + FS (1.4c)

where ∇ is the generalised derivative vector operator in (i, j, k) directions, t is the time, z is the vertical
coordinate, ρ is the in situ density given by the equation of state (equation 1.1), ρo is a reference density, p the
pressure, f = 2Ω · k is the Coriolis acceleration (where Ω is the Earth’s angular velocity vector), and g is the
gravitational acceleration. DU , DT and DS are the parameterisations of small-scale physics for momentum,
temperature and salinity, and FU , FT and FS surface forcing terms. Their nature and formulation are discussed
in section 1.5 and subsection 1.1.2.
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Chap. 1 Model Basics

Figure 1.1.: The ocean is bounded by two surfaces, z = −H(i, j) and z = η(i, j, t), where H is the depth of the sea floor and η the
height of the sea surface. Both H and η are referenced to z = 0.

1.1.2. Boundary conditions
An ocean is bounded by complex coastlines, bottom topography at its base and an air-sea or ice-sea interface
at its top. These boundaries can be defined by two surfaces, z = −H(i, j) and z = η(i, j, k, t), where H is
the depth of the ocean bottom and η is the height of the sea surface (discretisation can introduce additional
artificial “side-wall” boundaries). Both H and η are referenced to a surface of constant geopotential (i.e. a
mean sea surface height) on which z = 0 (figure 1.1). Through these two boundaries, the ocean can exchange
fluxes of heat, fresh water, salt, and momentum with the solid earth, the continental margins, the sea ice and
the atmosphere. However, some of these fluxes are so weak that even on climatic time scales of thousands of
years they can be neglected. In the following, we briefly review the fluxes exchanged at the interfaces between
the ocean and the other components of the earth system.

Land - ocean The major flux between continental margins and the ocean is a mass exchange of fresh water
through river runoff. Such an exchange modifies the sea surface salinity especially in the vicinity of major
river mouths. It can be neglected for short range integrations but has to be taken into account for long
term integrations as it influences the characteristics of water masses formed (especially at high latitudes).
It is required in order to close the water cycle of the climate system. It is usually specified as a fresh water
flux at the air-sea interface in the vicinity of river mouths.

Solid earth - ocean Heat and salt fluxes through the sea floor are small, except in special areas of little extent.
They are usually neglected in the model ∗. The boundary condition is thus set to no flux of heat and salt
across solid boundaries. For momentum, the situation is different. There is no flow across solid boundaries,
i.e. the velocity normal to the ocean bottom and coastlines is zero (in other words, the bottom velocity is
parallel to solid boundaries). This kinematic boundary condition can be expressed as:

w = −Uh · ∇h(H) (1.5)

In addition, the ocean exchanges momentum with the earth through frictional processes. Such momentum
transfer occurs at small scales in a boundary layer. It must be parameterized in terms of turbulent fluxes
using bottom and/or lateral boundary conditions. Its specification depends on the nature of the physical
parameterisation used for DU in equation 1.4a. It is discussed in equation 1.17.

Atmosphere - ocean The kinematic surface condition plus the mass flux of fresh water PE (the precipitation
minus evaporation budget) leads to:

w =
∂η

∂t
+ Uh|z=η · ∇h(η) + P − E

The dynamic boundary condition, neglecting the surface tension (which removes capillary waves from the
system) leads to the continuity of pressure across the interface z = η. The atmosphere and ocean also
exchange horizontal momentum (wind stress), and heat.

Sea ice - ocean The ocean and sea ice exchange heat, salt, fresh water and momentum. The sea surface
temperature is constrained to be at the freezing point at the interface. Sea ice salinity is very low
(∼ 4− 6 psu) compared to those of the ocean (∼ 34 psu). The cycle of freezing/melting is associated with
fresh water and salt fluxes that cannot be neglected.

∗In fact, it has been shown that the heat flux associated with the solid Earth cooling (i.e. the geothermal heating) is not negligible
for the thermohaline circulation of the world ocean (see subsection 6.4.3).
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Land ice - ocean The ocean and land ice (ice shelves and drifting icebergs) exchange heat and fresh water.
These interactions represent a significant source of fresh water for the polar ocean regions. Ice shelves
melt in the 200m to 1500m depth range and the buoyant plume generated by the melt triggers specific
oceanic circulation and water masses alterations on the Antarctic continental shelf or within Greenlandic
Fjords. Icebergs, on the other hand, are created by the breaking of an ice shelf at the calving front.
Their drift is subsequently driven by winds and ocean currents, redistributing the ice calved from the ice
shelf or glacier termini along the Antarctic or Greenland coastline, and toward lower latitudes. Explicit
representation and parametrisation of ice shelves and icebergs is described in ?? and ?? repectively.

1.2. Horizontal pressure gradient
1.2.1. Pressure formulation
The total pressure at a given depth z is composed of a surface pressure ps at a reference geopotential surface
(z = 0) and a hydrostatic pressure ph such that: p(i, j, k, t) = ps(i, j, t) + ph(i, j, k, t). The latter is computed
by integrating (equation 1.2), assuming that pressure in decibars can be approximated by depth in meters in
(equation 1.1). The hydrostatic pressure is then given by:

ph(i, j, z, t) =

∫ ς=0

ς=z

g ρ(T, S, ς) dς

The surface pressure term is introduced via a new variable η, the free surface elevation, for which a prognostic
equation can be established and solved. One solution of the free surface elevation consists of the excitation of
external gravity waves. The flow is barotropic and the surface moves up and down with gravity as the restoring
force. The phase speed of such waves is high (some hundreds of metres per second) so that the time step has
to be very short when they are present in the model.

1.2.2. Free surface formulation
In the free surface formulation, a variable η, the sea-surface height, is introduced which describes the shape
of the air-sea interface. This variable is solution of a prognostic equation which is established by forming the
vertical average of the kinematic surface condition (equation 1.5):

∂η

∂t
= −D + P − E where D = ∇ ·

[
(H + η) Uh

]
(1.6)

and using (equation 1.2) the surface pressure is given by: ps = ρ g η.
Allowing the air-sea interface to move introduces the External Gravity Waves (EGWs) as a class of solution

of the primitive equations. These waves are barotropic (i.e. nearly independent of depth) and their phase speed
is quite high. Their time scale is short with respect to the other processes described by the primitive equations.
Two choices can be made regarding the implementation of the free surface in the model, depending on the

physical processes of interest.

• If one is interested in EGWs, in particular the tides and their interaction with the baroclinic structure of
the ocean (internal waves) possibly in shallow seas, then a non linear free surface is the most appropriate.
This means that no approximation is made in equation 1.6 and that the variation of the ocean volume
is fully taken into account. Note that in order to study the fast time scales associated with EGWs it is
necessary to minimize time filtering effects (use an explicit time scheme with very small time step, or a
split-explicit scheme with reasonably small time step, see subsection 4.1.1 or subsection 4.1.2).

• If one is not interested in EGWs but rather sees them as high frequency noise, it is possible to apply
an explicit filter to slow down the fastest waves while not altering the slow barotropic Rossby waves. If
further, an approximative conservation of heat and salt contents is sufficient for the problem solved, then
it is sufficient to solve a linearized version of equation 1.6, which still allows to take into account freshwater
fluxes applied at the ocean surface (Roullet and Madec, 2000). Nevertheless, with the linearization, an
exact conservation of heat and salt contents is lost.

The filtering of EGWs in models with a free surface is usually a matter of discretisation of the temporal
derivatives, using a split-explicit method (Killworth et al., 1991; Zhang and Endoh, 1992) or the implicit
scheme (Dukowicz and Smith, 1994) or the addition of a filtering force in the momentum equation (Roullet
and Madec, 2000). With the present release, NEMO offers the choice between an explicit free surface (see
subsection 4.1.1) or a split-explicit scheme strongly inspired the one proposed by Shchepetkin and McWilliams
(2005) (see subsection 4.1.2).
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Figure 1.2.: the geographical coordinate system (λ, φ, z) and the curvilinear coordinate system (i, j, k).

1.3. Curvilinear z-coordinate system
1.3.1. Tensorial formalism
In many ocean circulation problems, the flow field has regions of enhanced dynamics (i.e. surface layers, western
boundary currents, equatorial currents, or ocean fronts). The representation of such dynamical processes can be
improved by specifically increasing the model resolution in these regions. As well, it may be convenient to use
a lateral boundary-following coordinate system to better represent coastal dynamics. Moreover, the common
geographical coordinate system has a singular point at the North Pole that cannot be easily treated in a global
model without filtering. A solution consists of introducing an appropriate coordinate transformation that shifts
the singular point onto land (Madec and Imbard, 1996; Murray, 1996). As a consequence, it is important
to solve the primitive equations in various curvilinear coordinate systems. An efficient way of introducing an
appropriate coordinate transform can be found when using a tensorial formalism. This formalism is suited to
any multidimensional curvilinear coordinate system. Ocean modellers mainly use three-dimensional orthogonal
grids on the sphere (spherical earth approximation), with preservation of the local vertical. Here we give the
simplified equations for this particular case. The general case is detailed by Eiseman and Stone (1980) in their
survey of the conservation laws of fluid dynamics.
Let (i, j, k) be a set of orthogonal curvilinear coordinates on the sphere associated with the positively oriented

orthogonal set of unit vectors (I, J,K) linked to the earth such that K is the local upward vector and (I, J)
are two vectors orthogonal to K, i.e. along geopotential surfaces (figure 1.2). Let (λ, φ, z) be the geographical
coordinate system in which a position is defined by the latitude φ(i, j), the longitude λ(i, j) and the distance
from the centre of the earth a+ z(k) where a is the earth’s radius and z the altitude above a reference sea level
(figure 1.2). The local deformation of the curvilinear coordinate system is given by e1, e2 and e3, the three scale
factors:

e1 = (a+ z)

[(
∂λ

∂i
cosφ

)2

+

(
∂φ

∂i

)2
]1/2

e2 = (a+ z)

[(
∂λ

∂j
cosφ

)2

+

(
∂φ

∂j

)2
]1/2

e3 =

(
∂z

∂k

)
(1.7)

Since the ocean depth is far smaller than the earth’s radius, a + z, can be replaced by a in (equation 1.7)
(thin-shell approximation). The resulting horizontal scale factors e1, e2 are independent of k while the vertical
scale factor is a single function of k as k is parallel to z. The scalar and vector operators that appear in the
primitive equations (equation 1.4a to equation 1.1) can then be written in the tensorial form, invariant in any
orthogonal horizontal curvilinear coordinate system transformation:

∇q = 1

e1

∂q

∂i
i+

1

e2

∂q

∂j
j +

1

e3

∂q

∂k
k (1.8a)

∇ ·A =
1

e1 e2

[
∂(e2 a1)

∂i
+
∂(e1 a2)

∂j

]
+

1

e3

[
∂a3
∂k

]
(1.8b)

∇×A =

[
1

e2

∂a3
∂j
− 1

e3

∂a2
∂k

]
i+

[
1

e3

∂a1
∂k
− 1

e1

∂a3
∂i

]
j +

1

e1e2

[
∂(e2a2)

∂i
− ∂(e1a1)

∂j

]
k (1.8c)

∆q = ∇ · (∇q) (1.8d)
∆A = ∇(∇ ·A)−∇× (∇×A) (1.8e)

where q is a scalar quantity and A = (a1, a2, a3) a vector in the (i, j, k) coordinates system.
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Sect. 1.3 Curvilinear z-coordinate system

1.3.2. Continuous model equations
In order to express the Primitive Equations in tensorial formalism, it is necessary to compute the horizontal
component of the non-linear and viscous terms of the equation using equation 1.8a) to equation 1.8e. Let us
set U = (u, v, w) = Uh + w k, the velocity in the (i, j, k) coordinates system, and define the relative vorticity ζ
and the divergence of the horizontal velocity field χ, by:

ζ =
1

e1e2

[
∂(e2 v)

∂i
− ∂(e1 u)

∂j

]
(1.9)

χ =
1

e1e2

[
∂(e2 u)

∂i
+
∂(e1 v)

∂j

]
(1.10)

Using again the fact that the horizontal scale factors e1 and e2 are independent of k and that e3 is a function
of the single variable k, NLT the nonlinear term of equation 1.4a can be transformed as follows:

NLT =

[
(∇× U)× U +

1

2
∇
(
U2
)]
h

=

 [
1
e3
∂u
∂k −

1
e1
∂w
∂i

]
w − ζ v

ζ u−
[

1
e2
∂w
∂j −

1
e3
∂v
∂k

]
w

+
1

2

(
1
e1

∂(u2+v2+w2)
∂i

1
e2

∂(u2+v2+w2)
∂j

)

=

(
−ζ v
ζ u

)
+

1

2

(
1
e1

∂(u2+v2)
∂i

1
e2

∂(u2+v2)
∂j

)
+

1

e3

(
w ∂u

∂k

w ∂v
∂k

)
−

(
w
e1
∂w
∂i −

1
2e1

∂w2

∂i
w
e2
∂w
∂j −

1
2e2

∂w2

∂j

)
The last term of the right hand side is obviously zero, and thus the NonLinear Term (NLT ) of equation 1.4a
is written in the (i, j, k) coordinate system:

NLT = ζ k × Uh +
1

2
∇h
(
U2
h

)
+

1

e3
w
∂Uh
∂k

(1.11)

This is the so-called vector invariant form of the momentum advection term. For some purposes, it can
be advantageous to write this term in the so-called flux form, i.e. to write it as the divergence of fluxes. For
example, the first component of equation 1.11 (the i-component) is transformed as follows:

NLTi=− ζ v +
1

2 e1

∂(u2 + v2)

∂i
+

1

e3
w
∂u

∂k

=
1

e1 e2

(
−v ∂(e2 v)

∂i
+ v

∂(e1 u)

∂j

)
+

1

e1e2

(
e2 u

∂u

∂i
+ e2 v

∂v

∂i

)
+

1

e3

(
w
∂u

∂k

)
=

1

e1 e2

[
−
(
v2
∂e2
∂i

+ e2 v
∂v

∂i

)
+

(
∂ (e1 u v)

∂j
− e1 u

∂v

∂j

)
+

(
∂ (e2 uu)

∂i
− u∂ (e2u)

∂i

)
+ e2v

∂v

∂i

]
+

1

e3

(
∂(wu)

∂k
− u∂w

∂k

)
=

1

e1 e2

(
∂(e2 uu)

∂i
+
∂(e1 u v)

∂j

)
+

1

e3

∂(wu)

∂k
+

1

e1e2

[
−u
(
∂(e1v)

∂j
− v ∂e1

∂j

)
− u∂(e2u)

∂i

]
− 1

e3

∂w

∂k
u

+
1

e1e2

(
−v2 ∂e2

∂i

)
=∇ · (U u)− (∇ · U) u+

1

e1e2

(
−v2 ∂e2

∂i
+ uv

∂e1
∂j

)
as ∇ · U = 0 (incompressibility) it becomes:

=∇ · (U u) + 1

e1e2

(
v
∂e2
∂i
− u ∂e1

∂j

)
(−v)

The flux form of the momentum advection term is therefore given by:

NLT = ∇ ·
(
U u
U v

)
+

1

e1e2

(
v
∂e2
∂i
− u∂e1

∂j

)
k × Uh (1.12)

The flux form has two terms, the first one is expressed as the divergence of momentum fluxes (hence the
flux form name given to this formulation) and the second one is due to the curvilinear nature of the coordinate
system used. The latter is called the metric term and can be viewed as a modification of the Coriolis parameter:

f → f +
1

e1e2

(
v
∂e2
∂i
− u∂e1

∂j

)
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Note that in the case of geographical coordinate, i.e. when (i, j) → (λ, φ) and (e1, e2) → (a cosφ, a), we
recover the commonly used modification of the Coriolis parameter f → f + (u/a) tanφ.
To sum up, the curvilinear z-coordinate equations solved by the ocean model can be written in the following

tensorial formalism:

Vector invariant form of the momentum equations

∂u

∂t
= +(ζ + f) v − 1

2e1

∂

∂i
(u2 + v2)− 1

e3
w
∂u

∂k
− 1

e1

∂

∂i

(
ps + ph
ρo

)
+DU

u + FUu

∂v

∂t
= −(ζ + f)u− 1

2e2

∂

∂j
(u2 + v2)− 1

e3
w
∂v

∂k
− 1

e2

∂

∂j

(
ps + ph
ρo

)
+DU

v + FUv

(1.13)

Flux form of the momentum equations

∂u

∂t
=+

[
f +

1

e1 e2

(
v
∂e2
∂i
− u∂e1

∂j

)]
v − 1

e1 e2

(
∂(e2 uu)

∂i
+
∂(e1 v u)

∂j

)
− 1

e3

∂(wu)

∂k

− 1

e1

∂

∂i

(
ps + ph
ρo

)
+DU

u + FUu

∂v

∂t
=−

[
f +

1

e1 e2

(
v
∂e2
∂i
− u∂e1

∂j

)]
u− 1

e1 e2

(
∂(e2 u v)

∂i
+
∂(e1 v v)

∂j

)
− 1

e3

∂(w v)

∂k

− 1

e2

∂

∂j

(
ps + ph
ρo

)
+DU

v + FUv

where ζ, the relative vorticity, is given by equation 1.9 and ps, the surface pressure, is given by:

ps = ρ g η

and η is the solution of equation 1.6.
The vertical velocity and the hydrostatic pressure are diagnosed from the following equations:

∂w

∂k
= −χ e3

∂ph
∂k

= −ρ g e3

where the divergence of the horizontal velocity, χ is given by equation 1.10.

Tracer equations

∂T

∂t
= − 1

e1e2

[
∂(e2T u)

∂i
+
∂(e1T v)

∂j

]
− 1

e3

∂(T w)

∂k
+DT + FT

∂S

∂t
= − 1

e1e2

[
∂(e2S u)

∂i
+
∂(e1S v)

∂j

]
− 1

e3

∂(S w)

∂k
+DS + FS

ρ = ρ
(
T, S, z(k)

)
The expression of DU , DS and DT depends on the subgrid scale parameterisation used. It will be defined

in equation 1.17. The nature and formulation of FU , FT and FS , the surface forcing terms, are discussed in
chapter 7.

1.4. Curvilinear generalised vertical coordinate system
The ocean domain presents a huge diversity of situations in the vertical. First, the ocean surface is a time
dependent surface (moving surface). Second, the ocean floor depends on the geographical position, varying
from more than 6,000 meters in abyssal trenches to zero at the coast. Last but not least, the ocean stratification
exerts a strong barrier to vertical motions and mixing. Therefore, in order to represent the ocean with respect
to the first point a space and time dependent vertical coordinate that follows the variation of the sea surface
height e.g. an z⋆-coordinate; for the second point, a space variation to fit the change of bottom topography
e.g. a terrain-following or σ-coordinate; and for the third point, one will be tempted to use a space and time
dependent coordinate that follows the isopycnal surfaces, e.g. an isopycnic coordinate.
In order to satisfy two or more constraints one can even be tempted to mix these coordinate systems, as in

HYCOM (mixture of z-coordinate at the surface, isopycnic coordinate in the ocean interior and σ at the ocean
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bottom) (Chassignet et al., 2003) or OPA (mixture of z-coordinate in vicinity the surface and steep topography
areas and σ-coordinate elsewhere) (Madec et al., 1996) among others.
In fact one is totally free to choose any space and time vertical coordinate by introducing an arbitrary vertical

coordinate :
s = s(i, j, k, t) (1.14)

with the restriction that the above equation gives a single-valued monotonic relationship between s and k,
when i, j and t are held fixed. equation 1.14 is a transformation from the (i, j, k, t) coordinate system with
independent variables into the (i, j, s, t) generalised coordinate system with s depending on the other three
variables through equation 1.14. This so-called generalised vertical coordinate (Kasahara, 1974) is in fact an
Arbitrary Lagrangian–Eulerian (ALE) coordinate. Indeed, one has a great deal of freedom in the choice of
expression for s. The choice determines which part of the vertical velocity (defined from a fixed referential) will
cross the levels (Eulerian part) and which part will be used to move them (Lagrangian part). The coordinate
is also sometimes referenced as an adaptive coordinate (Hofmeister et al., 2010), since the coordinate system is
adapted in the course of the simulation. Its most often used implementation is via an ALE algorithm, in which
a pure Lagrangian step is followed by regridding and remapping steps, the latter step implicitly embedding the
vertical advection (Hirt et al., 1974; Chassignet et al., 2003; White et al., 2009). Here we follow the (Kasahara,
1974) strategy: a regridding step (an update of the vertical coordinate) followed by an Eulerian step with an
explicit computation of vertical advection relative to the moving s-surfaces.
The generalized vertical coordinates used in ocean modelling are not orthogonal, which contrasts with many

other applications in mathematical physics. Hence, it is useful to keep in mind the following properties that
may seem odd on initial encounter.
The horizontal velocity in ocean models measures motions in the horizontal plane, perpendicular to the local

gravitational field. That is, horizontal velocity is mathematically the same regardless of the vertical coordinate,
be it geopotential, isopycnal, pressure, or terrain following. The key motivation for maintaining the same
horizontal velocity component is that the hydrostatic and geostrophic balances are dominant in the large-scale
ocean. Use of an alternative quasi-horizontal velocity, for example one oriented parallel to the generalized
surface, would lead to unacceptable numerical errors. The vertical direction is a quasi-vertical direction, which
is oriented normal to a constant level surface in the vertical coordinate system.
It is the method used to measure transport across the generalized vertical coordinate surfaces which differs

between the vertical coordinate choices. That is, computation of the dia-surface velocity component represents
the fundamental distinction between the various coordinates. In some models, such as geopotential, pressure,
and terrain following, this transport is typically diagnosed from volume or mass conservation. In other models,
such as isopycnal layered models, this transport is prescribed based on assumptions about the physical processes
producing a flux across the layer interfaces.
In this section we first establish the PE in the generalised vertical s-coordinate, then we discuss the particular

cases available in NEMO, namely z, z⋆, s, and z̃.

1.4.1. S-coordinate formulation
Starting from the set of equations established in section 1.3 for the special case k = z and thus e3 = 1, we
introduce an arbitrary vertical coordinate s = s(i, j, k, t), which includes z-, z⋆- and σ-coordinates as special
cases (s = z, s = z⋆, and s = σ = z/H or = z/ (H + η), resp.). A formal derivation of the transformed
equations is given in appendix A. Let us define the vertical scale factor by e3 = ∂sz (e3 is now a function of
(i, j, k, t) ), and the slopes in the (i, j) directions between s- and z-surfaces by:

σ1 =
1

e1

∂z

∂i

∣∣∣∣
s

and σ2 =
1

e2

∂z

∂j

∣∣∣∣
s

(1.15)

We also introduce ω, a dia-surface velocity component, defined as the velocity relative to the moving s-surfaces
and normal to them:

ω = w − ∂z

∂t

∣∣∣∣
s

− σ1 u− σ2 v

The equations solved by the ocean model equation 1.4 in s-coordinate can be written as follows (see sec-
tion A.3):

Vector invariant form of the momentum equation

∂u

∂t
= +(ζ + f) v − 1

2 e1

∂

∂i
(u2 + v2)− 1

e3
ω
∂u

∂k
− 1

e1

∂

∂i

(
ps + ph
ρo

)
− g ρ

ρo
σ1 +DU

u + FUu

∂v

∂t
= −(ζ + f)u− 1

2 e2

∂

∂j
(u2 + v2)− 1

e3
ω
∂v

∂k
− 1

e2

∂

∂j

(
ps + ph
ρo

)
− g ρ

ρo
σ2 +DU

v + FUv
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Figure 1.3.: Sea level high, position of the vertical levels and vertical velocities in a barotropic flow. (a) z-coordinate in linear
free-surface case: fixed position levels and non-null vertical velocities; (b) re-scaled height coordinate (become popular
as the z⋆-coordinate (Adcroft and Campin, 2004)): time-varying position levels and null vertical velocities (if pure
barotropic flow).

Flux form of the momentum equation

1

e3

∂(e3 u)

∂t
=+

[
f +

1

e1 e2

(
v
∂e2
∂i
− u∂e1

∂j

)]
v − 1

e1 e2 e3

(
∂(e2 e3 uu)

∂i
+
∂(e1 e3 v u)

∂j

)
− 1

e3

∂(ω u)

∂k

− 1

e1

∂

∂i

(
ps + ph
ρo

)
− g ρ

ρo
σ1 +DU

u + FUu

1

e3

∂(e3 v)

∂t
=−

[
f +

1

e1 e2

(
v
∂e2
∂i
− u∂e1

∂j

)]
u− 1

e1 e2 e3

(
∂(e2 e3 u v)

∂i
+
∂(e1 e3 v v)

∂j

)
− 1

e3

∂(ω v)

∂k

− 1

e2

∂

∂j

(
ps + ph
ρo

)
− g ρ

ρo
σ2 +DU

v + FUv

where the relative vorticity, ζ, the surface pressure gradient, and the hydrostatic pressure have the same
expressions as in z-coordinates although they do not represent exactly the same quantities. ω is provided
by the continuity equation (see appendix A):

∂e3
∂t

+ e3 χ+
∂ω

∂s
= 0 with χ =

1

e1e2e3

(
∂(e2e3 u)

∂i
+
∂(e1e3 v)

∂j

)
Tracer equations

1

e3

∂(e3 T )

∂t
= − 1

e1e2e3

(
∂(e2e3 uT )

∂i
+
∂(e1e3 v T )

∂j

)
− 1

e3

∂(T ω)

∂k
+DT + FS

1

e3

∂(e3 S)

∂t
= − 1

e1e2e3

(
∂(e2e3 uS)

∂i
+
∂(e1e3 v S)

∂j

)
− 1

e3

∂(S ω)

∂k
+DS + FS

The equation of state has the same expression as in z-coordinate, and similar expressions are used for mixing
and forcing terms.

1.4.2. Curvilinear z⋆-coordinate system
In this case, the free surface equation is nonlinear, and the variations of volume are fully taken into account.
These coordinates systems is presented in a report (Levier et al., 2007) available on the NEMO web site.

The z⋆ coordinate approach is an unapproximated, non-linear free surface implementation which allows one to
deal with large amplitude free-surface variations relative to the vertical resolution (Adcroft and Campin, 2004).
In the z⋆ formulation, the variation of the column thickness due to sea-surface undulations is not concentrated
in the surface level, as in the z-coordinate formulation, but is equally distributed over the full water column.
Thus vertical levels naturally follow sea-surface variations, with a linear attenuation with depth, as illustrated
by item 1.3. Note that with a flat bottom, such as in item 1.3, the bottom-following z coordinate and z⋆ are
equivalent. The definition and modified oceanic equations for the rescaled vertical coordinate z⋆, including the
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Sect. 1.4 Curvilinear generalised vertical coordinate system

treatment of fresh-water flux at the surface, are detailed in Adcroft and Campin (2004). The major points are
summarized here. The position (z⋆) and vertical discretization (δz⋆) are expressed as:

H + z⋆ = (H + z)/r and δz⋆ = δz/r with r =
H + η

H

Simple re-organisation of the above expressions gives

z⋆ = H

(
z − η
H + η

)
Since the vertical displacement of the free surface is incorporated in the vertical coordinate z⋆, the upper and
lower boundaries are at fixed z⋆ position, z⋆ = 0 and z⋆ = −H respectively. Also the divergence of the flow
field is no longer zero as shown by the continuity equation:

∂r

∂t
= ∇z? · (r Uh) +

∂r w∗

∂z⋆
= 0

This z⋆ coordinate is closely related to the η coordinate used in many atmospheric models (see Black (1994) for
a review of η coordinate atmospheric models). It was originally used in ocean models by Stacey et al. (1995)
for studies of tides next to shelves, and it has been recently promoted by Adcroft and Campin (2004) for global
climate modelling.
The surfaces of constant z⋆ are quasi-horizontal. Indeed, the z⋆ coordinate reduces to z when η is zero. In

general, when noting the large differences between undulations of the bottom topography versus undulations in
the surface height, it is clear that surfaces constant z⋆ are very similar to the depth surfaces. These properties
greatly reduce difficulties of computing the horizontal pressure gradient relative to terrain following sigma
models discussed in subsection 1.4.3. Additionally, since z⋆ = z when η = 0, no flow is spontaneously generated
in an unforced ocean starting from rest, regardless the bottom topography. This behaviour is in contrast to
the case with “s”-models, where pressure gradient errors in the presence of nontrivial topographic variations
can generate nontrivial spontaneous flow from a resting state, depending on the sophistication of the pressure
gradient solver. The quasi-horizontal nature of the coordinate surfaces also facilitates the implementation of
neutral physics parameterizations in z⋆ models using the same techniques as in z-models (see Chapters 13-16
of Griffies (2004)) for a discussion of neutral physics in z-models, as well as section 10.2 in this document for
treatment in NEMO).
The range over which z⋆ varies is time independent −H ≤ z⋆ ≤ 0. Hence, all cells remain nonvanishing, so

long as the surface height maintains η > −H. This is a minor constraint relative to that encountered on the
surface height when using s = z or s = z − η.
Because z⋆ has a time independent range, all grid cells have static increments ds, and the sum of the vertical

increments yields the time independent ocean depth. The z⋆ coordinate is therefore invisible to undulations
of the free surface, since it moves along with the free surface. This property means that no spurious vertical
transport is induced across surfaces of constant z⋆ by the motion of external gravity waves. Such spurious
transport can be a problem in z-models, especially those with tidal forcing. Quite generally, the time independent
range for the z⋆ coordinate is a very convenient property that allows for a nearly arbitrary vertical resolution
even in the presence of large amplitude fluctuations of the surface height, again so long as η > −H.

1.4.3. Curvilinear terrain-following s–coordinate
Several important aspects of the ocean circulation are influenced by bottom topography. Of course, the most
important is that bottom topography determines deep ocean sub-basins, barriers, sills and channels that strongly
constrain the path of water masses, but more subtle effects exist. For example, the topographic β-effect is
usually larger than the planetary one along continental slopes. Topographic Rossby waves can be excited and
can interact with the mean current. In the z-coordinate system presented in the previous section (section 1.3),
z-surfaces are geopotential surfaces. The bottom topography is discretised by steps. This often leads to a
misrepresentation of a gradually sloping bottom and to large localized depth gradients associated with large
localized vertical velocities. The response to such a velocity field often leads to numerical dispersion effects.
One solution to strongly reduce this error is to use a partial step representation of bottom topography instead
of a full step one Pacanowski and Gnanadesikan (1998). Another solution is to introduce a terrain-following
coordinate system (hereafter s-coordinate).
The s-coordinate avoids the discretisation error in the depth field since the layers of computation are gradually

adjusted with depth to the ocean bottom. Relatively small topographic features as well as gentle, large-scale
slopes of the sea floor in the deep ocean, which would be ignored in typical z-model applications with the
largest grid spacing at greatest depths, can easily be represented (with relatively low vertical resolution). A
terrain-following model (hereafter s-model) also facilitates the modelling of the boundary layer flows over a
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large depth range, which in the framework of the z-model would require high vertical resolution over the whole
depth range. Moreover, with a s-coordinate it is possible, at least in principle, to have the bottom and the sea
surface as the only boundaries of the domain (no more lateral boundary condition to specify). Nevertheless,
a s-coordinate also has its drawbacks. Perfectly adapted to a homogeneous ocean, it has strong limitations as
soon as stratification is introduced. The main two problems come from the truncation error in the horizontal
pressure gradient and a possibly increased diapycnal diffusion. The horizontal pressure force in s-coordinate
consists of two terms (see appendix A),

∇p|z = ∇p|s −
1

e3

∂p

∂s
∇z|s (1.16)

The second term in equation 1.16 depends on the tilt of the coordinate surface and leads to a truncation error
that is not present in a z-model. In the special case of a σ-coordinate (i.e. a depth-normalised coordinate system
σ = z/H), Haney (1991) and Beckmann and Haidvogel (1993) have given estimates of the magnitude of this
truncation error. It depends on topographic slope, stratification, horizontal and vertical resolution, the equation
of state, and the finite difference scheme. This error limits the possible topographic slopes that a model can
handle at a given horizontal and vertical resolution. This is a severe restriction for large-scale applications using
realistic bottom topography. The large-scale slopes require high horizontal resolution, and the computational
cost becomes prohibitive. This problem can be at least partially overcome by mixing s-coordinate and step-
like representation of bottom topography (Gerdes, 1993a,b; Madec et al., 1996). However, the definition of
the model domain vertical coordinate becomes then a non-trivial thing for a realistic bottom topography: an
envelope topography is defined in s-coordinate on which a full or partial step bottom topography is then applied
in order to adjust the model depth to the observed one (see subsection 3.2.2).

For numerical reasons a minimum of diffusion is required along the coordinate surfaces of any finite difference
model. It causes spurious diapycnal mixing when coordinate surfaces do not coincide with isoneutral surfaces.
This is the case for a z-model as well as for a s-model. However, density varies more strongly on s-surfaces
than on horizontal surfaces in regions of large topographic slopes, implying larger diapycnal diffusion in a s-
model than in a z-model. Whereas such a diapycnal diffusion in a z-model tends to weaken horizontal density
(pressure) gradients and thus the horizontal circulation, it usually reinforces these gradients in a s-model,
creating spurious circulation. For example, imagine an isolated bump of topography in an ocean at rest with a
horizontally uniform stratification. Spurious diffusion along s-surfaces will induce a bump of isoneutral surfaces
over the topography, and thus will generate there a baroclinic eddy. In contrast, the ocean will stay at rest
in a z-model. As for the truncation error, the problem can be reduced by introducing the terrain-following
coordinate below the strongly stratified portion of the water column (i.e. the main thermocline) (Madec et al.,
1996). An alternate solution consists of rotating the lateral diffusive tensor to geopotential or to isoneutral
surfaces (see subsection 1.5.2). Unfortunately, the slope of isoneutral surfaces relative to the s-surfaces can very
large, strongly exceeding the stability limit of such a operator when it is discretized (see chapter 10).

The s-coordinates introduced here (Lott et al., 1990; Madec et al., 1996) differ mainly in two aspects from
similar models: it allows a representation of bottom topography with mixed full or partial step-like/terrain
following topography; It also offers a completely general transformation, s = s(i, j, z) for the vertical coordinate.

1.4.4. Curvilinear z̃-coordinate
The z̃-coordinate has been developed by Leclair and Madec (2011). Available in NEMO versions 3.4 to 4.2,
it was not robust enough to be used in all possible configurations and its use was not recommended. The
z̃-coordinate was temporary removed from NEMO version 5.0 to be better reintroduced in a future version.

1.5. Subgrid scale physics
The hydrostatic primitive equations describe the behaviour of a geophysical fluid at space and time scales larger
than a few kilometres in the horizontal, a few meters in the vertical and a few minutes. They are usually
solved at larger scales: the specified grid spacing and time step of the numerical model. The effects of smaller
scale motions (coming from the advective terms in the Navier-Stokes equations) must be represented entirely
in terms of large-scale patterns to close the equations. These effects appear in the equations as the divergence
of turbulent fluxes (i.e. fluxes associated with the mean correlation of small scale perturbations). Assuming
a turbulent closure hypothesis is equivalent to choose a formulation for these fluxes. It is usually called the
subgrid scale physics. It must be emphasized that this is the weakest part of the primitive equations, but also
one of the most important for long-term simulations as small scale processes in fine balance the surface input
of kinetic energy and heat.
The control exerted by gravity on the flow induces a strong anisotropy between the lateral and vertical

motions. Therefore subgrid-scale physics DU , DS and DT in equation 1.4a, equation 1.4b and equation 1.4c
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are divided into a lateral part DlU , DlS and DlT and a vertical part DvU , DvS and DvT . The formulation of
these terms and their underlying physics are briefly discussed in the next two subsections.

1.5.1. Vertical subgrid scale physics
The model resolution is always larger than the scale at which the major sources of vertical turbulence occur
(shear instability, internal wave breaking...). Turbulent motions are thus never explicitly solved, even partially,
but always parameterized. The vertical turbulent fluxes are assumed to depend linearly on the gradients of
large-scale quantities (for example, the turbulent heat flux is given by T ′w′ = −AvT ∂zT , where AvT is an eddy
coefficient). This formulation is analogous to that of molecular diffusion and dissipation. This is quite clearly a
necessary compromise: considering only the molecular viscosity acting on large scale severely underestimates the
role of turbulent diffusion and dissipation, while an accurate consideration of the details of turbulent motions
is simply impractical. The resulting vertical momentum and tracer diffusive operators are of second order:

DvU =
∂

∂z

(
Avm

∂Uh
∂z

)
, DvT =

∂

∂z

(
AvT

∂T

∂z

)
and DvS =

∂

∂z

(
AvT

∂S

∂z

)
(1.17)

where Avm and AvT are the vertical eddy viscosity and diffusivity coefficients, respectively. At the sea surface
and at the bottom, turbulent fluxes of momentum, heat and salt must be specified (see chapter 7 and chapter 11
and section 6.5). All the vertical physics is embedded in the specification of the eddy coefficients. They can be
assumed to be either constant, or function of the local fluid properties (e.g. Richardson number, Brunt-Väisälä
frequency, distance from the boundary ...), or computed from a turbulent closure model. The choices available
in NEMO are discussed in chapter 11).

1.5.2. Formulation of the lateral diffusive and viscous operators
Lateral turbulence can be roughly divided into a mesoscale turbulence associated with eddies (which can be
solved explicitly if the resolution is sufficient since their underlying physics are included in the primitive equa-
tions), and a sub mesoscale turbulence which is never explicitly solved even partially, but always parameterized.
The formulation of lateral eddy fluxes depends on whether the mesoscale is below or above the grid-spacing
(i.e. the model is eddy-resolving or not).
In non-eddy-resolving configurations, the closure is similar to that used for the vertical physics. The lateral

turbulent fluxes are assumed to depend linearly on the lateral gradients of large-scale quantities. The resulting
lateral diffusive and dissipative operators are of second order. Observations show that lateral mixing induced by
mesoscale turbulence tends to be along isopycnal surfaces (or more precisely neutral surfaces McDougall (1987))
rather than across them. As the slope of neutral surfaces is small in the ocean, a common approximation is
to assume that the “lateral” direction is the horizontal, i.e. the lateral mixing is performed along geopotential
surfaces. This leads to a geopotential second order operator for lateral subgrid scale physics. This assumption
can be relaxed: the eddy-induced turbulent fluxes can be better approached by assuming that they depend
linearly on the gradients of large-scale quantities computed along neutral surfaces. In such a case, the diffusive
operator is an isoneutral second order operator and it has components in the three space directions. However,
both horizontal and isoneutral operators have no effect on mean (i.e. large scale) potential energy whereas
potential energy is a main source of turbulence (through baroclinic instabilities). Gent and McWilliams (1990)
proposed a parameterisation of mesoscale eddy-induced turbulence which associates an eddy-induced velocity
to the isoneutral diffusion. Its mean effect is to reduce the mean potential energy of the ocean. This leads
to a formulation of lateral subgrid-scale physics made up of an isoneutral second order operator and an eddy
induced advective part. In all these lateral diffusive formulations, the specification of the lateral eddy coefficients
remains the problematic point as there is no really satisfactory formulation of these coefficients as a function of
large-scale features.
In eddy-resolving configurations, a second order operator can be used, but usually the more scale selective

biharmonic operator is preferred as the grid-spacing is usually not small enough compared to the scale of the
eddies. The role devoted to the subgrid-scale physics is to dissipate the energy that cascades toward the grid
scale and thus to ensure the stability of the model while not interfering with the resolved mesoscale activity.
Another approach is becoming more and more popular: instead of specifying explicitly a sub-grid scale term in
the momentum and tracer time evolution equations, one uses an advective scheme which is diffusive enough to
maintain the model stability. It must be emphasised that then, all the sub-grid scale physics is included in the
formulation of the advection scheme.
All these parameterisations of subgrid scale physics have advantages and drawbacks. They are not all avail-

able in NEMO. For active tracers (temperature and salinity) the main ones are: Laplacian and bilaplacian
operators acting along geopotential or iso-neutral surfaces, Gent and McWilliams (1990) and Fox-Kemper et al.
(2008) parameterisations, and various slightly diffusive advection schemes. For momentum, the main ones are:
Laplacian and bilaplacian operators acting along geopotential surfaces or iso-neutral surfaces for the Laplacian,
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and the 2nd order centered or the 3rd order upstream-biased advection schemes when flux form is chosen for
the momentum advection.

Lateral laplacian tracer diffusive operator

The lateral Laplacian tracer diffusive operator is defined by (see appendix B):

DlT = ∇.
(
AlT ℜ ∇T

)
with ℜ =

 1 0 −r1
0 1 −r2
−r1 −r2 r21 + r22

 (1.18)

where r1 and r2 are the slopes between the surface along which the diffusive operator acts and the model level
(e.g. z- or s-surfaces). Note that the formulation equation 1.18 is exact for the rotation between geopotential
and s-surfaces, while it is only an approximation for the rotation between isoneutral and z- or s-surfaces.
Indeed, in the latter case, two assumptions are made to simplify equation 1.18 (Cox, 1987). First, the horizontal
contribution of the dianeutral mixing is neglected since the ratio between iso and dia-neutral diffusive coefficients
is known to be several orders of magnitude smaller than unity. Second, the two isoneutral directions of diffusion
are assumed to be independent since the slopes are generally less than 10−2 in the ocean (see appendix B).
For iso-level diffusion, r1 and r2 are zero. ℜ reduces to the identity in the horizontal direction, no rotation is

applied.
For geopotential diffusion, r1 and r2 are the slopes between the geopotential and computational surfaces: they

are equal to σ1 and σ2, respectively (see equation 1.15).
For isoneutral diffusion r1 and r2 are the slopes between the isoneutral and computational surfaces. Therefore,

they are different quantities, but have similar expressions in z- and s-coordinates. In z-coordinates:

r1 =
e3
e1

(
∂ρ

∂i

)(
∂ρ

∂k

)−1

r2 =
e3
e2

(
∂ρ

∂j

)(
∂ρ

∂k

)−1

(1.19)

while in s-coordinates ∂
∂k is replaced by ∂

∂s .

Eddy induced velocity

When the eddy induced velocity parametrisation (eiv) (Gent and McWilliams, 1990) is used, an additional tracer
advection is introduced in combination with the isoneutral diffusion of tracers:

DlT = ∇ ·
(
AlT ℜ ∇T

)
+∇ · (U∗ T )

where U∗ = (u∗, v∗, w∗) is a non-divergent, eddy-induced transport velocity. This velocity field is defined by:

u∗ =
1

e3

∂

∂k

(
Aeiv r̃1

)
v∗ =

1

e3

∂

∂k

(
Aeiv r̃2

)
w∗ = − 1

e1e2

[
∂

∂i

(
Aeiv e2 r̃1

)
+

∂

∂j

(
Aeiv e1 r̃2

)]
where Aeiv is the eddy induced velocity coefficient (or equivalently the isoneutral thickness diffusivity coefficient),
and r̃1 and r̃2 are the slopes between isoneutral and geopotential surfaces. Their values are thus independent of
the vertical coordinate, but their expression depends on the coordinate:

r̃n =

{
rn in z-coordinate
rn + σn in z⋆- and s-coordinates

where n = 1, 2 (1.20)

The normal component of the eddy induced velocity is zero at all the boundaries. This can be achieved in a
model by tapering either the eddy coefficient or the slopes to zero in the vicinity of the boundaries. The latter
strategy is used in NEMO (cf. chapter 10).

Lateral bilaplacian tracer diffusive operator

The lateral bilaplacian tracer diffusive operator is defined by:

DlT = −∆ (∆T ) where ∆• = ∇
(√

BlT ℜ ∇•
)

It is the Laplacian operator given by equation 1.18 applied twice with the harmonic eddy diffusion coefficient
set to the square root of the biharmonic one. A rotated version of the bilaplacian tracer diffusive operator is
available, following the work of Lemarié et al. (2012).
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Lateral Laplacian momentum diffusive operator

The Laplacian momentum diffusive operator along z- or s-surfaces is found by applying equation 1.8e to the
horizontal velocity vector (see appendix B):

DlU = ∇h
(
Almχ

)
−∇h ×

(
Alm ζ k

)
=

(
1

e1

∂
(
Almχ

)
∂i

− 1

e2e3

∂
(
Alm e3ζ

)
∂j

,
1

e2

∂
(
Almχ

)
∂j

+
1

e1e3

∂
(
Alm e3ζ

)
∂i

)

Such a formulation ensures a complete separation between the vorticity and horizontal divergence fields
(see appendix C). Unfortunately, it is only available in iso-level direction. When a rotation is required (i.e.
geopotential diffusion in s-coordinates or isoneutral diffusion in both z- and s-coordinates), the u and v-fields
are considered as independent scalar fields, so that the diffusive operator is given by:

DlU
u = ∇.

(
Alm ℜ ∇u

)
DlU
v = ∇.

(
Alm ℜ ∇v

)
where ℜ is given by equation 1.18. It is the same expression as those used for diffusive operator on tracers.
It must be emphasised that such a formulation is only exact in a Cartesian coordinate system, i.e. on a f - or
β-plane, not on the sphere. It is also a very good approximation in vicinity of the Equator in a geographical
coordinate system (Lengaigne et al., 2003).

Lateral bilaplacian momentum diffusive operator

As for tracers, the bilaplacian order momentum diffusive operator is a re-entering Laplacian operator with the
harmonic eddy diffusion coefficient set to the square root of the biharmonic one. Nevertheless it is currently
not available in the iso-neutral case.
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Sect. 2.2 Time stepping schemes: MLF and RK3

Having defined the continuous equations in chapter 1, we need now to choose a time discretization, a key
feature of an ocean model as it exerts a strong influence on the structure of the computer code (i.e. on its
flowchart). In the present chapter, we provide a general description of the NEMO time stepping strategy and
the consequences for the order in which the equations are solved.

2.1. Time stepping schemes: MLF and RK3
One can choose between two time stepping schemes for non-diffusive processes in NEMO . It can either be a
three-stages, two-time level Runge Kutta scheme (RK3, Wicker and Skamarock (2002)) or a three-time level
Modified LeapFrog scheme (MLF, Mesinger and Arakawa (1976) ; Leclair and Madec (2009)). MLF being the
”historical” time stepping scheme, it is still the default. RK3 scheme can be activated by adding the cpp key
key_RK3 at compilation time.
The RK3 scheme, beside its higher formal accuracy than MLF (3rd order vs less than 2nd order for linear

terms), has the advantage of requiring less memory storage and being more computationnaly efficient (table 2.1).
As such, it will soon become the only time stepping option in NEMO . The reader is referred to (Ducousso
et al. (2024) and Madec et al. (2024)) for further specific details about the implementation of the RK3 scheme
in NEMO .
In the following, one describes the time evolution of a variable x, that stands for u, v, T or S. RHS is the

Right-Hand-Side of the corresponding time evolution equation while ∆t is the time step. The superscripts
indicate the time at which a quantity is evaluated. Each term of the RHS is evaluated at a specific time step
depending on the physics with which it is associated. In both schemes, the final value of x, i.e. at time t+∆t,
is obtained where implicit vertical diffusion is computed, i.e. in the trazdf.F90 and dynzdf.F90 modules.

αmax
C2 αmax

UP3 αmax
C4 αmax

UP5 αmax
Co4

LFRA (γ = 0.1)
√

1−γ
1+γ = 0.904534 0.47074 0.659175 Unst.

√
3
11 = 0.522233

RK3
√
3 = 1.73205 1.62589 1.26222 1.43498 1

Table 2.1.: CFL stability criteria αmax for LF (with Asselin parameter γ) and RK3 time discretizations combined with the most
commonly used linear advection schemes. Specific acronyms : C2 = second-order centered, UP3 = third-order upwind,
C4 = fourth-order centered, UP5 = fifth-order upwind, Co4 = fourth-order compact. Table extracted from Madec et al.
(2024).

2.2. MLF scheme
2.2.1. Non-diffusive part
The LeapFrog (LF) time stepping is a three level scheme that can be represented as follows for non-diffusive
processes:

xt+∆t = xt−∆t + 2∆t RHStx (2.1)

This three level scheme requires three arrays for each prognostic variable. For each variable x there is xb
(before), xn (now) and xa. The third array, although referred to as xa (after) in the code, is usually not the
variable at the after time step; but rather it is used to store the time derivative (RHS in equation 2.1) prior to
time-stepping the equation.
This scheme is widely used for advection processes in low-viscosity fluids. It is a time centred scheme, i.e. the

RHS in equation 2.1 is evaluated at time step t, the now time step. It may be used for momentum and tracer
advection, pressure gradient, and Coriolis terms, but not for diffusion terms. It is an efficient method that
achieves second-order accuracy with just one right hand side evaluation per time step. Moreover, it does not
artificially damp linear oscillatory motion nor does it produce instability by amplifying the oscillations. These
advantages are somewhat diminished by the large phase-speed error of the leapfrog scheme, and the unsuitability
of leapfrog differencing for the representation of diffusion and Rayleigh damping processes. However, the scheme
allows the coexistence of a numerical and a physical mode due to its leading third order dispersive error. In
other words a divergence of odd and even time steps may occur. To prevent it, the leapfrog scheme is often
used in association with a Robert-Asselin time filter (hereafter the LF-RA scheme). This filter, first designed
by Robert (1966) and more comprehensively studied by Asselin (1972), is a kind of laplacian diffusion in time
that mixes odd and even time steps:

xtF = xt + γ
[
xt−∆t
F − 2xt + xt+∆t

]
(2.2)
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Chap. 2 Time Domain

where the subscript F denotes filtered values and γ is the Asselin coefficient. γ is initialized as rn_atfp
(namelist parameter). Its default value is rn_atfp=10.e-3 (see subsection 2.2.3), causing only a weak dis-
sipation of high frequency motions ((Farge Coulombier, 1987)). The addition of a time filter degrades the
accuracy of the calculation from second to first order. However, the second order truncation error is propor-
tional to γ, which is small compared to 1. Therefore, the LF-RA is a quasi second order accurate scheme.
The LF-RA scheme is preferred to other time differencing schemes such as predictor corrector or trapezoidal
schemes, because the user has an explicit and simple control of the magnitude of the time diffusion of the
scheme. When used with the 2nd order space centred discretisation of the advection terms in the momentum
and tracer equations, LF-RA avoids implicit numerical diffusion: diffusion is set explicitly by the user through
the Robert-Asselin filter parameter and the viscosity and diffusion coefficients.

2.2.2. Diffusive part — Forward or backward scheme
The leapfrog differencing scheme is unsuitable for the representation of diffusion and damping processes. For
a tendency Dx, representing a diffusion term or a restoring term to a tracer climatology (when present, see
section 6.6), a forward time differencing scheme is used :

xt+∆t = xt−∆t + 2∆t Dt−∆t
x

This is diffusive in time and conditionally stable. The conditions for stability of second and fourth order
horizontal diffusion schemes are (Griffies, 2004):

Ah <

{
e2

8∆t laplacian diffusion
e4

64∆t bilaplacian diffusion
(2.3)

where e is the smallest grid size in the two horizontal directions and Ah is the mixing coefficient. The linear
constraint equation 2.3 is a necessary condition, but not sufficient. If it is not satisfied, even mildly, then the
model soon becomes wildly unstable. The instability can be removed by either reducing the length of the time
steps or reducing the mixing coefficient.
For the vertical diffusion terms, a forward time differencing scheme can be used, but usually the numerical

stability condition imposes a strong constraint on the time step. To overcome the stability constraint, a backward
(or implicit) time differencing scheme is used. This scheme is unconditionally stable but diffusive and can be
written as follows:

xt+∆t = xt−∆t + 2∆t RHSt+∆t
x (2.4)

This scheme is rather time consuming since it requires a matrix inversion. For example, the finite difference
approximation of the temperature equation is:

T (k)t+1 − T (k)t−1

2 ∆t
≡ RHS+

1

e3t
δk

[
AvTw
e3w

δk+1/2

[
T t+1

]]
where RHS is the right hand side of the equation except for the vertical diffusion term. We rewrite equation 2.4
as:

−c(k + 1) T t+1(k + 1) + d(k) T t+1(k)− c(k) T t+1(k − 1) ≡ b(k) (2.5)
where

c(k) = AvTw (k) / e3w(k), d(k) = e3t(k) / (2∆t) + ck + ck+1 and b(k) = e3t(k)
(
T t−1(k) / (2∆t) + RHS

)
equation 2.5 is a linear system of equations with an associated matrix which is tridiagonal. Moreover, c(k)

and d(k) are positive and the diagonal term is greater than the sum of the two extra-diagonal terms, therefore
a special adaptation of the Gauss elimination procedure is used to find the solution (see for example Richtmyer
and Morton (1967)).

2.2.3. Modified LeapFrog – Robert Asselin filter scheme (LF-RA)
Significant changes have been introduced by Leclair and Madec (2009) in the LF-RA scheme in order to ensure
tracer conservation and to allow the use of a much smaller value of the Asselin filter parameter. The modifications
affect both the forcing and filtering treatments in the LF-RA scheme.
In a classical LF-RA environment, the forcing term is centred in time, i.e. it is time-stepped over a 2∆t

period: xt = xt+2∆tQt where Q is the forcing applied to x, and the time filter is given by equation 2.2 so that
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Sect. 2.3 RK3 scheme

Figure 2.1.: Illustration of forcing integration methods. (top) ”Traditional” formulation: the forcing is defined at the same time as
the variable to which it is applied (integer value of the time step index) and it is applied over a 2∆t period. (bottom)
modified formulation: the forcing is defined in the middle of the time (integer and a half value of the time step index)
and the mean of two successive forcing values (n− 1/2, n+ 1/2) is applied over a 2∆t period.

Q is redistributed over several time step. In the modified LF-RA environment, these two formulations have
been replaced by:

xt+∆t = xt−∆t +∆t
(
Qt−∆t/2 +Qt+∆t/2

)
(2.6)

xtF = xt + γ
(
xt−∆t
F − 2xt + xt+∆t

)
− γ∆t

(
Qt+∆t/2 −Qt−∆t/2

)
(2.7)

The change in the forcing formulation given by equation 2.6 (see figure 2.1) has a significant effect: the forcing
term no longer excites the divergence of odd and even time steps (Leclair and Madec, 2009). This property
improves the LF-RA scheme in two aspects. First, the LF-RA can now ensure the local and global conservation
of tracers. Indeed, time filtering is no longer required on the forcing part. The influence of the Asselin filter
on the forcing is explicitly removed by adding a new term in the filter (last term in equation 2.7 compared
to equation 2.2). Since the filtering of the forcing was the source of non-conservation in the classical LF-RA
scheme, the modified formulation becomes conservative (Leclair and Madec, 2009). Second, the LF-RA becomes
a truly quasi-second order scheme. Indeed, equation 2.6 used in combination with a careful treatment of static
instability (subsection 11.2.2) and of the TKE physics (subsection 11.1.7) (the two other main sources of time
step divergence), allows a reduction by two orders of magnitude of the Asselin filter parameter.
Note that the forcing is now provided at the middle of a time step: Qt+∆t/2 is the forcing applied over the

[t, t +∆t] time interval. This and the change in the time filter, equation 2.7, allows for an exact evaluation of
the contribution due to the forcing term between any two time steps, even if separated by only ∆t since the
time filter is no longer applied to the forcing term.

2.3. RK3 scheme
2.3.1. Non-diffusive part
The RK3 time stepping is a three-stages, two-time level scheme that can be represented as follows (for non-
diffusive processes):

xt+∆t/3 = xt +
∆t

3
RHStx

xt+∆t/2 = xt +
∆t

2
RHSt+∆t/3

x

xt+∆t = xt +∆t RHSt+∆t/2
x

(2.8)

RHS applies here to the Coriolis force, momentum/tracer advection and hydrostatic pressure terms. From
equation 2.8, it appears that in order to advance from time t to time t + ∆t, the RK3 scheme requires 3
evaluations of the right-hand-side whereas only one evaluation is necessary for the LF scheme. However, it must
be clear that it does not necessarily mean that the time-to-solution will be longer with RK3. Indeed, larger
time-steps are theoretically allowed with RK3 (∆t can be doubled actually, see table 2.1) and several costly
terms (vertical mixing parameterization, rotated diffusion, viscous/diffusive operators) are computed only once
per time-steps. Overall the transition from LF to RK3 is expected to lead to a more efficient code on top of the
increased accuracy in time.
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!-----------------------------------------------------------------------
&namrun ! parameters of the run
!-----------------------------------------------------------------------

nn_no = 0 ! Assimilation cycle index
cn_exp = "ORCA2" ! experience name
nn_it000 = 1 ! first time step
nn_itend = 5840 ! last time step (std 5840)
nn_date0 = 010101 ! date at nit_0000 (format yyyymmdd) used if ln_rstart=F or (ln_rstart=T and nn_rstctl=0 or 1)
nn_time0 = 0 ! initial time of day in hhmm
nn_leapy = 0 ! Leap year calendar (1) or not (0)
ln_rstart = .false. ! start from rest (F) or from a restart file (T)

ln_1st_euler = .false. ! =T force a start with forward time step (ln_rstart=T)
nn_rstctl = 0 ! restart control ==> activated only if ln_rstart=T
! ! = 0 nn_date0 read in namelist ; nn_it000 : read in namelist
! ! = 1 nn_date0 read in namelist ; nn_it000 : check consistancy between namelist and restart
! ! = 2 nn_date0 read in restart ; nn_it000 : check consistancy between namelist and restart
cn_ocerst_in = "restart" ! suffix of ocean restart name (input)
cn_ocerst_indir = "." ! directory from which to read input ocean restarts
cn_ocerst_out = "restart" ! suffix of ocean restart name (output)
cn_ocerst_outdir = "." ! directory in which to write output ocean restarts

nn_istate = 0 ! output the initial state (1) or not (0)
ln_rst_list = .false. ! output restarts at list of times using nn_stocklist (T) or at set frequency with nn_stock (F)
nn_stock = 0 ! used only if ln_rst_list = F: output restart freqeuncy (modulo referenced to 1)

! ! = 0 force to write restart files only at the end of the run
! ! = -1 do not do any restart

nn_stocklist = 0,0,0,0,0,0,0,0,0,0 ! List of timesteps when a restart file is to be written
nn_write = 0 ! used only if key_xios is not defined: output frequency (modulo referenced to nn_it000)

! ! = 0 force to write output files only at the end of the run
! ! = -1 do not do any output file

ln_mskland = .false. ! mask land points in NetCDF outputs
ln_cfmeta = .false. ! output additional data to netCDF files required for compliance with the CF metadata standard
ln_clobber = .true. ! clobber (overwrite) an existing file
nn_chunksz = 0 ! chunksize (bytes) for NetCDF file (works only with iom_nf90 routines)
ln_xios_read = .false. ! use XIOS to read restart file (only for a single file restart)
nn_wxios = 0 ! use XIOS to write restart file 0 - no, 1 - single file output, 2 - multiple file output
ln_top = .true. ! Consider (T) or bypass (F) the TOP routines when the key_top is activated

/

namelist 2.1.: &namrun

2.3.2. Diffusive part — Forward or backward scheme
Similarly to the LF scheme, tendencies due to lateral diffusion or restoring (section 6.6) are applied thanks to
a forward in time differencing:

xt+∆t = xt +∆t Dt
x

These are computed once per time step and added to non-diffusive tendencies at the third stage of equation 2.8.
Vertical diffusion processes follow, here again, an uncontionnally stable, backward in time differencing, performed
at stage 3:

xt+∆t = xt +∆t RHSt+∆t
x (2.9)

2.4. Surface pressure gradient
The leapfrog environment supports a centred in time computation of the surface pressure, i.e. evaluated at now
time step. The same applies to RK3, the surface pressure gradient being considered in the 3 stages described
in subsection 2.3.1. This refers to as the explicit free surface case in the code ( ln_dynspg_exp=.true. , which
is not available for RK3 at the time of writing). This choice however imposes a strong constraint on the time
step which should be small enough to resolve the propagation of external gravity waves. As a matter of fact,
one rather uses in a realistic setup a split-explicit free surface ( ln_dynspg_ts=.true. ) in which barotropic
and baroclinic dynamical equations are solved separately with ad-hoc time steps. The use of the time-splitting
(in combination with non-linear free surface) imposes some constraints on the design of the overall flowchart, in
particular to ensure exact tracer conservation (see figure 2.2 for MLF scheme) and the mode splitting stability
(Ducousso et al. (2024)).
Compared to the former use of the filtered free surface in NEMO v3.6 (Roullet and Madec (2000)), the use

of a split-explicit free surface is advantageous on massively parallel computers. Indeed, no global computations
are anymore required by the elliptic solver which saves a substantial amount of communication time. Fast
barotropic motions (such as tides) are also simulated with a better accuracy.

2.5. Start/Restart strategy
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Figure 2.2.: Sketch of the leapfrog time stepping sequence in NEMO with split-explicit free surface. The latter combined with
non-linear free surface requires the dynamical tendency being updated prior tracers tendency to ensure conservation.
Note the use of time integrated fluxes issued from the barotropic loop in subsequent calculations of tracer advection
and in the continuity equation. Details about the time-splitting scheme can be found in ??.
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!-----------------------------------------------------------------------
&namtsd ! Temperature & Salinity Data (init/dmp) (default: OFF)
!-----------------------------------------------------------------------

! ! =T read T-S fields for:
ln_tsd_init = .false. ! ocean initialisation
ln_tsd_dmp = .false. ! T-S restoring (see namtra_dmp)

cn_dir = './' ! root directory for the T-S data location

!___________!_________________________!___________________!___________!_____________!________!___________!__________________!__________!_______________!↪→
! ! file name ! frequency (hours) ! variable ! time interp.! clim ! 'yearly'/ ! weights filename !
rotation ! land/sea mask !↪→

! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! !
pairing ! filename !↪→
sn_tem = 'data_1m_potential_temperature_nomask', -1. , 'votemper', .true. , .true. , 'yearly' , '' ,
'' , ''↪→
sn_sal = 'data_1m_salinity_nomask' , -1. , 'vosaline', .true. , .true. , 'yearly' , '' ,
'' , ''↪→

/

namelist 2.2.: &namtsd

When starting from initial conditions, and specific to the Leapfrog scheme (i.e. no specific procedure is needed
with RK3), the first step is a forward step (Euler time integration):

x1 = x0 +∆t RHS0

This is done simply by keeping the leapfrog environment (i.e. the equation 2.1 three level time stepping) but
setting all x0 (before) and x1 (now) fields equal at the first time step and using half the value of a leapfrog time
step (2∆t).
It is also possible to restart from a previous computation, by using a restart file and setting ln_restart=.true.

. The restart strategy is designed to ensure perfect restartability of the code: the user should obtain the same
results to machine precision either by running the model for 2N time steps in one go, or by performing two
consecutive experiments of N steps with a restart. This requires saving the necessary time levels (2 in case of
LF and 1 with RK3) and many auxiliary data in the restart files in machine precision.
Note that the time step ∆t, is also saved in the restart file. When restarting, if the time step has been

changed, or one of the prognostic variables at before time step is missing, an Euler time stepping scheme is
imposed with Leapfrog. A forward initial step can still be enforced by the user by setting the namelist variable
nn_euler=0 . Other options to control the time integration of the model are defined through the &namrun
(namelist 2.1) namelist variables.

The consistency between the provided input restart file(s) ( cn_ocerst_in ) and the namelist settings is
handled with the parameter nn_rstctl , as detailed in &namrun (namelist 2.1) .

Restart files are created through the legacy interface, which allows to specify the root name of the output
restart file ( cn_ocerst_out ) and the timestep frequency at which restart file is created ( nn_stock ). Similarly
the parameter nn_write control the creation of output files. It is also possible to save restart files at specific
timesteps during the model execution, by setting ln_rst_list=.true. and filling up the restart dump times
in nn_stocklist (always requires 10 values).

Since version 4.2 it is possible to use the XIOS interface to directly write ( nn_wxios ) and read ( ln_xios_read
) the restart files, as detailed in ??.

2.6. Initial state ( istate.F90 and dtatsd.F90 )
Basic initial state options are defined in &namtsd (namelist 2.2) . By default, the ocean starts from rest (the

velocity field is set to zero) and the initialization of temperature and salinity fields is controlled through the
ln_tsd_init namelist parameter:

ln_tsd_init=.true.
Initial temperature and salinity input fields can be provided on the model grid itself or on their native
input-data grids. In the latter case, the data will be interpolated on-the-fly both in the horizontal and the
vertical to the model grid (see subsection 7.2.2). The information relating to the input files is specified in
the sn_tem and sn_sal structures. The computation is done in the dtatsd.F90 module.

ln_tsd_init=.false.
Initial temperature and salinity fields are set as part of a user-defined configuration (subroutine usr_def_istate
in module userdef_istate.F90 - see the user guide for more information). The default configuration
(GYRE, see section 17.5) sets horizontally uniform temperature and salinity fields.
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2.7. Adaptive-implicit vertical advection( ln_zad_Aimp )
The adaptive-implicit vertical advection option in NEMO is based on the work of Shchepetkin (2015). In
common with most ocean models, the timestep used with NEMO needs to satisfy multiple criteria associated
with different physical processes in order to maintain numerical stability. Shchepetkin (2015) pointed out that
the vertical CFL criterion is commonly the most limiting. Lemarié et al. (2015) examined the constraints for a
range of time and space discretizations and provide the CFL stability criteria for a range of advection schemes.
The values for the Leap-Frog with Robert asselin filter time-stepping (as used in NEMO) are reproduced in
table 2.2.
Treating the vertical advection implicitly can avoid these restrictions but at the cost of large dispersive errors

and, possibly, large numerical viscosity. The adaptive-implicit vertical advection option, enabled by setting
ln_zad_Aimp=.true. in &namzdf (namelist 11.1) , provides a targetted use of the implicit scheme only when
and where potential breaches of the vertical CFL condition occur. In many practical applications these events
may occur away from the main area of interest or due to short-lived conditions, such that the extra numerical
diffusion or viscosity does not greatly affect the overall solution. With such applications, this option should
allow much longer model timesteps to be used whilst retaining the accuracy of the high order explicit schemes
over most of the domain.

Spatial discretization 2nd order centered 3rd order upwind 4th order compact
Advective CFL criterion 0.904 0.472 0.522

Table 2.2.: The advective CFL criteria for a range of spatial discretizations for the leapfrog with Robert Asselin filter time-stepping
(ν = 0.1) as given in Lemarié et al. (2015).

In particular, the advection scheme remains explicit everywhere except where and when local vertical velocities
exceed a threshold set just below the explicit stability limit. Once the threshold is reached, a tapered transition
towards an implicit scheme is used by partitioning the vertical velocity into a part that can be treated explicitly
and any excess that must be treated implicitly. The partitioning is achieved via a Courant-number dependent
weighting algorithm as described in Shchepetkin (2015).
The local cell Courant number (Cu) used for this partitioning is:

Cu =
2∆t

en3tijk

([
max(wnijk, 0.0)−min(wnijk+1, 0.0)

]
+
[
max(e2uijen3uijku

n
ijk, 0.0)−min(e2ui−1je

n
3ui−1jku

n
i−1jk, 0.0)

]/
e1tije2tij

+
[
max(e1vijen3vijkv

n
ijk, 0.0)−min(e1vij−1e

n
3vij−1kv

n
ij−1k, 0.0)

]/
e1tije2tij

) (2.10)

and the tapering algorithm follows Shchepetkin (2015) as:

Cumin = 0.15

Cumax = 0.3

Cucut = 2Cumax − Cumin
Fcu = 4Cumax ∗ (Cumax − Cumin)

Cf =


0.0 if Cu ≤ Cumin
(Cu− Cumin)2/(Fcu+ (Cu− Cumin)2) else if Cu < Cucut

(Cu− Cumax)/Cu else
(2.11)

The partitioning coefficient (Cf) is used to determine the part of the vertical velocity that must be handled
implicitly (wi) and to subtract this from the total vertical velocity (wn) to leave that which can continue to be
handled explicitly:

wiijk = Cfijkwnijk

wnijk
= (1− Cfijk)wnijk

(2.12)

Note that the coefficient is such that the treatment is never fully implicit; the three cases from equation 2.11
can be considered as: fully-explicit; mixed explicit/implicit and mostly-implicit, with Cf varying as shown
in figure 2.3. Note with these values the Cucut boundary between the mixed implicit-explicit treatment and
’mostly implicit’ is 0.45, which is just below the stability criterion given in table 2.2 for a 3rd order scheme.

NEMO Reference Manual Page 24 of 310



Chap. 2 Time Domain

Courant Number

co
e�

ci
en

t (
Cf

)

Figure 2.3.: The value of the partitioning coefficient (Cf) used to partition vertical velocities into parts to be treated implicitly and
explicitly for a range of typical Courant numbers (ln_zad_Aimp=.true.).

t=0.5 hours

t=2.5 hours

t=4.5 hours

t=6.5 hours

t=8.5 hours

t=10.5 hours

t=12.5 hours

Temperature (oC)

Figure 2.4.: A time-series of temperature vertical cross-sections for the OVERFLOW test case. These results are for the default
settings with rn_Dt=10.0 and without adaptive implicit vertical advection ( ln_zad_Aimp=.false. ).

The wi component is added to the implicit solvers for the vertical mixing in dynzdf.F90 and trazdf.F90 in a
similar way to Shchepetkin (2015). This is sufficient for the flux-limited advection scheme ( ln_traadv_mus=.true.
) but further intervention is required when using the flux-corrected advection scheme ( ln_traadv_fct=.true.
). For this scheme, the implicit upstream fluxes must be added to both the monotonic guess and to the higher
order solution when calculating the antidiffusive fluxes. The implicit vertical fluxes are then removed since they
are added by the implicit solver later on.
The adaptive-implicit vertical advection option is new to NEMO at v4.0 and has yet to be used in a wide

range of simulations. The following test simulation, however, does illustrate the potential benefits and will
hopefully encourage further testing and feedback from users:

2.7.1. Adaptive-implicit vertical advection in the OVERFLOW test-case
The OVERFLOW test case provides a simple illustration of the adaptive-implicit advection in action. The
example here differs from the basic test case by only a few extra physics choices namely:

ln_dynldf_OFF = .false.
ln_dynldf_lap = .true.
ln_dynldf_hor = .true.
ln_zdfnpc = .true.
ln_traadv_fct = .true.

nn_fct_h = 2
nn_fct_v = 2

which were chosen to provide a slightly more stable and less noisy solution. The result when using the default
value of rn_Dt=10. without adaptive-implicit vertical velocity is illustrated in figure 2.4. The mass of cold
water, initially sitting on the shelf, moves down the slope and forms a bottom-trapped, dense plume. Even
with these extra physics choices the model is close to stability limits and attempts with rn_Dt=30. will fail
after about 5.5 hours with excessively high horizontal velocities. This time-scale corresponds with the time
the plume reaches the steepest part of the topography and, although detected as a horizontal CFL breach, the
instability originates from a breach of the vertical CFL limit. This is a good candidate, therefore, for use of the
adaptive-implicit vertical advection scheme.
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nn_rdt=10s

nn_rdt=30s

nn_rdt=60s

nn_rdt=120s

t=7.5 hours

ln_zad_Aimp=.false. ln_zad_Aimp=.false.ln_zad_Aimp=.true. ln_zad_Aimp=.true.

t=15.5 hours

Temperature (oC)

No solution: failed after 5.5 hours No solution: failed after 5.5 hours

Figure 2.5.: Sample temperature vertical cross-sections from mid- and end-run using different values for rn_Dt and with or without
adaptive implicit vertical advection. Without the adaptive implicit vertical advection, only the run with the shortest
timestep is able to run to completion. Note also that the colour-scale has been chosen to confirm that temperatures
remain within the original range of 10o to 20o.

The results with ln_zad_Aimp=.true. and a variety of model timesteps are shown in figure 2.5 (together
with the equivalent frames from the base run). In this simple example the use of the adaptive-implicit vertcal
advection scheme has enabled a 12x increase in the model timestep without significantly altering the solution
(although at this extreme the plume is more diffuse and has not travelled so far). Notably, the solution with and
without the scheme is slightly different even with rn_Dt=10. , suggesting that the base run was close enough to
instability to trigger the scheme despite completing successfully. To assist in diagnosing how active the scheme
is, in both location and time, the 3D implicit and explicit components of the vertical velocity are available (when
using XIOS, key_xios ) via the wimp and wexp diagnostics respectively. Likewise, the partitioning coefficient
(Cf) is also available as wi_cff. For a quick oversight of the scheme’s activity, the global maximum values
of the absolute implicit component of the vertical velocity and the partitioning coefficient are written to the
netCDF version of the run statistics file (run.stat.nc) if this is active (see section 16.4 for activation details).
figure 2.6 shows examples of the maximum partitioning coefficient for the various overflow tests. Note that

the adaptive-implicit vertical advection scheme is active even in the base run with rn_Dt=10. , adding to
the evidence that the test case is close to stability limits even with this value. At the larger timesteps, the
vertical velocity is treated mostly implicitly at some locations throughout the run. The oscillatory nature of
this measure appears to be linked to the progress of the plume front as each cusp is associated with the location
of the maximum shifting to the adjacent cell. This is illustrated in figure 2.7 where the i- and k- locations of
the maximum have been overlaid for the base run case.

Only limited tests have been performed in more realistic configurations. In the ORCA2_ICE_PISCES reference
configuration, the scheme does activate and passes restartability and reproducibility tests but it is unable to
improve the model’s stability enough to allow an increase in the model time-step. A view of the time-series
of maximum partitioning coefficient (not shown here) suggests that the default time-step of rn_Dt=5400. is
already pushing at stability limits, especially in the initial start-up phase. The time-series does not, however,
exhibit any of the ’cuspiness’ found with the overflow tests.

A short test with an eORCA1 configuration is more promising, since using a time-step of rn_Dt=3600. remains
stable with ln_zad_Aimp=.true. whereas the time-step is limited to rn_Dt=2700. without.
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Figure 2.6.: The maximum partitioning coefficient during a series of test runs with increasing model timestep length. At the larger
timesteps, the vertical velocity is treated mostly implicitly at some locations throughout the run.

Figure 2.7.: The maximum partitioning coefficient for the rn_Dt=10. case overlaid with information on the gridcell i- and k-
locations of the maximum value.
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Figure 3.1.: Arrangement of variables in the unit cell of space domain. T indicates scalar points where temperature, salinity, density,
pressure and horizontal divergence are defined. (u, v, w) indicates vector points, and f indicates vorticity points where
both relative and planetary vorticities are defined.

t i j k
u i+ 1/2 j k
v i j + 1/2 k
w i j k + 1/2
f i+ 1/2 j + 1/2 k
uw i+ 1/2 j k + 1/2
vw i j + 1/2 k + 1/2
fw i+ 1/2 j + 1/2 k + 1/2

Table 3.1.: Location of grid-points as a function of integer or integer and a half values of the column, row, or level. This indexing is
only used for the writing of the semi-discrete equations. In the code, the indexing uses integer values only (the relative
grid-cell location has to be inferred from the context) and is positive downwards in the vertical with k = 1 at the surface.
(see subsection 3.1.3)

Having defined the continuous equations in chapter 1 and chosen a time discretisation chapter 2, we need to
choose a grid for spatial discretisation and related numerical algorithms. In the present chapter, we provide
a general description of the staggered grid used in NEMO and other relevant information about the DOM
(DOMain) source code modules. Note that istate.F90 and dtatsd.F90 are located in the ./src/OCE/DOM
directory. However, they are described alongside the model’s time domain chapter, together with the restart
strategy.

3.1. Fundamentals of the discretisation
3.1.1. Arrangement of variables
The numerical techniques used to solve the Primitive Equations in this model are based on the traditional,
centred second-order finite difference approximation. Special attention has been given to the homogeneity of
the solution in the three spatial directions. The arrangement of variables is the same in all directions. It
consists of cells centred on scalar points (T , e.g. teperature T , salinity S, pressure p, density ρ) with vector
points (u, v, w) (velocity), whose components are defined in the centre of each cell face (figure 3.1). This is
the generalisation to three dimensions of the well-known “C” grid in Arakawa’s classification (Mesinger and
Arakawa, 1976). The relative and planetary vorticity, ζ and f , are defined at the centre of each vertical edge
and the barotropic stream function ψ is defined at horizontal points overlying the ζ and f -points.

The ocean mesh (i.e. the position of all the scalar and vector points) is defined by the transformation that
gives (λ, φ, z) as a function of (i, j, k). The grid-points are located at integer or integer and a half values of
(i, j, k) as indicated on table 3.1. In all the following, subscripts T , u, v, w, f , uw, vw or fw indicate the position
of the grid-point where the scale factors ek are defined. Each scale factor is defined as the local analytical value
provided by equation 1.7. As a result, the mesh on which partial derivatives ∂

∂λ ,
∂
∂φ and ∂

∂z are evaluated is a
uniform mesh with a grid size of unity. Discrete partial derivatives are formulated by the traditional, centred
second order finite difference approximation while the scale factors are chosen equal to their local analytical
value. An important point here is that the partial derivative of the scale factors must be evaluated by centred
finite difference approximation, not from their analytical expression. This preserves the symmetry of the discrete
set of equations and therefore satisfies many of the continuous properties (see appendix C). A similar, related
remark can be made about the domain size: when needed, an area, volume, or the total ocean depth must be
evaluated as the product or sum of the relevant scale factors (see equation 3.1 in the next section).
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z z

(a) (b)

∆k−1 = 100.0 m Tk−1

Tk−1 ek−1 = 98.75 m

∆k = 40.0 m Tk

Tk ek = 38.75 m

∆k+1 = 10.0 m Tk+1
Tk+1 ek+1 = 8.75 m

wk−3/2 zk−3/2 = −150.0 m wk−3/2 ek−3/2 = 140.0 m

wk−1/2 zk−1/2 = −50.0 m wk−1/2 ek−1/2 = 65.0 m

wk+1/2 zk+1/2 = −10.0 m wk+1/2 ek+1/2 = 20.0 m

wk+3/2 zk+3/2 = 0.0 m wk+3/2 ek+3/2 = 5.0 m

Figure 3.2.: Comparison of (a) traditional definitions of grid-point position and grid-size in the vertical, and (b) analytically derived
grid-point position and scale factors. For both grids here, the same w-point depth has been chosen but in (a) the T -
points are set halfway between w-points while in (b) they are defined from an analytical function: z(k) = 5 (k−1/2)3−
45 (k − 1/2)2 + 140 (k − 1/2) − 150. Note the resulting difference between the value of the grid-size ∆k and those of
the scale factor ek.

Note that the definition of the scale factors (i.e. as the analytical first derivative of the transformation that
results in (λ, φ, z) as a function of (i, j, k)) is specific to the NEMO model (Marti et al., 1992). As an example,
a scale factor in the i direction is defined locally at a T -point, whereas many other models on a C grid choose
to define such a scale factor as the distance between the u-points on each side of the T -point. Relying on
an analytical transformation has two advantages: firstly, there is no ambiguity in the scale factors appearing
in the discrete equations, since they are first introduced in the continuous equations; secondly, analytical
transformations encourage good practice by the definition of smoothly varying grids (rather than allowing the
user to set arbitrary jumps in thickness between adjacent layers) (Tréguier et al., 1996). An example of the
effect of such a choice is shown in figure 3.2.

3.1.2. Discrete operators
Given the values of a variable q at adjacent points, the differencing and averaging operators at the midpoint
between them are:

δi[q] = q(i+ 1/2)− q(i− 1/2)

q i =
{
q(i+ 1/2) + q(i− 1/2)

}
/2

Similar operators are defined with respect to i+1/2, j, j +1/2, k, and k+1/2. Following equation 1.8a and
equation 1.8d, the gradient of a variable q defined at a T -point has its three components defined at u-, v- and
w-points while its Laplacian is defined at the T -point. These operators have the following discrete forms in the
curvilinear s-coordinates system:

∇q ≡ 1

e1u
δi+1/2[q] i+

1

e2v
δj+1/2[q] j +

1

e3w
δk+1/2[q] k

∆q ≡ 1

e1t e2t e3t

[
δi

(
e2u e3u
e1u

δi+1/2[q]

)
+ δj

(
e1v e3v
e2v

δj+1/2[q]

) ]
+

1

e3t
δk

[
1

e3w
δk+1/2[q]

]
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Following equation 1.8c and equation 1.8b, a vector A = (a1, a2, a3) defined at vector points (u, v, w) has its
three curl components defined at vw-, uw-, and f -points, and its divergence defined at T -points:

∇×A ≡ 1

e2v e3vw

[
δj+1/2(e3w a3)− δk+1/2(e2v a2)

]
i

+
1

e2u e3uw

[
δk+1/2(e1u a1)− δi+1/2(e3w a3)

]
j

+
1

e1f e2f

[
δi+1/2(e2v a2)− δj+1/2(e1u a1)

]
k

∇ ·A ≡ 1

e1t e2t e3t

[
δi(e2u e3u a1) + δj(e1v e3v a2)

]
+

1

e3t
δk(a3)

The vertical average over the whole water column is denoted by an overbar and is for a land-masked field q
(i.e. a quantity that is equal to zero at land points):

q̄ =
1

H

∫ ko

kb
q e3q dk ≡

1

Hq

∑
k

q e3q (3.1)

where Hq is the ocean depth, which is the masked sum of the vertical scale factors at q points, kb and ko are the
bottom and surface k-indices, and the symbol

∑
k

refers to a summation over all grid points of the same type in

the direction indicated by the subscript (here k).
In continuous form, the following properties are satisfied:

∇×∇q = 0 (3.2)
∇ · (∇×A) = 0 (3.3)

It is straightforward to demonstrate that these properties are verified locally in discrete form as soon as the
scalar q is taken at T -points and the vector A has its components defined at vector points (u, v, w).

Let a and b be two fields defined on the mesh, with a value of zero inside continental areas. It can be
shown that the differencing operators (δi, δj and δk) are skew-symmetric linear operators, and further that the
averaging operators (· · · i, · · · j and · · · k) are symmetric linear operators, i.e.∑

i

ai δi[b]≡−
∑
i

δi+1/2[a]bi+1/2 (3.4)∑
i

ai b
i ≡

∑
i

a i+1/2 bi+1/2 (3.5)

In other words, the adjoint of the differencing and averaging operators are δ∗i = −δi+1/2 and (· · · i)∗ =

· · · i+1/2, respectively. These two properties will be used extensively in the appendix C to demonstrate integral
conservative properties of the discrete formulation chosen.

3.1.3. Numerical indexing
The array representation used in the Fortran code requires an integer indexing. However, the analytical
definition of the mesh (see subsection 3.1.1) is associated with the use of integer values for T -points only while
all the other points involve integer and a half values. Therefore, a specific integer indexing has been defined for
points other than T -points (i.e. velocity and vorticity grid-points). Furthermore, the direction of the vertical
indexing has been reversed and the surface level set at k = 1.

Horizontal indexing

The indexing in the horizontal plane has been chosen such that the i and j indices increase towards the east and
north of the domain. u-, v- and f -points are distributed such that a T -point has the same i index (j index) as
its nearest eastward u-point (northward v-point) and the same i-and j-indices as its nearest north-east f -point
(see the shaded area in figure 3.3).

Vertical indexing

In the vertical, the chosen indexing requires special attention since the direction of the k-axis in the Fortran
code is the reverse of that used in the semi-discrete equations given in subsection 3.1.1.
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Figure 3.3.: Horizontal integer indexing used in the Fortran code. The shaded area indicates the cell in which variables contained
in arrays have the same i- and j-indices

Figure 3.4.: Vertical integer indexing used in the Fortran code. Note that the k-axis is oriented downward. The topmost shaded
area indicates the cell in which variables contained in arrays have a common k-index.

The w-level at k = 1 corresponds to the sea surface, while the w-level at k = jpk either corresponds to or is
below the ocean floor. T -levels are distributed such that the t-level at index k is between the w-levels at indices
k and k+1. This is in contrast to the indexing on the horizontal plane, where for example the T -point at index
i is between the u-points at indices i and i− 1 (compare the shaded areas in figure 3.3 and figure 3.4).
Since the scale factors are chosen to be strictly positive, a minus sign is included in the Fortran implemen-

tations of all the vertical derivatives of the discrete equations given in this manual in order to accommodate the
opposing vertical index directions in the implementation and documentation.

3.2. Spatial domain configuration
Two methods are available to specify the spatial domain configuration and are selected using the namelist

parameter ln_read_cfg in namelist &namcfg (namelist 17.1) :

ln_read_cfg=.true.
The domain-specific parameters and fields are read from a NetCDF input file, whose name can be specified
via the cn_domcfg parameter in namelist &namcfg (namelist 17.1)

ln_read_cfg=.false.
The domain-specific parameters and fields are set as part of a user-defined configuration (modules us-
rdef_nam.F90 , usrdef_hgr.F90 and usrdef_zgr.F90 - see the user guide).

From version 4.0 there are no longer any options for reading complex bathymetries and performing a vertical
discretisation at run-time. Whilst it is occasionally convenient to have a common bathymetry file and, for
example, to run similar models with and without partial bottom boxes and/or sigma-coordinates, supporting
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!-----------------------------------------------------------------------
&namcfg ! parameters of the configuration (default: use namusr_def in namelist_cfg)
!-----------------------------------------------------------------------

ln_read_cfg = .false. ! (=T) read the domain configuration file
! ! (=F) user defined configuration (F => create/check namusr_def)
cn_domcfg = "domain_cfg" ! domain configuration filename
!
ln_closea = .false. ! (=T => fill namclo)
! ! (=F) no control of net precip/evap over closed sea
!

ln_write_cfg = .false. ! (=T) create the domain configuration file
cn_domcfg_out = "domain_cfg_out" ! newly created domain configuration filename

/

namelist 3.1.: &namcfg

such choices leads to overly complex code. Worse still is the difficulty of ensuring the model configurations
intended to be identical are indeed so when the model domain itself can be altered by runtime selections. The
code previously used to perform vertical discretisation has therefore been incorporated into an external tool
(./tools/DOMAINcfg) which is briefly described in appendix F.

The following subsections cover several topics relating to the spatial domain configuration.

3.2.1. Horizontal grid mesh ( domhgr.F90 )
The values of the geographic longitude and latitude arrays at indices i, j correspond to the analytical expressions
of the longitude λ and latitude φ as a function of (i, j), evaluated at the values as specified in table 3.1 for
the respective grid-point position. The calculation of the values of the horizontal scale factor arrays in general
additionally involves partial derivatives of λ and φ with respect to i and j, evaluated for the same arguments as
λ and φ. Longitudes, latitudes, and horizontal scale factors at w-points are exactly equal to those at T -points,
thus no specific arrays are defined at w-points.

NEMO can support the local reduction of key strait widths by altering the values of horizontal scale factors at
the appropriate locations. This is particularly useful for locations such as Gibraltar or Indonesian Throughflow
pinch-points (see section 16.1 for illustrated examples). The key is to reduce the surface area of T -cells without
changing their volume, by altering the values of the horizontal scale factors at u- and v-points. Doing otherwise
can lead to numerical stability issues.
Normally, the surface areas are computed from the product of the horizontal scale factors (e1u ∗ e2u and

e1v ∗ e2v). In cases where these need to be reduced, the modified surface areas (variables e1e2u and e1e2v at u-
and v-points respectively) must either be read from the domain configuration file (see section 3.2) or calculated
as part of a user-defined configuration (module usrdef_hgr.F90 - see the user guide for more information).

Similar logic applies to the Coriolis parameter. This is normally calculated as 2 ∗ Ω ∗ sin(φ), but when the
horizontal grid mesh is not on a sphere it must instead be specified (through variables ff_f and ff_t at f - and
T -points respectively) using one of the above methods.

3.2.2. Vertical grid ( domzgr.F90 )
The NEMO vertical mesh is defined using vertical scale factors, depths, and water heights, with each of these
variables structured differently depending on the chosen coordinate system. It is important to distinguish
between the temporal structure (how the coordinate system changes over time) and the spatial structure (how
it varies across different locations) of this system.

A code substitution mechanism defined in domzgr_substitute.h90 is used to replace proxy arrays describing
the grid point depths (gdept, gdepw), water column heights (ht, hu, hv, hf) and vertical scale factors (e3t,
e3u, e3v, e3f, e3w, e3uw, e3vw) with appropriate expressions. These expressions always include a reference
array that defines the spatial structure of the vertical grid. In case of a non-linear free-surface, NEMO uses a
quasi-eulerian coordinate and these proxy arrays take into account a dependency with the sea surface height;
key_qco must be specified. In case of a linear free-surface approximation, vertical proxy arrays do not include
any sea surface height dependency; key_linssh must be specified.
This formulation for the vertical coordinate arrays uses less memory than in previous versions of NEMO .

It takes advantage of the use of specific keys (described in the following section) that selectively enable certain
processes and data structures, allowing for more efficient memory use without compromising model accuracy
where it is needed.
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Quasi-eulerian COordinate (QCO)

The quasi-eulerian coordinate (specified with key_qco ) is the new name for the star framework (z∗ or s∗). The
quasi-eulerian coordinate absorbs the divergence of horizontal barotropic velocities. Consequently, the vertical
velocity resulting from the barotropic mode is converted into a variation in thickness. The vertical coordinate
adapts to the time-varying free surface, making the transformation time-dependent, represented as z(i, j, k, t)
(e.g. figure 3.5f).
The vertical mesh variables (grid point depths, water heights and vertical scale factors) are substituted by

an expression (see figure 3.6), which in the case of the vertical scale factor at T -points (e3t) is:

e3t(i, j, k, t)← e3t_0(i, j, k) (1 + r3t(i, j, t)tmask(i, j, k))

Where r3t(i, j, t) = η(i,j,t)
ht_0(i,j) , the ratio of sea surface height to reference water column height, is updated at

every time step by domqco_r3c and where e3t_0, ht_0 and tmask are the T -point variants of the reference
vertical scale factor, the reference water column height, and the land-sea mask, respectively. Similar expressions
are applied to the scale factors at u/v/f -points using appropriate interpolation of η. In the expressions for the
scale factors at w-levels, grid point depths and water heights, the ratio is instead unmasked.
With the non-linear free-surface, all the coordinates behave more like the s-coordinate in that variations

occur throughout the water column with displacements related to the sea surface height. These variations are
typically much smaller than those arising from terrain-following coordinates. As such, the reference values of
the grid point depths, water heights and vertical scale factors can be considered as those arising from a flat sea
surface with zero elevation.

Linear free surface

In the case of the linear free-surface approximation ( key_linssh is specified), the free-surface variation is
neglected compared to ocean depths. Then, vertical coordinates are independent from the sea surface height
and they remain fixed over time. This setup does not treat the ocean surface as a rigid lid as it enables vertical
seawater movement across the top boundary. In this case, the vertical mesh variables are simply substituted
for their time-invariant reference counterparts, e.g.

e3t(i, j, k, t)← e3t_0(i, j, k)

The same substitution is applied to all other scale factors, grid point depths and water heights.

Vertical coordinate system

The model mesh is initially determined by four elements when setting up the configuration:

1. the bathymetry specified in meters

2. the number of levels of the model (jpk)

3. the analytical transformation z(i, j, k) and the reference vertical scale factors e03x(i, j, k) (derivatives of the
transformation)

4. the masking system, i.e. the specification of the wet model levels at each (i, j) location of the horizontal
grid

The definition of the reference vertical scale factors (e03x) is determined by the choice of vertical coordinate
system. The vertical scale factors (e03x) form the basis for deriving all vertical variables. This choice is fixed
for the duration of an experiment and cannot be modified midway. As with other components of the spatial
domain configuration (see section 3.2), it must be specified either in the domain configuration file or as part of
a user-defined configuration (module usrdef_zgr.F90 ). For further details, refer to the user guide.
In addition a set of optimization keys ( key_vco *) determine whether 1-dimensional or 3-dimensional defi-

nitions (as illustrated in figure 3.6) substitute for reference vertical variables, the intention being to minimise
memory use. In the case of key_vco_1d reference vertical variables are 1-dimensional vertical arrays, it can
only be used with a uniform grid . In the case of key_vco_1d3d reference vertical variables are 1-dimensional
vertical arrays, except for reference scale factors at T -levels, it cannot be used with non uniform grid. In the
case of key_vco_3d reference vertical variables are 3-dimensional arrays, it can be used sub-optimally in all
cases.
Three main choices are offered (figure 3.5a-c):
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Figure 3.5.: The ocean bottom as seen by the model: (a) z-coordinate with full step, (b) z-coordinate with partial step, (c) s-
coordinate: terrain following representation, (d) hybrid s− z coordinate, (e) hybrid s− z coordinate with partial step,
and (f) same as (e) but in the non-linear free surface ( key_qco ). Note that the non-linear free surface can be used
with any of the 5 coordinates (a) to (e).

spacial contribution ssh dependency contribution 

key_vco_1d key_vco_1d3d key_vco_3d key_qco key_linssh
e3t e3t_1d(k) e3t_3d(i,j,k) e3t_3d(i,j,k) ( 1 + r3t(i,j,t)*tmask(i,j,k) )

e3u e3t_1d(k) e3u_3d(i,j,k) e3u_3d(i,j,k) ( 1 + r3u(i,j,t)*umask(i,j,k) )

e3v e3t_1d(k) e3v_3d(i,j,k) e3v_3d(i,j,k) ( 1 + r3v(i,j,t)*vmask(i,j,k) )

e3f e3t_1d(k) e3f_3d(i,j,k) e3f_3d(i,j,k) (1 + r3f(i,j,t)*fe3mask(i,j,k))

e3w e3w_1d(k) e3w_1d(k) e3w_3d(i,j,k) ( 1 + r3t(i,j,t) )

e3uw e3w_1d(k) e3w_1d(k) e3uw_3d(i,j,k) ( 1 + r3u(i,j,t) )

e3vw e3w_1d(k) e3w_1d(k) e3vw_3d(i,j,k) ( 1 + r3v(i,j,t) )

gdept gdept_1d(k) gdept_1d(k) gdept_3d(i,j,k) ( 1 + r3t(i,j,t) )

gdepw gdepw_1d(k) gdepw_1d(k) gdepw_3d(i,j,k) ( 1 + r3t(i,j,t) )

ht SUM_k e3t_1d SUM_k e3t_3d SUM_k e3t_3d ( 1 + r3t(i,j,t) )

hu SUM_k e3t_1d SUM_k e3u_3d SUM_k e3u_3d ( 1 + r3u(i,j,t) )

hv SUM_k e3t_1d SUM_k e3v_3d SUM_k e3v_3d ( 1 + r3v(i,j,t) )

Figure 3.6.: Overview of the vertical arrays structure based on vertical space ( key_vco_1d , key_vco_1d3d or key_vco_3d ) and
time keys ( key_qco and key_linssh )

l_zco = .true. recommended with key_vco_1d
z-coordinate with full step bathymetry- e03x will be uniform across each horizontal level

l_zps = .true. recommended with key_vco_1d3d
z-coordinate with partial step bathymetry (zps-coordinate)- e03x at T -levels at the bottom wet level (and,
possibly, the top wet level if ice cavities are present) may vary from its horizontal neighbours

l_sco = .true. recommended with key_vco_3d
Generalized s-coordinate- variations in e03x can occur throughout the water column

Hybrid combinations of the three main coordinates are also available such as s − z or s − zps coordinates
(figure 3.5d and figure 3.5e).

Partial cells description l_zps = .true.

In zps-coordinates reference levels are based on the same spatially uniform levels as in z-coordinates. At the
bottom (and at the top) a partial cell volume varies in order to to take into account solid boundaries i.e. the
bathymetry (and the ice-shelf cavities) more accurately.
In NEMO v4.2 and previous versions, partial cells were vertically shrunk, causing the mass center and the

T -point location to shift, as illustrated in figure 3.7. All scale factors associated with these cells had to be
adjusted accordingly.
In NEMO v5.0, partial cells are modeled as porous, consisting of both solid and liquid fractions that are

distributed homogeneously within the cell. Cell properties now represent the average of the liquid fraction.
Unlike in the previous approach, the height of the T -points remains unchanged. This representation is described
in (Kevlahan et al., 2015), it is based on Brinkman penalization where a control parameter i.e. the porosity
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Figure 3.7.: Discretisation of the horizontal difference and average of tracers in the zps-coordinate. In NEMO v4.2 a linear interpo-
lation is used to to estimate T̃ , the tracer value at the depth of the shallower tracer point of the two adjacent bottom
T -points. While in NEMO v5.0 zps-coordinate takes advantage of partial cells, which are modeled as porous.

modifies fluxes though penalized lateral surfaces. This parameter is encapsulated within vertical scale factors
(e3t0, e3u0, e3v0) as illustrated in figure 3.7. In case of ocean cavities, partial cells are also applied at the top
interface using the same method as for the bottom interface but upside-down.

Level bathymetry and mask

The bottom_level and top_level variables define the bottom and top wet levels in each grid column. The
values of top_level depend on whether ice shelf cavities are used (subsection 8.1.6): without ice cavities,
top_level is essentially a land mask (0 on land; 1 everywhere else); with ice cavities, in locations below an
overlying ice shelf top_level determines the topmost wet point instead.
Based on variables top_level and bottom_level, the mask variables are defined as follows:

tmask(i, j, k) =


0 if k < top_level(i, j)
1 if bottom_level(i, j) ≤ k ≤ top_level(i, j)
0 if k > bottom_level(i, j)

umask(i, j, k) = tmask(i, j, k) ∗ tmask(i+ 1, j, k)

vmask(i, j, k) = tmask(i, j, k) ∗ tmask(i, j + 1, k)

fmask(i, j, k) = tmask(i, j, k) ∗ tmask(i+ 1, j, k) ∗ tmask(i, j, k) ∗ tmask(i+ 1, j, k)

wmask(i, j, k) = tmask(i, j, k) ∗ tmask(i, j, k − 1)

with wmask(i, j, 1) = tmask(i, j, 1)

wumask(i, j, k) = umask(i, j, k) ∗ umask(i, j, k − 1)

with wumask(i, j, 1) = umask(i, j, 1)

wvmask(i, j, k) = vmask(i, j, k) ∗ vmask(i, j, k − 1)

with wvmask(i, j, 1) = vmask(i, j, 1)

Note that, without ice shelves cavities, masks at T - and w-points are identical with the numerical indexing
used (see subsection 3.1.3). Nevertheless, with ocean cavities, wmask are required to deal with the top boundary
(ice shelf/ocean interface) in exactly the same way as for the bottom boundary.

3.2.3. Closed seas
When a global ocean is coupled to an atmospheric model it is better to represent all large water bodies (e.g.
Great Lakes, Caspian sea, …) even if the model resolution does not allow their communication with the rest of
the ocean. This is unnecessary when the ocean is forced by fixed atmospheric conditions, so these seas can be
removed from the ocean domain.
The available options to handle closed seas are explained in section 16.2, but it should be noted here that

their use requires the appropriate mask fields to be present in the domain configuration file (see section 3.2).
Note that, the user has the option to set the bathymetry in closed seas to zero (see section 16.2) and to

optionally decide on the fate of any freshwater imbalance over the area.
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!-----------------------------------------------------------------------
&namdom ! time and space domain
!-----------------------------------------------------------------------

rn_Dt = 5400. ! time step for the dynamics and tracer
rn_atfp = 0.1 ! asselin time filter parameter
!
ln_c1d = .false. ! Single column domain (1x1pt) (T => fill namc1d)
!
ln_meshmask = .true. ! =T create a mesh file
!
ln_shuman = .false. ! =T shuman averaging active (RK3 only)

/

namelist 3.2.: &namdom

3.2.4. Output grid files
The model variables describing the spatial domain configuration (latitude/longitude, scale factors, etc) can

be written to a NetCDF file by using one of the following namelist parameters:

ln_write_cfg=.true. - namelist &namcfg (namelist 17.1)
Produces a file whose name is set by the cn_domcfg_out namelist parameter

ln_meshmask=.true. - namelist &namdom (namelist 3.2)
Produces a file named mesh_mask

Similar files are produced by both methods, but the mesh_mask file will contain additional variables describing
the land-sea mask and depth coordinate that may be useful for post-processing applications. Both files also
contain a number of the same variables found in files generated by the DOMAINcfg tool (see appendix F).
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Chap. 4 Sea surface height and 2D external mode (D2D)

!-----------------------------------------------------------------------
&namdyn_spg ! surface pressure gradient (default: NO selection)
!-----------------------------------------------------------------------

ln_dynspg_exp = .false. ! explicit free surface
ln_dynspg_ts = .false. ! split-explicit free surface

ln_bt_fw = .true. ! Forward integration of barotropic Eqs.
nn_bt_flt = 1 ! Add dissipation with either boxcar averaging or dissipative Forward-Backward
! ! = 0 None
! ! = 1 Boxcar over nn_e sub-steps
! ! = 2 Boxcar over 2*nn_e " "
! ! = 3 Temporal dissipation (Demange 2019)
rn_bt_alpha = 0. ! (if nn_bt_flt=3) ==> Temporal diffusion parameter (recommended values = 0.07-0.09)
!
ln_bt_auto = .true. ! Number of sub-step defined from:

rn_bt_cmax = 0.8 ! =T : the Maximum Courant Number allowed
nn_e = 30 ! =F : the number of sub-step in rn_Dt seconds

/

namelist 4.1.: &namdyn_spg

In the present chapter we describe the equations used to compute the the sea surface height. Recall from
subsection 1.2.2 that allowing a free surface permits the existence of External Gravity Waves (EGWs). Resolving
these fast moving waves explicitly imposes a severe limit on the model timestep to avoid breaching the CFL
condition. Alternatively, EGWs can be filtered by discretisation of the temporal derivatives using a split-explicit
scheme. This chapter describes these options controlled via the &namdyn_spg (namelist 4.1) namelist.

4.1. Sea surface height ( sshwzv.F90 / stp2d.F90 )
The sea surface height is given by the vertical average of the kinematic surface condition (subsection 1.2.2):

∂η

∂t
≡ 1

e1te2t

∑
k

{δi [e2u e3u u] + δj [e1v e3v v]} −
emp
ρw

≡
∑
k

χ e3t −
emp
ρw

(4.1)

where emp is the surface freshwater budget (i.e. evaporation minus precipitation + optional contributions
(see subsection 4.1.4)), expressed in Kg/m2/s (which is equal to mm/s), and ρw=1,026 Kg/m3 is the reference
density of sea water (Boussinesq approximation). The sea-surface height is evaluated using exactly the same time
stepping scheme as the tracer equation 6.21. E.g., in the case of MLF this is a leapfrog scheme in combination
with an Asselin time filter, i.e. the velocity appearing in equation 4.1 is centred in time (now velocity). This
is of paramount importance. Replacing T by the number 1 in the tracer equation and summing over the water
column must lead to the sea surface height equation otherwise tracer content will not be conserved (Griffies
et al., 2001; Leclair and Madec, 2009).

4.1.1. Explicit free surface ( ln_dynspg_exp )
With MLF time-stepping there is an explicit free surface formulation ( ln_dynspg_exp=.true. ), for which the
model time step must be chosen to be small enough to resolve the external gravity waves (typically a few tens
of seconds). The sea surface height is evaluated from equation 4.1 using a leap-frog scheme (i.e. centered in
time) with ssh at the now timestep coming from the previous time step computation.
Note that this option is not yet available with RK3 time-stepping but, if implemented, ssh would be computed

at each stage from equation 4.1 using values at n, n+ 1
3 and n+ 1

2 respectively.

4.1.2. Split-explicit free surface ( ln_dynspg_ts )
The split-explicit free surface formulation used in NEMO ( ln_dynspg_ts=.true. ), also called the time-
splitting formulation, follows the one proposed by Shchepetkin and McWilliams (2005). The general idea is to
solve the free surface equation and the associated barotropic velocity equations with a smaller time step than
∆t, the time step used for the three dimensional prognostic variables (figure 4.1). The size of the small time
step, ∆te (the external mode or barotropic time step) is provided through the nn_e namelist parameter as:
∆te = ∆t/nn_e. This parameter can be optionally defined automatically ( ln_bt_auto=.true. ) considering
that the stability of the barotropic system is essentially controled by external waves propagation. Maximum
Courant number is in that case time independent, and easily computed online from the input bathymetry.
Therefore, ∆te is adjusted so that the Maximum allowed Courant number is smaller than rn_bt_cmax .
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The barotropic mode solves the following equations:

∂Uh

∂t
= −f k×Uh − g∇hη −

cU
b

H + η
Uh + G (4.2)

∂η

∂t
= −∇ · [(H + η) Uh ] + P − E

where G is a forcing term held constant, containing coupling term between modes, surface atmospheric forcing
as well as slowly varying barotropic terms not explicitly computed to gain efficiency. The third term on the
right hand side of equation 4.2 represents the bottom stress (see section 11.4), explicitly accounted for at each
barotropic iteration.
For ’single 1st’, RK3 time-stepping, barotropic velocities and sea surface height are calculated for the after

timestep from the before values prior to the first stage of the main RK3 timestepping. This occurs in the new
module stp2d.F90 which computes the RHS forcing terms from before fields and then calls the dyn_spg_ts
routine to perform the time-stepping as detailed below. In the MLF time-stepping case, RHS forcing terms are
computed inside dyn_spg_ts itself.

For clarity, in RK3 the RHS forcing terms on momentum are vertically averaged 3D trends of:

HPG+ LDF+ (COR + RVO)+KEG+ ZAD

for the Vector invariant form (for which the 3D fields are also the RHS terms for the 1st stage RK3 time
stepping) and:

HPG+ LDF+ (COR + MET)+ADV

for the flux form. In the latter case ADV must be recomputed at the 1st stage. The new terms in these
summaries are: RVO - Relative Vorticity and MET - Metric term. External forcing is also applied in the form
of baroclinic bottom drag and surface winds. Other external forcings may be optionally applied as detailed in
subsection 4.1.4.

For ssh, the external forcing is the net column-average freshwater flux. This is evaporation minus prepcitation
plus optional contributions from other sources as listed in subsection 4.1.4.

4.1.3. Split-explicit time-stepping ( dynspg_ts.F90 )
Temporal discretization of the system above follows a three-time step Generalized Forward Backward algorithm
detailed in Shchepetkin and McWilliams (2005). AB3-AM4 coefficients used in NEMO follow the second-order
accurate, ”multi-purpose” stability compromise as defined in Shchepetkin and McWilliams (2009) (see their
figure 12, lower left).
In the default case ( nn_bt_flt=1 ), the external mode is integrated between now and after baroclinic time-

steps (figure 4.1a). To avoid aliasing of fast barotropic motions into three dimensional equations, time filtering
is eventually applied on barotropic quantities. In that case, the integration is extended slightly beyond after
time step to provide time filtered quantities. These are used for the subsequent initialization of the barotropic
mode in the following baroclinic step. Since external mode equations written at baroclinic time steps finally
follow a forward time stepping scheme, asselin filtering is not applied to barotropic quantities.
Alternatively, one can choose to integrate barotropic equations starting from before time step ( nn_bt_flt=2 ).
Although more computationaly expensive ( nn_e additional iterations are indeed necessary), the baroclinic to
barotropic forcing term given at now time step become centred in the middle of the integration window. It can
easily be shown that this property removes part of splitting errors between modes, which increases the overall
numerical robustness. Patrick Marsaleix’ work here. Also work done by SHOM group.
As far as tracer conservation is concerned, barotropic velocities used to advect tracers must also be updated

at now time step. This implies to change the traditional order of computations in NEMO: most of momentum
trends (including the barotropic mode calculation) updated first, tracers’ after. Advective barotropic velocities
are obtained by using a secondary set of filtering weights, uniquely defined from the filter coefficients used for
the time averaging (Shchepetkin and McWilliams (2005)). Consistency between the time averaged continuity
equation and the time stepping of tracers is here the key to obtain exact conservation.
One can eventually choose to feedback instantaneous values by not using any time filter ( nn_bt_flt=3 ). In

that case, external mode equations are continuous in time, i.e. they are not re-initialized when starting a new
sub-stepping sequence. This is the method used in the POM model for example, the stability being maintained
by refreshing at (almost) each barotropic time step advection and horizontal diffusion terms. Since the latter
terms have not been added in NEMO for computational efficiency, removing time filtering would be inevitably
unstable. One can however add some dissipation, but in the time domain, by slightly modifying the barotropic
time stepping coefficients (Demange et al. (2019)). This is implemented here through an additional parameter
( rn_bt_alpha ), which controls the amount of temporal diffusion.
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Figure 4.1.: Schematic of the split-explicit time stepping scheme for the external and internal modes with MLF. Time increases to
the right. In this particular exemple, a boxcar averaging window over nn_e barotropic time steps is used ( nn_bt_flt=1
) and nn_e=5 . Internal mode time steps (which are also the model time steps) are denoted by t − ∆t, t and t + ∆t.
Variables with k superscript refer to instantaneous barotropic variables, <> and <<>> operator refer to time filtered
variables using respectively primary (red vertical bars) and secondary weights (blue vertical bars). The former are
used to obtain time filtered quantities at t+∆t while the latter are used to obtain time averaged transports to advect
tracers. a) Forward time integration: nn_bt_flt=1 . b) Centred time integration: nn_bt_flt=2 . c) Forward time
integration with no time filtering (POM-like scheme): nn_bt_flt=3 .

4.1.4. External forcings
The net column-average freshwater flux applied to the ssh equation can also be modified by the following options:
(1) When ln_rnf=.true. (see section 7.9), river runoff is taken into account when computing the net

freshwater flux.
(2) When ln_isf=.true. (see section 8.1), explicit or parameterised contributions from ice-shelf cavities

are taken into account when computing the net freshwater flux. Furthermore, if ln_isfcpl_cons=.true. ,
the corrective increment flux applied to ensure the mass conservation when NEMO is coupled to an ice sheet
model is also taken into account (see subsection 8.1.4 for details).
(3) When ln_sdw=.true. (see subsection 7.10.3), the contribution from divergence due to Stoke’s drift is
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taken into account when computing the net freshwater flux.
(4) When lk_asminc .AND. ln_sshinc .AND. ln_asmiau=.true. (see section 14.2), the contribution from

IAU weighted ssh increments is taken into account when computing the net freshwater flux.

Besides the surface and bottom baroclinic stresses four other forcings may enter the barotropic momentum
equations.
(1) When ln_apr_dyn=.true. (see section 7.7), the atmospheric pressure is taken into account when

computing the surface pressure gradient.
(2) When ln_tide_pot=.true. and ln_tide=.true. (see section 7.8), the tidal potential is taken into

account when computing the surface pressure gradient.
(3) When nn_ice_embd=2 and SI3 is used (i.e. when the sea-ice is embedded in the ocean), the snow-ice

mass is taken into account when computing the surface pressure gradient.
(4) When ln_wave .AND. ln_bern_srfc=.true. (see subsection 7.10.6) , a depth-uniform wave-induced

kinematic pressure term (the Bernoulli head) is added to the mean pressure.
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Sect. 5.1 Continuity equation (sshwzv.F90, w )

Using the representation described in chapter 3, several semi-discrete space forms of the dynamical equations
are available depending on the vertical coordinate used and on the conservation properties of the vorticity term.
In all the equations presented here, the masking has been omitted for simplicity. One must be aware that all
the quantities are masked fields and that each time an average or difference operator is used, the resulting field
is multiplied by a mask.
The prognostic ocean dynamics equation can be summarized as follows:

NXT =

(
VOR+KEG+ ZAD

COR+ADV

)
+HPG+ SPG+ LDF+ ZDF

NXT stands for next, referring to the time-stepping. The first group of terms on the rhs of this equation
corresponds to the Coriolis and advection terms that are decomposed into either a vorticity part (VOR), a
kinetic energy part (KEG) and a vertical advection part (ZAD) in the vector invariant formulation, or a Coriolis
and advection part (COR+ADV) in the flux formulation. The terms following these are the pressure gradient
contributions (HPG, Hydrostatic Pressure Gradient, and SPG, Surface Pressure Gradient); and contributions
from lateral diffusion (LDF) and vertical diffusion (ZDF), which are added to the rhs in the dynldf.F90 and
dynzdf.F90 modules. The vertical diffusion term includes the surface and bottom stresses. The external forcings
and parameterisations require complex inputs (surface wind stress calculation using bulk formulae, estimation
of mixing coefficients) that are carried out in modules SBC, LDF and ZDF and are described in chapter 7,
chapter 10 and chapter 11, respectively.
In the present chapter we also describe the diagnostic equations used to compute the horizontal divergence

of the velocities (divhor module) and the vertical velocity (sshwzv module).
The different options available to the user are managed by namelist variables. For term ttt in the momentum

equations, the logical namelist variables are ln_dynttt_xxx, where xxx is a 3 or 4 letter acronym corresponding
to each optional scheme. The corresponding code can be found in the dynttt_xxx module in the DYN directory,
and it is usually computed in the dyn_ttt_xxx subroutine.
The user has the option of extracting and outputting each tendency term from the 3D momentum equations

(trddyn? defined), as described in chapter 16. Furthermore, the tendency terms associated with the 2D
barotropic vorticity balance (when trdvor? is defined) can be derived from the 3D terms.

5.1. Continuity equation ( sshwzv.F90 )
The evolution of sea surface height (η) and vertical velocity (w) in ocean modeling is fundamentally governed by
the continuity equation, which ensures the conservation of volume. Through this equation, we derive expressions
for η and w that are essential for maintaining the balance between horizontal and vertical transport in the ocean’s
volume-conserving framework. Both are deduced from the horizontal divergence χ and require the horizontal
divergence calculation. Because η evolution is related to the external mode it is described in chapter 4 while w
evolution is described here after.

5.1.1. Horizontal divergence ( divhor.F90 )

The horizontal divergence is defined at a T -point. It is given by:

χ =
1

e1t e2t e3t
(δi [e2u e3u u] + δj [e1v e3v v])

Besides the velocity three other sources may be added to the horizontal divergence :
(1) When ln_rnf=.true. (see section 7.9), the divergence caused by river runoff is included.
(2) When ln_isf=.true. (see ??), explicit or parameterised contributions from ice-shelf cavities are taken

into account.
(3) When lk_asminc .AND. ln_sshinc .AND. ln_asmiau=.true. (see section 14.2), the contribution from

IAU weighted ssh increments is included.

In a leapfrog time-stepping scheme, the divergence at now time step is used to calculate both nonlinear advection
and vertical velocity. In an RK3 time-stepping scheme, the divergence at before time step is applied during the
first stage, while the now time step divergence is used for calculating nonlinear advection and vertical velocity
in the following stages.
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!-----------------------------------------------------------------------
&namdyn_adv ! formulation of the momentum advection (default: NO selection)
!-----------------------------------------------------------------------

ln_dynadv_OFF = .false. ! linear dynamics (no momentum advection)
ln_dynadv_vec = .false. ! vector form - 2nd centered scheme
nn_dynkeg = 0 ! grad(KE) scheme: =0 C2 ; =1 Hollingsworth correction

ln_dynadv_cen2 = .false. ! flux form - 2nd order centered scheme
ln_dynadv_up3 = .false. ! flux form - 3rd order UBS scheme

/

namelist 5.1.: &namdyn_adv

5.1.2. Vertical velocity ( sshwzv.F90 )
The vertical velocity is computed by an upward integration of the horizontal divergence starting at the bottom,
taking into account the change of the thickness of the levels:

w|kb−1/2 = 0 where kb is the level just above the sea floor

w|k+1/2 = w|k−1/2 + e3t|k χ|k −
1

2∆t

(
et+1
3t

∣∣
k
− et−1

3t

∣∣
k

) (5.1)

In the case of a linear free surface( key_linssh ), the time derivative in equation 5.1 disappears. The upper
boundary condition applies at a fixed level z = 0. The top vertical velocity is thus equal to the divergence of
the barotropic transport (i.e. the first term in the right-hand-side of ??).

Note also that whereas the vertical velocity has the same discrete expression in z- and s-coordinates, its
physical meaning is not the same: in the second case, w is the velocity normal to the s-surfaces. Note also that
the k-axis is re-orientated downwards in the Fortran code compared to the indexing used in the semi-discrete
equations such as equation 5.1 (see subsubsection 3.1.3).
When ln_zad_Aimp=.true. , a proportion of the vertical advection can be treated implicitly (see section 5.7)

depending on the Courant number. This option can be useful when the value of the timestep is limited by vertical
advection (Lemarié et al., 2015).

5.2. Coriolis and advection: vector invariant form
The vector invariant form of the momentum equation is most commonly used in coarse-resolution (1o) appli-

cations of the NEMO ocean model. For higher resolutions it requires the activation of Hollingsworth correction
( nn_dynkeg=1 ) following Arakawa (2001) The flux form option (see next section) has been present since ver-
sion 2. By structuring the equations in vector invariant form, the dynamics are expressed in terms of intrinsic
geometric properties like gradients, curls, and divergences. This ensures that the physics remain consistent and
interpretable regardless of the underlying curvilinear grid or coordinate system. It highlights key physical terms
like the kinetic energy advection and the relative vorticity.

Options are defined through the &namdyn_adv (namelist 5.1) namelist variables Coriolis and momentum
advection terms are evaluated either using a leapfrog scheme or a RK3 scheme. In the leapfrog case the velocity
appearing in these expressions is centred in time (now velocity). In the RK3 case the velocity appearing in these
expressions is forward in time (before velocity) at stage 1, it is is centred in time (now velocity) at stage 2 and
3. At the lateral boundaries either free slip, no slip or partial slip boundary conditions are applied following
chapter 9.

5.2.1. Vorticity term ( dynvor.F90 )
Options are defined through the &namdyn_vor (namelist 5.2) namelist variables. Four discretisations of

the vorticity term (ln_dynvor_xxx=.true.) are available: conserving potential enstrophy of horizontally non-
divergent flow (ENS scheme); conserving horizontal kinetic energy (ENE scheme); conserving potential enstro-
phy for the relative vorticity term and horizontal kinetic energy for the planetary vorticity term (MIX scheme);
or conserving both the potential enstrophy of horizontally non-divergent flow and horizontal kinetic energy
(EEN scheme) (see subsubsection C.5). In the case of ENS, ENE or MIX schemes the land sea mask may be
slightly modified to ensure the consistency of vorticity term with analytical equations ( ln_dynvor_msk=.true.
). The vorticity terms are all computed in dedicated routines that can be found in the dynvor.F90 module.
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!-----------------------------------------------------------------------
&namdyn_vor ! Vorticity / Coriolis scheme (default: NO selection)
!-----------------------------------------------------------------------

ln_dynvor_ene = .false. ! energy conserving scheme
ln_dynvor_ens = .false. ! enstrophy conserving scheme
ln_dynvor_mix = .false. ! mixed scheme
ln_dynvor_enT = .false. ! energy conserving scheme (T-point)
ln_dynvor_een = .false. ! energy & enstrophy scheme
!
ln_dynvor_msk = .false. ! vorticity multiplied by fmask (=T) ==>>> PLEASE DO NOT ACTIVATE
! ! (f-point vorticity schemes only)
!
nn_e3f_typ = 0 ! type of e3f (EEN, ENE, ENS, MIX only) =0 e3f = mi(mj(e3t))/4
! ! =1 e3f = mi(mj(e3t))/mi(mj( tmask))

/

namelist 5.2.: &namdyn_vor

Enstrophy conserving scheme ( ln_dynvor_ens )

In the enstrophy conserving case (ENS scheme), the discrete formulation of the vorticity term provides a global
conservation of the enstrophy ([(ζ + f)/e3f ]

2 in s-coordinates) for a horizontally non-divergent flow (i.e. χ=0),
but does not conserve the total kinetic energy. It is given by:

+
1

e1u

(
ζ + f

e3f

) i

(e1v e3v v)
i,j+1/2

− 1

e2v

(
ζ + f

e3f

) j

(e2u e3u u)
i+1/2,j

(5.2)

Energy conserving scheme ( ln_dynvor_ene )

The kinetic energy conserving scheme (ENE scheme) conserves the global kinetic energy but not the global
enstrophy. It is given by: 

+
1

e1u

(
ζ + f

e3f

)
(e1v e3v v)

i+1/2
j

− 1

e2v

(
ζ + f

e3f

)
(e2u e3u u)

j+1/2
i

(5.3)

Mixed energy/enstrophy conserving scheme ( ln_dynvor_mix )

For the mixed energy/enstrophy conserving scheme (MIX scheme), a mixture of the two previous schemes is
used. It consists of the ENS scheme (equation 5.2) for the relative vorticity term, and of the ENE scheme
(equation 5.3) applied to the planetary vorticity term.

+
1

e1u

(
ζ

e3f

) i

(e1v e3v v)
i,j+1/2

− 1

e1u

(
f

e3f

)
(e1v e3v v)

i+1/2
j

− 1

e2v

(
ζ

e3f

)j
(e2u e3u u)

i+1/2,j

+
1

e2v

(
f

e3f

)
(e2u e3u u)

j+1/2
i

Energy and enstrophy conserving scheme ( ln_dynvor_een )

In both the ENS and ENE schemes, it is apparent that the combination of i and j averages of the velocity allows
for the presence of grid point oscillation structures that will be invisible to the operator. These structures are
computational modes that will be at least partly damped by the momentum diffusion operator (i.e. the subgrid-
scale advection), but not by the resolved advection term. The ENS and ENE schemes therefore do not contribute
to dump any grid point noise in the horizontal velocity field. Such noise would result in more noise in the vertical
velocity field, an undesirable feature. This is a well-known characteristic of C-grid discretization where u and
v are located at different grid points, a price worth paying to avoid a double averaging in the pressure gradient
term as in the B-grid.

A very nice solution to the problem of double averaging was proposed by Arakawa and Hsu (1990). The idea
is to get rid of the double averaging by considering triad combinations of vorticity. It is noteworthy that this
solution is conceptually quite similar to the one proposed by (Griffies et al., 1998) for the discretization of the
iso-neutral diffusion operator (see appendix C).
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The Arakawa and Hsu (1990) vorticity advection scheme for a single layer is modified for spherical coordinates
as described by Arakawa and Lamb (1981) to obtain the EEN scheme. First consider the discrete expression of
the potential vorticity, q, defined at an f -point:

q =
ζ + f

e3f

where the relative vorticity is defined by (??), the Coriolis parameter is given by f = 2Ω sinφf and the layer
thickness at f -points is:

e3f = e3t
i+1/2,j+1/2 (5.4)

Figure 5.1.: Triads used in the energy and enstrophy conserving scheme (EEN) for u-component (upper panel) and v-component
(lower panel).

A key point in equation 5.4 is how the averaging in the i- and j- directions is made. It uses the sum of masked
t-point vertical scale factor divided either by the sum of the four t-point masks ( nn_een_e3f=1 ), or just by 4 (
nn_een_e3f=0 ). The latter case preserves the continuity of e3f when one or more of the neighbouring e3t tends
to zero and extends by continuity the value of e3f into the land areas. This case introduces a sub-grid-scale
topography at f-points (with a systematic reduction of e3f when a model level intercept the bathymetry) that
tends to reinforce the topostrophy of the flow (i.e. the tendency of the flow to follow the isobaths) (Penduff
et al., 2007).
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Next, the vorticity triads, i
jQ

ip
jp

can be defined at a T -point as the following triad combinations of the
neighbouring potential vorticities defined at f-points (figure 5.1):

j
iQ

ip
jp

=
1

12

(
q
i−ip
j+jp

+ q
i+jp
j+ip

+ q
i+ip
j−jp

)
(5.5)

where the indices ip and kp take the values: ip = −1/2 or 1/2 and jp = −1/2 or 1/2.
Finally, the vorticity terms are represented as:

+q e3 v ≡ +
1

e1u

∑
ip, kp

i+1/2−ip
j Qipjp (e1v e3v v)

i+1/2−ip
j+jp

−q e3 u ≡ −
1

e2v

∑
ip, kp

i
j+1/2−jpQ

ip
jp
(e2u e3u u)

i+ip
j+1/2−jp

(5.6)

This EEN scheme in fact combines the conservation properties of the ENS and ENE schemes. It conserves
both total energy and potential enstrophy in the limit of horizontally nondivergent flow (i.e. χ=0) (see subsub-
section C.5). Applied to a realistic ocean configuration, it has been shown that it leads to a significant reduction
of the noise in the vertical velocity field (Le Sommer et al., 2009). Furthermore, used in combination with a
partial steps representation of bottom topography, it improves the interaction between current and topography,
leading to a larger topostrophy of the flow (Barnier et al., 2006; Penduff et al., 2007).

5.2.2. Kinetic energy gradient term ( dynkeg.F90 )
As demonstrated in appendix C, there is a single discrete formulation of the kinetic energy gradient term that,
together with the formulation chosen for the vertical advection (see below), conserves the total kinetic energy:

− 1

2 e1u
δi+1/2

[
u2

i
+ v2

j
]

− 1

2 e2v
δj+1/2

[
u2

i
+ v2

j
]

5.2.3. Vertical advection term ( dynzad.F90 )
The discrete formulation of the vertical advection, t ogether with the formulation chosen for the gradient of
kinetic energy (KE) term, conserves the total kinetic energy. Indeed, the change of KE due to the vertical
advection is exactly balanced by the change of KE due to the gradient of KE (see appendix C).

− 1

e1u e2u e3u
e1t e2t w

i+1/2 δk+1/2 [u]
k

− 1

e1v e2v e3v
e1t e2t w

j+1/2 δk+1/2 [u]
k

5.3. Coriolis and advection: flux form
Options are defined through the &namdyn_adv (namelist 5.1) namelist variables. In the flux form (as in
the vector invariant form), the Coriolis and momentum advection terms are evaluated using either a leapfrog
scheme or a RK3 scheme. In the leapfrog case the velocity appearing in these expressions is centred in time
(now velocity). In the RK3 case the velocity appearing in these expressions is forward in time (before velocity)
at stage 1, it is is centred in time (now velocity) at stage 2 and 3. At the lateral boundaries either free slip, no
slip or partial slip boundary conditions are applied following chapter 9.

5.3.1. Coriolis plus curvature metric terms ( dynvor.F90 )
In flux form, the vorticity term reduces to a Coriolis term in which the Coriolis parameter has been modified
to account for the ”metric” term. This altered Coriolis parameter is thus discretised at f -points. It is given by:

f +
1

e1e2

(
v
∂e2
∂i
− u∂e1

∂j

)
≡ f +

1

e1fe2f

(
vi+1/2δi+1/2 [e2u]− uj+1/2δj+1/2 [e1u]

)
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Energy conserving scheme ( ln_dynvor_enT )

The kinetic energy conserving scheme at T-point (ENT scheme) conserves the global kinetic energy but not the
global enstrophy. In this case the altered Coriolis parameter is discretised at t-points. ENT scheme is given by:

+
1

e1u e2u e3u
(fT ) e1t e2t e3t v

j
i+1/2

− 1

e1v e2v e3v
(fT ) e1t e2t e3t u

i
j+1/2

(5.7)

Any of the (equation 5.2), (equation 5.3), (equation 5.7) and (equation 5.6) schemes can be used to compute
the product of the Coriolis parameter and the vorticity. However, the energy-conserving schemes (equation 5.6
and equation 5.7) have exclusively been used to date.

This term is evaluated using either a leapfrog scheme or a RK3 scheme. In the leapfrog case it is centred in
time (now velocity). In the RK3 case it is forward in time (before velocity) at stage 1, it is is centred in time
(now velocity) at stage 2 and 3.

5.3.2. Flux form advection term ( dynadv.F90 )
The discrete expression of the advection term is given by:

1

e1u e2u e3u

(
δi+1/2

[
e2u e3u u

i ut
]
+δj

[
e1u e3u v

i+1/2 uf

]
+ δk

[
e1w e2w w

i+1/2 uuw

])
1

e1v e2v e3v

(
δi

[
e2u e3u u

j+1/2 vf

]
+δj+1/2

[
e1u e3u v

i vt
]

+ δk

[
e1w e2w w

j+1/2 vvw

])
(5.8)

Two advection schemes are available: a 2nd order centered finite difference scheme, CEN2, or a 3rd order
upstream biased scheme, UP3. The latter is described in Shchepetkin and McWilliams (2005). The schemes are
selected using the namelist logicals ln_dynadv_cen2 and ln_dynadv_up3 . In flux form, the schemes differ
by the choice of a space and time interpolation to define the value of u and v at the centre of each face of u-
and v-cells, i.e. at the T -, f -, and uw-points for u and at the f -, T - and vw-points for v.

CEN2: 2nd order centred scheme ( ln_dynadv_cen2 )

In the centered 2nd order formulation, the velocity is evaluated as the mean of the two neighbouring points:{
ucen2T = ui ucen2F = uj+1/2 ucen2uw = uk+1/2

vcen2F = vi+1/2 vcen2F = vj vcen2vw = vk+1/2
(5.9)

The scheme is non diffusive (i.e. conserves the kinetic energy) but dispersive (i.e. it may create false extrema).
It is therefore notoriously noisy and must be used in conjunction with an explicit diffusion operator to produce
a sensible solution.

UP3: Upstream Biased Scheme ( ln_dynadv_up3 )

The UP3 advection scheme is an upstream biased third order scheme based on an upstream-biased parabolic
interpolation. For example, the evaluation of uup3T is done as follows:

uup3T = ui − 1

6

{
u”i−1/2 if e2u e3u u

i ⩾ 0

u”i+1/2 if e2u e3u u
i < 0

(5.10)

where u”i+1/2 = δi+1/2 [δi [u]]. This results in a dissipatively dominant (i.e. hyper-diffusive) truncation error
(Shchepetkin and McWilliams, 2005). The overall performance of the advection scheme is similar to that
reported in Farrow and Stevens (1995). It is a relatively good compromise between accuracy and smoothness.
It is not a positive scheme, meaning that false extrema are permitted. But the amplitudes of the false extrema are
significantly reduced over those in the centred second order method. As the scheme already includes a diffusion
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!-----------------------------------------------------------------------
&namdyn_hpg ! Hydrostatic pressure gradient option (default: NO selection)
!-----------------------------------------------------------------------

ln_hpg_zco = .false. ! z-coordinate - full steps
ln_hpg_sco = .false. ! s-coordinate (standard jacobian formulation)
ln_hpg_isf = .false. ! s-coordinate (sco ) adapted to isf
ln_hpg_djc = .false. ! s-coordinate (Density Jacobian with Cubic polynomial)

ln_hpg_djc_vnh = .true. ! hor. bc type for djc scheme (T=von Neumann, F=linear extrapolation)
ln_hpg_djc_vnv = .true. ! vert. bc type for djc scheme (T=von Neumann, F=linear extrapolation)

ln_hpg_prj = .false. ! s-coordinate (Pressure Jacobian scheme)
/

namelist 5.3.: &namdyn_hpg

component, it can be used without explicit lateral diffusion on momentum (i.e. ln_dynldf_OFF=.true. ), and
it is recommended to do so.
The UP3 scheme is used in all directions. UP3 is diffusive and is associated with vertical mixing of momen-

tum.
In a leapfrog environment, for stability reasons, the first term in (equation 5.10), which corresponds to a

second order centred scheme, is evaluated using the now velocity (centred in time), while the second term,
which is the diffusion part of the scheme, is evaluated using the before velocity (forward in time). In an RK3
environment, the first term in (equation 5.10), which corresponds to a second order centred scheme, is evaluated
using the before velocity at stage 1 and using the before velocity (centred in time) at stage 2 and 3, while the
second term, which is the diffusion part of the scheme, is evaluated using the before velocity (forward in time).
This is discussed by Webb et al. (1998) in the context of the Quick advection scheme.

Note that the UP3 and QUICK (Quadratic Upstream Interpolation for Convective Kinematics) schemes only
differ by one coefficient. Replacing 1/6 by 1/8 in (equation 5.10) leads to the QUICK advection scheme (Webb
et al., 1998). This option is not available through a namelist parameter, since the 1/6 coefficient is hard coded.
Nevertheless it is quite easy to make the substitution in the dynadv_up3.F90 module and obtain a QUICK
scheme.

5.4. Hydrostatic pressure gradient ( dynhpg.F90 )
NEMO offers a selection of different algorithms to compute the hydrostatic pressure gradient (HPG) term in

the momentum equation. Options are defined through the &namdyn_hpg (namelist 5.3) namelist variables.
Since HPGs are computed along geopotential surfaces, a key distinction between the various algorithms is

the type of vertical coordinate they target. In particular, NEMO offers a number of options to compute HPGs
with generalised s-coordinates that may be not aligned with geopotentials.

The hydrostatic pressure gradient term is evaluated either using a leapfrog scheme, i.e. the density appearing
in its expression is centred in time (now ρ), or a RK3 scheme i.e. the density appearing in its expression is
forward in time (before ρ), it is centred in time (now ρ) at stage 2 and 3. At the lateral boundaries either free
slip, no slip or partial slip boundary conditions are applied.

5.4.1. Full step Z-coordinate ( ln_dynhpg_zco )
When using standard geopotential coordinates ( ln_zco=.true. ), the hydrostatic pressure can be directly
obtained by vertically integrating the hydrostatic equation from the surface to the bottom. However, pressure
is large at great depths while its horizontal gradient is several orders of magnitude smaller. This may lead to
large truncation errors in the pressure gradient terms. Thus, the two horizontal components of the hydrostatic
pressure gradient are computed directly as follows:
for k = km (surface layer, jk = 1 in the code)

δi+1/2

[
ph
]∣∣
k=km

=
1

2
g δi+1/2 [e3w ρ]

∣∣
k=km

δj+1/2

[
ph
]∣∣
k=km

=
1

2
g δj+1/2 [e3w ρ]

∣∣
k=km

(5.11)

for 1 < k < km (interior layer)
δi+1/2

[
ph
]∣∣
k
= δi+1/2

[
ph
]∣∣
k−1

+ g δi+1/2

[
e3w ρk+1/2

]∣∣∣
k

δj+1/2

[
ph
]∣∣
k
= δj+1/2

[
ph
]∣∣
k−1

+ g δj+1/2

[
e3w ρk+1/2

]∣∣∣
k

(5.12)
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Note that the 1/2 factor in (equation 5.11) is adequate because of the definition of e3w as the vertical derivative
of the scale factor at the surface level (z = 0).

5.4.2. Generalised S-coordinates
Pressure gradient formulations with a generalised s(x, y, z, t) coordinate have been the subject of a vast number
of papers (e.g., Song (1998); Shchepetkin and McWilliams (2003)). A number of different pressure gradient
options are available in NEMO:

• Traditional coding ( ln_hpg_sco=.true. , e.g. Madec et al. (1996)):


− 1

ρo e1u
δi+1/2

[
ph
]
+
g ρi+1/2

ρo e1u
δi+1/2 [zt] ,

− 1

ρo e2v
δj+1/2

[
ph
]
+
g ρj+1/2

ρo e2v
δj+1/2 [zt] ,

(5.13)

where the first term is the pressure gradient along coordinates (computed as in equation 5.11 - equa-
tion 5.12) and zT is the depth of the T -point evaluated from the sum of the vertical scale factors at the
W -point (e3w). Note that this scheme is not recommended when using steeply inclined computational
levels (e.g., terrain-following or hybrid generalised vertical coordinates, i.e., ln_sco=.true. ) - see e.g.
Shchepetkin and McWilliams (2003). However, it should be the standard choice when using z-coordinates
( ln_zco=.true. or ln_zps=.true. ) with the non-linear free surface ( ln_linssh=.false. and
key_qco ), since in this case model levels will follow the barotropic motion of the ocean (Levier et al.,
2007).

• Traditional coding with adaptation for ice shelf cavities ( ln_hpg_isf=.true. ):
In the presence of ice shelves, the traditional coding has been adapted to accommodate the load provided
by the ice shelves. This scheme must be used when ice shelf cavities are activated ( ln_isfcav=.true.
and the inclusion of key_isf . All the details on the modification are provided in subsection 8.1.5.

• Pressure Jacobian scheme ( ln_hpg_prj=.true. ):
this scheme uses a constrained cubic spline to reconstruct the vertical density profile within a water
column. This method maintains the monotonicity between the density nodes. The pressure is calculated
by analytical integration of the density profile. For the force in the i-direction, it calculates the difference
of the pressures on the i + 1

2 and i − 1
2 faces of the cell using pressures calculated at the same height.

In grid cells just above the bathymetry, this height is higher than the cells’ centre. This scheme works
well for moderately steep computational levels but produces large velocities in the SEAMOUNT test case
when model levels are steeply inclined.

• Density Jacobian with cubic polynomial scheme ( ln_hpg_djc=.true. , Shchepetkin and McWilliams
(2003)):
the ROMS-like, density Jacobian with cubic polynomial method has been debugged and from vn4.2 is
available as an option. This scheme is based on section 5 of Shchepetkin and McWilliams (2003) For
the force in the i-direction, it uses constrained cubic splines to re-construct the density along lines of
constant s and constant i in the (i, s) plane. It calculates a line integral of ρ and then integrates vertically
to obtain the horizontal pressure gradient. The constrained cubic splines require boundary conditions
to be specified at the upper and lower boundaries and at points where model levels encrop the model
bathymetry (i.e., with geopotential or hybrid vertical coordinates). The user can choose between von
Neumann and linear extrapolation boundary conditions via the ln_hpg_djc_vnh and ln_hpg_djc_vnv
namelist switches, respectively. This scheme can be used with any type of generalised s-coordinates - i.e.,
z or z∗, terrain-following or hybrids of these two (e.g., via the vanishing quasi-sigma or multi-envelope
methods, see e.g. Shapiro et al. (2013); Bruciaferri et al. (2018); Wise et al. (2021)) - but at the moment
can not be used with ice shelf cavities.

Starting from version 4.2, the density field used by dyn_hpg is the density anomaly field rhd rather than
1 + rhd. The calculation of the source term for the free surface has been adjusted to take this into account.
The true in situ density ρ = ρ0(1 + r0(z) + rhd) where r0(z) accounts for the variation of density with depth
for water with a potential temperature of 4◦C and salinity of 35.16504g/kg (see (13) and (14) of Roquet et al.
(2015b)).
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!-----------------------------------------------------------------------
&namdyn_ldf ! lateral diffusion on momentum (default: NO selection)
!-----------------------------------------------------------------------

! ! Type of the operator :
ln_dynldf_OFF = .false. ! No operator (i.e. no explicit diffusion)
nn_dynldf_typ = 0 ! =0 div-rot (default) ; =1 symmetric
ln_dynldf_lap = .false. ! laplacian operator
ln_dynldf_blp = .false. ! bilaplacian operator
! ! Direction of action :
ln_dynldf_lev = .false. ! iso-level
ln_dynldf_hor = .false. ! horizontal (geopotential)
ln_dynldf_iso = .false. ! iso-neutral (lap only)
! ! Coefficient
nn_ahm_ijk_t = 0 ! space/time variation of eddy coefficient :

! ! =-30 read in eddy_viscosity_3D.nc file
! ! =-20 read in eddy_viscosity_2D.nc file
! ! = 0 constant
! ! = 10 F(k)=c1d
! ! = 20 F(i,j)=F(grid spacing)=c2d
! ! = 30 F(i,j,k)=c2d*c1d
! ! = 31 F(i,j,k)=F(grid spacing and local velocity)
! ! = 32 F(i,j,k)=F(local gridscale and deformation rate)
! ! time invariant coefficients : ahm = 1/2 Uv*Lv (lap case)
! ! or = 1/12 Uv*Lv^3 (blp case)
rn_Uv = 0.1 ! lateral viscous velocity [m/s] (nn_ahm_ijk_t= 0, 10, 20, 30)
rn_Lv = 10.e+3 ! lateral viscous length [m] (nn_ahm_ijk_t= 0, 10)
! ! Smagorinsky settings (nn_ahm_ijk_t= 32) :
rn_csmc = 3.5 ! Smagorinsky constant of proportionality
rn_minfac = 1.0 ! multiplier of theorectical lower limit
rn_maxfac = 1.0 ! multiplier of theorectical upper limit
! ! iso-neutral laplacian operator (ln_dynldf_iso=T) :
rn_ahm_b = 0.0 ! background eddy viscosity [m2/s]

/

namelist 5.4.: &namdyn_ldf

5.5. Surface pressure gradient ( dynspg.F90 / stp2d.F90 )
The surface pressure gradient term is related to the representation of the free surface (section 1.2). The main
distinction is between the fixed volume case (linear free surface, i.e. with the inclusion of key_linssh ) and the
variable volume case (nonlinear free surface, key_qco ). In the linear free surface case (subsection 1.2.2) the
vertical scale factors e3 are fixed in time, while they are time-dependent in the nonlinear case (subsection 1.2.2).
With both linear and nonlinear free surface, external gravity waves are allowed in the equations, which imposes
a very small time step when an explicit time stepping is used ( ln_dynspg_exp=.true. (MLF time-stepping
only)). With explicit time-stepping, the surface pressure gradient is evaluated using the leap-frog scheme
(i.e.centred in time) and is thus simply given by:


− 1

e1u ρo
δi+1/2 [ ρ η ]

− 1

e2v ρo
δj+1/2 [ ρ η ]

(5.14)

where values are evaluated at the now timestep (dynspg_exp.F90).
To allow a longer time step for the three-dimensional equations, one can use a split-explicit free surface

( ln_dynspg_ts=.true. ). In that case, a quasi-linear form of 2d barotropic equations is substepped with a
small time increment. Details of this were provided in chapter 4. Options are defined through the &namdyn_spg
(namelist 4.1) namelist variables.

5.6. Lateral diffusion term and operators ( dynldf.F90 )
Options are defined through the &namdyn_ldf (namelist 5.4) namelist variables. The options available for

lateral diffusion are to use either laplacian (rotated or not) or biharmonic operators. The coefficients may
be constant or spatially variable; the description of the coefficients is found in the chapter on lateral physics
(chapter 10). The lateral diffusion of momentum is evaluated using a forward scheme, i.e. the velocity appearing
in its expression is the before velocity in time, except for the pure vertical component that appears when a tensor
of rotation is used. This latter term is solved implicitly together with the vertical diffusion term (see chapter 2).
At the lateral boundaries either free slip, no slip or partial slip boundary conditions are applied according to

the user’s choice (see chapter 9).
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5.6.1. Iso-level laplacian operator ( ln_dynldf_lap )

For lateral iso-level diffusion ( nn_dynldf_typ=0 ), the discrete operator is:


DlU
u =

1

e1u
δi+1/2

[
AlmT χ

]
− 1

e2u e3u
δj
[
Almf e3fζ

]

DlU
v =

1

e2v
δj+1/2

[
AlmT χ

]
+

1

e1v e3v
δi
[
Almf e3fζ

] (5.15)

As explained in section B.3, this formulation (as the gradient of a divergence and curl of the vorticity) preserves
symmetry and ensures a complete separation between the vorticity and divergence parts of the momentum
diffusion.

In v5.0 a symetrical lateral iso-level operator ( nn_dynldf_typ=1 ) has been introduced :


DlU
u =

1

e1u e2u e3u

(
1

e2u
δi+1/2

[
e2t e2t e3tA

lm
T ϵT

]
− 1

e1u
δj+1/2

[
e1f e1f e3f A

lm
F ϵF

])

DlU
v =

1

e1v e2v e3v

(
1

e2v
δj+1/2

[
e2f e2f e3f A

lm
F ϵF

]
− 1

e1v
δi+1/2

[
e1t e1t e3tA

lm
T ϵT

]) (5.16)

Where ϵF and ϵT are respectively the shearing stress component (F-point) and the tension stress component
(T-point) defined as :


ϵF =

e1f
e2f

δj+1/2

[
u

e1u

]
+
e2f
e1f

δi+1/2

[
v

e2v

]

ϵT =
e2t
e1t

δi

[
u

e2u

]
− e1t
e2t

δj

[
v

e1v

] (5.17)

5.6.2. Rotated laplacian operator ( ln_dynldf_iso )

A rotation of the lateral momentum diffusion operator is needed in several cases: for iso-neutral diffusion in the
z-coordinate ( ln_dynldf_iso=.true. ) and for either iso-neutral ( ln_dynldf_iso=.true. ) or geopotential
( ln_dynldf_hor=.true. ) diffusion in the s-coordinate. In the partial step case, coordinates are horizontal
except at the deepest level and no rotation is performed when ln_dynldf_hor=.true. . The diffusion operator
is defined simply as the divergence of down gradient momentum fluxes on each momentum component. It must
be emphasized that this formulation ignores constraints on the stress tensor such as symmetry. The resulting

Page 53 of 310 NEMO Reference Manual
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discrete representation is:

DlU
u =

1

e1u e2u e3u{
δi+1/2

[
AlmT

(
e2t e3t
e1t

δi[u]− e2t r1t δk+1/2[u]
i, k
)]

+ δj

[
Almf

(
e1f e3f
e2f

δj+1/2[u]− e1f r2f δk+1/2[u]
j+1/2, k

)]
+ δk

[
Almuw

(
−e2u r1uw δi+1/2[u]

i+1/2, k+1/2

− e1u r2uw δj+1/2[u]
j, k+1/2

+
e1u e2u
e3uw

(
r21uw + r22uw

)
δk+1/2[u]

)] }

DlV
v =

1

e1v e2v e3v{
δi+1/2

[
Almf

(
e2f e3f
e1f

δi+1/2[v]− e2f r1f δk+1/2[v]
i+1/2, k

)]
+ δj

[
AlmT

(
e1t e3t
e2t

δj [v]− e1t r2t δk+1/2[v]
j, k
)]

+ δk

[
Almvw

(
−e2v r1vw δi+1/2[v]

i+1/2, k+1/2

− e1v r2vw δj+1/2[v]
j+1/2, k+1/2

+
e1v e2v
e3vw

(
r21vw + r22vw

)
δk+1/2[v]

)] }

(5.18)

where r1 and r2 are the slopes between the surface along which the diffusion operator acts and the surface
of computation (z- or s-surfaces). The way these slopes are evaluated is given in the lateral physics chapter
(chapter 10).

5.6.3. Iso-level bilaplacian operator ( ln_dynldf_bilap )
The lateral fourth order operator formulation on momentum is obtained by applying equation 5.15 twice. It
requires an additional assumption on boundary conditions: the first derivative term normal to the coast depends
on the free or no-slip lateral boundary conditions chosen, while the third derivative terms normal to the coast
are set to zero (see chapter 9).

5.7. Vertical diffusion term ( dynzdf.F90 )
Options are defined through the &namzdf (namelist 11.1) namelist variables. The large vertical diffusion
coefficient found in the surface mixed layer together with high vertical resolution implies that in the case of
explicit time stepping there would be too restrictive a constraint on the time step. In v5.0 only a backward (or
implicit) time differencing scheme can be used for the vertical diffusion term. (see chapter 2).
The formulation of the vertical subgrid scale physics is the same whatever the vertical coordinate is. The

vertical diffusion operators given by equation 1.17 take the following semi-discrete space form:
Dvm
u ≡ 1

e3u
δk

[
Avmuw
e3uw

δk+1/2[u ]

]

Dvm
v ≡ 1

e3v
δk

[
Avmvw
e3vw

δk+1/2[ v ]

]
where Avmuw and Avmvw are the vertical eddy viscosity and diffusivity coefficients. The way these coefficients are
evaluated depends on the vertical physics used (see chapter 11).
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!-----------------------------------------------------------------------
&namwad ! Wetting and Drying (WaD) (default: OFF)
!-----------------------------------------------------------------------

ln_wd_dl = .false. ! T/F activation of directional limiter
ln_wd_dl_bc = .false. ! T/F Directional limiter Baroclinic option
ln_wd_dl_rmp = .false. ! T/F Turn on directional limiter ramp
rn_wdmin0 = 0.30 ! depth at which WaD starts
rn_wdmin1 = 0.2 ! Minimum wet depth on dried cells
rn_wdmin2 = 0.0001 ! Tolerance of min wet depth on dried cells
rn_wdld = 2.5 ! Land elevation below which WaD is allowed
rn_wd_sbcdep = 5.0 ! Depth at which to taper sbc fluxes
rn_wd_sbcfra = 0.999 ! Fraction of SBC fluxes at taper depth (Must be <1)

/

namelist 5.5.: &namwad

The surface boundary condition on momentum is the stress exerted by the wind. At the surface, the momen-
tum fluxes are prescribed as the boundary condition on the vertical turbulent momentum fluxes,(

Avm

e3

∂Uh

∂k

)∣∣∣∣
z=1

=
1

ρo

(
τu
τv

)
(5.19)

where (τu, τv) are the two components of the wind stress vector in the (i,j) coordinate system. The high mixing
coefficients in the surface mixed layer ensure that the surface wind stress is distributed in the vertical over the
mixed layer depth. If the vertical mixing coefficient is small (when no mixed layer scheme is used) the surface
stress enters only the top model level, as a body force. The surface wind stress is calculated in the surface
module routines (SBC, see chapter 7).
The turbulent flux of momentum at the bottom of the ocean is specified through a bottom friction parame-

terisation (see section 11.4)
When activated ( ln_zad_Aimp=.true. ) vertical advection of momentum is done partly implicitly in areas

where there is potential to breach the vertical CFL condition (see ??). The following expressions are included
in the implicit solvers in dynzdf.F90 and trazdf.F90:
In vector form case : 

wi δk[u] =
1

e1u e2u
e1t e2t wi

i,k+1/2
δk

[
u

e3uw

]up1
,

wi δk[v] =
1

e1v e2v
e1t e2t wi

j,k+1/2
δk

[
v

e3vw

]up1
.

(5.20)

In flux form case :
δk[wiu] =

1

e1u e2u e3u

((
e1t e2t wi

i u
)k,up1 − (e1t e2t wi i u)k+1,up1

)
,

δk[wiv] =
1

e1v e2v e3v

((
e1t e2t wi

j v
)k,up1 − (e1t e2t wi j v)k+1,up1

)
.

(5.21)

where wi is the part of the vertical velocity to be treated implicitly and all other variables are implicit in
time (after). Note vertical derivatives are done with a 1st order upstream scheme which provides stability but
is diffusive. It is therefore important, when using this option, to confirm that the active partitioning of the
vertical velocity is not frequently required in areas critical for the study being undertaken.

5.8. Wetting and drying
There is currently only one choice of limiter for the wetting and drying code (wd): a directional limiter (dl).
Previous versions also provided an iterative limiter (il) but this has been removed due to performance and
robustness issues. The framework for providing alternatives has been retained in case of future interest so the
directional limiter has to be exlicitly selected despite being the only choice.
The directional limiter is based on the scheme developed by Warner et al. (2013) for ROMS which was

in turn based on ideas developed for POM by Oey (2006). The directional limiter is activated by setting
ln_wd_dl=.true. .

The following terminology is used. The depth of the topography (positive downwards) at each (i, j) point
is the quantity stored in array ht_wd in the NEMO code. The height of the free surface (positive upwards) is
denoted by ssh. Given the sign conventions used, the water depth, h, is the height of the free surface plus the
depth of the topography (i.e. ssh + ht_wd).
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Wetting and Drying schemes take all points in the domain below a land elevation of rn_wdld to be covered by
water. The topography specified with a model configuration is required to have negative depths at points where
the land is higher than the topography’s reference sea-level. The vertical grid in NEMO is normally computed
relative to an initial state with zero sea surface height elevation. The user can choose to compute the vertical
grid and heights in the model relative to a non-zero reference height for the free surface. This ”ssh_ref” value
may be supplied as the rn_wd_ref_depth variable in the domain configuration file. Otherwise it is assumed to
be zero. This choice affects the calculation of the metrics and depths (i.e. the e3t_0, ht_0 etc. arrays).
Points where the water depth is less than rn_wdmin1 are interpreted as “dry”. rn_wdmin1 is usually chosen

to be of order 0.05m but extreme topographies with very steep slopes require larger values for normal choices
of time-step.
Surface fluxes are switched off for dry cells to prevent freezing, boiling etc. of very thin water layers. The

fluxes are tappered down using a tanh weighting function to no flux as the dry limit rn_wdmin1 is approached.
Even wet cells can be very shallow and may need their surface fluxes reduced. The depth at which to start
tapering is controlled by the user by setting rn_wd_sbcdep. The fraction (< 1) of suface fluxes to use at this
depth is set by rn_wd_sbcfra.
The code has been tested in seven test cases provided in the WAD_TEST_CASES configuration and in

“realistic” configurations covering parts of the north-west European shelf. All these configurations have used
pure sigma coordinates. It is expected that the wetting and drying code will work in domains with more general
s-coordinates provided the coordinates are pure sigma in the region where wetting and drying actually occurs.

The next sub-section describes the directional limiter. The final sub-section covers some additional consider-
ations that are relevant to all possible limiting schemes.

5.8.1. Directional limiter ( wet_dry.F90 )

The principal idea of the directional limiter is that water should not be allowed to flow out of a dry tracer cell
(i.e. one whose water depth is less than rn_wdmin1 ).
All the changes associated with this option are made to the barotropic solver for the non-linear free surface

code within dynspg_ts. On each barotropic sub-step the scheme determines the direction of the flow across
each face of all the tracer cells and sets the flux across the face to zero when the flux is from a dry tracer cell.
This prevents cells whose depth is rn_wdmin1 or less from drying out further. The scheme does not force h (the
water depth) at tracer cells to be at least the minimum depth and hence is able to conserve mass / volume.
The flux across each u-face of a tracer cell is multiplied by a factor zuwdmask (an array which depends on ji

and jj). If the user sets ln_wd_dl_ramp=.false. then zuwdmask is 1 when the flux is from a cell with water
depth greater than rn_wdmin1 and 0 otherwise. If the user sets ln_wd_dl_ramp=.true. the flux across the
face is ramped down as the water depth decreases from 2* rn_wdmin1 to rn_wdmin1 . The use of this ramp
reduced grid-scale noise in idealised test cases.
At the point where the flux across a u-face is multiplied by zuwdmask , we have chosen also to multiply the

corresponding velocity on the “now” step at that face by zuwdmask. We could have chosen not to do that and
to allow fairly large velocities to occur in these “dry” cells. The rationale for setting the velocity to zero is that
it is the momentum equations that are being solved and the total momentum of the upstream cell (treating it
as a finite volume) should be considered to be its depth times its velocity. This depth is considered to be zero
at “dry” u-points consistent with its treatment in the calculation of the flux of mass across the cell face.

Warner et al. (2013) state that in their scheme the velocity masks at the cell faces for the baroclinic timesteps
are set to 0 or 1 depending on whether the average of the masks over the barotropic sub-steps is respectively less
than or greater than 0.5. That scheme does not conserve tracers in integrations started from constant tracer
fields (tracers independent of x, y and z). Our scheme conserves constant tracers because the velocities used at
the tracer cell faces on the baroclinic timesteps are carefully calculated by dynspg_ts to equal their mean value
during the barotropic steps. If the user sets ln_wd_dl_bc=.true. , the baroclinic velocities are also multiplied
by a suitably weighted average of zuwdmask.

Additional considerations ( usrdef_zgr.F90 )

In the very shallow water where wetting and drying occurs the parametrisation of bottom drag is clearly very
important. In order to promote stability it is sometimes useful to calculate the bottom drag using an implicit
time-stepping approach.
Suitable specifcation of the surface heat flux in wetting and drying domains in forced and coupled simulations

needs further consideration. In order to prevent freezing or boiling in uncoupled integrations the net surface heat
fluxes need to be appropriately limited using the rn_wd_sbcdep and rn_wd_sbcfra options discussed above.
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5.8.2. The WAD test cases ( usrdef_zgr.F90 )
See the WAD tests MY_DOC documention for details of the WAD test cases.

5.9. Time evolution term - leapfrog ( dynatf.F90 )
Options are defined through the &namdom (namelist 3.2) namelist variables. The general framework for
dynamics time stepping is a leap-frog scheme, i.e. a three level centred time scheme associated with an Asselin
time filter (cf. chapter 2). The scheme is applied to the velocity, except when using the flux form of momentum
advection (cf. section 5.3) in the variable volume case ( key_qco ), where it has to be applied to the thickness
weighted velocity (see section A.3) The time integration is done within dynzdf.F90
• vector invariant form or linear free surface ( ln_dynadv_vec=.true. or key_linssh ):u

t+∆t = ut−∆t
f + 2∆t RHStu

utf = ut + γ
[
ut−∆t
f − 2ut + ut+∆t

]
• flux form and nonlinear free surface ( ln_dynadv_vec=.false. and key_qco ): (e3u u)

t+∆t
= (e3u u)

t−∆t
f + 2∆t e3u RHStu

(e3u u)
t
f = (e3u u)

t
+ γ

[
(e3u u)

t−∆t
f − 2 (e3u u)

t
+ (e3u u)

t+∆t
]

where RHS is the right hand side of the momentum equation, the subscript f denotes filtered values and γ is the
Asselin coefficient. γ is initialized as nn_atfp (namelist parameter). Its default value is nn_atfp=10.e-3 . In
both cases, the modified Asselin filter is not applied since perfect conservation is not an issue for the momentum
equations.
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!-----------------------------------------------------------------------
&namtra_adv ! advection scheme for tracer (default: NO selection)
!-----------------------------------------------------------------------

ln_traadv_OFF = .false. ! No tracer advection
ln_traadv_cen = .false. ! 2nd order centered scheme

nn_cen_h = 4 ! =2/4, horizontal 2nd order CEN / 4th order CEN
nn_cen_v = 4 ! =2/4, vertical 2nd order CEN / 4th order COMPACT

ln_traadv_fct = .false. ! FCT scheme
nn_fct_h = 2 ! =2/4, horizontal 2nd / 4th order
nn_fct_v = 2 ! =2/4, vertical 2nd / COMPACT 4th order
nn_fct_imp = 1 ! =1/2, optimized / accurate treatment of implicit part

ln_traadv_mus = .false. ! MUSCL scheme
ln_mus_ups = .false. ! use upstream scheme near river mouths

ln_traadv_ubs = .false. ! UBS scheme
nn_ubs_v = 2 ! =2 , vertical 2nd order FCT / COMPACT 4th order

ln_traadv_qck = .false. ! QUICKEST scheme
/

namelist 6.1.: &namtra_adv

Using the representation described in chapter 3, several semi -discrete space forms of the tracer equations
are available depending on the vertical coordinate used and on the physics used. In all the equations presented
here, the masking has been omitted for simplicity. One must be aware that all the quantities are masked fields
and that each time a mean or difference operator is used, the resulting field is multiplied by a mask.
The two active tracers are potential temperature and salinity. Their prognostic equations can be summarized

as follows:
NXT = ADV+ LDF+ ZDF+ SBC+ {QSR,BBC,BBL,DMP, ISF}

NXT stands for next, referring to the time-stepping. From left to right, the terms on the rhs of the tracer
equations are the advection (ADV), the lateral diffusion (LDF), the vertical diffusion (ZDF), the contributions
from the external forcings (SBC: Surface Boundary Condition, QSR: penetrative Solar Radiation, and BBC:
Bottom Boundary Condition), the contribution from the bottom boundary Layer (BBL) parametrisation, an
internal damping (DMP) and the contribution from the floating ice shelves (ISF) term. The terms QSR, BBC,
BBL, DMP and ISF are optional. The external forcings and parameterisations require complex inputs and
complex calculations (e.g. bulk formulae, estimation of mixing coefficients) that are carried out in the SBC,
LDF, ZDF and ISF modules and described in chapter 7, chapter 10, chapter 11 and chapter 8, respectively. Note
that tranpc.F90 , the non-penetrative convection module, is located in the ./src/OCE/TRA directory because
it directly modifies the tracer fields. However, it is described alongside the model’s vertical physics (ZDF),
together with other available parameterizations of convection. Similarly, tramle.F90 , which implements the
mixed-layer eddy parameterization, and traisf.F90 , which handles ice-shelf fluxes, are also included in the
./src/OCE/TRA directory but are addressed in their respective contexts respectively (LDF) and (LIO).
In the present chapter we also describe the diagnostic equations used to compute the sea-water properties

(density, Brunt-Väisälä frequency, specific heat and freezing point with associated modules eosbn2.F90 and
phycst.F90 ).
The different options available to the user are managed by namelist logicals. For each equation term TTT,

the namelist logicals are ln_traTTT_xxx, where xxx is a 3 or 4 letter acronym corresponding to each optional
scheme. The equivalent code can be found in the traTTT or traTTT_xxx module, in the ./src/OCE/TRA
directory.
The user has the option of extracting each tendency term on the RHS of the tracer equation for output (

ln_tra_trd or ln_tra_mxl=.true. ), as described in chapter 12.

6.1. Tracer advection ( traadv.F90 )
When considered (i.e. when ln_traadv_OFF is not set to .true.), the advection tendency of a tracer is

expressed in flux form, i.e. as the divergence of the advective fluxes. Its discrete expression is given by:

ADVτ = − 1

bt

(
δi[e2u e3u u τu] + δj [e1v e3v v τv]

)
− 1

e3t
δk[w τw] (6.1)

where τ is either T or S, and bt = e1t e2t e3t is the volume of T -cells. The flux form in equation 6.1 implicitly
requires the use of the continuity equation. Indeed, it is obtained by using the following equality: ∇ · (U T ) =
U ·∇T which results from the use of the continuity equation, ∂te3+ e3 ∇·U = 0 (which reduces to ∇·U = 0 in
linear free surface, i.e. key_linssh specified instead of key_qco ). Therefore it is of paramount importance
to design the discrete analogue of the advection tendency so that it is consistent with the continuity equation
in order to enforce the conservation properties of the continuous equations. In other words, by setting τ = 1
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Figure 6.1.: Schematic representation of some ways used to evaluate the tracer value at u-point and the amount of tracer exchanged
between two neighbouring grid points. Upsteam biased scheme (ups): the upstream value is used and the black area
is exchanged. Piecewise parabolic method (ppm): a parabolic interpolation is used and the black and dark grey areas
are exchanged. Monotonic upstream scheme for conservative laws (muscl): a parabolic interpolation is used and black,
dark grey and grey areas are exchanged. Second order scheme (cen2): the mean value is used and black, dark grey,
grey and light grey areas are exchanged. Note that this illustration does not include the flux limiter used in ppm and
muscl schemes.

in (equation 6.1) we recover the discrete form of the continuity equation which is used to calculate the vertical
velocity.

The key difference between the advection schemes available in NEMO is the choice made in space and time
interpolation to define the value of the tracer at the velocity points (figure 6.1).
Along solid lateral and bottom boundaries a zero tracer flux is automatically specified, since the normal

velocity is zero there. At the sea surface the boundary condition depends on the type of sea surface chosen:

linear free surface ( key_linssh specified) the first level thickness is constant in time: the vertical boundary
condition is applied at the fixed surface z = 0 rather than on the moving surface z = η. There is a
non-zero advective flux which is set for all advection schemes as τw|k=1/2 = Tk=1, i.e. the product of
surface velocity (at z = 0) by the first level tracer value.

non-linear free surface ( key_qco specified) convergence/divergence in the first ocean level moves the free
surface up/down. There is no tracer advection through it so that the advective fluxes through the surface
are also zero.

In all cases, this boundary condition retains local conservation of tracer. Global conservation is obtained in
non-linear free surface case, but not in the linear free surface case. Nevertheless, in the latter case, it is achieved
to a good approximation since the non-conservative term is the product of the time derivative of the tracer and
the free surface height, two quantities that are not correlated (Roullet and Madec, 2000; Griffies et al., 2001;
Campin et al., 2004).

The velocity field that appears in (equation 6.1 is the centred (now) effective ocean velocity, i.e. the eulerian
velocity (see chapter 5) plus the eddy induced velocity (eiv) and/or the mixed layer eddy induced velocity (eiv)
when those parameterisations are used (see chapter 10).

Several tracer advection scheme are proposed, namely a 2nd or 4th order CENtred schemes (CEN), a 2nd

or 4th order Flux Corrected Transport scheme (FCT), a Monotone Upstream Scheme for Conservative Laws
scheme (MUSCL), a 3rd Upstream Biased Scheme (UBS, also often called UP3), and a Quadratic Upstream
Interpolation for Convective Kinematics with Estimated Streaming Terms scheme (QUICKEST). The choice
is made in the &namtra_adv (namelist 6.1) namelist, by setting to .true. one of the logicals ln_traadv_xxx.
The corresponding code can be found in the traadv_xxx.F90 module, where xxx is a 3 or 4 letter acronym
corresponding to each scheme. By default (i.e. in the reference namelist, namelist_ref ), all the logicals are set
to .false.. If the user does not select an advection scheme in the configuration namelist (namelist_cfg), the
tracers will not be advected!
Details of the advection schemes are given below. The choosing an advection scheme is a complex matter

which depends on the model physics, model resolution, type of tracer, as well as the issue of numerical cost. In
particular, we note that

1. CEN and FCT schemes require an explicit diffusion operator while the other schemes are diffusive enough
so that they do not necessarily need additional diffusion;
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2. CEN and UBS are not positive schemes ∗, implying that false extrema are permitted. Their use is not
recommended on passive tracers;

3. It is recommended that the same advection-diffusion scheme is used on both active and passive tracers.

Indeed, if a source or sink of a passive tracer depends on an active one, the difference of treatment of active and
passive tracers can create very nice-looking frontal structures that are pure numerical artefacts. Nevertheless,
most of our users set a different treatment on passive and active tracers, that’s the reason why this possibility
is offered. We strongly suggest them to perform a sensitivity experiment using a same treatment to assess the
robustness of their results.

6.1.1. CEN: Centred scheme ( ln_traadv_cen )
The CENtred advection scheme (CEN) is used when ln_traadv_cen=.true. . Its order (2nd or 4th) can be
chosen independently on horizontal (iso-level) and vertical direction by setting nn_cen_h and nn_cen_v to
2 or 4. CEN implementation can be found in the traadv_cen.F90 module.
In the 2nd order centred formulation (CEN2), the tracer at velocity points is evaluated as the mean of the

two neighbouring T -point values. For example, in the i-direction :

τ cen2u = T
i+1/2 (6.2)

CEN2 is non diffusive (i.e. it conserves the tracer variance, τ2) but dispersive (i.e. it may create false extrema).
It is therefore notoriously noisy and must be used in conjunction with an explicit diffusion operator to produce
a sensible solution. When the model is time-stepped using a leapfrog scheme in conjunction with an Asselin
time-filter, T in (equation 6.2) is the now tracer value. In contrast, when the model employs an RK3 scheme,
T in (equation 6.2) refers to the before tracer value during the first stage,and the now tracer value during the
second and third stages.
Note that using the CEN2, the overall tracer advection is of second order accuracy since both (equation 6.1)

and (equation 6.2) have this order of accuracy.
In the 4th order formulation (CEN4), tracer values are evaluated at u- and v-points as a 4th order interpolation,

and thus depend on the four neighbouring T -points. For example, in the i-direction:

τ cen4u = T − 1

6
δi

[
δi+1/2[T ]

] i+1/2

(6.3)

In the vertical direction ( nn_cen_v=4 ), a 4th COMPACT interpolation has been prefered (Demange, 2014). In
the COMPACT scheme, both the field and its derivative are interpolated, which leads, after a matrix inversion,
spectral characteristics similar to schemes of higher order (Lele, 1992).

Strictly speaking, the CEN4 scheme is not a 4th order advection scheme but a 4th order evaluation of advective
fluxes, since the divergence of advective fluxes equation 6.1 is kept at 2nd order. The expression 4th order scheme
used in oceanographic literature is usually associated with the scheme presented here. Introducing a “true” 4th

order advection scheme is feasible but, for consistency reasons, it requires changes in the discretisation of the
tracer advection together with changes in the continuity equation, and the momentum advection and pressure
terms.
A direct consequence of the pseudo-fourth order nature of the scheme is that it is not non-diffusive, i.e. the

global variance of a tracer is not preserved using CEN4. Furthermore, it must be used in conjunction with an
explicit diffusion operator to produce a sensible solution. As in CEN2 case, when the model is time-stepped
using a leapfrog scheme in conjunction with an Asselin time-filter, T in (equation 6.3) is the now tracer value.
In contrast, when the model employs an RK3 scheme, T in (equation 6.3) refers to the before tracer value during
the first stage,and the now tracer value during the second and third stages.
At a T -grid cell adjacent to a boundary (coastline, bottom and surface), an additional hypothesis must be

made to evaluate τ cen4u . This hypothesis usually reduces the order of the scheme. Here we choose to set the
gradient of T across the boundary to zero. Alternative conditions can be specified, such as a reduction to a
second order scheme for these near boundary grid points.

6.1.2. FCT: Flux Corrected Transport scheme ( ln_traadv_fct )
The Flux Corrected Transport schemes (FCT) is used when ln_traadv_fct=.true. . Its order (2nd or 4th)
can be chosen independently on horizontal (iso-level) and vertical direction by setting nn_fct_h and nn_fct_v
to 2 or 4. FCT implementation can be found in the traadv_fct.F90 module.

∗negative values can appear in an initially strictly positive tracer field which is advected
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In FCT formulation, the tracer at velocity points is evaluated using a combination of an upstream (UP1) and
a centred scheme. For example, in the i-direction :

τup1u =

{
Ti+1 if ui+1/2 < 0

Ti if ui+1/2 ≥ 0

τfctu = τup1u + cu
(
τ cenu − τup1u

) (6.4)

where cu is a flux limiter function taking values between 0 and 1. The FCT order is the one of the centred
scheme used (i.e. it depends on the setting of nn_fct_h and nn_fct_v ). There exist many ways to define
cu, each corresponding to a different FCT scheme. The one chosen in NEMO is described in Zalesak (1979).
cu only departs from 1 when the advective term produces a local extremum in the tracer field. The resulting
scheme is quite expensive but positive. It can be used on both active and passive tracers. A comparison of
FCT-2 with MUSCL and a MPDATA scheme can be found in Lévy et al. (2001).

For stability reasons (see chapter 2), τ cenu is evaluated in (equation 6.4) using the now tracer while τup1u is
evaluated using the before tracer.
The FCT procedure is among the most computationally intensive components of the code. Under RK3 time-

stepping, it typically runs three times per cycle. A practical optimization is to use a CEN algorithm to estimate
tracer advective terms during stages 1 and 2, reserving the full FCT procedure for stage 3.

The FCT involves integrating low-order advection and fluxes, which are then used to compute corrective fluxes.
These are obtained by subtracting low-order fluxes from high-order fluxes and applying the nonoscillatory limiter
routine. The resulting corrective flux divergence is added to the right-hand side. To mitigate instabilities caused
by low-order integration, sub-stepping is applied.

Local implicit vertical advection ( ln_zad_Aimp=.true. ) is required within the FCT scheme due to the
low-order integration. The process is optimized when nn_fct_imp=1 and less efficient when nn_fct_imp=2 .

6.1.3. MUSCL: Monotone Upstream Scheme for Conservative Laws (
ln_traadv_mus )

The Monotone Upstream Scheme for Conservative Laws (MUSCL) is used when ln_traadv_mus=.true. .
MUSCL implementation can be found in the traadv_mus.F90 module.

MUSCL has been first implemented in NEMO by Lévy et al. (2001). In its formulation, the tracer at velocity
points is evaluated assuming a linear tracer variation between two T -points (figure 6.1). For example, in the
i-direction :

τmusu =


τi +

1

2

(
1−

ui+1/2 ∆t

e1u

)
∂̃iτ if ui+1/2 ⩾ 0

τi+1/2 +
1

2

(
1 +

ui+1/2 ∆t

e1u

)
∂̃i+1/2τ if ui+1/2 < 0

where ∂̃iτ is the slope of the tracer on which a limitation is imposed to ensure the positive character of the
scheme.
The time stepping is performed using a forward scheme, that is the before tracer field is used to evaluate

τmusu .
For an ocean grid point adjacent to land and where the ocean velocity is directed toward land, an upstream

flux is used. This choice ensure the positive character of the scheme. In addition, fluxes round a grid-point
where a runoff is applied can optionally be computed using upstream fluxes ( ln_mus_ups=.true. ).

6.1.4. UBS a.k.a. UP3: Upstream-Biased Scheme ( ln_traadv_ubs )
The Upstream-Biased Scheme (UBS) is used when ln_traadv_ubs=.true. . UBS implementation can be
found in the traadv_ubs.F90 module.
The UBS scheme, often called UP3, is also known as the Cell Averaged QUICK scheme (Quadratic Upstream

Interpolation for Convective Kinematics). It is an upstream-biased third order scheme based on an upstream-
biased parabolic interpolation. For example, in the i-direction:

τubsu = T
i+1/2 − 1

6

{
τ”i if ui+1/2 ⩾ 0

τ”i+1 if ui+1/2 < 0
where τ”i = δi

[
δi+1/2[τ ]

]
(6.5)

This results in a dissipatively dominant (i.e. hyper-diffusive) truncation error (Shchepetkin and McWilliams,
2005). The overall performance of the advection scheme is similar to that reported in Farrow and Stevens
(1995). It is a relatively good compromise between accuracy and smoothness. Nevertheless the scheme is not
positive, meaning that false extrema are permitted, but the amplitude of such are significantly reduced over the
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centred second or fourth order method. Therefore it is not recommended that it should be applied to a passive
tracer that requires positivity.
The intrinsic diffusion of UBS makes its use risky in the vertical direction where the control of artificial di-

apycnal fluxes is of paramount importance (Shchepetkin and McWilliams, 2005; Demange, 2014). Therefore the
vertical flux is evaluated using either a 2nd order FCT scheme or a 4th order COMPACT scheme ( nn_ubs_v=2
or 4 ).
For stability reasons (see chapter 2), the first term in equation 6.5 (which corresponds to a second order centred

scheme) is evaluated using the now tracer (centred in time) while the second term (which is the diffusive part
of the scheme), is evaluated using the before tracer (forward in time). This choice is discussed by Webb et al.
(1998) in the context of the QUICK advection scheme. UBS and QUICK schemes only differ by one coefficient.
Replacing 1/6 with 1/8 in equation 6.5 leads to the QUICK advection scheme (Webb et al., 1998). This option
is not available through a namelist parameter, since the 1/6 coefficient is hard coded. Nevertheless it is quite
easy to make the substitution in the traadv_ubs.F90 module and obtain a QUICK scheme.
Note that it is straightforward to rewrite equation 6.5 as follows:

τubsu = τ cen4u +
1

12

{
+τ”i if ui+1/2 ⩾ 0

−τ”i+1 if ui+1/2 < 0
(6.6)

or equivalently

ui+1/2 τ
ubs
u = ui+1/2 T −

1

6
δi

[
δi+1/2[T ]

] i+1/2

− 1

2
|u|i+1/2

1

6
δi+1/2[τ”i]

equation 6.6 has several advantages. Firstly, it clearly reveals that the UBS scheme is based on the fourth
order scheme to which an upstream-biased diffusion term is added. Secondly, this emphasises that the 4th order
part (as well as the 2nd order part as stated above) has to be evaluated at the now time step using equation 6.5.
Thirdly, the diffusion term is in fact a biharmonic operator with an eddy coefficient which is simply proportional
to the velocity: Almu = 1

12 e1u
3 |u|. Note the current version of NEMO uses the computationally more efficient

formulation equation 6.5.

6.1.5. QCK: QuiCKest scheme ( ln_traadv_qck )
The Quadratic Upstream Interpolation for Convective Kinematics with Estimated Streaming Terms (QUICK-
EST) scheme proposed by Leonard (1979) is used when ln_traadv_qck=.true. . QUICKEST implementation
can be found in the traadv_qck.F90 module.
QUICKEST is the third order Godunov scheme which is associated with the ULTIMATE QUICKEST limiter

(Leonard, 1991). It has been implemented in NEMO by G. Reffray (Mercator Ocean) and can be found in the
traadv_qck.F90 module. The resulting scheme is quite expensive but positive. It can be used on both active
and passive tracers. However, the intrinsic diffusion of QCK makes its use risky in the vertical direction where
the control of artificial diapycnal fluxes is of paramount importance. Therefore the vertical flux is evaluated
using the CEN2 scheme. This no longer guarantees the positivity of the scheme. The use of FCT in the vertical
direction (as for the UBS case) should be implemented to restore this property.

6.2. Tracer lateral diffusion ( traldf.F90 )
The lateral diffusion operator for tracers models the physical process of horizontal mixing. NEMO pro-

vides multiple options that can be combined to construct a lateral diffusion operator suited to the advection
scheme, resolution, and coordinate system of the experiment. These options are defined in the &namtra_ldf
(namelist 6.2) namelist variables. Choices for specifying the lateral diffusion operator includes : (i) the opera-
tor type and scale which specifies the form of the operator and thus the spatial scale at which it acts, (ii) the
direction of action which defines the orientation of the operator. For rotated operators, additional options must
be specified, slope is computed in the ldfslp.F90 module (see chapter 10) (iii) the eddy diffusivity structure,
which control the temporal and spatial distribution of eddy diffusivity (see chapter 10). These combinations
allow users to construct a diffusion operator that aligns with the specific requirements of their experiment.
The lateral diffusion of tracers is evaluated using a forward scheme, i.e. the tracers appearing in its ex-

pression are the before tracers in time. It is not true in case ot a rorated operator. In this case a vertical
component that appears, it is solved implicitly together with the vertical diffusion term (see chapter 2). When
ln_traldf_msc=.true. , a Method of Stabilizing Correction is used in which the pure vertical component is
split into an explicit and an implicit part (Lemarié et al., 2012).
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!-----------------------------------------------------------------------
&namtra_ldf ! lateral diffusion scheme for tracers (default: NO selection)
!-----------------------------------------------------------------------

! ! Operator type:
ln_traldf_OFF = .false. ! No explicit diffusion
ln_traldf_lap = .false. ! laplacian operator
ln_traldf_blp = .false. ! bilaplacian operator
!
! ! Direction of action:
ln_traldf_lev = .false. ! iso-level
ln_traldf_hor = .false. ! horizontal (geopotential)
ln_traldf_iso = .false. ! iso-neutral (standard operator)
ln_traldf_triad = .false. ! iso-neutral (triad operator)
!
! ! iso-neutral options:
ln_traldf_msc = .false. ! Method of Stabilizing Correction (both operators)
rn_slpmax = 0.01 ! slope limit (both operators)
ln_triad_iso = .false. ! pure horizontal mixing in ML (triad only)
rn_sw_triad = 1 ! =1 switching triad ; =0 all 4 triads used (triad only)
ln_botmix_triad = .false. ! lateral mixing on bottom (triad only)
!
! ! Coefficients:
nn_aht_ijk_t = 0 ! space/time variation of eddy coefficient:

! ! =-20 (=-30) read in eddy_diffusivity_2D.nc (..._3D.nc) file
! ! = 0 constant
! ! = 10 F(k) =ldf_c1d
! ! = 20 F(i,j) =ldf_c2d
! ! = 21 F(i,j,t) =Treguier et al. JPO 1997 formulation
! ! = 30 F(i,j,k) =ldf_c2d * ldf_c1d
! ! = 31 F(i,j,k,t)=F(local velocity and grid-spacing)
! ! time invariant coefficients: aht0 = 1/2 Ud*Ld (lap case)
! ! or = 1/12 Ud*Ld^3 (blp case)
rn_Ud = 0.01 ! lateral diffusive velocity [m/s] (nn_aht_ijk_t= 0, 10, 20, 30)
rn_Ld = 200.e+3 ! lateral diffusive length [m] (nn_aht_ijk_t= 0, 10)

/

namelist 6.2.: &namtra_ldf

6.2.1. Type of operator ( ln_traldf_OFF , ln_traldf_lap , or ln_traldf_blp )
Three operator options are proposed and, one and only one of them must be selected:

ln_traldf_OFF=.true. no operator selected, the lateral diffusive tendency will not be applied to the tracer
equation. This option can be used when the selected advection scheme is diffusive enough (MUSCL scheme
for example).

ln_traldf_lap=.true. a laplacian operator is selected. This harmonic operator takes the following expres-
sion: L(T ) = ∇ ·Aht ∇T , where the gradient operates along the selected direction (see subsection 6.2.2),
and Aht is the eddy diffusivity coefficient expressed in m2/s (see chapter 10).

ln_traldf_blp=.true. a bilaplacian operator is selected. This biharmonic operator takes the following
expression: B = −L(L(T )) = −∇ · b∇(∇ · b∇T ) where the gradient operats along the selected direction,
and b2 = Bht is the eddy diffusivity coefficient expressed in m4/s (see chapter 10). In the code, the
bilaplacian operator is obtained by calling the laplacian twice.

Both laplacian and bilaplacian operators ensure the total tracer variance decrease. Their primary role is
to provide strong dissipation at the smallest scale supported by the grid while minimizing the impact on the
larger scale features. The main difference between the two operators is the scale selectiveness. The bilaplacian
damping time (i.e. its spin down time) scales like λ−4 for disturbances of wavelength λ (so that short waves
damped more rapidelly than long ones), whereas the laplacian damping time scales only like λ−2.

6.2.2. Direction of action ( ln_traldf_lev , ln_traldf_hor , ln_traldf_iso , or
ln_traldf_triad )

NEMO provides three primary approaches for simulating diffusion, each influencing whether a rotation needs
to be applied to the diffusion operator. (see figure 6.2)

ln_traldf_lev=.true. : the direction of action aligns with the vertical coordinate level and there is no need
for any rotation of the operator (this is not recommended in s-coordinate).

ln_traldf_hor=.true. : horizontal levels apprximates geopotential levels. They do not necessarly align
along the vertical coordinate levels. In z-coordinate ( ln_zco=.true. ) horizontal levels align with z-
levels. So no rotation is needed. In s-coordinate ( ln_sco=.true. ) horizontal levels do not align with
s-levels. Therefore a rotation of the diffusion operator is required.
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coordinate
operator direction l_zco l_zps l_sco

ln_traldf_lev traldf_lev.F90 
(No rotation)

traldf_lev.F90 
(No rotation)

traldf_lev.F90 
(No rotation)

ln_traldf_hor traldf_lev.F90 
(No rotation)

traldf_lev.F90 
(No rotation)

traldf_iso.F90 
(Rotation)

ln_traldf_iso traldf_iso.F90 
(Rotation)

traldf_iso.F90 
(Rotation)

traldf_iso.F90 
(Rotation)

ln_traldf_triad traldf_triad.F90 traldf_triad.F90 traldf_triad.F90

Figure 6.2.: Overview of the tracer diffusive operator selected (rotated (iso, triad) or non-rotated (lev)) based on the vertical
coordinate and the direction of action specified

ln_traldf_iso=.true. or ln_traldf_triad=.true. : diffusion follows isoneutral layers, which are often
sloped relative to both horizontal and models levels. In this case the diffusion operator is always rotated.

The discrete forms of these operators are presented in the following two subsections. They include one iso-
level operator ( traldf_lev.F90 ), which requires no additional rotation beyond the natural one associated with
the model levels, and two rotated operators ( traldf_iso.F90 and traldf_triad.F90 ).

6.2.3. Iso-level (bi-)laplacian operator ( ln_traldf_iso )
In z-coordinate with or without partial steps ( ln_zco=.true. or ln_zps=.true. ), the iso-level diffusion
operator is also a horizontal operator (i.e.acting along geopotential surfaces). Choices ln_traldf_lev=.true.
and ln_traldf_hor=.true. are thus equivalent. While in s-coordinate ( ln_sco=.true. ), it is simply an
iso-level diffusion operator ( ln_traldf_lev=.true. ). In both cases, it significantly contributes to diapycnal
mixing. It is therefore never recommended, even when using it in the bilaplacian case.
The laplacian diffusion operator acting along the model (i,j)-surfaces is given by:

DlT
t =

1

bt

(
δi

[
AlTu

e2u e3u
e1u

δi+1/2[T ]

]
+ δj

[
AlTv

e1v e3v
e2v

δj+1/2[T ]

])
(6.7)

where bt = e1t e2t e3t is the volume of T -cells and where zero diffusive fluxes is assumed across solid boundaries,
first (and third in bilaplacian case) horizontal tracer derivative are masked. The iso-level laplacian operator (
ln_traldf_lap=.true. ) is implemented in the tra_ldf_lap subroutine found in the traldf_lev.F90 module.
The module also contains tra_ldf_blp , to compute the iso-level bilaplacian operator ( ln_traldf_blp=.true.
).
Note that in the partial step z-coordinate ( ln_zps=.true. ), tracers in horizontally adjacent cells are located

at different depths in the vicinity of the bottom.

6.2.4. Standard and triad (bi-)laplacian operator
Standard rotated (bi-)laplacian operator ( traldf_iso.F90 )

This operator is used when ln_traldf_iso=.true. , regardless of the chosen vertical coordinate, to ensure
that diffusion is oriented along isoneutral surfaces. In s-coordinates ( ln_sco=.true. ), it is also applied when
a horizontal diffusion direction is specified ( ln_traldf_hor=.true. ).

The general form of the second order lateral tracer subgrid scale physics (equation 1.17) takes the following
semi-discrete space form in z- and s-coordinates:

DlT
T =

1

bt

[
δiA

lT
u

(
e2ue3u
e1u

δi+1/2[T ]− e2ur1u δk+1/2[T ]
i+1/2,k

)
+δjA

lT
v

(
e1ve3v
e2v

δj+1/2[T ]− e1vr2v δk+1/2[T ]
j+1/2,k

)
+δkA

lT
w

(
e1we2w
e3w

(r21w + r22w) δk+1/2[T ]

−e2wr1w δi+1/2[T ]
i,k+1/2

− e1wr2w δj+1/2[T ]
j,k+1/2

)]
(6.8)

where bt = e1t e2t e3t is the volume of T -cells, r1 and r2 are the slopes between the surface of computation (z-
or s-surfaces) and the surface along which the diffusion operator acts (i.e. horizontal or iso-neutral surfaces).
The way these slopes are evaluated is given in section 10.2. At the surface, bottom and lateral boundaries, the
turbulent fluxes of heat and salt are set to zero using the mask technique (see section 9.1).

The operator in equation 6.8 involves both lateral and vertical derivatives. For numerical stability, the vertical
second derivative must be solved using the same implicit time scheme as that used in the vertical physics (see
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section 6.3). For computer efficiency reasons, this term is not computed in the traldf_iso.F90 module, but in
the trazdf.F90 module where, if iso-neutral mixing is used, the vertical mixing coefficient is simply increased
by e1we2w

e3w
(r21w + r22w).

This formulation conserves the tracer but does not ensure the decrease of the tracer variance. Nevertheless
the treatment performed on the slopes (see chapter 10) allows the model to run safely without any additional
background horizontal diffusion (Guilyardi et al., 2001).

Triad rotated (bi-)laplacian operator ( ln_traldf_triad )

An alternative scheme developed by Griffies et al. (1998) which ensures tracer variance decreases is also available
in NEMO ( ln_traldf_triad=.true. ). A complete description of the algorithm is given in appendix D.

The lateral fourth order bilaplacian operator on tracers is obtained by applying (equation 6.7) twice. The
operator requires an additional assumption on boundary conditions: both first and third derivative terms normal
to the coast are set to zero.
The lateral fourth order operator formulation on tracers is obtained by applying (equation 6.8) twice. It

requires an additional assumption on boundary conditions: first and third derivative terms normal to the coast,
normal to the bottom and normal to the surface are set to zero.

Option for the rotated operators

ln_traldf_msc Method of Stabilizing Correction (both operators)

rn_slpmax Slope limit (both operators)

ln_triad_iso Pure horizontal mixing in ML (triad only)

rn_sw_triad =1 switching triad; = 0 all 4 triads used (triad only)

ln_botmix_triad Lateral mixing on bottom (triad only)

6.3. Tracer vertical diffusion ( trazdf.F90 )
Options are defined through the &namzdf (namelist 11.1) namelist variables. The formulation of the vertical
subgrid scale tracer physics is the same for all the vertical coordinates, and is based on a laplacian operator.
The vertical diffusion operator given by (equation 1.17) takes the following semi-discrete space form:

DvT
T =

1

e3t
δk

[
AvTw
e3w

δk+1/2[T ]

]
DvS
T =

1

e3t
δk

[
AvSw
e3w

δk+1/2[S]

]
where AvTw and AvSw are the vertical eddy diffusivity coefficients on temperature and salinity, respectively.
Generally, AvTw = AvSw except when double diffusive mixing is parameterised (i.e. ln_zdfddm=.true. ) or when
differential mixing is activated in the parameterization of internal wave-driven mixing (i.e. ln_tsdiff=.true.
). The way these coefficients are evaluated is given in chapter 11 (ZDF). Furthermore, when iso-neutral mixing
is used, both mixing coefficients are increased by e1we2w

e3w
(r21w + r22w) to account for the vertical second derivative

of equation 6.8.
At the surface and bottom boundaries, the turbulent fluxes of heat and salt must be specified. At the surface

they are prescribed from the surface forcing and added in a dedicated routine (see subsection 6.4.1), whilst at
the bottom they are set to zero for heat and salt unless a geothermal flux forcing is prescribed as a bottom
boundary condition (see subsection 6.4.3).

The large eddy coefficient found in the mixed layer together with high vertical resolution implies that there
would be too restrictive constraint on the time step if we use explicit time stepping. Therefore an implicit time
stepping is preferred for the vertical diffusion since it overcomes the stability constraint.

Because the vertical mixing is always solved implicitly, the update of the tracer fields described in equation 6.21
is done in trazdf.F90 module.

6.4. External forcing
Changes in the heat and salt content of the ocean’s surface layer result from water mass exchanges between the
ocean and the atmosphere, land surfaces, icebergs or sea ice ( trasbc.F90 ). Runoff related fluxes are distributed
vertically. The assimilation module integrates the ocean model with observational data. When activated, it
is necessary to correct from the concentration and dilution effects associated with variations in sea surface
height. Changes due to water mass exchanges between the ocean and ice-shelves are managed in traisf.F90
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. Additionally, there is the solar flux, which requires special treatment as it penetrates deeper into the ocean,
necessitating the vertical distribution of the associated heat content ( traqsr.F90 ). NEMO can also account for
heating caused by geothermal flux ( trabbl.F90 ) across the seafloor.

6.4.1. Surface boundary condition ( trasbc.F90 )
The surface boundary condition for tracers is implemented in a separate module ( trasbc.F90 ) instead of entering
as a boundary condition on the vertical diffusion operator (as in the case of momentum). This has been found
to enhance readability of the code. The two formulations are completely equivalent; the forcing terms in trasbc
are the surface fluxes divided by the thickness of the top model layer.
Changes in heat content and salt content associated with surface mass fluxes are linked to exchanges with

the atmosphere (emp) and sea ice (freezing, melting, ridging, etc.). These are exclusively accounted for in the
non-solar surface flux (Qns) for heat content and in the surface salt flux (sfx) for salt content (see chapter 7 for
further details). This help since the forcing formulation is the same for any tracer (including temperature and
salinity). When ( ln_traqsr=.false. ), the solar flux is not distributed over the surface and is simply added
to the non-solar flux.
Changes in heat content and salt content associated with runoff (rnf ) when ln_rnf=.true. are distributed

vertically, requiring specific treatment, and are therefore handled separately.
The surface module ( sbcmod.F90 , see chapter 7) provides the following forcing fields (used on tracers):

Qns The non-solar part of the net surface heat flux that crosses the sea surface (i.e. the difference between
the total surface heat flux and the fraction of the short wave flux that penetrates into the water column,
see subsection 6.4.2) plus the heat content associated with of the mass exchange with the atmosphere and
lands.

sfx The salt flux resulting from ice-ocean mass exchange (freezing, melting, ridging...)

emp The mass flux exchanged with the atmosphere (evaporation minus precipitation) and possibly with the
sea-ice and icebergs.

rnf The mass flux associated with runoff (see section 7.9 for further detail of how it acts on temperature and
salinity tendencies)

In an RK3 environment, the first two stages focus solely on estimating advection, Coriolis, and pressure
gradient terms. The absence of vertical diffusion terms during these initial integrations justifies the exclusion of
salt and heat forcing. Indeed, it saves two calls of traqsr which is computationally expensive. However, for
compatibility with the continuity equation, it is necessary to account for mass flux forcing (emp) at the surface.
This change of mass at the first level should not impact the salt and temperature, so the first level must be
corrected from concentration and dilution effects.

FTkstg=1,2 = − emp
ρo e3t|k=1

T |k=1 FSkstg=1,2 = − emp
ρo e3t|k=1

S|k=1 (6.9)

At the last stage, the surface boundary condition on temperature and salinity is applied as follows:

FTkstg=3 =
1

Cp

1

ρo e3t|k=1

Qns FSkstg=3 =
1

ρo e3t|k=1

sfx (6.10)

In the linear free surface case ( key_linssh ), an additional terms correct both temperature and salinity at the
third stage only. On temperature, this term remove the heat content associated with mass exchange that has
been added to Qns. On salinity, this term mimics the concentration/dilution effect that would have resulted
from a change in the volume of the first level. As emp includes all the mass fluxes, resulting surface boundary
condition is applied as follows:

FTkstg=3 =
1

Cp

1

ρo e3t|k=1

(Qns + Cp emp T |k=1) FSkstg=3 =
1

ρo e3t|k=1

(sfx+ emp S|k=1) (6.11)

Note that an exact conservation of heat and salt content is only achieved with non-linear free surface. In the
linear free surface case, there is a small imbalance.

In a leapfrog environment, the surface boundary condition on temperature and salinity is applied as follows:

FT =
1

Cp

1

ρo e3t|k=1

Qns
t

FS =
1

ρo e3t|k=1

sfxt (6.12)
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!-----------------------------------------------------------------------
&namtra_qsr ! penetrative solar radiation (ln_traqsr =T)
!-----------------------------------------------------------------------

! ! type of penetration (default: NO selection)
ln_qsr_rgb = .false. ! RGB light penetration (Red-Green-Blue)
ln_qsr_2bd = .false. ! 2BD light penetration (two bands)
ln_qsr_5bd = .false. ! 5BD light penetration (IR-Red-Green-Blue-UV)
ln_qsr_bio = .false. ! bio-model light penetration
! ! RGB, 2BD & 5BD choices:
rn_abs = 0.58 ! RGB & 2BD: fraction absorbed in the very near surface
rn_si0 = 0.35 ! RGB & 2BD: shortess depth of extinction
nn_chldta = 0 ! RGB : 3D Chl data (=2), Surface Chl data (=1) or Cst value (=0)
rn_si1 = 23.0 ! 2BD : longest depth of extinction
rn_par = 0.47 ! 5BD : fraction of photosynthetically active radiation

cn_dir = './' ! root directory for the chlorophyll data location

!___________!_________________________!___________________!___________!_____________!________!___________!__________________!__________!_______________!↪→
! ! file name ! frequency (hours) ! variable ! time interp.! clim ! 'yearly'/ ! weights filename !
rotation ! land/sea mask !↪→

! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! !
pairing ! filename !↪→
sn_chl ='chlorophyll' , -1. , 'CHLA' , .true. , .true. , 'yearly' , '' ,
'' , ''↪→

/

namelist 6.3.: &namtra_qsr

where xt means that x is averaged over two consecutive time steps (t−∆t/2 and t+∆t/2). Such time averaging
prevents the divergence of odd and even time step (see chapter 2).

In the linear free surface case ( key_linssh ), an additional term has to be added on both temperature and
salinity. On temperature, this term remove the heat content associated with mass exchange that has been added
to Qns. On salinity, this term mimics the concentration/dilution effect that would have resulted from a change
in the volume of the first level. The resulting surface boundary condition is applied as follows:

FT =
1

Cp

1

ρo e3t|k=1

(Qns − Cp emp T |k=1)
t

FS =
1

ρo e3t|k=1

(sfx− emp S|k=1)
t (6.13)

Note that an exact conservation of heat and salt content is only achieved with non-linear free surface. In the
linear free surface case, there is a small imbalance. The imbalance is larger than the imbalance associated with
the Asselin time filter (Leclair and Madec, 2009). This is the reason why the modified filter is not applied in
the linear free surface case (see chapter 2).

6.4.2. Solar radiation penetration ( traqsr.F90 )
Options are defined through the &namtra_qsr (namelist 6.3) namelist variables. When the penetrative solar

radiation option is used ( ln_traqsr=.true. ), the solar radiation penetrates the top few tens of meters of the
ocean. If it is not used ( ln_traqsr=.false. ) all the heat flux is absorbed in the first ocean level. Thus, in
the former case a term is added to the time evolution equation of temperature equation 1.4b and the surface
boundary condition is modified to take into account only the non-penetrative part of the surface heat flux:

∂T

∂t
= . . .+

1

ρo Cp e3

∂I

∂k

Qns = QTotal −Qsr
(6.14)

where Qsr is the penetrative part of the surface heat flux (i.e. the shortwave radiation) and I is the downward
irradiance (I|z=η = Qsr). The additional term in equation 6.14 is discretized as follows:

1

ρo Cp e3

∂I

∂k
≡ 1

ρo Cp e3t
δk[Iw] (6.15)

The shortwave radiation, Qsr, consists of energy distributed across a wide spectral range. The ocean is
strongly absorbing for wavelengths longer than 700 nm and these wavelengths contribute to heat the upper
few tens of centimetres. The fraction of Qsr that resides in these almost non-penetrative wavebands, R, is ∼
58% (specified through namelist parameter rn_abs ). It is assumed to penetrate the ocean with a decreasing
exponential profile, with an e-folding depth scale, ξ0, of a few tens of centimetres (typically ξ0 = 0.35 m set
as rn_si0 in the &namtra_qsr (namelist 6.3) namelist). For shorter wavelengths (400-700 nm), the ocean is
more transparent, and solar energy propagates to larger depths where it contributes to local heating. The way
this second part of the solar energy penetrates into the ocean depends on which formulation is chosen. In the
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simple 2-waveband light penetration scheme ( ln_qsr_2bd=.true. ) a chlorophyll-independent monochromatic
formulation is chosen for the shorter wavelengths, leading to the following expression (Paulson and Simpson,
1977):

I(z) = Qsr

[
Re−z/ξ0 + (1−R)e−z/ξ1

]
where ξ1 is the second extinction length scale associated with the shorter wavelengths. It is usually chosen to
be 23 m by setting the rn_si0 namelist parameter. The set of default values (ξ0, ξ1, R) corresponds to a Type
I water in Jerlov’s (1968) classification (oligotrophic waters).
Such assumptions have been shown to provide a very crude and simplistic representation of observed light

penetration profiles (Morel (1988), see also figure 6.3). Light absorption in the ocean depends on particle
concentration and is spectrally selective. Morel (1988) has shown that an accurate representation of light
penetration can be provided by a 61 waveband formulation. Unfortunately, such a model is very computationally
expensive. Thus, Lengaigne et al. (2007) have constructed a simplified version of this formulation in which visible
light is split into three wavebands: blue (400-500 nm), green (500-600 nm) and red (600-700 nm). For each
wave-band, the chlorophyll-dependent attenuation coefficient is fitted to the coefficients computed from the full
spectral model of Morel (1988) (as modified by Morel and Maritorena (2001)), assuming the same power-law
relationship. As shown in figure 6.3, this formulation, called RGB (Red-Green-Blue), reproduces quite closely
the light penetration profiles predicted by the full spectal model, but with much greater computational efficiency.
The 2-bands formulation does not reproduce the full model very well.
The RGB formulation is used when ln_qsr_rgb=.true. . The RGB attenuation coefficients (i.e. the inverses

of the extinction length scales) are tabulated over 61 nonuniform chlorophyll classes ranging from 0.01 to 10
g.Chl/L (see the routine trc_oce_rgb in trc_oce.F90 module). Four types of chlorophyll can be chosen in
the RGB formulation:

nn_chldta=0 a constant 0.05 g.Chl/L value everywhere;

nn_chldta=1 an observed time varying chlorophyll deduced from satellite surface ocean color measurement
spread uniformly in the vertical direction;

nn_chldta=2 same as previous case except that a vertical profile of chlorophyl is used. Following Morel and
Berthon (1989), the profile is computed from the local surface chlorophyll value;

ln_qsr_bio=.true. simulated time varying chlorophyll by TOP biogeochemical model. In this case, the
RGB formulation is used to calculate both the phytoplankton light limitation in PISCES and the oceanic
heating rate.

A new 5-bands scheme is also available ( ln_qsr_5bd=.true. ). It is an extension of the RGB scheme
by adding a fifth ultra-violet component (UV) to the 4 other wavebands. As for the RGB scheme, the UV
waveband follows the same power-law as described in Morel (1988) and Morel and Maritorena (2001). The
chlorophyll-dependent attenuation coefficients are also derived from these articles. The proportion of each band
is set up in the namelist by using rn_abs to define the near-infrared proportion and rn_par to define the
visible proportion. The UV proportion is then simply determined by 1− rn_abs− rn_par.

The trend in equation 6.15 associated with the penetration of the solar radiation is added to the temperature
trend, and the surface heat flux is modified in routine traqsr.F90 .

When the z-coordinate is preferred to the s-coordinate, the depth of w−levels does not significantly vary with
location. The level at which the light has been totally absorbed (i.e. it is less than the computer precision)
is computed once, and the trend associated with the penetration of the solar radiation is only added down to
that level. Finally, note that when the ocean is shallow (< 200 m), part of the solar radiation can reach the
ocean floor. In this case, we have chosen that all remaining radiation is absorbed in the last ocean level (i.e. I
is masked).

6.4.3. Bottom boundary condition ( trabbc.F90 - ln_trabbc )
Usually, it is assumed that there is no heat or salt exchange across the ocean floor, i.e. a no-flux boundary

condition is applied to active tracers on the ocean floor. This is the default option in NEMO, which is imple-
mented using the masking technique. Nevertheless, there is a non-zero heat flux from the seabed associated
with solid earth cooling. This flux is small compared with surface fluxes (the global mean value is thought to
be close to 0.1 W m−2 (Stein and Stein, 1992)), but it continuously warms the ocean and acts on the densest
water masses. Including this flux in a global ocean model can increase the deepest overturning cell (i.e. the one
associated with the Antarctic Bottom Water) by a few Sverdrups (Emile-Geay and Madec, 2009). It should
be recalled that including geothermal heating also implies a persistent heat flux out of the surface ocean (and
ultimately through the top-of-atmosphere), even at steady state. The net heat flux out of the ocean induced by
geothermal forcing is focused in the Southern Ocean, where Antarctic Bottom Water is ultimately upwelled.
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Figure 6.3.: Penetration profile of the downward solar irradiance calculated by four models. Two waveband chlorophyll-independent
formulation (blue), a chlorophyll-dependent monochromatic formulation (green), 4 waveband RGB formulation (red),
61 waveband Morel (1988) formulation (black) for a chlorophyll concentration of (a) Chl=0.05 mg/m3 and (b) Chl=0.5
mg/m3. From Lengaigne et al. (2007).

!-----------------------------------------------------------------------
&nambbc ! bottom temperature boundary condition (default: OFF)
!-----------------------------------------------------------------------

ln_trabbc = .false. ! Apply a geothermal heating at the ocean bottom
nn_geoflx = 2 ! geothermal heat flux: = 1 constant flux
! ! = 2 read variable flux [mW/m2]
rn_geoflx_cst = 86.4e-3 ! Constant value of geothermal heat flux [mW/m2]

cn_dir = './' ! root directory for the geothermal data location

!___________!_________________________!___________________!___________!_____________!________!___________!__________________!__________!_______________!↪→
! ! file name ! frequency (hours) ! variable ! time interp.! clim ! 'yearly'/ ! weights filename !
rotation ! land/sea mask !↪→

! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! !
pairing ! filename !↪→
sn_qgh ='geothermal_heating.nc' , -12. , 'heatflow', .false. , .true. , 'yearly' , '' ,
'' , ''↪→

/

namelist 6.4.: &nambbc

Figure 6.4.: Geothermal heat flux (in mW m−2) estimated by Lucazeau (2019).
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!-----------------------------------------------------------------------
&nambbl ! bottom boundary layer scheme (default: OFF)
!-----------------------------------------------------------------------

ln_trabbl = .false. ! Bottom Boundary Layer parameterisation flag
nn_bbl_ldf = 1 ! diffusive bbl (=1) or not (=0)
nn_bbl_adv = 0 ! advective bbl (=1/2) or not (=0)
rn_ahtbbl = 1000. ! lateral mixing coefficient in the bbl [m2/s]
rn_gambbl = 10. ! advective bbl coefficient [s]

/

namelist 6.5.: &nambbl

The options for this heat exchange at the bottom of the ocean are defined in section &nambbc (namelist 6.4)
. The presence of geothermal heating is controlled by setting the namelist parameter ln_trabbc to true.
When nn_geoflx is set to 1, a constant geothermal heating is applied, the value of which is given by the
namelist parameter rn_geoflx_cst . When nn_geoflx is set to 2, a spatially varying geothermal heat flux
is applied, provided by a NetCDF file whose name is defined in the namelist section &nambbc (namelist 6.4) .
It is recommended to use the state-of-the-art estimate of geothermal heat fluxes by Lucazeau (2019), available
on NEMO global grids at https://doi.org/10.17882/103233. This estimate is illustrated in figure 6.4; the global
mean ocean value is 85 mW m−2 and the globally integrated flux is 31 TW.

6.5. Bottom boundary layer ( trabbl.F90 - ln_trabbl )
Options are defined through the &nambbl (namelist 6.5) namelist variables. In a z-coordinate configuration,

the bottom topography is represented by a series of discrete steps. This is not adequate to represent gravity
driven downslope flows. Such flows arise either downstream of sills such as the Strait of Gibraltar or Denmark
Strait, where dense water formed in marginal seas flows into a basin filled with less dense water, or along the
continental slope when dense water masses are formed on a continental shelf. The amount of entrainment that
occurs in these gravity plumes is critical in determining the density and volume flux of the densest waters
of the ocean, such as Antarctic Bottom Water, or North Atlantic Deep Water. z-coordinate models tend to
overestimate the entrainment, because the gravity flow is mixed vertically by convection as it goes ”downstairs”
following the step topography, sometimes over a thickness much larger than the thickness of the observed
gravity plume. A similar problem occurs in the s-coordinate when the thickness of the bottom level varies
rapidly downstream of a sill (Willebrand et al., 2001), and the thickness of the plume is not resolved.
The idea of the bottom boundary layer (BBL) parameterisation, first introduced by Beckmann and Döscher

(1997), is to allow a direct communication between two adjacent bottom cells at different levels, whenever the
densest water is located above the less dense water. The communication can be by a diffusive flux (diffusive
BBL), an advective flux (advective BBL), or both. In the current implementation of the BBL, only the tracers
are modified, not the velocities. Furthermore, it only connects ocean bottom cells, and therefore does not
include all the improvements introduced by Campin and Goosse (1999).

6.5.1. Diffusive bottom boundary layer ( nn_bbl_ldf=1 )
When applying sigma-diffusion ( ln_trabbl=.true. and nn_bbl_ldf set to 1), the diffusive flux between
two adjacent cells at the ocean floor is given by

Fσ = Aσl ∇σT

with ∇σ the lateral gradient operator taken between bottom cells, and Aσl the lateral diffusivity in the BBL. Fol-
lowing Beckmann and Döscher (1997), the latter is prescribed with a spatial dependence, i.e. in the conditional
form

Aσl (i, j, t) =

{
Abbl if ∇σρ · ∇H < 0

0 otherwise
(6.16)

where Abbl is the BBL diffusivity coefficient, given by the namelist parameter rn_ahtbbl and usually set to
a value much larger than the one used for lateral mixing in the open ocean. The constraint in equation 6.16
implies that sigma-like diffusion only occurs when the density above the sea floor, at the top of the slope, is
larger than in the deeper ocean (see green arrow in figure 6.5). In practice, this constraint is applied separately
in the two horizontal directions, and the density gradient in equation 6.16 is evaluated with the log gradient
formulation:

∇σρ/ρ = α∇σT + β∇σS
where ρ, α and β are functions of T σ, Sσ and H

σ, the along bottom mean temperature, salinity and depth,
respectively.
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Figure 6.5.: Advective/diffusive Bottom Boundary Layer. The BBL parameterisation is activated when ρikup is larger than ρi+1
kdnw.

Red arrows indicate the additional overturning circulation due to the advective BBL. The transport of the downslope
flow is defined either as the transport of the bottom ocean cell (black arrow), or as a function of the along slope density
gradient. The green arrow indicates the diffusive BBL flux directly connecting kup and kdwn ocean bottom cells.

6.5.2. Advective bottom boundary layer ( nn_bbl_adv=1,2 )
When applying an advective BBL ( nn_bbl_adv=1..2 ), an overturning circulation is added which connects two
adjacent bottom grid-points only if dense water overlies less dense water on the slope. The density difference
causes dense water to move down the slope.

nn_bbl_adv=1 the downslope velocity is chosen to be the Eulerian ocean velocity just above the topographic
step (see black arrow in figure 6.5) (Beckmann and Döscher, 1997). It is a conditional advection, that is,
advection is allowed only if dense water overlies less dense water on the slope (i.e. ∇σρ · ∇H < 0) and if
the velocity is directed towards greater depth (i.e. U · ∇H > 0).

nn_bbl_adv=2 the downslope velocity is chosen to be proportional to ∆ρ, the density difference between the
higher cell and lower cell densities (Campin and Goosse, 1999). The advection is allowed only if dense
water overlies less dense water on the slope (i.e. ∇σρ · ∇H < 0). For example, the resulting transport of
the downslope flow, here in the i-direction (figure 6.5), is simply given by the following expression:

utrbbl = γg
∆ρ

ρo
e1umin(e3ukup, e3ukdwn)

where γ, expressed in seconds, is the coefficient of proportionality provided as rn_gambbl , a namelist
parameter, and kup and kdwn are the vertical index of the higher and lower cells, respectively. The
parameter γ should take a different value for each bathymetric step, but for simplicity, and because no
direct estimation of this parameter is available, a uniform value has been assumed. The possible values
for γ range between 1 and 10 s (Campin and Goosse, 1999).

Scalar properties are advected by this additional transport (utrbbl, v
tr
bbl) using the upwind scheme. Such a

diffusive advective scheme has been chosen to mimic the entrainment between the downslope plume and the
surrounding water at intermediate depths. The entrainment is replaced by the vertical mixing implicit in the
advection scheme. Let us consider as an example the case displayed in figure 6.5 where the density at level
(i, kup) is larger than the one at level (i, kdwn). The advective BBL scheme modifies the tracer time tendency
of the ocean cells near the topographic step by the downslope flow equation 6.17, the horizontal equation 6.18
and the upward equation 6.19 return flows as follows:

∂tT
do
kdw ≡ ∂tT dokdw +

utrbbl
bt
do
kdw

(
T shkup − T dokdw

)
(6.17)

∂tT
sh
kup ≡ ∂tT shkup +

utrbbl
bt
sh
kup

(
T dokup − T shkup

)
(6.18)

and for k = kdw − 1, ..., kup :

∂tT
do
k ≡ ∂tSdok +

utrbbl
bt
do
k

(
T dok+1 − T shk

)
(6.19)
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!-----------------------------------------------------------------------
&namtra_dmp ! tracer: T & S newtonian damping (default: OFF)
!-----------------------------------------------------------------------

ln_tradmp = .false. ! add a damping term (using resto.nc coef.)
nn_zdmp = 0 ! vertical shape =0 damping throughout the water column
! ! =1 no damping in the mixing layer (kz criteria)
! ! =2 no damping in the mixed layer (rho crieria)
cn_resto = 'resto.nc' ! Name of file containing restoration coeff. field (use dmp_tools to create this)

/

namelist 6.6.: &namtra_dmp

where bt is the T -cell volume.
Note that the BBL transport, (utrbbl, vtrbbl), is available in the model outputs. It has to be used to compute the

effective velocity as well as the effective overturning circulation.

6.6. Tracer damping ( tradmp.F90 )
In some applications it can be useful to add a Newtonian damping term to the temperature and salinity

equations :
∂T

∂t
= · · · − γ(T − To)

∂S

∂t
= · · · − γ(S − So) (6.20)

where γ is the inverse of a time scale, and To and So are given temperature and salinity fields (usually a
climatology). Options are defined in the namelist section &namtra_dmp (namelist 6.6) . The restoring term is
added when the namelist parameter ln_tradmp is set to true. It also requires that both ln_tsd_init and
ln_tsd_dmp are set to true in the namelist section &namtsd (namelist 2.2) and that sn_tem and sn_sal
structures are correctly defined (i.e. that To and So are provided in input files and read using fldread.F90 , see
subsection 7.2.1). The restoring coefficient γ is a three-dimensional array read in the tra_dmp_init routine.
The file name is specified by the namelist variable cn_resto . The DMP_TOOLS are provided to allow users to
generate the netcdf file.
The two main cases in which equation 6.20 is used are (a) the specification of the boundary conditions along

the artificial walls of a limited-domain basin, and (b) the computation of the velocity field associated with a
given T -S field (e.g. to build the initial state of a prognostic simulation, or to use the resulting velocity field for
a passive tracer study). The first case applies to regional models with artificial walls instead of open boundaries.
In the vicinity of these walls, γ takes on large values (equivalent to a time scale of a few days), whereas it is zero
inside the model domain. The second case corresponds to the use of the robust diagnostic method (Sarmiento
and Bryan, 1982). It allows us to find the velocity field consistent with the model dynamics, while keeping a T ,
S field close to a given climatological field (To, So).

The robust diagnostic method is very efficient in preventing temperature drift in intermediate waters, but it
produces artificial sources of heat and salt in the ocean. It also has undesirable effects on the ocean convection.
It tends to prevent deep convection and the subsequent formation of deep-waters by over-stabilising the water
column.

The namelist parameter nn_zdmp determines whether damping should be applied throughout the water
column or only below the mixed layer (defined either by a density or So criterion). It is common to set the
damping to zero in the mixed layer, as the adjustment time scale there is short (Madec et al., 1996).

For generating resto.nc, see the documentation for the DMP tools supplied with the source code under
./tools/DMP_TOOLS.

6.7. Tracer time evolution ( traatf.F90 )
Options are defined through the &namdom (namelist 3.2) namelist variables. The general framework for tracer
time stepping is a modified leap-frog scheme (Leclair and Madec, 2009), i.e. a three level centred time scheme
associated with a Asselin time filter (cf. subsection 2.2.3):

(e3tT )
t+∆t = (e3tT )

t−∆t
f + 2∆t et3t RHSt

(e3tT )
t
f = (e3tT )

t + γ
[
(e3tT )

t−∆t
f − 2(e3tT )

t + (e3tT )
t+∆t

]
− γ∆t

[
Qt+∆t/2 −Qt−∆t/2

] (6.21)

where RHS is the right hand side of the temperature equation, the subscript f denotes filtered values, γ is the
Asselin coefficient, and S is the total forcing applied on T (i.e. fluxes plus content in mass exchanges). γ is
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!-----------------------------------------------------------------------
&nameos ! ocean Equation Of Seawater (default: NO selection)
!-----------------------------------------------------------------------

ln_teos10 = .false. ! = Use TEOS-10
ln_eos80 = .false. ! = Use EOS80
ln_seos = .false. ! = Use S-EOS (simplified Eq.)

!
! ! S-EOS coefficients (ln_seos=T):
! ! rd(T,S,Z)*rho0 = -a0*(1+.5*lambda*dT+mu*Z+nu*dS)*dT+b0*dS
! ! dT = T-rn_T0 ; dS = S-rn_S0
rn_T0 = 10. ! reference temperature
rn_S0 = 35. ! reference salinity
rn_a0 = 1.6550e-1 ! thermal expension coefficient
rn_b0 = 7.6554e-1 ! saline expension coefficient
rn_lambda1 = 5.9520e-2 ! cabbeling coeff in T^2 (=0 for linear eos)
rn_lambda2 = 7.4914e-4 ! cabbeling coeff in S^2 (=0 for linear eos)
rn_mu1 = 1.4970e-4 ! thermobaric coeff. in T (=0 for linear eos)
rn_mu2 = 1.1090e-5 ! thermobaric coeff. in S (=0 for linear eos)
rn_nu = 2.4341e-3 ! cabbeling coeff in T*S (=0 for linear eos)

/

namelist 6.7.: &nameos

initialized as rn_atfp , its default value is 10.e-3. Note that the forcing correction term in the filter is not
applied in linear free surface ( key_linssh ) (see subsection 6.4.1). Not also that in constant volume case, the
time stepping is performed on T , not on its content, e3tT .
Vertical mixing is always solved implicitly, with updates to the next tracer fields handled in the trazdf.F90

module. The array swapping and Asselin filtering are performed in the traatf.F90 module.
In order to prepare for the computation of the next time step, a swap of tracer arrays is performed: T t−∆t = T t

and T t = Tf .

6.8. Equation of state ( eosbn2.F90 )

6.8.1. Equation of seawater ( ln_teos10 , ln_teos80 , or ln_seos )
The Equation Of Seawater (EOS) is an empirical nonlinear thermodynamic relationship linking seawater den-
sity, ρ, to a number of state variables, most typically temperature, salinity and pressure. Because density
gradients control the pressure gradient force through the hydrostatic balance, the equation of state provides
a fundamental bridge between the distribution of active tracers and the fluid dynamics. Nonlinearities of the
EOS are of major importance, in particular influencing the circulation through determination of the static sta-
bility below the mixed layer, thus controlling rates of exchange between the atmosphere and the ocean interior
(Roquet et al., 2015a). Therefore an accurate EOS based on either the 1980 equation of state (EOS-80, Fofonoff
and Millard (1983)) or TEOS-10 (IOC and IAPSO, 2010) standards should be used anytime a simulation of
the real ocean circulation is attempted (Roquet et al., 2015a). The use of TEOS-10 is highly recommended
because (i) it is the new official EOS, (ii) it is more accurate, being based on an updated database of laboratory
measurements, and (iii) it uses Conservative Temperature and Absolute Salinity (instead of potential tempera-
ture and practical salinity for EOS-80), both variables being more suitable for use as model variables (IOC and
IAPSO, 2010; Graham and McDougall, 2013). EOS-80 is an obsolescent feature of the NEMO system, kept
only for backward compatibility. For process studies, it is often convenient to use an approximation of the EOS.
To that purposed, a simplified EOS (S-EOS) inspired by Vallis (2006) is also available.

In the computer code, a density anomaly, da = ρ/ρo − 1, is computed, with ρo a reference density. Called
rho0 in the code, ρo is set in phycst.F90 to a value of 1,026 Kg/m3. This is a sensible choice for the reference
density used in a Boussinesq ocean climate model, as, with the exception of only a small percentage of the
ocean, density in the World Ocean varies by no more than 2% from that value (Gill, 1982).

Options which control the EOS used are defined through the &nameos (namelist 6.7) namelist variables.

ln_teos10=.true. the polyTEOS10-bsq equation of seawater (Roquet et al., 2015b) is used. The accuracy
of this approximation is comparable to the TEOS-10 rational function approximation, but it is optimized
for a Boussinesq fluid and the polynomial expressions have simpler and more computationally efficient
expressions for their derived quantities which make them more adapted for use in ocean models. Note
that a slightly higher precision polynomial form is now used replacement of the TEOS-10 rational function
approximation for hydrographic data analysis (IOC and IAPSO, 2010). A key point is that conservative
state variables are used: Absolute Salinity (unit: g/kg, notation: SA) and Conservative Temperature (unit:
◦C, notation: Θ). The pressure in decibars is approximated by the depth in meters. With TEOS10, the
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coeff. computer name S-EOS description
a0 rn_a0 1.6550 10−1 linear thermal expansion coeff.
b0 rn_b0 7.6554 10−1 linear haline expansion coeff.
λ1 rn_lambda1 5.9520 10−2 cabbeling coeff. in T 2

λ2 rn_lambda2 5.4914 10−4 cabbeling coeff. in S2

ν rn_nu 2.4341 10−3 cabbeling coeff. in T S
µ1 rn_mu1 1.4970 10−4 thermobaric coeff. in T
µ2 rn_mu2 1.1090 10−5 thermobaric coeff. in S

Table 6.1.: Standard value of S-EOS coefficients

specific heat capacity of sea water, Cp, is a constant. It is set to Cp = 3991.86795711963 J.Kg−1.◦K−1,
according to IOC and IAPSO (2010). Choosing polyTEOS10-bsq implies that the state variables used
by the model are Θ and SA. In particular, the initial state defined by the user have to be given as
Conservative Temperature and Absolute Salinity. In addition, when using TEOS10, the Conservative SST
is converted to potential SST prior to either computing the air-sea and ice-sea fluxes (forced mode) or
sending the SST field to the atmosphere (coupled mode).

ln_eos80=.true. the polyEOS80-bsq equation of seawater is used. It takes the same polynomial form as
the polyTEOS10, but the coefficients have been optimized to accurately fit EOS80 (Roquet, personal
comm.). The state variables used in both the EOS80 and the ocean model are: the Practical Salinity
(unit: psu, notation: Sp) and Potential Temperature (unit: ◦C, notation: θ). The pressure in decibars is
approximated by the depth in meters. With EOS, the specific heat capacity of sea water, Cp, is a function
of temperature, salinity and pressure (Fofonoff and Millard, 1983). Nevertheless, a severe assumption is
made in order to have a heat content (CpTp) which is conserved by the model: Cp is set to a constant
value, the TEOS10 value.

ln_seos=.true. a simplified EOS (S-EOS) inspired by Vallis (2006) is chosen, the coefficients of which has
been optimized to fit the behavior of TEOS10 (Roquet, personal comm.) (see also Roquet et al. (2015a)).
It provides a simplistic linear representation of both cabbeling and thermobaricity effects which is enough
for a proper treatment of the EOS in theoretical studies (Roquet et al., 2015a). With such an equation of
state there is no longer a distinction between conservative and potential temperature, as well as between
absolute and practical salinity. S-EOS takes the following expression:

da(T, S, z) =
1

ρo

[
− a0 (1 + 0.5 λ1 Ta + µ1 z) ∗ Ta + b0 (1− 0.5 λ2 Sa − µ2 z) ∗ Sa − ν TaSa

]
with Ta = T − 10 ; Sa = S − 35 ; ρo = 1026 Kg/m3

where the computer name of the coefficients as well as their standard value are given in table 6.1. In fact,
when choosing S-EOS, various approximation of EOS can be specified simply by changing the associated
coefficients. Setting to zero the two thermobaric coefficients (µ1, µ2) remove thermobaric effect from
S-EOS. Setting to zero the three cabbeling coefficients (λ1, λ2, ν) remove cabbeling effect from S-EOS.
Keeping non-zero value to a0 and b0 provide a linear EOS function of T and S.

6.8.2. Brunt-Väisälä frequency
An accurate computation of the ocean stability (i.e. of N , the Brunt-Väisälä frequency) is of paramount
importance as determine the ocean stratification and is used in several ocean parameterisations (namely TKE,
GLS, Richardson number dependent vertical diffusion, enhanced vertical diffusion, non-penetrative convection,
tidal mixing parameterisation, iso-neutral diffusion). In particular, N2 has to be computed at the local pressure
(pressure in decibar being approximated by the depth in meters). The expression for N2 is given by:

N2 =
g

e3w

(
β δk+1/2[S]− α δk+1/2[T ]

)
where (T, S) = (Θ, SA) for TEOS10, (θ, Sp) for TEOS-80, or (T, S) for S-EOS, and, α and β are the thermal
and haline expansion coefficients. The coefficients are a polynomial function of temperature, salinity and depth
which expression depends on the chosen EOS. They are computed through eos_rab, a Fortran function that
can be found in eosbn2.F90 .
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6.8.3. Freezing point of seawater
The freezing point of seawater is a function of salinity and pressure (Fofonoff and Millard, 1983):

Tf (S, p) =
(
a+ b

√
S + c S

)
S + d p

where a = −0.0575, b = 1.710523 10−3, c = −2.154996 10−4and d = −7.53 10−3
(6.22)

equation 6.22 is only used to compute the potential freezing point of sea water (i.e. referenced to the surface
p = 0), thus the pressure dependent terms in equation 6.22 (last term) have been dropped. The freezing point
is computed through eos_fzp, a Fortran function that can be found in eosbn2.F90 .

6.9. Wave induced transport
The Stokes drift is a wave-driven mechanism that results in the net transport of mass and momentum, defined
as the difference between the motion of a fluid parcel (Lagrangian velocity) and the flow observed at a fixed
point (Eulerian velocity). Due to the asymmetry in the orbital paths of water particles, a net forward motion
occurs. Further details are available in subsection 7.10.3.
Incorporating Stokes drift is critical for improving ocean circulation models. Notably, the tracer advection

equation is modified to allow Eulerian ocean models to account for unresolved wave effects.
When simulating waves ln_wave and activating Stokes drift effect ln_sdw three-dimensional Stokes velocity

is merely added to the tracers advective transports by tra_adv_trp , a Fortran function that can be found
in traadv.F90 . Since horizontal velocities are modified, the vertical velocity requires to be recomputed.
The divergence of the wave tracer flux equals the mean tracer advection induced by the three-dimensional

Stokes velocity, ensuring the consistence between the continuity equation and tracers evolution equations. Thus
the barotropic divergence requires to take the stoke drift divergence into account.
Note that Stoke drift velocity also contributes to the shear computation, the Coriolis term (see subsec-

tion 7.10.4). It is also used to compute the vortex force added to the relative vorticity term in the Vector
Invariant Formulation of the momentum equations (see subsection 7.10.5).

6.10. Internal wave filtering
Internal gravity waves can sometimes disrupt an experiment by making the model unstable, restricting the
usable time step, or enhancing undesirable vertical mixing. They can also introduce complex frequencies that
complicate result analysis.
The studies by (Brown and Campana, 1978) and Shuman (1971) demonstrate that applying a time-averaging

technique to the pressure term can mitigate the impact of these waves, thereby allowing the maximum time
step to be reached without causing instabilities linked to internal gravity waves. It is equivalent to time-average
the pressure term in the momentum right hand side equations and the time integrated transports. In NEMO ,
for sake of simplicity, we retain the second option. When ln_shuman=.true. transports are time-averaged in
tra_adv_trp , a Fortran function that can be found in traadv.F90 . Since horizontal velocities are modified,
the vertical velocity requires to be recomputed.
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Chap. 7 Surface Boundary Condition (SBC, SAS, TDE)

!-----------------------------------------------------------------------
&namsbc ! Surface Boundary Condition manager (default: NO selection)
!-----------------------------------------------------------------------

nn_fsbc = 2 ! frequency of SBC module call
! ! (control sea-ice & iceberg model call)

! Type of air-sea fluxes
ln_usr = .false. ! user defined formulation (T => check usrdef_sbc)
ln_flx = .false. ! flux formulation (T => fill namsbc_flx )
ln_blk = .false. ! Bulk formulation (T => fill namsbc_blk )
ln_abl = .false. ! ABL formulation (T => fill namsbc_abl )

! ! Type of coupling (Ocean/Ice/Atmosphere) :
ln_cpl = .false. ! atmosphere coupled formulation ( requires key_oasis3 )
ln_mixcpl = .false. ! forced-coupled mixed formulation ( requires key_oasis3 )
nn_components = 0 ! configuration of the opa-sas OASIS coupling

! ! =0 no opa-sas OASIS coupling: default single executable config.
! ! =1 opa-sas OASIS coupling: multi executable config., OCE component
! ! =2 opa-sas OASIS coupling: multi executable config., SAS component

! Sea-ice :
nn_ice = 0 ! =0 no ice boundary condition

! ! =1 use observed ice-cover ( => fill namsbc_iif )
! ! =2 or 3 for SI3 and CICE, respectively

ln_ice_embd = .false. ! =T embedded sea-ice (pressure + mass and salt exchanges)
! ! =F levitating ice (no pressure, mass and salt exchanges)

! Misc. options of sbc :
ln_traqsr = .false. ! Light penetration in the ocean (T => fill namtra_qsr)
ln_dm2dc = .false. ! daily mean to diurnal cycle on short wave
ln_ssr = .false. ! Sea Surface Restoring on T and/or S (T => fill namsbc_ssr)
nn_fwb = 0 ! FreshWater Budget: =0 unchecked

! ! =1 volume set to zero at each time step
! ! =2 volume adjusted from previous year budget (uniform correction to emp)
! ! =3 volume adjusted from previous year budget (non-uniform correction - proportional to erp)
! ! =4 special treatment for ISOMIP+ test case

ln_rnf = .false. ! runoffs (T => fill namsbc_rnf)
ln_apr_dyn = .false. ! Patm gradient added in ocean & ice Eqs. (T => fill namsbc_apr )
ln_wave = .false. ! Activate coupling with wave (T => fill namsbc_wave)
nn_lsm = 0 ! =0 land/sea mask for input fields is not applied (keep empty land/sea mask filename field) ,

! =1:n number of iterations of land/sea mask application for input fields (fill land/sea mask
filename field)↪→

/

namelist 7.1.: &namsbc

The ocean needs seven fields as surface boundary condition:

• the two components of the surface ocean stress (τu , τv)

• the incoming solar and non solar heat fluxes (Qns , Qsr)

• the surface freshwater budget (emp)

• the surface salt flux associated with freezing/melting of seawater (sfx)

• the atmospheric pressure at the ocean surface (pa)

Five different ways are available to provide these fields to the ocean. They are controlled by namelist &namsbc
(namelist 7.1) variables:

• a bulk formulation (section 7.4), featuring a selection of six bulk parameterization algorithms,

• an atmospheric boundary layer model (section 7.5) associated with the bulk formulation,

• a flux formulation (section 7.3),

• a coupled or mixed forced/coupled formulation (exchanges with an atmospheric model via the OASIS
coupler)(section 7.6),

• a user defined formulation ( ln_usr=.true. ).

The frequency at which the forcing fields have to be updated is given by the nn_fsbc namelist parameter.
When the fields are supplied from data files (bulk, abl, flux and mixed formulations), the input fields do not

need to be supplied on the model grid. Instead, a file of coordinates and weights can be supplied to map the
data from the input fields grid to the model points (so called ”Interpolation on the Fly”, see subsection 7.2.2).
If the ”Interpolation on the Fly” option is used, input data belonging to land points (in the native grid) should
be masked or filled to avoid spurious results in proximity of the coasts, as large sea-land gradients characterize
most of the atmospheric variables.
In addition, the resulting fields can be further modified using several namelist options. These options control:
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Variable description Model variable Units point
i-component of the surface current ssu_m m.s−1 U
j-component of the surface current ssv_m m.s−1 V
Sea surface temperature sst_m  ̊K T
Sea surface salinty sss_m psu T

Table 7.1.: Ocean variables provided to the surface module (SBC). The variable are averaged over nn_fsbc time-step, i.e. the
frequency of computation of surface fluxes.

• the rotation of vector components supplied relative to an east-north coordinate system onto the local grid
directions in the model (subsection 7.11.2),

• the use of a land/sea mask for input fields (subsection 7.2.2),

• the addition of a surface restoring term to observed SST and/or SSS (subsection 7.11.3),

• the modification of fluxes below ice-covered areas (using climatological ice-cover or a sea-ice model) (sub-
section 7.11.4),

• the addition of river runoffs as surface freshwater fluxes or lateral inflow (section 7.9),

• the addition of iceberg melting as surface freshwater flux and latent heat flux (section 8.2),

• the addition of a freshwater flux adjustment in order to avoid a mean sea-level drift (subsection 7.11.5),

• the transformation of the solar radiation (if provided as daily mean) into an analytical diurnal cycle
(subsection 7.11.1),

• the activation of wave effects from an external wave model (section 7.10),

• the light penetration in the ocean (subsection 6.4.2),

• the atmospheric surface pressure gradient effect on ocean and ice dynamics (section 7.7),

• the effect of sea-ice pressure on the ocean ( ln_ice_embd=.true. ).

In this chapter, we first discuss where the surface boundary conditions appear in the model equations. Then
we present the four ways of providing the surface boundary conditions, followed by the description of the
atmospheric pressure and the river runoff. Next, the scheme for interpolation on the fly is described. Finally,
the different options that further modify the fluxes applied to the ocean are discussed.

7.1. Surface boundary condition for the ocean
The surface ocean stress is the stress exerted by the wind and the sea-ice on the ocean. It is applied in
dynzdf.F90 module as a surface boundary condition of the computation of the momentum vertical mixing
trend (see equation 5.19 in section 5.7). As such, it has to be provided as a 2D vector interpolated onto the
horizontal velocity ocean mesh, i.e. resolved onto the model (i,j) direction at u- and v-points.
The surface heat flux is decomposed into two parts, a non solar and a solar heat flux, Qns andQsr, respectively.

The former is the non penetrative part of the heat flux (i.e. the sum of sensible, latent and long wave heat fluxes
plus the heat content of the mass exchange between the ocean and sea-ice). It is applied in trasbc.F90 module
as a surface boundary condition trend of the first level temperature time evolution equation (see equation 6.12
and equation 6.13 in subsection 6.4.1). The latter is the penetrative part of the heat flux. It is applied as a
3D trend of the temperature equation ( traqsr.F90 module) when ln_traqsr=.true. . The way the light
penetrates inside the water column is generally a sum of decreasing exponentials (see subsection 6.4.2).

The surface freshwater budget is provided by the emp field. It represents the mass flux exchanged with the
atmosphere (evaporation minus precipitation) and possibly with the sea-ice and icebergs (freezing minus melting
of ice). It affects the ocean in two different ways: (i) it changes the volume of the ocean, and therefore appears
in the sea surface height equation as a volume flux, and (ii) it changes the surface temperature and salinity
through the heat and salt contents of the mass exchanged with atmosphere, sea-ice and icebergs.
The ocean model provides, at each time step, to the surface module ( sbcmod.F90 ) the surface currents,

temperature and salinity. These variables are averaged over nn_fsbc time-step (table 7.1), and these averaged
fields are used to compute the surface fluxes at the frequency of nn_fsbc time-steps.
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7.2. Input data generic interface
A generic interface has been introduced to manage the way input data (2D or 3D fields, like surface forcing or
ocean T and S) are specified in NEMO. This task is achieved by fldread.F90 . The module is designed with
four main objectives in mind:

1. optionally provide a time interpolation of the input data every specified model time-step, whatever their
input frequency is, and according to the different calendars available in the model.

2. optionally provide an on-the-fly space interpolation from the native input data grid to the model grid.

3. make the run duration independent from the period cover by the input files.

4. provide a simple user interface and a rather simple developer interface by limiting the number of prereq-
uisite informations.

As a result, the user has only to fill in for each variable a structure in the namelist file to define the input
data file and variable names, the frequency of the data (in hours or months), whether its is climatological data
or not, the period covered by the input file (one year, month, week or day), and three additional parameters
for the on-the-fly interpolation. When adding a new input variable, the developer has to add the associated
structure in the namelist, read this information by mirroring the namelist read in sbc_blk_init for example,
and simply call fld_read to obtain the desired input field at the model time-step and grid points.

The only constraints are that the input file is a NetCDF file, the file name follows a nomenclature (see
subsection 7.2.1), the period it cover is one year, month, week or day, and, if on-the-fly interpolation is used, a
file of weights must be supplied (see subsection 7.2.2).

Note that when an input data is archived on a disc which is accessible directly from the workspace where the
code is executed, then the user can set the cn_dir to the pathway leading to the data. By default, the data
are assumed to be in the same directory as the executable, so that cn_dir=’./’.

7.2.1. Input data specification ( fldread.F90 )
The structure associated with an input variable contains the following information:

! file name ! frequency (hours) ! variable ! time interp. ! clim ! 'yearly'/ ! weights ! rotation ! land/sea mask !
! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! filename ! pairing ! filename !

where

File name : the stem name of the NetCDF file to be opened. This stem will be completed automatically by
the model, with the addition of a ’.nc’ at its end and by date information and possibly a prefix (when
using AGRIF). table 7.2 provides the resulting file name in all possible cases according to whether it is a
climatological file or not, and to the open/close frequency (see below for definition).

daily or weekLLL monthly yearly
clim=.false. fn_yYYYYmMMdDD.nc fn_yYYYYmMM.nc fn_yYYYY.nc
clim=.true. not possible fn_m??.nc fn

Table 7.2.: Naming nomenclature for climatological or interannual input file, as a function of the open/close frequency. The stem
name is assumed to be ’fn’. For weekly files, the ’LLL’ corresponds to the first three letters of the first day of the week (i.e.
’sun’,’sat’,’fri’,’thu’,’wed’,’tue’,’mon’). The ’YYYY’, ’MM’ and ’DD’ should be replaced by the actual year/month/day,
always coded with 4 or 2 digits. Note that (1) in mpp, if the file is split over each subdomain, the suffix ’.nc’ is replaced
by ’_PPPP.nc’, where ’PPPP’ is the process number coded with 4 digits; (2) when using AGRIF, the prefix ’_N’ is
added to files, where ’N’ is the child grid number.

Record frequency : the frequency of the records contained in the input file. Its unit is in hours if it is positive
(for example 24 for daily forcing) or in months if negative (for example -1 for monthly forcing or -12
for annual forcing). Note that this frequency must REALLY be an integer and not a real. On some
computers, setting it to ’24.’ can be interpreted as 240!

Variable name : the name of the variable to be read in the input NetCDF file.

Time interpolation : a logical to activate, or not, the time interpolation. If set to ’false’, the forcing will
have a steplike shape remaining constant during each forcing period. For example, when using a daily
forcing without time interpolation, the forcing remaining constant from 00h00’00” to 23h59’59”. If set
to ’true’, the forcing will have a broken line shape. Records are assumed to be dated at the middle of
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the forcing period. For example, when using a daily forcing with time interpolation, linear interpolation
will be performed between mid-day of two consecutive days. If you want to change this behaviour, it is
possible to prepend the variable name with a ’-’ or a ’+’ sign. In the first case, the records will be dated
at the beginning of the forcing period, while in the second case, the records will be dated at the end of
the forcing period.

Climatological forcing : a logical to specify if an input file contains climatological forcing which can be cycle in
time, or an interannual forcing which will requires additional files if the period covered by the simulation
exceeds the one of the file. See the above file naming strategy which impacts the expected name of the
file to be opened.

Open/close frequency : the frequency at which forcing files must be opened/closed. Four cases are coded:
’daily’, ’weekLLL’ (with ’LLL’ the first 3 letters of the first day of the week), ’monthly’ and ’yearly’ which
means the forcing files will contain data for one day, one week, one month or one year. Files are assumed
to contain data from the beginning of the open/close period. For example, the first record of a yearly file
containing daily data is Jan 1st even if the experiment is not starting at the beginning of the year.

Others : ’weights filename’, ’pairing rotation’ and ’land/sea mask’ are associated with on-the-fly interpolation
which is described in subsection 7.2.2.

Additional remarks:
(1) The time interpolation is a simple linear interpolation between two consecutive records of the input data.
The only tricky point is therefore to specify the date at which we need to do the interpolation and the date of
the records read in the input files. Following Leclair and Madec (2009), the date of a time step is set at the
middle of the time step. For example, for an experiment starting at 0h00’00” with a one-hour time-step, a time
interpolation will be performed at the following time: 0h30’00”, 1h30’00”, 2h30’00”, etc. However, for forcing
data related to the surface module, values are not needed at every time-step but at every nn_fsbc time-step.
For example with nn_fsbc=3 , the surface module will be called at time-steps 1, 4, 7, etc. The date used for
the time interpolation is thus redefined to the middle of nn_fsbc time-step period. In the previous example,
this leads to: 1h30’00”, 4h30’00”, 7h30’00”, etc.
(2) For code readablility and maintenance issues, we don’t take into account the NetCDF input file calendar.
The calendar associated with the forcing field is build according to the information provided by user in the record
frequency, the open/close frequency and the type of temporal interpolation. For example, the first record of a
yearly file containing daily data that will be interpolated in time is assumed to start Jan 1st at 12h00’00” and
end Dec 31st at 12h00’00”.
(3) If a time interpolation is requested, the code will pick up the needed data in the previous (next) file when
interpolating data with the first (last) record of the open/close period. For example, if the input file specifications
are ”yearly, containing daily data to be interpolated in time”, the values given by the code between 00h00’00”
and 11h59’59” on Jan 1st will be interpolated values between Dec 31st 12h00’00” and Jan 1st 12h00’00”. If
the forcing is climatological, Dec and Jan will be keep-up from the same year. However, if the forcing is not
climatological, at the end of the open/close period, the code will automatically close the current file and open
the next one. Note that, if the experiment is starting (ending) at the beginning (end) of an open/close period,
we do accept that the previous (next) file is not existing. In this case, the time interpolation will be performed
between two identical values. For example, when starting an experiment on Jan 1st of year Y with yearly files
and daily data to be interpolated, we do accept that the file related to year Y-1 is not existing. The value of
Jan 1st will be used as the missing one for Dec 31st of year Y-1. If the file of year Y-1 exists, the code will read
its last record. Therefore, this file can contain only one record corresponding to Dec 31st, a useful feature for
user considering that it is too heavy to manipulate the complete file for year Y-1.

7.2.2. Interpolation on-the-fly
Interpolation on the Fly allows the user to supply input files required for the surface forcing on grids other than
the model grid. To do this, he or she must supply, in addition to the source data file(s), a file of weights to
be used to interpolate from the data grid to the model grid. The original development of this code used the
SCRIP package (freely available here under a copyright agreement). In principle, any package such as CDO
can be used to generate the weights, but the variables in the input weights file must have the same names and
meanings as assumed by the model. Two methods are currently available: bilinear and bicubic interpolations.
Prior to the interpolation, providing a land/sea mask file, the user can decide to remove land points from the
input file and substitute the corresponding values with the average of the 8 neighbouring points in the native
external grid. Only ”sea points” are considered for the averaging. The land/sea mask file must be provided in
the structure associated with the input variable. The netcdf land/sea mask variable name must be ’LSM’ and
must have the same horizontal and vertical dimensions as the associated variables and should be equal to 1 over
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land and 0 elsewhere. The procedure can be recursively applied by setting nn_lsm > 1 in namsbc namelist.
Note that nn_lsm=0 forces the code to not apply the procedure, even if a land/sea mask file is supplied.

Bilinear interpolation

The input weights file in this case has two sets of variables: src01, src02, src03, src04 and wgt01, wgt02, wgt03,
wgt04. The ”src” variables correspond to the point in the input grid to which the weight ”wgt” is applied. Each
src value is an integer corresponding to the index of a point in the input grid when written as a one dimensional
array. For example, for an input grid of size 5x10, point (3,2) is referenced as point 8, since (2-1)*5+3=8. There
are four of each variable because bilinear interpolation uses the four points defining the grid box containing the
point to be interpolated. All of these arrays are on the model grid, so that values src01(i,j) and wgt01(i,j) are
used to generate a value for point (i,j) in the model.
Symbolically, the algorithm used is:

fm(i, j) = fm(i, j) +

4∑
k=1

wgt(k)f(idx(src(k)))

where function idx() transforms a one dimensional index src(k) into a two dimensional index, and wgt(1)
corresponds to variable ”wgt01” for example.

Bicubic interpolation

Again, there are two sets of variables: ”src” and ”wgt”. But in this case, there are 16 of each. The symbolic
algorithm used to calculate values on the model grid is now:

fm(i, j) = fm(i, j)+

4∑
k=1

wgt(k)f(idx(src(k))) +

8∑
k=5

wgt(k)
∂f

∂i

∣∣∣∣
idx(src(k))

+

12∑
k=9

wgt(k)
∂f

∂j

∣∣∣∣
idx(src(k))

+

16∑
k=13

wgt(k)
∂2f

∂i∂j

∣∣∣∣
idx(src(k))

The gradients here are taken with respect to the horizontal indices and not distances since the spatial dependency
has been included into the weights.

Implementation

To activate this option, a non-empty string should be supplied in the weights filename column of the relevant
namelist; if this is left as an empty string no action is taken. In the model, weights files are read in and stored
in a structured type (WGT) in the fldread module, as and when they are first required. This initialisation
procedure determines whether the input data grid should be treated as cyclical or not by inspecting a global
attribute stored in the weights input file. This attribute must be called ”ew_wrap” and be of integer type. If it
is negative, the input non-model grid is assumed to be not cyclic. If zero or greater, then the value represents
the number of columns that overlap. E.g. if the input grid has columns at longitudes 0, 1, 2, .... , 359, then
ew_wrap should be set to 0; if longitudes are 0.5, 2.5, .... , 358.5, 360.5, 362.5, ew_wrap should be 2. If the
model does not find attribute ew_wrap, then a value of -999 is assumed. In this case, the fld_read routine
defaults ew_wrap to value 0 and therefore the grid is assumed to be cyclic with no overlapping columns. (In
fact, this only matters when bicubic interpolation is required.) Note that no testing is done to check the validity
in the model, since there is no way of knowing the name used for the longitude variable, so it is up to the user
to make sure his or her data is correctly represented.
Next the routine reads in the weights. Bicubic interpolation is assumed if it finds a variable with name

”src05”, otherwise bilinear interpolation is used. The WGT structure includes dynamic arrays both for the
storage of the weights (on the model grid), and when required, for reading in the variable to be interpolated (on
the input data grid). The size of the input data array is determined by examining the values in the ”src” arrays
to find the minimum and maximum i and j values required. Since bicubic interpolation requires the calculation
of gradients at each point on the grid, the corresponding arrays are dimensioned with a halo of width one grid
point all the way around. When the array of points from the data file is adjacent to an edge of the data grid,
the halo is either a copy of the row/column next to it (non-cyclical case), or is a copy of one from the first few
columns on the opposite side of the grid (cyclical case).
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!-----------------------------------------------------------------------
&namsbc_sas ! Stand-Alone Surface module: ocean data (SAS_SRC only)
!-----------------------------------------------------------------------

l_sasread = .true. ! =T Read in file ; =F set all to 0. (see sbcssm)
ln_3d_uve = .false. ! specify whether we are supplying a 3D u,v and e3 field
ln_read_frq = .false. ! specify whether we must read frq or not

cn_dir = './' ! root directory for the ocean data location

!___________!_________________________!___________________!___________!_____________!________!___________!__________________!__________!_______________!↪→
! ! file name ! frequency (hours) ! variable ! time interp.! clim ! 'yearly'/ ! weights filename !
rotation ! land/sea mask !↪→

! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! !
pairing ! filename !↪→
sn_usp = 'sas_grid_U' , 120. , 'uos' , .true. , .true. , 'yearly' , '' ,
'' , ''↪→
sn_vsp = 'sas_grid_V' , 120. , 'vos' , .true. , .true. , 'yearly' , '' ,
'' , ''↪→
sn_tem = 'sas_grid_T' , 120. , 'sosstsst', .true. , .true. , 'yearly' , '' ,
'' , ''↪→
sn_sal = 'sas_grid_T' , 120. , 'sosaline', .true. , .true. , 'yearly' , '' ,
'' , ''↪→
sn_ssh = 'sas_grid_T' , 120. , 'sossheig', .true. , .true. , 'yearly' , '' ,
'' , ''↪→
sn_e3t = 'sas_grid_T' , 120. , 'e3t_m' , .true. , .true. , 'yearly' , '' ,
'' , ''↪→
sn_frq = 'sas_grid_T' , 120. , 'frq_m' , .true. , .true. , 'yearly' , '' ,
'' , ''↪→

!!
!! Following only needed with STATION_ASF compiled with "sea-ice" support: "key_si3" (ice fraction, ice surface temperature
and sea-ice albedo:↪→
sn_ifr = 'NOT USED' , 1. , 'siconc' , .true. , .false. , 'yearly' , '' , ''
, ''↪→
sn_tic = 'NOT USED' , 1. , 'istl1' , .true. , .false. , 'yearly' , '' , ''
, ''↪→
sn_ial = 'NOT USED' , 1. , 'fal' , .true. , .false. , 'yearly' , '' , ''
, ''↪→

/

namelist 7.2.: &namsbc_sas

Limitations

1. The case where input data grids are not logically rectangular (irregular grid case) has not been tested.

2. This code is not guaranteed to produce positive definite answers from positive definite inputs when a
bicubic interpolation method is used.

3. The cyclic condition is only applied on left and right columns, and not to top and bottom rows.

4. The gradients across the ends of a cyclical grid assume that the grid spacing between the two columns
involved are consistent with the weights used.

5. Neither interpolation scheme is conservative. (There is a conservative scheme available in SCRIP, but this
has not been implemented.)

Utilities

A set of utilities to create a weights file for a rectilinear input grid is available (see the directory /tools/WEIGHTS).

7.2.3. Standalone surface boundary condition scheme (SAS)
In some circumstances, it may be useful to avoid calculating the 3D temperature, salinity and velocity fields

and simply read them in from a previous run or receive them from OASIS. For example:

• Multiple runs of the model are required in code development to see the effect of different algorithms in
the bulk formulae.

• The effect of different parameter sets in the ice model is to be examined.

• Development of sea-ice algorithms or parameterizations.

• Spinup of the iceberg floats

• Ocean/sea-ice simulation with both models running in parallel ( ln_mixcpl=.true. )
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The Standalone Surface scheme provides this capacity. Its options are defined through the &namsbc_sas
(namelist 7.2) namelist variables. Here are the available options :

• l_sasread=.true. : ocean fields are coming from netcdf files

• l_sasread=.false. : ocean fields are coming from OASIS

To use SAS, the model has to be compiled with the ORCA2_SAS_ICE configuration. In standalone mode (
l_sasread=.true. ), the namelist parameters that are set in cfgs/ORCA2_SAS_ICE/EXPREF/namelist_cfg
can be used directly. In ’coupled mode’ ( l_sasread=.false. ) with OASIS, the user need to compile two
executable (one for OCE and one for SAS). In the namelist of the first one nn_components need to be set to
1 and in the sas namelist set to 2. However, the coupling of SAS and NEMO via OASIS does not seem to work
properly yet. This is under investigation.
In both cases, a few routines in the standard model are overwritten by SAS specific versions. Routines

replaced are:

• nemogcm.F90 : This routine initialises the rest of the model and repeatedly calls the stp time stepping
routine ( step.F90 ). Since the ocean state is not calculated all associated initialisations have been removed.

• step.F90 : The main time stepping routine now only needs to call the sbc routine (and a few utility
functions).

• sbcmod.F90 : This has been cut down and now only calculates surface forcing, the ice model required.
New surface modules that can function when only the surface level of the ocean state is defined can also
be added (e.g. icebergs).

• daymod.F90 : No ocean restarts are read or written (though the ice model restarts are retained), so calls
to restart functions have been removed. This also means that the calendar cannot be controlled by time
in a restart file, so the user must check that nn_date0 in the model namelist is correct for his or her
purposes.

• stpctl.F90 : Since there is no free surface solver, references to it have been removed from stp_ctl module.

• diawri.F90 : All 3D data have been removed from the output. The surface temperature, salinity and
velocity components (which have been read in) are written along with relevant forcing and ice data.

• sbcssm.F90 : When l_sasread=.true. , this module initialises the input files needed for reading temper-
ature, salinity, velocity arrays at the surface, surface vertical scale factor and fraction of energy absorbed
by the first level (optional, ln_read_frq=.true. . These parameters need to supplied in the namelist
namsbc_sas parameters sn_usp , sn_vsp , sn_tem , sn_sal , sn_ssh , sn_e3t and sn_frq re-
spectively. If For velocities, either 2D velocities ( ln_3d_uve=.false ) or 3D ones ( ln_3d_uve=.true.
) can be read from the input files. Unfortunately, because of limitations with the iom.F90 module, the
full 3D fields from the mean files have to be read in and interpolated in time, before using just the top
level. Since fldread is used to read in the data, Interpolation on the Fly may be used to change input data
resolution.

The user can also choose in the &namsbc_sas (namelist 7.2) namelist to read the mean (nn_fsbc time-step)
fraction of solar net radiation absorbed in the 1st T level using ( ln_flx=.true. ) and to provide 3D oceanic
velocities instead of 2D ones ( ln_flx =.true.). In that last case, only the 1st level will be read in.

7.3. Flux formulation ( sbcflx.F90 )
In the flux formulation ( ln_flx=.true. ), the surface boundary condition fields are directly read from input

files. The user has to define in the namelist &namsbc_flx (namelist 7.3) the name of the file, the name of
the variable read in the file, the time frequency at which it is given (in hours), and a logical setting whether
a time interpolation to the model time step is required for this field. See subsection 7.2.1 for a more detailed
description of the parameters.
Note that in general, a flux formulation is used in associated with a restoring term to observed SST and/or

SSS. See subsection 7.11.3 for its specification.
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!-----------------------------------------------------------------------
&namsbc_flx ! surface boundary condition : flux formulation (ln_flx =T)
!-----------------------------------------------------------------------

cn_dir = './' ! root directory for the fluxes data location

!___________!_________________________!___________________!___________!_____________!________!___________!__________________!__________!_______________!↪→
! ! file name ! frequency (hours) ! variable ! time interp.! clim ! 'yearly'/ ! weights filename !
rotation ! land/sea mask !↪→

! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! !
pairing ! filename !↪→
sn_utau = 'utau' , 24. , 'utau' , .false. , .false., 'yearly' , '' ,
'' , ''↪→
sn_vtau = 'vtau' , 24. , 'vtau' , .false. , .false., 'yearly' , '' ,
'' , ''↪→
sn_qtot = 'qtot' , 24. , 'qtot' , .false. , .false., 'yearly' , '' ,
'' , ''↪→
sn_qsr = 'qsr' , 24. , 'qsr' , .false. , .false., 'yearly' , '' ,
'' , ''↪→
sn_emp = 'emp' , 24. , 'emp' , .false. , .false., 'yearly' , '' ,
'' , ''↪→

/

namelist 7.3.: &namsbc_flx

7.4. Bulk formulation ( sbcblk.F90 )
If the bulk formulation is selected ( ln_blk=.true. ), the air-sea fluxes associated with surface boundary

conditions are estimated by means of the traditional bulk formulae. As input, bulk formulae rely on a prescribed
near-surface atmosphere state (typically extracted from a weather reanalysis) and the prognostic sea (-ice)
surface state averaged over nn_fsbc time-step(s).

Note: all the NEMO Fortran routines involved in the present section have been initially developed (and are
still developed in parallel) in the AeroBulk open-source project (Brodeau et al., 2016).

7.4.1. Bulk formulae
In NEMO, the set of equations that relate each component of the surface fluxes to the near-surface atmosphere
and sea surface states writes

τ = ρ CD Uz UB (7.1a)
QH = ρ CH CP

[
θz − Ts

]
UB (7.1b)

E = ρ CE
[
qs − qz

]
UB (7.1c)

QL = −Lv E (7.1d)
Qsr = (1− a)Qsw↓ (7.1e)
Qir = δ(Qlw↓ − σT 4

s ) (7.1f)

with
θz ≃ Tz + γz

qs ≃ 0.98 qsat(Ts, pa)

from which, the the non-solar heat flux is

Qns = QL +QH +Qir

where τ is the wind stress vector, QH the sensible heat flux, E the evaporation, QL the latent heat flux,
and Qir the net longwave flux. Qsw↓ and Qlw↓ are the surface downwelling shortwave and longwave radiative
fluxes, respectively. Note: a positive sign for τ , QH , QL, Qsr or Qir implies a gain of the relevant quantity
for the ocean, while a positive E implies a freshwater loss for the ocean. ρ is the density of air. CD, CH
and CE are the bulk transfer coefficients for momentum, sensible heat, and moisture, respectively. CP is the
heat capacity of moist air, and Lv is the latent heat of vaporization of water. θz, Tz and qz are the potential
temperature, absolute temperature, and specific humidity of air at height z above the sea surface, respectively.
γz is a temperature correction term which accounts for the adiabatic lapse rate and approximates the potential
temperature at height z (Josey et al., 2013). Uz is the wind speed vector at height z above the sea surface
(possibly referenced to the surface current u0).The bulk scalar wind speed, namely UB , is the scalar wind speed,
|Uz|, with the potential inclusion of a gustiness contribution. a and δ are the albedo and emissivity of the sea
surface, respectively.

NEMO Reference Manual Page 86 of 310

https://brodeau.github.io/aerobulk


Chap. 7 Surface Boundary Condition (SBC, SAS, TDE)

!-----------------------------------------------------------------------
&namsbc_blk ! namsbc_blk generic Bulk formula (ln_blk =T)
!-----------------------------------------------------------------------

! ! bulk algorithm :
ln_NCAR = .true. ! "NCAR" algorithm (Large and Yeager 2008)
ln_COARE_3p0 = .false. ! "COARE 3.0" algorithm (Fairall et al. 2003)
ln_COARE_3p6 = .false. ! "COARE 3.6" algorithm (Edson et al. 2013)
ln_ECMWF = .false. ! "ECMWF" algorithm (IFS cycle 45r1)
ln_MFS = .false. ! "MFS" algorithm (MFS/BS Copernicus, Petenuzzo et al 2010)
ln_ANDREAS = .false. ! "ANDREAS" algorithm (Andreas et al. 2015)

rn_zqt = 10. ! Air temperature & humidity reference height (m)
rn_zu = 10. ! Wind vector reference height (m)
nn_iter_algo = 5 ! Number of iterations in bulk param. algo ("stable ABL + weak wind" requires more)
ln_skin_cs = .false. ! use the cool-skin parameterization => use at least nn_iter_algo > 10
ln_skin_wl = .false. ! use the warm-layer parameterization => use at least nn_iter_algo > 10

!
rn_pfac = 1. ! multipl. factor for precipitation (total & snow)
rn_efac = 1. ! multipl. factor for evaporation (0. or 1.)
!
ln_crt_fbk = .false. ! Add surface current feedback to the wind stress (Renault et al. 2020, doi: 10.1029/2019MS001715)

rn_stau_a = -2.9e-3 ! Alpha from eq. 10: Stau = Alpha * Wnd + Beta
rn_stau_b = 8.0e-3 ! Beta

!
ln_humi_sph = .true. ! humidity "sn_humi" is specific humidity [kg/kg]
ln_humi_dpt = .false. ! humidity "sn_humi" is dew-point temperature [K]
ln_humi_rlh = .false. ! humidity "sn_humi" is relative humidity [%]
ln_tair_pot = .false. ! air temperature read in "sn_tair" is already POTENTIAL TEMPERATURE, NOT ABSOLUTE (ECMWF =>
ln_tair_pot=.false.)↪→
ln_prec_met = .false. ! precipitation read in "sn_prec" is in [m]
!!
!! Bulk transfer coefficients over sea-ice: (relevant IF: nn_ice >=1 )
ln_Cx_ice_cst = .true. ! use constant ice-air bulk transfer coefficients (value given below)

rn_Cd_ia = 1.4e-3 ! sea-ice drag coefficient
rn_Ce_ia = 1.4e-3 ! " sublimation coefficient
rn_Ch_ia = 1.4e-3 ! " sensible heat flux coefficient

ln_Cx_ice_frm = .false. ! use form drag param from Tsamadoes et al. 2014
nn_frm = 2 ! = 1 : affects momentum and heat transfer coefficient (ocean-ice and atmos-ice)

! = 2 : affects only momentum transfer coefficient (ocean-ice and atmos-ice) (default)
! = 3 : affect momentum and heat transfer coefficient (atmos-ice), and only momentum

transfer coefficient (ocean-ice)↪→
rn_Cs_io = 0.002 ! ice-ocn skin drag [0.0005,0.005]
rn_Cs_ia = 0.0005 ! ice-air skin drag [0.0001,0.001]
rn_Cr_ia = 0.2 ! ridge/keel drag coefficient [0,1]
rn_Cr_io = 0.2 ! ridge/keel drag coefficient [0,1]
rn_Cf_ia = 0.2 ! floe edge atm [0,1]
rn_Cf_io = 0.2 ! floe edge ocean [0,1]

ln_Cx_ice_AN05 = .false. ! (Andreas et al. 2005)
ln_Cx_ice_LU12 = .false. ! (Lupkes et al. 2012)
ln_Cx_ice_LG15 = .false. ! (Lupkes & Gryanik 2015)
!
cn_dir = './' ! root directory for the bulk data location

!___________!_________________________!___________________!___________!_____________!________!___________!______________________________________!__________!_______________!↪→
! ! file name ! frequency (hours) ! variable ! time interp.! clim ! 'yearly'/ ! weights
filename ! rotation ! land/sea mask !↪→

! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' !
! pairing ! filename !↪→
sn_wndi = 'u_10.15JUNE2009_fill' , 6. , 'U_10_MOD', .false. , .true. , 'yearly' ,
'weights_core_orca2_bicubic_noc.nc' , 'Uwnd' , ''↪→
sn_wndj = 'v_10.15JUNE2009_fill' , 6. , 'V_10_MOD', .false. , .true. , 'yearly' ,
'weights_core_orca2_bicubic_noc.nc' , 'Vwnd' , ''↪→
sn_qsr = 'ncar_rad.15JUNE2009_fill' , 24. , 'SWDN_MOD', .false. , .true. , 'yearly' ,
'weights_core_orca2_bilinear_noc.nc' , '' , ''↪→
sn_qlw = 'ncar_rad.15JUNE2009_fill' , 24. , 'LWDN_MOD', .false. , .true. , 'yearly' ,
'weights_core_orca2_bilinear_noc.nc' , '' , ''↪→
sn_tair = 't_10.15JUNE2009_fill' , 6. , 'T_10_MOD', .false. , .true. , 'yearly' ,
'weights_core_orca2_bilinear_noc.nc' , '' , ''↪→
sn_humi = 'q_10.15JUNE2009_fill' , 6. , 'Q_10_MOD', .false. , .true. , 'yearly' ,
'weights_core_orca2_bilinear_noc.nc' , '' , ''↪→
sn_prec = 'ncar_precip.15JUNE2009_fill', -1. , 'PRC_MOD1', .false. , .true. , 'yearly' ,
'weights_core_orca2_bilinear_noc.nc' , '' , ''↪→
sn_snow = 'ncar_precip.15JUNE2009_fill', -1. , 'SNOW' , .false. , .true. , 'yearly' ,
'weights_core_orca2_bilinear_noc.nc' , '' , ''↪→
sn_slp = 'slp.15JUNE2009_fill' , 6. , 'SLP' , .false. , .true. , 'yearly' ,
'weights_core_orca2_bilinear_noc.nc' , '' , ''↪→
sn_uoatm = 'NOT USED' , 6. , 'UOATM' , .false. , .true. , 'yearly' ,
'weights_core_orca2_bilinear_noc.nc' , 'Uoceatm', ''↪→
sn_voatm = 'NOT USED' , 6. , 'VOATM' , .false. , .true. , 'yearly' ,
'weights_core_orca2_bilinear_noc.nc' , 'Voceatm', ''↪→
sn_cc = 'NOT USED' , 24. , 'CC' , .false. , .true. , 'yearly' ,
'weights_core_orca2_bilinear_noc.nc' , '' , ''↪→
sn_hpgi = 'NOT USED' , 24. , 'uhpg' , .false. , .false., 'monthly' ,
'weights_ERAI3D_F128_2_ORCA2_bicubic', 'UG' , ''↪→
sn_hpgj = 'NOT USED' , 24. , 'vhpg' , .false. , .false., 'monthly' ,
'weights_ERAI3D_F128_2_ORCA2_bicubic', 'VG' , ''↪→

/

namelist 7.4.: &namsbc_blk
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Ts is the sea surface temperature. qs is the saturation specific humidity of air at temperature Ts; it includes
a 2% reduction to account for the presence of salt in seawater (Sverdrup et al., 1942; Kraus and Businger,
1996). Depending on the bulk parametrization used, Ts can either be the temperature at the air-sea interface
(skin temperature, hereafter SSST) or at typically a few tens of centimeters below the surface (bulk sea surface
temperature, hereafter SST). The SSST differs from the SST due to the contributions of two effects of opposite
sign, the cool skin and warm layer (hereafter CS and WL, respectively, see subsection 7.4.3). Technically, when
the ECMWF or COARE* or MFS bulk parametrizations are selected ( ln_ECMWF=.true. or ln_COARE*=.true.
or ln_MFS=.true. ), Ts is the SSST, as opposed to the NCAR bulk parametrization ( ln_NCAR=.true. ) for
which Ts is the bulk SST (i.e. temperature at first T-point level).
For more details on all these aspects the reader is invited to refer to Brodeau et al. (2016).

7.4.2. Bulk parametrizations
Accuracy of the estimate of surface turbulent fluxes by means of bulk formulae strongly relies on that of the
bulk transfer coefficients: CD, CH and CE . They are estimated with what we refer to as a bulk parametrization
algorithm. When relevant, these algorithms also perform the height adjustment of humidity and temperature
to the wind reference measurement height (from rn_zqt to rn_zu ).
For the open ocean, six bulk parametrization algorithms are available in NEMO:

• NCAR, formerly known as CORE, (Large and Yeager, 2004, 2009)

• COARE 3.0 (Fairall et al., 2003)

• COARE 3.6 (Edson et al., 2013)

• ECMWF (IFS documentation, cy45)

• ANDREAS (Andreas et al., 2015)

• MFS (Castellari et al., 1998)

With respect to version 3, the principal advances in version 3.6 of the COARE bulk parametrization are built
around improvements in the representation of the effects of waves on fluxes (Edson et al., 2013; Brodeau et al.,
2016). This includes improved relationships of surface roughness, and whitecap fraction on wave parameters.
It is therefore recommended to chose version 3.6 over 3.

7.4.3. Cool-skin and warm-layer parameterizations ( ln_skin_cs & ln_skin_wl )
As opposed to the NCAR bulk parametrization, more advanced bulk parametrizations such as COARE3.x and
ECMWF are meant to be used with the skin temperature Ts rather than the bulk SST (which, in NEMO is the
temperature at the first T-point level, see subsection 7.4.1).

As such, the relevant cool-skin and warm-layer parametrization must be activated through ln_skin_cs=T
and ln_skin_wl=T to use COARE3.x or ECMWF in a consistent way.
#LB: ADD BLBLA ABOUT THE TWO CS/WL PARAMETRIZATIONS (ECMWF and COARE) !!!
For the cool-skin scheme parametrization COARE and ECMWF algorithms share the same basis: Fairall

et al. (1996). With some minor updates based on Zeng and Beljaars (2005) for ECMWF 3.6.
For the warm-layer scheme, ECMWF is based on Zeng and Beljaars (2005) with a recent update from Takaya

et al. (2010) (consideration of the turbulence input from Langmuir circulation).
Importantly, COARE warm-layer scheme includes a prognostic equation for the thickness of the warm-layer,

while it is considered as constant in the ECWMF algorithm.

7.4.4. Appropriate use of each bulk parametrization
NCAR

NCAR bulk parametrizations (formerly known as CORE) is meant to be used with the CORE II atmospheric
forcing (Large and Yeager, 2009). The expected sea surface temperature is the bulk SST. Hence the following
namelist parameters must be set:

...
ln_NCAR = .true.
...
rn_zqt = 10. ! Air temperature & humidity reference height (m)
rn_zu = 10. ! Wind vector reference height (m)
...
ln_skin_cs = .false. ! use the cool-skin parameterization
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ln_skin_wl = .false. ! use the warm-layer parameterization
...
ln_humi_sph = .true. ! humidity "sn_humi" is specific humidity [kg/kg]

ECMWF

With an atmospheric forcing based on a reanalysis of the ECMWF, such as the Drakkar Forcing Set (Brodeau
et al., 2010), we strongly recommend to use the ECMWF bulk parametrizations with the cool-skin and warm-
layer parametrizations activated. In ECMWF reanalyzes, since air temperature and humidity are provided at
the 2m height, and given that the humidity is distributed as the dew-point temperature, the namelist must be
tuned as follows:

...
ln_ECMWF = .true.
...
rn_zqt = 2. ! Air temperature & humidity reference height (m)
rn_zu = 10. ! Wind vector reference height (m)
...
ln_skin_cs = .true. ! use the cool-skin parameterization
ln_skin_wl = .true. ! use the warm-layer parameterization
...
ln_humi_dpt = .true. ! humidity "sn_humi" is dew-point temperature [K]
...

Note: when ln_ECMWF is selected, the selection of ln_skin_cs and ln_skin_wl implicitly triggers the use
of the ECMWF cool-skin and warm-layer parametrizations, respectively (found in sbcblk_skin_ecmwf.F90).

COARE 3.x

Since the ECMWF parametrization is largely based on the COARE* parametrization, the two algorithms are
very similar in terms of structure and closure approach. As such, the namelist tuning for COARE 3.x is identical
to that of ECMWF:

...
ln_COARE_3p6 = .true.
...
ln_skin_cs = .true. ! use the cool-skin parameterization
ln_skin_wl = .true. ! use the warm-layer parameterization
...

Note: when ln_COARE_3p0=T is selected, the selection of ln_skin_cs and ln_skin_wl implicitly triggers
the use of the COARE cool-skin and warm-layer parametrizations, respectively (found in sbcblk_skin_coare.F90).

MFS

The MFS bulk formulae have been developed by Castellari et al. (1998). They have been designed to handle
ECMWF operational data for the Mediterranean (Oddo et al., 2009) and Black Sea (Ciliberti et al., 2022)
Monitoring Forecasting Centre. The bulk transfer coefficients CH and CE are computing using an empiric
formula by Kondo (1975) whereas the drag coefficient CD is computed according to Hellerman and Rosenstein
(1983). In this bulk parametrization the net solar radiation depends on the cloud cover and is computed by
means of an astronomical formula (Reed, 1977). Albedo monthly values are from Payne (1972) as means of the
values at 40°N and 30°N for the Atlantic Ocean (hence the same latitudinal band of the Mediterranean Sea).
The net long-wave radiation flux are computed as a function of 2m air temperature, sea-surface temperature,
cloud cover and 2m dew point humidity (Bignami et al., 1995).
This parametrization required as input fields the total cloud cover in %.
The following namelist parameters must be set:

...
ln_MFS = .true.
...
rn_zqt = 2. ! Air temperature & humidity reference height (m)
rn_zu = 10. ! Wind vector reference height (m)
...
ln_skin_cs = .false. ! use the cool-skin parameterization
ln_skin_wl = .false. ! use the warm-layer parameterization
...
ln_humi_dpt = .true. ! humidity "sn_humi" is dew point Temperature [kg/kg]
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7.4.5. Ice-Atmosphere Bulk formulae
Surface turbulent fluxes between sea-ice and the atmosphere can be computed in three different ways:

• Constant value ( ln_Cx_ice_cst=.true. ): Constant values are used for momentum ( rn_Cd_ia ), subli-
mation ( rn_Cd_ia ) and sensible heat ( rn_Ch_ia ) transfer coefficients. Default value for all coefficients
is set to 1.4e-3.

• Lüpkes et al. (2012) ( ln_Cx_ice_LU12=.true. ): This scheme adds a dependency on edges at leads, melt
ponds and flows of the constant neutral air-ice drag. After some approximations, this can be resumed to
a dependency on ice concentration (A). This drag coefficient has a parabolic shape (as a function of ice
concentration) starting at 1.5e-3 for A=0, reaching 1.97e-3 for A=0.5 and going down 1.4e-3 for A=1. It
is theoretically applicable to all ice conditions (not only MIZ).

• Lüpkes and Gryanik (2015) ( ln_Cx_ice_LG15=.true. ): Alternative turbulent transfer coefficients for-
mulation between sea-ice and atmosphere with distinct momentum and heat coefficients depending on
sea-ice concentration and atmospheric stability (no melt-ponds effect for now). The parameterization is
adapted from ECHAM6 atmospheric model. Compared to Lupkes2012 scheme, it considers specific skin
and form drags to compute neutral transfer coefficients for both heat and momentum fluxes. Atmospheric
stability effect on transfer coefficient is also taken into account.

• Tsamados (2014) ( ln_Cx_ice_frm=.true. ): Sea ice contains pressure ridges as well as floe and melt
pond edges that act as discrete obstructions to the flow of air or water past the ice, and are a source of form
drag. Here, the neutral drag coefficients are estimated from sea ice properties such as ice concentration,
vertical extent and area of the ridges, freeboard and floe draft, and size of floes and melt ponds. The new
parameterization allows the drag coefficients to be coupled to the sea ice state and therefore to evolve
spatially and temporally. For default settings, only the transfer coefficient for the turbulent momentum
fluxes are affected. The namelist allows 3 different options:
nn_frm=1 : affects momentum and heat transfer coefficient (ocean-ice and atm-ice)
nn_frm=2 : affects only momentum transfer coefficient (ocean-ice and atm-ice) (default)
nn_frm=3 : affects momentum and heat transfer coefficient (atm-ice), and only momentum transfer co-

efficient (ocean-ice)
The total drag coefficients are derived as follows:

zdragia = zdragia_skin + zdragia_floe + zdragia_rdg + zdragia_pond

zdragio = zdragio_skin + zdragio_floe + zdragio_keel

zdrag_ia : total drag coefficient for momentum exchange between ice and atmosphere
zdrag_ia_skin : skin drag coefficient (top of the ice)
zdrag_ia_floe : floe edge drag coefficient (top of the ice)
zdrag_ia_rdg : sail drag coefficient
zdrag_ia_pond : pond edge drag coefficient
zdrag_io : total drag for momentum exhange between ice and ocean
zdrag_io_skin : skin drag coefficient (under the ice)
zdrag_io_floe : floe edge drag coefficient (under the ice)
zdrag_io_rdg : keel drag coefficient
The area and volume of ridged ice (required input parameters) are derived from mean ice thickness and
concentration based on a polynomial fit (?). In the namelist, the skin drag coefficients and factors can be
modified for the strength of each contribution:
rn_Cs_io=0.002 : ice-ocean skin drag [0.0005,0.005]
rn_Cs_ia=0.0005 : ice-air skin drag [0.0001,0.001]
rn_Cr_ia=0.2 : factor for ridge/keel drag coefficient [0,1]
rn_Cr_io=0.2 : factor for ridge/keel drag coefficient [0,1]
rn_Cf_ia=0.2 : factor for floe edge atm [0,1]
rn_Cf_io=0.2 : factor floe edge ocean [0,1]
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7.4.6. Prescribed near-surface atmospheric state
The atmospheric fields used depend on the bulk formulae used. In forced mode, when a sea-ice model is
used, a specific bulk formulation is used. Therefore, different bulk formulae are used for the turbulent fluxes
computation over the ocean and over sea-ice surface.
Common options are defined through the &namsbc_blk (namelist 7.4) namelist variables. The required 9

input fields are:

Variable description Model variable Units point
i-component of the 10m air velocity wndi m.s−1 T
j-component of the 10m air velocity wndj m.s−1 T
10m absolute air temperature tair K T
Potential air temperature K T
Specific humidity humi − T
Relative humidity % T
Dew-point temperature K T
Downwelling longwave radiation qlw W.m−2 T
Downwelling shortwave radiation qsr W.m−2 T
Total precipitation (liquid + solid) precip Kg.m−2.s−1 T

m T
Solid precipitation snow Kg.m−2.s−1 T
Mean sea-level pressure slp Pa T

Note that the air velocity is provided at a tracer ocean point, not at a velocity ocean point (u- and v-points).
It is simpler and faster (less fields to be read), but it is not the recommended method when the ocean grid size
is the same or larger than the one of the input atmospheric fields.
The sn_wndi , sn_wndj , sn_qsr , sn_qlw , sn_tair , sn_humi , sn_prec , sn_snow , sn_tdif

parameters describe the fields and the way they have to be used (spatial and temporal interpolations).
cn_dir is the directory of location of bulk files rn_zqt : is the height of humidity and temperature

measurements (m) rn_zu : is the height of wind measurements (m)
Three multiplicative factors are available: rn_pfac and rn_efac allow to adjust (if necessary) the global

freshwater budget by increasing/reducing the precipitations (total and snow) and or evaporation, respectively.
The third one, rn_vfac , control to which extend the ice/ocean velocities are taken into account in the calculation
of surface wind stress. Its range must be between zero and one, and it is recommended to set it to 0 at low-
resolution (ORCA2 configuration).
As for the flux parametrization, information about the input data required by the model is provided in the

namsbc_blk namelist (see subsection 7.2.1).

Air humidity, temperature, precipitation parameters and units:

Air humidity can be provided as one of three parameters:
specific humidity [kg/kg], using ln_humi_sph=.true. ; relative humidity [%], using ln_humi_rlh=.true. ;
or dew-point temperature [K], using ln_humi_dpt=.true. .
Air temperature can be provided as potential temperature ( ln_tair_pot=.true. ) or as absolute temperature

( ln_tair_pot=.false. ).
Total precipitation can be provided in meters ( ln_prec_met=.true. ) or, by default, in kg ·m−2 · s−1.

7.5. Atmospheric Boundary Layer (ABL) model ( sbcabl.F90 )
An atmospheric boundary layer (ABL) model is available as an alternative choice to the prescribed near-surface
atmospheric forcings using ln_abl=.true. . It computes the wind, air potential temperature and specific
humidity evolutions in the lower atmosphere following a single-column approach on the same horizontal grid
as the ocean component. It represents the adjustement of the air column between the large-scale atmospheric
forcing and the surface boundary conditions over both ocean and sea-ice through vertical turbulent mixing.
This 1D implementation of the ABL model (ABL1D) and its validation are described in details in Lemarié
et al. (2021).

7.5.1. ABL1D pre-processing
To use it, an atmospheric vertical grid and specific atmospheric forcing files must be provided to ABL1D. This
is because the model expects atmospheric data on its vertical grid and not only near the surface as usually
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:
:-----------------------------------------------------------------------------
: Atmospheric Boundary Layer preprocessing tool
:-----------------------------------------------------------------------------
:
&nml_dom

jpka = 50, ! ABL vertical levels number
hmax = 2000., ! ABL last level altitude
theta_s = 2., ! vertical grid stretching parameters
hc = 100., !
ln_impose_z1 = .true., ! force ABL first level altitude
z1 = 10., ! ABL firt level imposed altitude [m]

/

&nml_opt
ptemp_method = 3 , ! potential temperature computation method
ln_slp_smth = .true. , ! smooth slp and ghw at high latitudes only
ln_drw_smth = .false. , ! smooth after drowning
ln_slp_log = .false. , ! read log(slp)
ln_read_zsurf = .false. , ! read surface geopotential
ln_hpg_frc = .true. , ! compute horizontal pressure gradient
ln_geo_wnd = .false. , ! compute geostrophic wind
ln_c1d = .false. , ! 1D case
ln_read_mask = .true. , ! read mask file
ln_lsm_land = .false. , ! inverse land & sea masks
ln_perio_latbc = .true. , ! periodic lateral boundary conditions

/

&nml_fld
cn_dir = '',
mask_var = 'LSM',
file_m = 'MASK.nc',
file_u = 'U3D.nc',
file_v = 'V3D.nc',
file_t = 'T3D.nc',
file_q = 'Q3D.nc',
file_p = 'P2D.nc',
file_z = 'Z2D.nc',
file_geos = 'UVG_OUT.nc',
file_hpg = 'HPG_OUT.nc',

/

&nml_out
grd_file = 'dom_cfg_abl_L50Z10.nc',
abl_file = 'ABL_L50Z10_OUT.nc',
drwn_file = 'ABL_DRWN_L50Z10_OUT.nc',
var_name = '',

/

&nml_c1d
iloc = 283,
jloc = 52,

/

done. Another specificity of ABL1D is that it can be dynamically driven by geostrophic wind or horizontal air
pressure gradient, instead of being classicaly relaxed toward the large-scale wind forcing.
To generate the ABL1D vertical grid and atmospheric forcings, specific tools and an associated namelist

are provided in the ABL_TOOLS directory. They have been developed specifically to deal with ECMWF
atmospheric products (such as ERA-Interim, ERA5 and IFS) on their native vertical eta-coordinates. The
namelist is used to setup the ABL1D vertical grid (&nml_dom), atmospheric forcing options (&nml_opt), input
atmospheric filenames (&nml_fld) and outputs filenames (&nml_out).
Each of the three steps needed to generate the atmospheric forcings corresponds to a tool:

• main_uvg_hpg (optional):
geostrophic wind or horizontal pressure gradient computation on ECMWF eta-levels

• main_vinterp:
air potential temperature computation and vertical interpolation from ECWMF vertical eta-levels to ABL
z-levels

• main_hdrown:
3D-fields horizontal drowning (extrapolation over land totally inspired from SOSIE by L. Brodeau)

7.5.2. ABL1D namelist
ABL1D model is activated by adding ABL sources directory to the sources list file (_cfgs.txt) and by setting

ln_abl=.true. (and ln_blk=.false. ) in &namsbc (namelist 7.1) .
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!-----------------------------------------------------------------------
&namsbc_abl ! Atmospheric Boundary Layer formulation (ln_abl = T)
!-----------------------------------------------------------------------

cn_dir = './' ! root directory for the location of the ABL grid file
cn_dom = 'dom_cfg_abl'

cn_ablrst_in = "restart_abl" ! suffix of abl restart name (input)
cn_ablrst_out = "restart_abl" ! suffix of abl restart name (output)
cn_ablrst_indir = "." ! directory to read input abl restarts
cn_ablrst_outdir = "." ! directory to write output abl restarts

ln_rstart_abl = .false.
ln_hpgls_frc = .false.

ln_pga_abl = .false. ! ABL pressure gradient anomaly forcing
ln_geos_winds = .false.
ln_smth_pblh = .false.
nn_dyn_restore = 0 ! restoring option for dynamical ABL variables: = 0 no restoring

! = 1 equatorial restoring
! = 2 global restoring

rn_ldyn_min = 0. ! dynamics nudging magnitude inside the ABL [hour] (~3 rn_Dt)
rn_ldyn_max = 0. ! dynamics nudging magnitude above the ABL [hour] (~1 rn_Dt)
rn_ltra_min = 0. ! tracers nudging magnitude inside the ABL [hour] (~3 rn_Dt)
rn_ltra_max = 0. ! tracers nudging magnitude above the ABL [hour] (~1 rn_Dt)
rn_vfac = 0.
nn_amxl = 0 ! mixing length: = 0 Deardorff 80 length-scale

! = 1 length-scale based on the distance to the PBL height
! = 2 Bougeault & Lacarrere 89 length-scale
! CBR00 ! CCH02 ! MesoNH !

rn_Cm = 0.0667 ! 0.0667 ! 0.1260 ! 0.1260 !
rn_Ct = 0.1667 ! 0.1667 ! 0.1430 ! 0.1430 !
rn_Ce = 0.40 ! 0.40 ! 0.34 ! 0.40 !
rn_Ceps = 0.700 ! 0.700 ! 0.845 ! 0.850 !
rn_Ric = 0.139 ! 0.139 ! 0.143 ! ? ! Critical Richardson number (to compute PBL height and diffusivities)
rn_Rod = 0.15 ! c0 in RMCA17 mixing length formulation (not yet implemented)

/

namelist 7.5.: &namsbc_abl

It is fully compatible with Nemo Standalone Surface module and can be consequently forced by sea surface
temperature and currents external data.
The namelist &namsbc_abl (namelist 7.5) is used to setup the ABL1D options.

Atmospheric forcing files needed by ABL1D must be specified directly using the sn_wndi , sn_wndj ,
sn_tair and sn_humi parameters from the &namsbc_blk (namelist 7.4) .
When using geostrophic wind ( ln_geos_winds=.true. ) or horizontal air pressure gradient ( ln_hpgls_frc=.true.
) as dynamical guide, additional sn_hpgi and sn_hpgj parameters must be provided using geostrophic
wind/pressure gradient i/j-components files generated during the pre-processing steps.
Note that due to fldread limitations, the interpolation weight filenames must be different between 2D and 3D
atmospheric forcings (even if it is the same weight file).

Tracers and Dynamics relaxation time

ABL1D tracers needs to be relaxed toward atmospheric temperature ( sn_tair ) and humidity ( sn_humi )
forcings to provide a top boundary condition to the model and to avoid the formation of biases due to the lack
of representation of some important atmopheric processes such as advection and convection. This relaxation
time can be setup independently inside the ABL and above the ABL and it is expressed in hours.
The recommanded values for the tracers relaxation time is typically 3 times the ocean model timestep inside
the ABL ( rn_ltra_min ) and 1 ocean model timestep above the ABL ( rn_ltra_max ).

The dynamical relaxation time inside ( rn_ldyn_min ) and above ( rn_ldyn_max ) the ABL is only needed
in two cases:

• when geostrophic wind / horizontal pressure gradient options are not used.

• when geostrophic wind / horizontal pressure gradient options are used and the geographical domain
includes the equatorial band where the geostrophic equilibrium is too weak to contrain efficiently ABL1D
dynamics.

The recommanded minimum and maximum dynamical relaxation values are identical to the tracers relaxation
times.

Page 93 of 310 NEMO Reference Manual



Sect. 7.7 Coupled formulation (sbccpl.F90)

Turbulent vertical mixing lenght and constants

The ABL1D turbulence scheme used to compute eddy diffusivities for momentum and scalars relies on a TKE
pronostic equation (following Cuxart et al. (2000)) which depends on mixing lenght scales and turbulent con-
stants. To address the ABL1D sensitivity to these parameters, various mixing lenght formulations and turbulent
constants sets are provided in namelist:

• Three different mixing length scales can be selected using nn_amxl :
(0) Deardorff (1980)
(1) PBL height distance function (as in Nemo TKE scheme)
(2) Bougeault and Lacarrere (1989)

• Three different sets of turbulent constants are proposed:
Cuxart et al. (2000), Cheng et al. (2002) and Lac et al. (2018)

CBR00 CCH02 MNH54
rn_Cm 0.0667 0.1260 0.1260
rn_Ct 0.1667 0.1430 0.1430
rn_Ce 0.40 0.34 0.40
rn_Ceps 0.700 0.845 0.850
rn_Ric 0.139 0.143 ?
rn_Rod 0.15 0.15 0.15

More details about the turbulence scheme parameters and their effect on ABL properties can be found in
Lemarié et al. (2021).

7.6. Coupled formulation ( sbccpl.F90 )
In the coupled formulation of the surface boundary condition, the fluxes are provided by the OASIS coupler

at a frequency which is defined in the OASIS coupler namelist, while sea and ice surface temperature, ocean
and ice albedo, and ocean currents are sent to the atmospheric component.
A generalised coupled interface has been developed. It is currently interfaced with OASIS-3-MCT versions

1 to 4 ( key_oasis3 ). An additional specific CPP key ( key_oa3mct_v1v2 ) is needed for OASIS-3-MCT
versions 1 and 2. It has been successfully used to interface NEMO to most of the European atmospheric
GCM (ARPEGE, ECHAM, ECMWF, HadAM, HadGAM, LMDz), as well as to WRF (Weather Research and
Forecasting Model).
When PISCES biogeochemical model ( key_top ) is also used in the coupled system, the whole carbon cycle

is computed. In this case, CO2 fluxes will be exchanged between the atmosphere and the ice-ocean system (and
need to be activated in &namsbc_cpl (namelist 7.6) ).

When an external wave model (see section 7.10) is used in the coupled system, wave parameters, surface
currents and sea surface height can be exchanged between both models (and need to be activated in &namsbc_cpl
(namelist 7.6) ).

The namelist above allows control of various aspects of the coupling fields (particularly for vectors) and now
allows for any coupling fields to have multiple sea ice categories (as required by SI3). When indicating a multi-
category coupling field in &namsbc_cpl (namelist 7.6) , the number of categories will be determined by the
number used in the sea ice model. In some limited cases, it may be possible to specify single category coupling
fields even when the sea ice model is running with multiple categories - in this case, the user should examine
the code to be sure the assumptions made are satisfactory. In cases where this is definitely not possible, the
model should abort with an error message.

7.7. Atmospheric pressure ( sbcapr.F90 )
The optional atmospheric pressure can be used to force ocean and ice dynamics ( ln_apr_dyn=.true. ,

&namsbc (namelist 7.1) namelist). The input atmospheric forcing defined via sn_apr structure ( &namsbc_apr
(namelist 7.7) namelist) can be interpolated in time to the model time step, and even in space when the inter-
polation on-the-fly is used. When used to force the dynamics, the atmospheric pressure is further transformed
into an equivalent inverse barometer sea surface height, ηib, using:

ηib = −
1

g ρo
(Patm − Po)
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!-----------------------------------------------------------------------
&namsbc_cpl ! coupled ocean/atmosphere model ("key_oasis3")
!-----------------------------------------------------------------------

nn_cplmodel = 1 ! Maximum number of models to/from which NEMO is potentially sending/receiving data
ln_usecplmask = .false. ! use a coupling mask file to merge data received from several models
! ! -> file cplmask.nc with the float variable called cplmask (jpi,jpj,nn_cplmodel)
ln_scale_ice_flux = .false. ! use ice fluxes that are already "ice weighted" ( i.e. multiplied ice concentration)
nn_cats_cpl = 5 ! Number of sea ice categories over which coupling is to be carried out (if not 1)
!_____________!__________________________!____________!_____________!______________________!________!
! ! description ! multiple ! vector ! vector ! vector !
! ! ! categories ! reference ! orientation ! grids !

!*** send ***
sn_snd_temp = 'weighted oce and ice' , 'no' , '' , '' , ''
sn_snd_alb = 'weighted ice' , 'no' , '' , '' , ''
sn_snd_thick = 'none' , 'no' , '' , '' , ''
sn_snd_crt = 'none' , 'no' , 'spherical' , 'eastward-northward' , 'T'
sn_snd_co2 = 'coupled' , 'no' , '' , '' , ''
sn_snd_crtw = 'none' , 'no' , '' , '' , 'U,V'
sn_snd_ifrac = 'none' , 'no' , '' , '' , ''
sn_snd_wlev = 'coupled' , 'no' , '' , '' , ''
sn_snd_cond = 'weighted ice' , 'no' , '' , '' , ''
sn_snd_thick1 = 'ice and snow' , 'no' , '' , '' , ''
sn_snd_mpnd = 'weighted ice' , 'no' , '' , '' , ''
sn_snd_sstfrz = 'coupled' , 'no' , '' , '' , ''
sn_snd_ttilyr = 'weighted ice' , 'no' , '' , '' , ''

!*** receive ***
sn_rcv_w10m = 'none' , 'no' , '' , '' , ''
sn_rcv_taumod = 'coupled' , 'no' , '' , '' , ''
sn_rcv_tau = 'oce only' , 'no' , 'cartesian' , 'eastward-northward' , ''
sn_rcv_dqnsdt = 'coupled' , 'no' , '' , '' , ''
sn_rcv_qsr = 'oce and ice' , 'no' , '' , '' , ''
sn_rcv_qns = 'oce and ice' , 'no' , '' , '' , ''
sn_rcv_emp = 'conservative' , 'no' , '' , '' , ''
sn_rcv_rnf = 'coupled' , 'no' , '' , '' , ''
sn_rcv_cal = 'coupled' , 'no' , '' , '' , ''
sn_rcv_co2 = 'coupled' , 'no' , '' , '' , ''
sn_rcv_iceflx = 'none' , 'no' , '' , '' , ''
sn_rcv_mslp = 'none' , 'no' , '' , '' , ''
sn_rcv_ts_ice = 'none' , 'no' , '' , '' , ''
sn_rcv_qtrice = 'none' , 'no' , '' , '' , ''
sn_rcv_isf = 'none' , 'no' , '' , '' , ''
sn_rcv_icb = 'none' , 'no' , '' , '' , ''
sn_rcv_hsig = 'none' , 'no' , '' , '' , ''
sn_rcv_phioc = 'none' , 'no' , '' , '' , ''
sn_rcv_sdrfx = 'none' , 'no' , '' , '' , ''
sn_rcv_sdrfy = 'none' , 'no' , '' , '' , ''
sn_rcv_wper = 'none' , 'no' , '' , '' , ''
sn_rcv_wnum = 'none' , 'no' , '' , '' , ''
sn_rcv_wstrf = 'none' , 'no' , '' , '' , ''
sn_rcv_wdrag = 'none' , 'no' , '' , '' , ''
sn_rcv_charn = 'none' , 'no' , '' , '' , ''
sn_rcv_taw = 'none' , 'no' , '' , '' , ''
sn_rcv_bhd = 'none' , 'no' , '' , '' , ''
sn_rcv_tusd = 'none' , 'no' , '' , '' , ''
sn_rcv_tvsd = 'none' , 'no' , '' , '' , ''

/

namelist 7.6.: &namsbc_cpl

!-----------------------------------------------------------------------
&namsbc_apr ! Atmospheric pressure used as ocean forcing (ln_apr_dyn =T)
!-----------------------------------------------------------------------

rn_pref = 101000. ! reference atmospheric pressure [N/m2]/
nn_ref_apr = 0 ! ref. pressure: 0: constant, 1: global mean or 2: read in a file
ln_apr_obc = .false. ! inverse barometer added to OBC ssh data

cn_dir = './' ! root directory for the Patm data location

!___________!_________________________!___________________!___________!_____________!________!___________!__________________!__________!_______________!↪→
! ! file name ! frequency (hours) ! variable ! time interp.! clim ! 'yearly'/ ! weights filename !
rotation ! land/sea mask !↪→

! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! !
pairing ! filename !↪→
sn_apr = 'patm' , -1. ,'somslpre' , .true. , .true. , 'yearly' , '' ,
'' , ''↪→
sn_apref = 'mean_patm' , -1. ,'meanapr' , .true. , .true. , 'yearly' , '' ,
'' , ''↪→

/

namelist 7.7.: &namsbc_apr
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!-----------------------------------------------------------------------
&nam_tide ! tide parameters (default: OFF)
!-----------------------------------------------------------------------

ln_tide = .false. ! Activate tides
nn_tide_var = 1 ! Variant of tidal parameter set and tide-potential computation
! ! (1: default; 0: compatibility with previous versions)
ln_tide_pot = .false. ! use tidal potential forcing

rn_tide_gamma = 0.7 ! Tidal tilt factor
ln_scal_load = .false. ! Use scalar approximation for

rn_scal_load = 0.094 ! load potential
ln_read_load = .false. ! Or read load potential from file

cn_tide_load = 'tide_LOAD_grid_T.nc' ! filename for load potential
!

ln_tide_ramp = .false. ! Use linear ramp for tides at startup
rn_tide_ramp_dt = 0. ! ramp duration in days

sn_tide_cnames(1) = 'DUMMY' ! name of constituent - all tidal components must be set in namelist_cfg
/

namelist 7.8.: &nam_tide

where Patm is the atmospheric pressure and Po a reference atmospheric pressure. 3 different options are available
to define this reference atmospheric pressure using nn_ref_apr :

• 0 sets Po to a constant value of 101, 000 N/m2

• 1 sets Po to the value of Patm averaged over the ocean domain (the mean value of ηib is kept to zero at all
time steps)

• 2 reads a time-dependant Po value from a 1D file defined via sn_apref structure (usefull for regional
configurations)

The gradient of ηib is added to the RHS of the ocean momentum equation (see dynspg.F90 for the ocean).
For sea-ice, the sea surface height, ηm, which is provided to the sea ice model is set to η − ηib (see sbcssr.F90
module). ηib can be written in the output. This can simplify altimetry data and model comparison as inverse
barometer sea surface height is usually removed from these date prior to their distribution.

When using time-splitting and BDY package for open boundaries conditions, the equivalent inverse barometer
sea surface height ηib can be added to BDY ssh data: ln_apr_obc might be set to true.

7.8. Surface tides (TDE)

7.8.1. Tidal constituents
Ocean model component TDE provides the common functionality for tidal forcing and tidal analysis in the
model framework. This includes the computation of the gravitational surface forcing, as well as support for
lateral forcing at open boundaries (see subsection 9.4.9) and tidal harmonic analysis . The module is activated
with ln_tide=.true. in namelist &nam_tide (namelist 7.8) . It provides the same 34 tidal constituents that
are included in the FES2014 ocean tide model: Mf, Mm, Ssa, Mtm, Msf, Msqm, Sa, K1, O1, P1, Q1, J1, S1,
M2, S2, N2, K2, nu2, mu2, 2N2, L2, T2, eps2, lam2, R2, M3, MKS2, MN4, MS4, M4, N4, S4, M6, and M8;
see file tide.h90 and tide_mod.F90 for further information and references∗. Constituents to be included in the
tidal forcing (surface and lateral boundaries) are selected by enumerating their respective names in namelist
array sn_tide_cnames .

7.8.2. Surface tidal forcing
Surface tidal forcing can be represented in the model through an additional barotropic force in the momentum
equation (equation 1.4a) such that:

∂Uh

∂t
= . . .+ g∇(γΠeq +Πsal)

where γΠeq stands for the equilibrium tidal forcing scaled by a spatially uniform tilt factor γ, and Πsal is
an optional self-attraction and loading term (SAL). These additional terms are enabled when, in addition to
ln_tide=.true. , the parameter ln_tide_pot=.true. .

∗As a legacy option nn_tide_var can be set to 0, in which case the 19 tidal constituents (M2, N2, 2N2, S2, K2, K1, O1, Q1, P1,
M4, Mf, Mm, Msqm, Mtm, S1, MU2, NU2, L2, and T2; see file tide.h90) and associated parameters that have been available in
NEMO version 4.0 and earlier are available
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Chap. 7 Surface Boundary Condition (SBC, SAS, TDE)

!-----------------------------------------------------------------------
&namsbc_rnf ! runoffs (ln_rnf =T)
!-----------------------------------------------------------------------

ln_rnf_mouth = .false. ! specific treatment at rivers mouths
rn_hrnf = 15.e0 ! depth over which enhanced vertical mixing is used (ln_rnf_mouth=T)
rn_avt_rnf = 1.e-3 ! value of the additional vertical mixing coef. [m2/s] (ln_rnf_mouth=T)

rn_rfact = 1.e0 ! multiplicative factor for runoff
ln_rnf_depth = .false. ! read in depth information for runoff
ln_rnf_tem = .false. ! read in temperature information for runoff
ln_rnf_sal = .false. ! read in salinity information for runoff
ln_rnf_icb = .false. ! read iceberg flux
ln_rnf_depth_ini = .false. ! compute depth at initialisation from runoff file

rn_rnf_max = 5.735e-4 ! max value of the runoff climatologie over global domain ( ln_rnf_depth_ini = .true )
rn_dep_max = 150. ! depth over which runoffs is spread ( ln_rnf_depth_ini = .true )
nn_rnf_depth_file = 0 ! create (=1) a runoff depth file or not (=0)

cn_dir = './' ! root directory for the runoff data location

!___________!_________________________!___________________!___________!_____________!________!___________!__________________!__________!_______________!↪→
! ! file name ! frequency (hours) ! variable ! time interp.! clim ! 'yearly'/ ! weights filename !
rotation ! land/sea mask !↪→

! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! !
pairing ! filename !↪→
sn_rnf = 'runoff_core_monthly' , -1. , 'sorunoff', .true. , .true. , 'yearly' , '' ,
'' , ''↪→
sn_cnf = 'runoff_core_monthly' , -12. , 'socoefr0', .false. , .true. , 'yearly' , '' ,
'' , ''↪→
sn_s_rnf = 'runoffs' , 24. , 'rosaline', .true. , .true. , 'yearly' , '' ,
'' , ''↪→
sn_t_rnf = 'runoffs' , 24. , 'rotemper', .true. , .true. , 'yearly' , '' ,
'' , ''↪→
sn_i_rnf = 'NOT USED' , 24. , 'xxxxxxxx', .true. , .true. , 'yearly' , '' ,
'' , ''↪→
sn_dep_rnf = 'runoffs' , -12. , 'rodepth' , .false. , .true. , 'yearly' , '' ,
'' , ''↪→

/

namelist 7.9.: &namsbc_rnf

The equilibrium tidal forcing is expressed as a sum over the subset of constituents listed in sn_tide_cnames
of &nam_tide (namelist 7.8) (e.g.,

sn_tide_cnames(1) = 'M2'
sn_tide_cnames(2) = 'K1'
sn_tide_cnames(3) = 'S2'
sn_tide_cnames(4) = 'O1'

to select the four tidal constituents of strongest equilibrium tidal potential). The tidal tilt factor γ = 1+ k− h
includes the Love numbers k and h (Love, 1909); this factor is configurable using rn_tide_gamma (default
value 0.7). Optionally, when ln_tide_ramp=.true. , the equilibrium tidal forcing can be ramped up linearly
from zero during the initial rn_tide_ramp_dt days of the model run.
The SAL term should in principle be computed online as it depends on the model tidal prediction itself (see

Arbic et al. (2004) for a discussion about the practical implementation of this term). The complex calculations
involved in such computations, however, are computationally very expensive. Here, two mutually exclusive
simpler variants are available: amplitudes generated by an external model for oscillatory Πsal contributions
from each of the selected tidal constituents can be read in ( ln_read_load=.true. ) from the file specified
in cn_tide_load (the variable names are comprised of the tidal-constituent name and suffixes _z1 and
_z2 for the two orthogonal components, respectively); alternatively, a “scalar approximation” can be used (
ln_scal_load=.true. ), where

Πsal = βη,

with a spatially uniform coefficient β, which can be configured via rn_scal_load (default value 0.094) and is
often tuned to minimize tidal prediction errors.

7.9. River runoffs ( sbcrnf.F90 )
River runoff generally enters the ocean at a nonzero depth rather than through the surface. Many models,

however, have traditionally inserted river runoff to the top model cell. This was the case in NEMO prior to the
version 3.3, and was combined with an option to increase vertical mixing near the river mouth.
However, with this method numerical and physical problems arise when the top grid cells are of the order of

one meter. This situation is common in coastal modelling and is becoming more common in open ocean and
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climate modelling †.
As such from V 3.3 onwards it is possible to add river runoff through a non-zero depth, and for the temperature

and salinity of the river to effect the surrounding ocean. The user is able to specify, in a NetCDF input file, the
temperature and salinity of the river, along with the depth (in metres) which the river should be added to.

The surface runoff is activated via the namelist parameter ln_rnf in &namsbc (namelist 7.1) . The specific
options that control the runoff are described in &namsbc_rnf (namelist 7.9) (namelist 7.9). In case of activa-
tion, the mandatory fields is the map of surface runoff that need to be specified by the user ( sn_rnf ). All the
other parameters described below like the injection depth, the temperature, salinity (...) are optional.

By default the surface runoff is injected in the surface level. However, by activating ln_rnf_depth , it is
possible to specify a 2D map of depth over which to inject it ( sn_dep_rnf ). The depth variable is expected
to be positive with two specific values. A cell value of -1 means the river is added to the surface box only, and
a cell value of -999 means the river is added through the entire water column. There is a third way to define
the runoff thickness. The depth can be automatically computed ( ln_rnf_depth_ini ). The user simply need
to give the depth over which the maximum runoff ( rn_rnf_max ) is spread ( rn_dep_max ). THen the runoff
depth is computed simply by scaling the local maximum runoff value over time by the ratio rn_dep_max

rn_rnf_max . Once
computed, by setting nn_rnf_depth_file the file can be outputted for sanity check.

After the depth is defined, the number of grid boxes this corresponds to is calculated and stored in the variable
nk_rnf. The variable h_dep is then updated to be the depth (in metres) of the bottom of the lowest box the
river water is being added to (i.e. the total depth that river water is being added to in the model).

The mass/volume addition due to the river runoff is, at each relevant depth level, added to the horizontal
divergence (hdivn) in the subroutine sbc_rnf_div (called from divhor.F90 ) simulating a momentum flux.
The sea surface height is then calculated using the sum of the horizontal divergence terms, and so the river
runoff indirectly forces an increase in sea surface height.
The hdivn terms are used in the tracer advection modules to force vertical velocities. This causes a mass of

water, equal to the amount of runoff, to be moved into the box above. The heat and salt content of the river
runoff is not included in this step, and so the tracer concentrations are diluted as water of ocean temperature
and salinity is moved upward out of the box and replaced by the same volume of river water with no corre-
sponding heat and salt addition.

For the tracers, by default ( ln_rnf_tem and ln_rnf_sal set to false), the runoff is assumed to be at the
river point sst and with salinity 0 g/kg. If set to true, the user needs to provide a runoff temperature and/or
salinity field ( sn_t_rnf and/or sn_s_rnf respectively). It is worth noting that location with a temperature
value of -999 is considered as missing data and the river temperature is taken to be the surface temperature at
the river point. Furthermore, the iceberg melt flux forcing (and the associated latent heat flux) can be added as
runoff by activating ln_rnf_icb instead of using the lagrangian iceberg model (ICB, section 8.2) to simulate
it. In this case, the user simply need to specify a map of iceberg melt rate in the file sn_i_rnf . In this case,
the iceberg fresh water flux is added to the runoff fluxes and the latent heat flux directly to the non solar heat
fluxes.
After being read in the temperature and salinity variables are multiplied by the amount of runoff (converted

into m/s) to give the heat and salt content of the river runoff. These fluxes are then added to the tracer trend
in trasbc.F90 (subsection 6.4.1) . This is done in the same way for both linear and non-linear free surface.
The temperature and salinity are increased through the specified depth according to the heat and salt content
of the river.

For the linear free surface case, at the surface box the tracer advection causes a flux of water (of equal volume
to the runoff) through the sea surface out of the domain, which causes a salt and heat flux out of the model.
As such the volume of water does not change, but the water is diluted.
For the non-linear free surface case, no flux is allowed through the surface. Instead in the surface box (as

well as water moving up from the boxes below) a volume of runoff water is added with the corresponding heat
and salt (runoff temperature at surface temperature and salinity 0 g/kg by default) and so as happens in the
lower boxes there is a dilution effect. (The runoff addition to the top box along with the water being moved up
through boxes below means the surface box has a large increase in volume, whilst all other boxes remain the
same size).
Furthermore, near the end of the time step the change in sea surface height is redistributed through the grid

boxes, so that the original ratios of grid box heights are restored. In doing this water is moved into boxes below,
throughout the water column, so the large volume addition to the surface box is spread between all the grid

†At least a top cells thickness of 1 meter and a 3 hours forcing frequency are required to properly represent the diurnal cycle
(Bernie et al., 2005). see also figure 7.2.
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!-----------------------------------------------------------------------
&namsbc_wave ! External fields from wave model (ln_wave=T)
!-----------------------------------------------------------------------

ln_sdw = .false. ! get the 2D Surf Stokes Drift & Compute the 3D stokes drift
ln_stcor = .false. ! add Stokes Coriolis and tracer advection terms
ln_cdgw = .false. ! Neutral drag coefficient read from wave model
ln_tauoc = .false. ! ocean stress is modified by wave induced stress
ln_wave_test= .false. ! Test case with constant wave fields

!
ln_charn = .false. ! Charnock coefficient read from wave model (IFS only)
ln_taw = .false. ! ocean stress is modified by wave induced stress (coupled mode)
ln_phioc = .false. ! TKE flux from wave model
ln_bern_srfc= .false. ! wave induced pressure. Bernoulli head J term
ln_breivikFV_2016 = .false. ! breivik 2016 vertical stokes profile
ln_vortex_force = .false. ! Vortex Force term
ln_stshear = .false. ! include stokes shear in EKE computation

!
cn_dir = './' ! root directory for the waves data location

!___________!_________________________!___________________!___________!_____________!________!___________!__________________!__________!_______________!↪→
! ! file name ! frequency (hours) ! variable ! time interp.! clim ! 'yearly'/ ! weights filename !
rotation ! land/sea mask !↪→

! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! !
pairing ! filename !↪→
sn_cdg = 'sdw_ecwaves_orca2' , 6. , 'drag_coeff' , .true. , .true. , 'yearly' , '' ,
'' , ''↪→
sn_usd = 'sdw_ecwaves_orca2' , 6. , 'u_sd2d' , .true. , .true. , 'yearly' , '' ,
'' , ''↪→
sn_vsd = 'sdw_ecwaves_orca2' , 6. , 'v_sd2d' , .true. , .true. , 'yearly' , '' ,
'' , ''↪→
sn_hsw = 'sdw_ecwaves_orca2' , 6. , 'hs' , .true. , .true. , 'yearly' , '' ,
'' , ''↪→
sn_wmp = 'sdw_ecwaves_orca2' , 6. , 'wmp' , .true. , .true. , 'yearly' , '' ,
'' , ''↪→
sn_wnum = 'sdw_ecwaves_orca2' , 6. , 'wave_num' , .true. , .true. , 'yearly' , '' ,
'' , ''↪→
sn_tauoc = 'sdw_ecwaves_orca2' , 6. , 'wave_stress', .true. , .true. , 'yearly' , '' ,
'' , ''↪→

/

namelist 7.10.: &namsbc_wave

boxes.

In addition, there is possibility to increase vertical mixing near river mouths ( ln_rnf_mouth ). If activated,
the kz is increased by rn_avt_rnf where the mask file sn_cnf is set to 0.5 over the number of level corre-
sponding to the depth rn_hrnf . This depth value can be different to the one set in sn_dep_rnf .

Finally, it is worth nothing that it is also possible for runoff to be specified as a negative value for modelling
flow through straits, i.e. modelling the Baltic flow in and out of the North Sea. When the flow is out of the
domain there is no change in temperature and salinity, regardless of the namelist options used, as the ocean
water leaving the domain removes heat and salt (at the same concentration) with it.

7.10. Interactions with waves ( sbcwave.F90 )
Ocean waves represent the interface between the ocean and the atmosphere, so NEMO is extended to in-

corporate physical processes related to ocean surface waves, namely the surface stress modified by growth and
dissipation of the oceanic wave field, the Stokes-Coriolis force, the vortex-force, the Bernoulli head J term
and the Stokes drift impact on mass and tracer advection; moreover the neutral surface drag coefficient or the
Charnock parameter from a wave model can be used to evaluate the wind stress. NEMO has also been extended
to take into account the impact of surface waves on the vertical mixing, via the parameterization of the Lang-
muir turbulence, the modification of the surface boundary conditions for the Turbulent Kinetic Energy closure
scheme, and the inclusion of the Stokes drift contribution to the shear production term in different turbulent
closure schemes (TKE, GLS).

Physical processes related to ocean surface waves can be accounted by setting the logical variable ln_wave=.true.
in &namsbc (namelist 7.1) namelist. In addition, specific flags accounting for different processes should be
activated as explained in the following sections.

Wave fields can be provided either in forced or coupled mode:

Page 99 of 310 NEMO Reference Manual



Sect. 7.10 Interactions with waves (sbcwave.F90)

forced mode : the neutral drag coefficient, the two components of the surface Stokes drift, the significant wave
height, the mean wave period, the mean wave number, and the normalized wave stress going into the ocean
can be read from external files. Wave fields should be defined through the &namsbc_wave (namelist 7.10)
namelist for external data names, locations, frequency, interpolation and all the miscellanous options
allowed by Input Data generic Interface (see section 7.2).

coupled mode : NEMO and an external wave model can be coupled by setting ln_cpl=.true. in &namsbc
(namelist 7.1) namelist and filling the &namsbc_cpl (namelist 7.6) namelist. NEMO can receive the
significant wave height, the mean wave period (T0M1), the mean wavenumber, the Charnock parameter,
the neutral drag coefficient, the two components of the surface Stokes drift and the associated transport,
the wave to ocean momentum flux, the net wave-supported stress, the Bernoulli head J term and the
wave to ocean energy flux term.

The option ln_wave_test=.true. enables testing of ocean-wave interactions using an idealized constant
wave field. The fields define are the surface Stokes drift (in the x-direction), as well as the significant wave
height and mean wave period.

7.10.1. Neutral drag coefficient from wave model ( ln_cdgw )
The neutral surface drag coefficient provided from an external data source (i.e. forced or coupled wave model),
can be used by setting the logical variable ln_cdgw=.true. in &namsbc_wave (namelist 7.10) namelist. The
drag coefficient is computed according to the stable/unstable conditions of the air-sea interface following Large
and Yeager (2004), starting from the neutral drag coefficient provided. This option is only available for the
ln_NCAR and ln_MFS bulk formulae.

7.10.2. Charnok coefficient from wave model ( ln_charn )
The dimensionless Charnock parameter characterising the sea surface roughness provided from an external
wave model, can be used by setting the logical variable ln_charn=.true. in &namsbc_wave (namelist 7.10)
namelist. Then using the routine sbcblk_algo_ecmwf , the roughness length that enters the definition of the
drag coefficient is computed according to the Charnock parameter depending on the sea state. Note that this
option is only available in coupled mode and for ln_ECMWF=.true. .

7.10.3. 3D Stokes Drift ( ln_sdw )
The Stokes drift is a wave driven mechanism of mass and momentum transport (Stokes, 2009). It is defined
as the difference between the average velocity of a fluid parcel (Lagrangian velocity) and the current measured
at a fixed point (Eulerian velocity). As waves travel, the water particles that make up the waves travel in
orbital motions but without a closed path. Their movement is enhanced at the top of the orbit and slowed
slightly at the bottom, so the result is a net forward motion of water particles, referred to as the Stokes
drift. An accurate evaluation of the Stokes drift and the inclusion of related processes may lead to improved
representation of surface physics in ocean general circulation models. The Stokes drift velocity Ust in deep
water can be computed from the wave spectrum and may be written as:

Ust =
16π3

g

∫ ∞

0

∫ π

−π
(cosθ, sinθ)f3S(f, θ)e2kz dθdf

where: θ is the wave direction, f is the wave intrinsic frequency, S(f, θ) is the 2D frequency-direction spec-
trum, k is the mean wavenumber defined as: k = 2π

λ (being λ the wavelength).

In order to evaluate the Stokes drift in a realistic ocean wave field, the wave spectral shape is required and
its computation quickly becomes expensive as the 2D spectrum must be integrated for each vertical level. To
simplify, it is customary to use approximations to the full Stokes profile. Two possible parameterizations for
the calculation for the approximate Stokes drift velocity profile are included in the code once provided the
surface Stokes drift Ust|z=0

which is evaluated by an external wave model that accurately reproduces the wave
spectra and makes possible the estimation of the surface Stokes drift for random directional waves in realistic
wave conditions. To evaluate the 3D Stokes drift, the surface Stokes drift (zonal and meridional components),
the Stokes transport or alternatively the significant wave height and the mean wave period should be provided
either in forced or coupled mode.

By default ln_breivikFV_2016=.false. :
An exponential integral profile parameterization proposed by Breivik et al. (2014) is used:
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Ust
∼= Ust|z=0

e−2kez

1− 8kez

where ke is the effective wave number which depends on the Stokes transport Tst defined as follows:

ke =
|U st|z=0

|
5.97|Tst|

and Tst =
1

16
ω̄H2

s

where Hs is the significant wave height and ω̄ is the wave frequency defined as: ω̄ = 2π
Tm

(being Tm the
mean wave period).

If ln_breivikFV_2016=.true. :

A velocity profile based on the Phillips spectrum which is considered to be a reasonable estimate of the
part of the spectrum mostly contributing to the Stokes drift velocity near the surface (Breivik et al., 2016)
is used:

Ust
∼= Ust|z=0

[
exp(2kpz)− β

√
−2πkpz erf

(√
−2kpz

)]
where erf is the complementary error function , β = 1 and kp is the peak wavenumber defined as:

kp =
|U st|z=0

|
2|Tst|

(1− 2β/3)

|Tst| is estimated from integral wave parameters (Hs and Tm) in forced mode and is provided directly
from an external wave model in coupled mode.

The Stokes drift enters the wave-averaged momentum equation, as well as the tracer advection equations and
its effect on the evolution of the sea-surface height η by including the barotropic Stokes transport horizontal
divergence in the term D of Eq.1.6
The tracer advection equation is also modified in order for Eulerian ocean models to properly account for

unresolved wave effect. The divergence of the wave tracer flux equals the mean tracer advection that is induced
by the three-dimensional Stokes velocity. The advective equation for a tracer c combining the effects of the
mean current and sea surface waves can be formulated as follows:

∂c

∂t
= −(U + Ust) · ∇c

7.10.4. Stokes-Coriolis term ( ln_stcor )
In a rotating ocean, waves exert a wave-induced stress on the mean ocean circulation which results in a force
equal to Ust×f , where f is the Coriolis parameter. This additional force may have impact on the Ekman
turning of the surface current. In order to include this term, once evaluated the Stokes drift (using one of the
2 possible approximations described in subsection 7.10.3), ln_stcor=.true. has to be set.

7.10.5. Vortex-force term ( ln_vortex_force )
The vortex-force term arises from the interaction of the mean flow vorticity with the Stokes drift. It results in a
force equal to Ust×ζ, where ζ is the mean flow vorticity. In order to include this term, once evaluated the Stokes
drift (using one of the 2 possible approximations described in subsection 7.10.3), ln_vortex_force=.true.
has to be set.

7.10.6. Wave-induced pressure term ( ln_bern_srfc )
An adjustment in the mean pressure arises to accommodate for the presence of waves. The mean pressure is
corrected adding a depth-uniform wave-induced kinematic pressure term named Bernoulli head J term. The
Bernoulli head J term is provided to NEMO from an external wave model where it is defined as:

J = g

∫∫
k

sinh(2kd)
S(k, θ)dθdk

with d the water depth.
In order to include this term, ln_bern_srfc=.true. has to be defined as well as the Stokes drift option
(subsection 7.10.3) and the coupling with an external wave model (section 7.10).
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7.10.7. Wave modified stress ( ln_tauoc & ln_taw )
The surface stress felt by the ocean is the atmospheric stress minus the net stress going into the waves (Janssen
et al., 2013). Therefore, when waves are growing, momentum and energy is spent and is not available for forcing
the mean circulation, while in the opposite case of a decaying sea state, more momentum is available for forcing
the ocean. Only when the sea state is in equilibrium, the ocean is forced by the atmospheric stress, but in
practice, an equilibrium sea state is a fairly rare event. So the atmospheric stress felt by the ocean circulation
τoc,a can be expressed as:

τoc,a = τa − τw
where τa is the atmospheric surface stress; τw is the atmospheric stress going into the waves defined as:

τw = ρg

∫ 2π

0

∫
1

cp
(Sin + Snl + Sdiss)dkdθ

where: cp is the phase speed of the gravity waves, Sin, Snl and Sdiss are three source terms that represent
the physics of ocean waves. The first one, Sin, describes the generation of ocean waves by wind and therefore
represents the momentum and energy transfer from air to ocean waves; the second term Snl denotes the
nonlinear transfer by resonant four-wave interactions; while the third term Sdiss describes the dissipation of
waves by processes such as white-capping, large scale breaking eddy-induced damping. Note that the Snl is not
always taken into account for the calculation of the atmospheric stress going into the waves, depending on the
external wave model. The wave stress derived from an external wave model can be provided either through the
normalized wave stress into the ocean by setting ln_tauoc=.true. , or through the zonal and meridional stress
components by setting ln_taw=.true. . In coupled mode both options can be used while in forced mode only
the first option is included.
If the normalized wave stress into the ocean (τ̃) is provided ( ln_tauoc=.true. ) the atmospheric stress felt

by the ocean circulation is expressed as:
τoc,a = τa × τ̃

If ln_taw=.true. , the zonal and meridional stress fields components from the coupled wave model have to
be sent directly to u-grid and v-grid through OASIS.

7.10.8. Waves impact vertical mixing ( ln_phioc & ln_stshear )
The vortex-force vertical term gives rise to extra terms in the turbulent kinetic energy (TKE) prognostic
(Couvelard et al., 2020). The first term corresponds to a modification of the shear production term. The Stokes
Drift shear contribution can be included, in coupled mode, by setting ln_stshear=.true. .

In addition, waves affect the surface boundary condition for the turbulent kinetic energy, the mixing length
scale and the dissipative length scale of the TKE closure scheme. The injection of turbulent kinetic energy at
the surface can be given by the dissipation of the wave field usually dominated by wave breaking.

In coupled mode, the wave to ocean energy flux term from an external wave model (Φo) can be provided
to NEMO and then converted into an ocean turbulence source by setting ln_phioc=.true. . The boundary
condition for the turbulent kinetic energy is implemented in the zdftke as a Dirichlet or as a Neumann
boundary condition (see subsubsection 11.1.4). The boundary condition for the mixing length scale and the
dissipative length scale can also account for surface waves (see subsubsection 11.1.4)

Some improvements are introduced in the Langmuir turbulence parameterization (see chapter 11 subsubsec-
tion 11.1.4) if wave coupled mode is activated.

7.11. Miscellaneous options
7.11.1. Diurnal cycle ( sbcdcy.F90 )
Bernie et al. (2005) have shown that to capture 90% of the diurnal variability of SST requires a vertical resolution
in upper ocean of 1 m or better and a temporal resolution of the surface fluxes of 3 h or less. Nevertheless,
it is possible to obtain a reasonable diurnal cycle of the SST knowning only short wave flux (SWF) at high
frequency (Bernie et al., 2007). Furthermore, only the knowledge of daily mean value of SWF is needed, as
higher frequency variations can be reconstructed from them, assuming that the diurnal cycle of SWF is a scaling
of the top of the atmosphere diurnal cycle of incident SWF. The Bernie et al. (2007) reconstruction algorithm is
available in NEMO by setting ln_dm2dc=.true. (a &namsbc (namelist 7.1) namelist variable) when using a
bulk formulation ( ln_blk=.true. ) or the flux formulation ( ln_flx=.true. ). The reconstruction is performed
in the sbcdcy.F90 module. The detail of the algoritm used can be found in the appendix A of Bernie et al.
(2007). The algorithm preserves the daily mean incoming SWF as the reconstructed SWF at a given time step
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Figure 7.1.: Example of reconstruction of the diurnal cycle variation of short wave flux from daily mean values. The reconstructed
diurnal cycle (black line) is chosen as the mean value of the analytical cycle (blue line) over a time step, not as the mid
time step value of the analytically cycle (red square). From Bernie et al. (2007).

is the mean value of the analytical cycle over this time step (figure 7.1). The use of diurnal cycle reconstruction
requires the input SWF to be daily (i.e. a frequency of 24 hours and a time interpolation set to true in sn_qsr
namelist parameter). Furthermore, it is recommended to have a least 8 surface module time steps per day, that
is ∆t nn_fsbc < 10, 800 s = 3 h. An example of recontructed SWF is given in figure 7.2 for a 12 reconstructed
diurnal cycle, one every 2 hours (from 1am to 11pm).
Note also that the setting a diurnal cycle in SWF is highly recommended when the top layer thickness

approach 1 m or less, otherwise large error in SST can appear due to an inconsistency between the scale of the
vertical resolution and the forcing acting on that scale.

7.11.2. Rotation of vector pairs onto the model grid directions
When using a flux ( ln_flx=.true. ) or bulk ( ln_blk=.true. ) formulation, pairs of vector components can be
rotated from east-north directions onto the local grid directions. This is particularly useful when interpolation
on the fly is used since here any vectors are likely to be defined relative to a rectilinear grid. To activate this
option, a non-empty string is supplied in the rotation pair column of the relevant namelist. The eastward
component must start with ”U” and the northward component with ”V”. The remaining characters in the
strings are used to identify which pair of components go together. So for example, strings ”U1” and ”V1” next
to ”utau” and ”vtau” would pair the wind stress components together and rotate them on to the model grid
directions; ”U2” and ”V2” could be used against a second pair of components, and so on. The extra characters
used in the strings are arbitrary. The rot_rep routine from the geo2ocean.F90 module is used to perform the
rotation.

7.11.3. Surface restoring to observed SST and/or SSS ( sbcssr.F90 )
The addition of a surface restoring term to observed SST and/or SSS can be activated defining ln_ssr=.true.

in &namsbc (namelist 7.1) . Options are defined through the &namsbc_ssr (namelist 7.11) namelist variables.
On forced mode using a flux formulation ( ln_flx=.true. ), a feedback term must be added to the surface
heat flux Qons ( nn_sstr= 1 ):

Qns = Qons +
dQ

dT
(T |k=1 − SSTObs) (7.2)

where SST is a sea surface temperature field (observed or climatological, sn_sst ), T is the model surface
layer temperature and dQ

dT ( rn_dqdt ) is a negative feedback coefficient usually taken equal to −40 W/m2/K.
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Figure 7.2.: Example of reconstruction of the diurnal cycle variation of short wave flux from daily mean values on an ORCA2 grid
with a time sampling of 2 hours (from 1am to 11pm). The display is on (i,j) plane.

For a 50 m mixed-layer depth, this value corresponds to a relaxation time scale of two months. This term
ensures that if T perfectly matches the supplied SST, then Q is equal to Qo.

In the fresh water budget, a feedback term can also be added ( nn_sssr= 1 ). Converted into an equivalent
freshwater flux, it takes the following expression :

emp = empo + γ−1
s e3t

(S|k=1 − SSSObs)
S|k=1

(7.3)

where empo is a net surface fresh water flux (observed, climatological or an atmospheric model product),
SSSObs is a sea surface salinity estimate ( sn_sss ), S|k=1 is the model surface layer salinity and γs is a negative
feedback coefficient which is provided as rn_deds . At high resolution is is worth bounding the restoring term
( ln_sssr_bnd ) because it can be extremely high in structured not resolved in the sss observation (filament or
eddies). If activated the maximum value of the correction term is set to rn_sssr_bnd . There is also an option
to deactivate the salinity restoring under sea ice ( nn_sssr_ice ). There is 3 options:

nn_sssr_ice = 0 : no restoring under sea ice. This can be justify by the fact that the observation under the
sea ice less reliable as in the open ocean.

nn_sssr_ice = 1 : same restoring under sea ice than within the open ocean
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!-----------------------------------------------------------------------
&namsbc_ssr ! surface boundary condition : sea surface restoring (ln_ssr =T)
!-----------------------------------------------------------------------

nn_sstr = 0 ! add a retroaction term to the surface heat flux (=1) or not (=0)
rn_dqdt = -40. ! magnitude of the retroaction on temperature [W/m2/K]

nn_sssr = 0 ! add a damping term to the surface freshwater flux (=2)
! ! or to SSS only (=1) or no damping term (=0)
rn_deds = -166.67 ! magnitude of the damping on salinity [mm/day]
ln_sssr_bnd = .true. ! flag to bound erp term (associated with nn_sssr=2)
rn_sssr_bnd = 4.e0 ! ABS(Max/Min) value of the damping erp term [mm/day]
nn_sssr_ice = 1 ! control of sea surface restoring under sea-ice

! 0 = no restoration under ice : * (1-icefrac)
! 1 = restoration everywhere
! >1 = enhanced restoration under ice : 1+(nn_icedmp-1)*icefrac

cn_dir = './' ! root directory for the SST/SSS data location

!___________!_________________________!___________________!___________!_____________!________!___________!__________________!__________!_______________!↪→
! ! file name ! frequency (hours) ! variable ! time interp.! clim ! 'yearly'/ ! weights filename !
rotation ! land/sea mask !↪→

! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! !
pairing ! filename !↪→
sn_sst = 'sst_data' , 24. , 'sst' , .false. , .false., 'yearly' , '' ,
'' , ''↪→
sn_sss = 'sss_data' , -1. , 'sss' , .true. , .true. , 'yearly' , '' ,
'' , ''↪→

/

namelist 7.11.: &namsbc_ssr

nn_sssr_ice > 1 : strong restoring under the ice. In this case, the user trust more the sss observation that its
sea ice model as the restoring will tend to strongly constrain the surface salinity that in reality is strongly
driven by the sea ice melt / formation in these area.

If the sea surface salinity estimates do not resolve the river fresh water plumes, the restoring will tend to counter
balance the effect of the surface runoff in the model. To avoid such effect, the salinity restoring is not applied
at the river mouth mask defined when the runoff parameter ln_rnf_mouth is activated.

Unlike heat flux, there is no physical justification for the feedback term in equation 7.3 as the atmosphere
does not care about ocean surface salinity (Madec and Delécluse, 1997). The SSS restoring term should be
viewed as a flux correction on freshwater fluxes to reduce the uncertainties we have on the observed freshwater
budget.

7.11.4. Handling of ice-covered area (sbcice_...)
The presence at the sea surface of an ice covered area modifies all the fluxes transmitted to the ocean. There
are several way to handle sea-ice in the system depending on the value of the nn_ice namelist parameter
found in &namsbc (namelist 7.1) namelist.

nn_ice=0 : there will never be sea-ice in the computational domain. This is a typical namelist value used for
tropical ocean domain. The surface fluxes are simply specified for an ice-free ocean. No specific things is
done for sea-ice.

nn_ice=1 : sea-ice can exist in the computational domain, but no sea-ice model is used. An observed ice
covered area is read in a file. Below this area, the SST is restored to the freezing point and the heat fluxes
are set to −4 W/m2 (−2 W/m2) in the northern (southern) hemisphere. The associated modification of
the freshwater fluxes are done in such a way that the change in buoyancy fluxes remains zero. This prevents
deep convection to occur when trying to reach the freezing point (and so ice covered area condition) while
the SSS is too large. This manner of managing sea-ice area, just by using a IF case, is usually referred as
the ice-if model. It can be found in the sbcice_if.F90 module.

nn_ice=2 : A full sea ice model is used. This model computes the ice-ocean fluxes, that are combined with
the air-sea fluxes using the ice fraction of each model cell to provide the surface averaged ocean fluxes.
Note that the activation of a sea-ice model is done by defining a CPP key ( key_si3 ). The activation
automatically overwrites the read value of nn_ice to its appropriate value (i.e. 2 for SI3).

7.11.5. Freshwater budget control ( sbcfwb.F90 )
For global ocean simulations, it can be useful to introduce a control of the mean sea level in order to prevent

unrealistic drifting of the sea surface height due to unbalanced freshwater fluxes. In NEMO, four options for
controlling the freshwater budget are proposed:
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!-----------------------------------------------------------------------
&namsbc_fwb ! freshwater-budget adjustment (nn_fwb > 0)
!-----------------------------------------------------------------------

rn_fwb0 = 0.0 ! Initial freshwater adjustment flux [kg/m2/s] (nn_fwb = 2)
nn_fwb_voltype = 1 ! = 1 : Control ICE+OCEAN volume

! ! = 2 : Control OCEAN volume
ln_hvolg_var = .false. ! = T : Set an analytical variation of volume:

rn_hvolg_amp = 17.e-3 ! Peak to peak seasonnal variation (m)
rn_hvolg_trd = 0.0 ! Trend (m/s)
nn_hvolg_mth = 8 ! Month when volume anomaly crosses 0 (1-12)

/

namelist 7.12.: &namsbc_fwb

nn_fwb=0 : No control at all; the mean sea level is free to drift, and will certainly do so.

nn_fwb=1 : The global mean emp is set to zero at each model time step.

nn_fwb=2 : emp is adjusted by adding a spatially uniform, annual-mean freshwater flux that balances the
freshwater budget at the end of the previous year; as the model uses the Boussinesq approximation, the
freshwater budget can be evaluated from the change in the mean sea level and in the ice and snow mass
after the end of each simulation year; at the start of the model run, an initial adjustment flux can be set
using parameter rn_fwb0 in namelist &namsbc_fwb (namelist 7.12) .

nn_fwb=3 : volume adjusted at each time step and spread out over >0 erp (sea surface salinity restoring term)
area to increase evaporation or spread out over <0 erp area to increase precipitation.

nn_fwb=4 : volume adjusted at each time step with a correction on non solar heat flux (qns) and salt flux (sflx)
to avoid any surface buoyancy flux associated with the emp correction.

If nn_fwb is set > 0, &namsbc_fwb (namelist 7.12) block must be filled accordingly:

rn_fwb0 : if nn_fwb=2 , it defines the initial freshwater adjustment flux.

nn_fwb_voltype : it refers to the variable considered as the global value of volume (in equivalent liquid height
in m) to be conserved by the adjustment process.

nn_fwb_voltype : if set to 1, the total ocean+equivalent liquid sea ice volume water budget is controled, or
if set to 0, only the ocean volume is controled. The former is now the default and recommended, being
obviously more accurate on a physical point of view.

ln_hvolg_var : if set to .true., an analytical variation of the global liquid height can be specified by the user.
It is defined as the sum of an annual harmonic signal (with a peak to peak amplitude rn_hvolg_amp in m,
and a zero crossing at the beginning of month nn_hvolg_mth ) and a linear trend given by rn_hvolg_trd
(in m/s).
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Sect. 8.1 Ice Shelf (ISF)

Land ice includes ice sheets, icebergs, and ice-shelves. Land ice / ocean interactions encompasses ice-shelves,
glacier termini and icebergs melting, as well as surface and sub-glacial runoff from the ice sheet.
Land ice builds up through the accumulation of snowfall over Greenland and Antarctica. It influences the ocean
through the melting of ice-shelves or glacier termini at the edge of the continents. This can also be via the
calving of icebergs that slowly drift at the ocean surface and also by surface and subsurface subglacial runoff
induced by ice sheet surface melting (seasonal variations).

Although land ice and sea ice bear some physical similarities, the modelling components to handle them are
usually drastically different due to the differing scales of the problem and the distinctly separate processes at
play. In NEMO, basal ice-shelf melting is handled through the ISF module (Mathiot et al., 2017), icebergs are
handled through the ICB module (Marsh et al., 2015), and surface runoff is handled through the runoff module.
Subglacial runoff is not implemented mostly because there is no consolidated data set to prescribed it.

8.1. Interaction with ice shelves (ISF)
The activation or not of the ice shelf, and the accompanying ocean interaction, is controled by the namelist

variable ln_isf in &namisf (namelist 8.1) . The following interactions modes are available:

• representation of the ice shelf/ocean melting/freezing for open cavities (cav, ln_isfcav_mlt , fig. 8.1b,c).

• parametrisation of the ice shelf/ocean melting/freezing for closed cavities (par, ln_isfpar_mlt , fig. 8.1d,e).

• coupling with an ice sheet model ( ln_isfcpl ).

The outcomes of the ISF module are the fresh water flux and the associated heat flux. A description and
result of sensitivity tests to ln_isfcav_mlt and ln_isfpar_mlt are presented in Mathiot et al. (2017).

8.1.1. Ocean/Ice shelf fluxes in opened cavities ( isfcav.F90 )
ln_isfcav_mlt = .true. activates the ocean/ice shelf thermodynamic interactions at the ice shelf/ocean in-
terface. If ln_isfcav_mlt = .false., thermodynamic interactions are desactivated but the ocean dynamics
inside the cavity are still active. If ln_isfcav_mlt is activated, the user needs to make sure that the do-
main_cfg.nc input file includes ice shelf cavities (subsection 8.1.6).

As part of the isfcavmlt.F90 module, 3 options are available to represent the ice-shelf/ocean fluxes at the
interface:

cn_isfcav_mlt = 'spe' : The fresh water flux is specified by forcing fields sn_isfcav_fwf . Convention of
the input file is: positive toward the ocean (i.e. positive for melting and negative for freezing). The latent
heat flux is derived from the fresh water flux. The heat content flux is derived from the fresh water flux
assuming a temperature set to freezing point in the top boundary layer ( rn_htbl ).

cn_isfcav_mlt = 'oasis' : The 'oasis' is a prototype of what could be a method to spread precipitation
landing on the Antarctic ice sheet as ice shelf melt inside the open cavities when a coupled model (Atmo-
sphere/Ocean) is used. It has been tested in the IPSL model only. Therefore, it is highly recommended
that other coupled models use it with caution. Feedbacks are very welcome.

cn_isfcav_mlt = '2eq' : The heat flux and the fresh water flux due to ice shelf melting/freezing are pa-
rameterized following Grosfeld et al. (1997). This formulation is based on a balance between the vertical
diffusive heat flux across the ocean top boundary layer (equation 8.1) and the latent heat due to melt-
ing/freezing (equation 8.2):

Qh = ρcpγ(Tw − Tf ) (8.1)

q =
−Qh
Lf

(8.2)

where Qh(W.m−2) is the heat flux,q(kg.s−1m−2) the fresh-water flux, Lf the specific latent heat, Tw the
temperature averaged over a boundary layer below the ice shelf (explained below), Tf the freezing point
using the pressure at the ice shelf base and the salinity of the water in the boundary layer, and γ the
thermal exchange coefficient.
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!-----------------------------------------------------------------------
&namisf ! Top boundary layer (ISF) (default: OFF)
!-----------------------------------------------------------------------

!
! ---------------- ice shelf load -------------------------------
!
cn_isfload = 'uniform' ! scheme to compute ice shelf load (ln_isfcav = .true. in domain_cfg.nc)

rn_isfload_T = -1.9
rn_isfload_S = 34.4

!
! ---------------- ice shelf melt formulation -------------------------------
!
ln_isf = .false. ! activate ice shelf module

ln_isfdebug = .false. ! add debug print in ISF code (global min/max/sum of specific variable)
cn_isfdir = './' ! directory for all ice shelf input file
!
! ---------------- cavities opened -------------------------------
!
ln_isfcav_mlt = .false. ! ice shelf melting into the cavity (need ln_isfcav = .true. in domain_cfg.nc)

cn_isfcav_mlt = '3eq' ! ice shelf melting formulation (spe/2eq/3eq/oasis)
! ! spe = fwfisf is read from a forcing field ( melt > 0; freezing < 0 )
! ! 2eq = ISOMIP like: 2 equations formulation (Hunter et al., 2006 for a short description)
! ! 3eq = ISOMIP+ like: 3 equations formulation (Asay-Davis et al., 2016 for a short description)
! ! oasis = fwfisf is given by oasis and pattern by file sn_isfcav_fwf
! ! cn_isfcav_mlt = 2eq or 3eq cases:
cn_gammablk = 'vel' ! scheme to compute gammat/s (spe,ad15,hj99)
! ! spe = constant transfert velocity (rn_gammat0, rn_gammas0)
! ! vel = velocity dependent transfert velocity (u* * gammat/s) (Asay-Davis et al. 2016 for a

short description)↪→
! ! vel_stab = velocity and stability dependent transfert coeficient (Holland et al. 1999 for a

complete description)↪→
rn_gammat0 = 1.4e-2 ! gammat coefficient used in spe, vel and vel_stab gamma computation method
rn_gammas0 = 4.0e-4 ! gammas coefficient used in spe, vel and vel_stab gamma computation method
!
rn_htbl = 30. ! thickness of the top boundary layer (Losh et al. 2008)
! ! 0 => thickness of the tbl = thickness of the first wet cell
!
!* 'spe' and 'oasis' case

!___________!_____________!___________________!___________!_____________!_________!___________!__________!__________!_______________!↪→
! ! file name ! frequency (hours) ! variable ! time interp.! clim ! 'yearly'/ ! weights ! rotation !

land/sea mask !↪→
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! filename ! pairing !

filename !↪→
sn_isfcav_fwf = 'isfmlt_cav', -12. , 'fwflisf' , .false. , .true. , 'yearly' , '' , '' ,

''↪→
!
! ---------------- cavities parametrised -------------------------------
!
ln_isfpar_mlt = .false. ! ice shelf melting parametrised

cn_isfpar_mlt = 'spe' ! ice shelf melting parametrisation (spe/bg03/oasis)
! ! spe = fwfisf is read from a forcing field ( melt > 0; freezing < 0 )
! ! bg03 = melt computed using Beckmann and Goosse parametrisation
! ! oasis = fwfisf is given by oasis and pattern by file sn_isfpar_fwf
!
!* bg03 case
rn_isfpar_bg03_gt0 = 1.0e-4 ! gamma coeficient used in bg03 paper [m/s]
!
!*** File definition ***
!
!* all cases

!___________!_____________!___________________!___________!_____________!_________!___________!__________!__________!_______________!↪→
! ! file name ! frequency (hours) ! variable ! time interp.! clim ! 'yearly'/ ! weights ! rotation !

land/sea mask !↪→
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! filename ! pairing !

filename !↪→
sn_isfpar_zmax = 'isfmlt_par', 0. ,'sozisfmax', .false. , .true. , 'yearly' , '' , '' ,

''↪→
sn_isfpar_zmin = 'isfmlt_par', 0. ,'sozisfmin', .false. , .true. , 'yearly' , '' , '' ,

''↪→
!
!* 'spe' and 'oasis' case
sn_isfpar_fwf = 'isfmlt_par' , -12. ,'sofwfisf' , .false. , .true. , 'yearly' , '' , '' ,

''↪→
!
!* 'bg03' case
!* Leff is in [km]
sn_isfpar_Leff = 'isfmlt_par', 0. ,'Leff' , .false. , .true. , 'yearly' , '' , '' ,

''↪→
!
! ---------------- ice sheet coupling -------------------------------
!
ln_isfcpl = .false.

nn_drown = 10 ! number of iteration of the extrapolation loop (fill the new wet cells)
ln_isfcpl_cons = .false.

/

namelist 8.1.: &namisf
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Figure 8.1.: Illustration of the location where the fwf is injected and whether or not the fwf is interactive or not.

cn_isfcav_mlt = '3eq' : For realistic studies, the heat and freshwater fluxes are parameterized following
(Jenkins et al., 2001). This formulation is based on three equations: a balance between the vertical
diffusive heat flux across the boundary layer with variations in latent heat due to melting/freezing of
ice and the vertical diffusive heat flux into the ice shelf (equation 8.3); a balance between the vertical
diffusive salt flux across the boundary layer with the salt source or sink represented by melting/freezing
(equation 8.4); and a linear equation for the freezing temperature of sea water (Asay-Davis et al., 2016,
equation 8.5 detailed in the linearisation coefficient of ):

cpργT (Tw − Tb) = −Lfq − ρicp,iκ
Ts − Tb
hisf

(8.3)

ργS(Sw − Sb) = (Si − Sb)q (8.4)

Tb = λ1Sb + λ2 + λ3zisf (8.5)

where Tb is the temperature at the interface, Sb the salinity at the interface, γT and γS the exchange
velocities for temperature and salt respectively, Si the salinity of the ice (assumed to be 0), hisf the ice
shelf thickness, zisf the ice shelf draft, ρi the density of the iceshelf, cp,i the specific heat capacity of the ice,
κ the thermal diffusivity of the ice and Ts is the atmospheric surface temperature (at the ice/air interface,
assumed to be -20 ◦C). The Liquidus slope (λ1), the liquidus intercept (λ2) and the Liquidus pressure
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coefficient (λ3) for TEOS80 and TEOS10 are described in Asay-Davis et al. (2016) and in Jourdain et al.
(2017) respectively. The linear system formed by equation 8.3, equation 8.4 and the linearised equation for
the freezing temperature of sea water (equation 8.5) can be solved for Sb or Tb. Afterward, the freshwater
flux (q) and the heat flux (Qh) can be computed.

Table 8.1.: Description of the parameters hard coded into the ISF module
Symbol Description Value Unit
Cp Ocean specific heat 3992 J.kg−1.K−1

Lf Ice latent heat of fusion 3.34× 105 J.kg−1

Cp,i Ice specific heat 2000 J.kg−1.K−1

κ Heat diffusivity 1.54× 10−6 m2.s−1

ρi Ice density 920 kg.m3

Temperature and salinity used to compute the fluxes in equation 8.1, equation 8.3 and equation 8.4 are the
average values for the top boundary layer (Losch, 2008). The boundary layer thickness is defined by rn_htbl
. The fluxes and friction velocity are computed using the mean temperature, salinity and velocity in the first
rn_htbl m (see isftbl.F90 ). Then, the fluxes are spread over the same thickness (ie over one or several cells).
If rn_htbl is larger than the top e3t, then there is no more direct feedback between the freezing point at the
interface and the temperature of the top cell. This can therefore lead to a super-cool temperature in the top
cell under melting conditions. If rn_htbl is smaller than the top e3t, then the top boundary layer thickness
is set to the top cell thickness.

For each melt formula '3eq' or '2eq', the turbulent transfer velocities (γT,S) between the ocean and the ice
can be computed in any of the following 3 ways:

cn_gammablk ='spe' : The salt and heat transfert exchange velocities are constant and defined by:

γT = ΓT

γS = ΓS

This is the recommended formulation for ISOMIP.

cn_gammablk ='vel' : The salt and heat exchange coefficients are velocity dependent and defined as

γT = ΓT × u∗

γS = ΓS × u∗
where u∗ is the friction velocity in the top boundary layer (ie first rn_htbl meters).
See Jenkins et al. (2010) for all the details on this formulation. This is the recommended formulation for
realistic applications and ISOMIP+/MISOMIP configurations.

cn_gammablk 'vel_stab' : The salt and heat exchange coefficients are velocity and stability dependent, and
are defined as:

γT,S =
u∗

ΓTurb + ΓT,SMole

where u∗ is the friction velocity in the top boundary layer (ie first rn_tbl meters), ΓTurb the contribution
of the ocean stability and ΓT,SMole the contribution of the molecular diffusion. See Holland and Jenkins (1999)
for all the details on this formulation. This formulation has not been extensively tested in NEMO (and is
thus not recommended).

In the formulation presented above, the transfert coeficient ΓT and ΓS are respectively defined by rn_gammat0
and rn_gammas0 . The definition of the exchange velocities γT,S is done in the isfcavgam.F90 module.

The ice shelf fresh water fluxes are implemented as a volume flux, same as for the runoff. The fresh water
flux addition due to the ice shelf melting is distributed uniformly over the top boundary layer and added to the
horizontal divergence (hdivn) at each relevant depth level in the subroutine isf_hdiv , called from divhor.F90
. As for the volume flux, the associated heat fluxes (latent heat and heat content) are distributed uniformly
vertically over the top boundary layer in traisf.F90 . See the runoff section section 7.9 for all the details about
the divergence correction.
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8.1.2. Ocean/Ice shelf fluxes in parametrised cavities ( isfpar.F90 )
For a low resolution model, many ice shelves are too small to be explicitly represented. It is therfore necessary
to parametrise or specify the melt from these unresolved cavities ( ln_isfpar_mlt=.true. ) in addition of some
explicit cavities like Ross ice shelf and Filchner Ronne ice shelf, for exemple. The isfpar.F90 module offers
two options defined in the isfparmlt.F90 module:

cn_isfpar_mlt = 'bg03' : The fwf and heat flux are computed using the Beckmann and Goosse (2003)
parameterisation of isf melting. The fluxes are distributed along the ice shelf front between the depth
of the average grounding line (GL) ( sn_isfpar_zmax ) and the base of the ice shelf along the calving
front ( sn_isfpar_zmin ) as in ( cn_isfpar_mlt = 'spe'). The exchange velocity is specified by
rn_isfpar_bg03_gt0 and the effective melting length ( sn_isfpar_Leff ) is read from a file. This
parametrisation, however, has not been tested for some time and based on Favier et al. (2019) and more
recently Burgard et al. (2022), the advice is that this parametrisation should not be used.

cn_isfpar_mlt = 'spe' : The fwf (q) is read from sn_isfpar_fwf and distributed along the ice shelf front
between the average grounding line (GL) depth ( sn_isfpar_zmax ) and the depth of the base of the ice
shelf at the front edge ( sn_isfpar_zmin ). Convention of the input file is positive toward the ocean (i.e.
positive for melting and negative for freezing). The heat flux (Qh) is computed as Qh = q × Lf .

cn_isfpar_mlt = 'oasis' : The 'oasis' method is a prototype. It spreads the precipitation received by
the Antarctic ice sheet as ice shelf melt inside the cavity when a coupled model (Atmosphere/Ocean) is
used. It has only been tested in the IPSL model and it is therefore recommended that other coupled
models use it with caution. Feedbacks are very welcome.

As for the open cavity case, the ice shelf fresh water fluxes are implemented as a volume flux. In this case
the volume and heat fluxes are uniformly distributed between sn_isfpar_zmin and sn_isfpar_zmax .

To conclude these two sections on ice shelf melt, it is worth noting the following:

cn_isfcav_mlt = '2eq', cn_isfcav_mlt = '3eq' and cn_isfpar_mlt = 'bg03' computes a melt rate
based on the water mass properties, ocean velocities and depth. The resulting fluxes are thus highly
dependent of the model resolution (horizontal and vertical) and realism of the water masses onto the shelf.

cn_isfcav_mlt = 'spe' and cn_isfpar_mlt = 'spe' read the melt rate from a file located in the
cn_isfdir directory. Via these files the user has total control of the fwf forcing. This can be use-
ful if the water masses on the shelf are not realistic, the resolution (horizontal/vertical) is too coarse to
have realistic melting or for studies where one needs to control heat and fw input. Note, however, that
if the forcing is not consistent with the dynamics below, an unrealistic low water temperature can manifest.

8.1.3. Available outputs ( isfdiags.F90 )
The following outputs are availables via XIOS:

for parametrised cavities :

<field id="isftfrz_par" long_name="freezing point temperature in the parametrization boundary layer" unit="degC"
/>↪→

<field id="fwfisf_par" long_name="Ice shelf melt rate" unit="kg/m2/s" />
<field id="qoceisf_par" long_name="Ice shelf ocean heat flux" unit="W/m2" />
<field id="qlatisf_par" long_name="Ice shelf latent heat flux" unit="W/m2" />
<field id="qhcisf_par" long_name="Ice shelf heat content flux of injected water" unit="W/m2" />
<field id="fwfisf3d_par" long_name="Ice shelf melt rate" unit="kg/m2/s"

grid_ref="grid_T_3D" />↪→
<field id="qoceisf3d_par" long_name="Ice shelf ocean heat flux" unit="W/m2"

grid_ref="grid_T_3D" />↪→
<field id="qlatisf3d_par" long_name="Ice shelf latent heat flux" unit="W/m2"

grid_ref="grid_T_3D" />↪→
<field id="qhcisf3d_par" long_name="Ice shelf heat content flux of injected water" unit="W/m2"

grid_ref="grid_T_3D" />↪→
<field id="ttbl_par" long_name="temperature in the parametrisation boundary layer" unit="degC" />
<field id="isfthermald_par" long_name="thermal driving of ice shelf melting" unit="degC" />

for open cavities :
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<field id="isftfrz_cav" long_name="freezing point temperature at ocean/isf interface" unit="degC"
/>↪→

<field id="fwfisf_cav" long_name="Ice shelf melt rate" unit="kg/m2/s" />
<field id="qoceisf_cav" long_name="Ice shelf ocean heat flux" unit="W/m2" />
<field id="qlatisf_cav" long_name="Ice shelf latent heat flux" unit="W/m2" />
<field id="qhcisf_cav" long_name="Ice shelf heat content flux of injected water" unit="W/m2" />
<field id="fwfisf3d_cav" long_name="Ice shelf melt rate" unit="kg/m2/s"

grid_ref="grid_T_3D" />↪→
<field id="qoceisf3d_cav" long_name="Ice shelf ocean heat flux" unit="W/m2"

grid_ref="grid_T_3D" />↪→
<field id="qlatisf3d_cav" long_name="Ice shelf latent heat flux" unit="W/m2"

grid_ref="grid_T_3D" />↪→
<field id="qhcisf3d_cav" long_name="Ice shelf heat content flux of injected water" unit="W/m2"

grid_ref="grid_T_3D" />↪→
<field id="ttbl_cav" long_name="temperature in Losch tbl" unit="degC" />
<field id="isfthermald_cav" long_name="thermal driving of ice shelf melting" unit="degC" />
<field id="isfgammat" long_name="Ice shelf heat-transfert velocity" unit="m/s" />
<field id="isfgammas" long_name="Ice shelf salt-transfert velocity" unit="m/s" />
<field id="stbl" long_name="salinity in the Losh tbl" unit="1e-3" />
<field id="utbl" long_name="zonal current in the Losh tbl at T point" unit="m/s" />
<field id="vtbl" long_name="merid current in the Losh tbl at T point" unit="m/s" />
<field id="isfustar" long_name="ustar at T point used in ice shelf melting" unit="m/s" />
<field id="qconisf" long_name="Conductive heat flux through the ice shelf" unit="W/m2" />

8.1.4. Ice sheet coupling ( isfcpl.F90 )
A coupling interface with any ice sheet model is available. The coupling is done offline through a file exchange
at the restart step. At every coupling step, the user needs to build a new domain_cfg.nc file using the latest
ice shelf draft provided by the ice sheet model. The coupling frequency is usually one year. It is not shown yet
in the literature that higher coupling frequency between an ocean model and an ice sheet model is needed.
At each restart step, the procedure is the following:

Step 1 : the ice sheet model sends a new bathymetry and ice shelf draft netcdf file to NEMO.

Step 2 : a new domcfg.nc file is built using the DOMAINcfg tools.

Step 3 : NEMO runs for a specific period and outputs the average melt rate over that period.

Step 4 : the ice sheet model runs using the melt rate outputed in step 3.

Step 5 : The process is repeated from step 1.

When the coupling with an ice sheet model is activated ( ln_iscpl= .true. ), the isf draft is assumed
to be different at each restart step with potentially some new wet/dry cells due to the ice sheet dynam-
ics/thermodynamics. The wetting and drying scheme, applied at the restart phase, is very simple. The 6
different possible cases for the tracers and ssh are:

Thin a cell : T/S/ssh are unchanged.

Enlarge a cell : T/S/ssh are unchanged.

Dry a cell : Mask, T/S, U/V and ssh are set to 0.

Wet a cell : Mask is set to 1, T/S is extrapolated from neighbour points, ssh is unchanged. If no neighbours
exist, then T/S is extrapolated from old top cell values. If no neighbours exist along i, j and k directions
(both previous tests failed), T/S/ssh and mask are set to 0.

Dry a column : mask, T/S, U/Vand ssh are set to 0.

Wet a column : Mask is set to 1, T/S/ssh are extrapolated from neighbours. If no neighbour exists, then
T/S/ssh and mask set to 0.

The horizontal extrapolation to fill new cells with realistic values is called nn_drown times. It means that
if the grounding line retreats by more than nn_drown cells between 2 coupling steps, the code will be unable
to fill all the new wet cells properly and the model is likely to blow up at initialisation. The default number is
set up for the MISOMIP idealised experiments.
The coupling method described above will strongly affect the barotropic transport under an ice shelf when

the geometry changes. In order to keep the model stable, an adjustment of the dynamics at initialisation, after
the coupling step, is needed. The idea behind this is to keep ∂η

∂t as it should be without a change in geometry
at initialisation. This will prevent any strong velocities due to large pressure gradients. To do so, the local
horizontal divergence is corrected to match what it was before the change in geometry. This is done before ∂η

∂t
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is computed in the first time step.

This coupling procedure is able to take into account grounding line and calving front migration. Note, how-
ever, that it is a non-conservative process. This could thus lead to a trend in heat/salt content and volume.

In order to remove this possible trend and keep the conservation level as close to 0 as possible, a simple
conservation scheme is available with ln_isfcpl_cons = .true.. The heat/salt/vol. gain/loss are diagnosed,
along with the location. A correction increment is computed and applied each time step during the model run.
The corrective increment is applied into the cells themselves (if it is a wet cell), the neigbouring cells or the
closest wet cell (if the cell is now dry).

8.1.5. Ice shelf load ( isfload.F90 )
Ice shelf impose a load on the ocean. The main hypothesis to compute the ice shelf load is that the ice shelf is
in an hydrostatic equilibrium. Therefore, beneath an ice shelf, the total pressure is the sum of the pressure due
to the ice shelf load and the pressure due to the ocean load. The ice shelf pressure is computed by integrating a
reference density profile ρisf from the surface to the base of the ice shelf. The local ocean pressure can thenThis
can be formulated like this:

p(z) =

∫ zisf

0

ρisfgdz +

∫ z

zisf

ρgdz (8.6)

where p(z) is the pressure at depth z, ρisf a reference density profile, ρ is the water density at depth z and
zisf is the ice shelf draft. ρisf is assume to be the density of a water parcel at rn_isfload_s g/kg and
rn_isfload_t ◦C that corresponds to the water replaced by the ice shelf. These values are, for the time being,
uniform in space and time ( cn_isfload='uniform' ). A detailed description of this method is described in
Losch (2008).

In a z∗ coordinate framework, the pressure gradient is formulated as suggested by Adcroft and Campin (2004):

∇zp(z) = ∇z∗p(z) + ρg∇z∗z (8.7)

The hydrostatic pressure gradient at a given level, k, (first term in equation 8.7) is computed by adding the
pressure gradient due to the ice shelf load (defined as the first term of equation 8.6) to the vertical integral of
the in situ density gradient along the model level from the surface to that level.
The only pressure gradient scheme compatible with the under ice shelf seas is ( ln_hpg_isf=.true. ). Outside
of the ice shelf cavities, this pressure gradient scheme is exactly the same as traditional sco scheme ( ln_hpg_sco
, subsection 5.4.2).

8.1.6. Under ice shelf cavity geometry ( domisf.F90 )
To produce a simulation with ice shelf cavities opened, the user needs to make sure the bathymetry in the do-
main_cfg.nc input file includes ice shelf cavities (and ice shelf draft information). The logical flag ln_isfcav
in the DOMAINcfg namelist controls whether or not the ice shelf cavities are closed. All the options available
to define the shape of the under ice shelf cavities are listed in &namzgr_isf (namelist F.3) (DOMAINcfg only,
namelist F.3).

First of all, the tool makes sure that the ice shelf draft (hisf ) is compatible with the bathymetry (ice shelf
draft being defined by cn_draft and bathymetry by cn_bathy in appendix F). This is done in 3 steps :

First: the position of the grounding line (separation between the floating ice shelf and the grounded ice
sheet) is enforced. Where the difference between the bathymetry and the ice shelf draft is smaller than
rn_glhw_min , the cell are grounded (ie masked). This step is needed in order to take into account possible
small mismatches between the ice shelf draft value and the bathymetry value (sources are coming from
different grid, different data processes, rounding errors, ...).

Secondly: unrealistically thin ice shelves are corrected and hisf is set to a minimum value rn_isfdep_min .
If rn_isfdep_min is smaller than the surface level thickness, rn_isfdep_min is set to e3t_1d(1).

Finally: The water column thickness rn_isfhw_min is enforced. Where the water column thickness is
lower than rn_isfhw_min , the ice shelf draft is adjusted to match this criterion. If for any reason this
adjustment defies the minimum ice shelf draft allowed ( rn_isfdep_min ), the cell is masked.
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Once all these adjustments are made, the ice shelf draft and bathymetry are compatible. The user can, in
addition, also remove the wet one-cell-wide channels under an ice shelf ( ln_isfchannel ).

After the definition of the ice shelf draft, the tool defines the top level. The compulsory criterion is that the
water column needs at least 2 wet cells in the water column at U- and V-points. To do so, if there is a one-cell-
thick water column, the tools adjust the ice shelf draft to fulfil the requirement by digging into the ice shelf draft.

The process is the following:

step 1: The top level is defined in the same way as the bottom level is defined.

step 2: The isolated grid points in the bathymetry are filled (as it is done in a domain without an ice shelf)

step 3: If the water column at a U- or V- point is one wet cell thick, the ice shelf draft is adjusted. So the
actual top cell becomes fully open and the new top cell thickness is set to the minimum cell thickness
allowed (following the same logic as for the bottom partial cell). This step is iterated 4 times to ensure the
condition is fulfilled along the 4 lateral sides of the water column. In the case of a steep slope and a shallow
water column, it is likely that 2 adjacent wet water columns under the same ice shelf are disconnected
(bathymetry lies above its neigbourging ice shelf draft). The option ln_isfconnect allow the tool to
force the connection between these 2 cells. Some limits in meters or levels on the digging allowed by the
tool are available (respectively, rn_zisfmax or rn_kisfmax ). This will force the connection of two
parts of an ice shelf at the expense of a long vertical pipe to connect the cells at very different levels.

step 5: If after the previous step, the ice shelf draft is shallower than rn_isfdep_min , it means that there is
an incompatibility and the water column is closed.

In addition to this process, two extra options are available to the user for easthetic or stability reason. Despite
careful setting of your ice shelf draft and bathymetry input file as well as setting described in ??, some situations
are unavoidable. For exemple, chimneys within the ice shelf draft (ie wet cell surrounded horizontally by land
cell) can be present. The circulation in these cells is not resolved. The user can decide to remove those features
by activating ln_isfcheminey .
An other exemple is, if you setup your ice shelf draft and bathymetry to do ocean/ice sheet coupling, you may
decide to fill the whole antarctic with a bathymetry and an ice shelf draft value (ice/bedrock interface depth
when grounded). If you do so, the subglacial lakes will show up (Vostock for example). Another possibility is
with coarse vertical resolution, some ice shelves could be cut in 2 parts: one connected to the main ocean and
the other one closed which can be considered as a subglacial sea be the model. Keeping these features can lead
to these situations:

• For subglacial lakes in the case of very weak circulation (often the case), the only heat flux is the conductive
heat flux through the ice sheet. This will lead to constant freezing until water reaches -20C. This is one of
the deficiencies of the 3 equation melt formulation (for details on this formulation, see: subsection 8.1.1).

• In the case of coupling with an ice sheet model, the ssh in the subglacial lakes and the main ocean could
be very different (ssh initial adjustment for example), and so if for any reason both a connected at some
point, the model is likely to fail.

The namelist option ln_isfsubgl allow you to remove these subglacial lakes.

8.2. Interaction with icebergs (ICB)
Icebergs are modelled as lagrangian particles in NEMO (Marsh et al., 2015). The activation of the model is

controled by ln_icebergs=.true. . The physical behaviour of icebergs is controlled by equations as described
in Martin and Adcroft (2010) (Note that the authors kindly provided a copy of their code to act as a basis for
the implementation thereof in NEMO).

8.2.1. Iceberg initialisation ( icbclv.F90 )
Iceberg properties

Icebergs are initially spawned into one of ten classes which have specific mass and thickness as described in
the &namberg (namelist 8.2) namelist: rn_initial_mass and rn_initial_thickness . Each class has an
associated scaling ( rn_mass_scaling ), which is an integer representing how many icebergs of this class are
being described as one lagrangian point (this reduces the numerical problem of tracking every single iceberg).
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!-----------------------------------------------------------------------
&namberg ! iceberg parameters (default: OFF)
!-----------------------------------------------------------------------

ln_icebergs = .false. ! activate iceberg floats (force =F with "key_agrif")
!
! ! restart
cn_icbrst_in = "restart_icb" ! suffix of iceberg restart name (input)
cn_icbrst_indir = "./" ! directory from which to read input ocean restarts
cn_icbrst_out = "restart_icb" ! suffix of ocean restart name (output)
cn_icbrst_outdir = "./" ! directory from which to read output ocean restarts
!
! ! diagnostics:
ln_bergdia = .true. ! Calculate budgets
nn_verbose_level = 0 ! Turn on more verbose output if level > 0
!
! nn_verbose_write and nn_sample_rate need to be a multiple of nn_fsbc
nn_verbose_write = 16 ! Timesteps between verbose messages
nn_sample_rate = 16 ! Timesteps between sampling for trajectory storage
!
! ! iceberg setting:
! ! Initial mass required for an iceberg of each class
rn_initial_mass = 8.8e7, 4.1e8, 3.3e9, 1.8e10, 3.8e10, 7.5e10, 1.2e11, 2.2e11, 3.9e11, 7.4e11
! ! Proportion of calving mass to apportion to each class
rn_distribution = 0.24, 0.12, 0.15, 0.18, 0.12, 0.07, 0.03, 0.03, 0.03, 0.02
! ! Ratio between effective and real iceberg mass (non-dim)
! ! i.e. number of icebergs represented at a point
rn_mass_scaling = 2000., 200., 50., 20., 10., 5., 2., 1., 1., 1.

! thickness of newly calved bergs (m)
rn_initial_thickness = 40., 67., 133., 175., 250., 250., 250., 250., 250., 250.
!
rn_rho_bergs = 850. ! Density of icebergs
rn_LoW_ratio = 1.5 ! Initial ratio L/W for newly calved icebergs
ln_operator_splitting = .true. ! Use first order operator splitting for thermodynamics
rn_bits_erosion_fraction = 0. ! Fraction of erosion melt flux to divert to bergy bits
rn_sicn_shift = 0. ! Shift of sea-ice concn in erosion flux (0<sicn_shift<1)
ln_passive_mode = .false. ! iceberg - ocean decoupling
nn_test_icebergs = 10 ! Create test icebergs of this class (-1 = no)
! ! Put a test iceberg at each gridpoint in box (lon1,lon2,lat1,lat2)
rn_test_box = 108.0, 116.0, -66.0, -58.0
ln_use_calving = .false. ! Use calving data even when nn_test_icebergs > 0
rn_speed_limit = 0. ! CFL speed limit for a berg (safe value is 0.4, see #2581)
!
ln_M2016 = .false. ! use Merino et al. (2016) modification (use of 3d ocean data instead of only sea surface
data)↪→

ln_icb_grd = .false. ! ground icb when icb bottom level hit oce bottom level (need ln_M2016 to be activated)
!
cn_dir = './' ! root directory for the calving data location

!___________!_________________________!___________________!___________!_____________!________!___________!__________________!__________!_______________!↪→
! ! file name ! frequency (hours) ! variable ! time interp.! clim ! 'yearly'/ ! weights filename !
rotation ! land/sea mask !↪→

! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! !
pairing ! filename !↪→
sn_icb = 'calving' , -1. ,'calvingmask', .true. , .true. , 'yearly' , '' ,
'' , ''↪→

/

namelist 8.2.: &namberg
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Each iceberg is generated with a pre determined density ( rn_rho_bergs ). The iceberg area is determined
based on the iceberg thickness, mass and density. The length and width are determined with a pre defined
length over width ratio rn_LoW_ratio .

Iceberg generation

Two initialisation schemes are possible to generate the iceberg particules.

nn_test_icebergs > 0 ( icbini.F90 ) This scheme is mostly used for developing, testing and debugging. In
this scheme, the value of nn_test_icebergs represents the class of iceberg to generate (so between 1
and 10). rn_test_box defines a box using four numbers representing the corners of the geographical
box: lonmin, lonmax, latmin, latmax. One test icebergs is released in every the cells of this box at the
beginning of the run. This happens each time the timestep equals nn_nit000 .

nn_test_icebergs=-1 ( icbclv.F90 ) In this scheme, the model reads a calving file supplied in the sn_icb
parameter. This should be a file with a field on the configuration grid representing ice accumulation rate
at each model point in km3 of ice / y. These should be ocean points adjacent to land where icebergs
are known to calve. Most points in this input grid will have a value of zero. When the model runs,
ice is accumulated at each grid point which has a non-zero source term. At each time step, a test is
performed to see if there is enough ice mass to calve an iceberg of each class, in order (1 to 10). How
much of the calving rate is then used to fill each iceberg class before releasing an iceberg is controled by
the array rn_distribution . The sum of the rn_distribution array needs to be 1. Note that this is
the initial mass multiplied by the number each particle represents (i.e. the scaling). If there is enough ice,
a new iceberg is spawned and the total available ice to generate a new iceberg of its category is reduced
accordingly.

8.2.2. Iceberg dynamics ( icbdyn.F90 )
Iceberg dynamics are affected by multiple factors. The Coriolis force and the ocean, atmosphere and sea ice
drags ( ⃗τo/a/i) are the main drivers of the iceberg dynamics. In addition, the icebergs are further driven by the
wave radiation force (F⃗r) and a pressure gradient force (F⃗p) proportional to the horizontal ssh gradient.
The momentum balance for an iceberg of mass M is given by:

M
dv⃗

dt
= −Mf × v⃗ + τ⃗a + τ⃗o + τ⃗i + F⃗p + F⃗r (8.8)

See Martin and Adcroft (2010) for the full details on each term presented here. By default, the iceberg
dynamics are computed using ocean surface variable (ssu, ssv) and the icebergs are not sensible to the bottom
topography (only to land), whatever the iceberg draft may be. Merino et al. (2016) developed an option to use
vertical profiles of ocean currents instead ( ln_M2016 ). Full details on the sensitivity to this parameter are
described in Merino et al. (2016).

Icebergs are considered as virtual and levitating over the ocean. There are therefore no interactions between
icebergs, and therefore there is no limitation regarding the maximum number of icebergs within a grid cell.
Furthermore, generally the simulated icebergs are not affected by a shallow bank. If, however, ln_M2016 is
activated, ln_icb_grd engages an option to prevent thick icebergs to move across shallow banks (ie shallower
than the iceberg draft). In the case of an interaction between one iceberg and the bedrock or the coastline,
the iceberg bounces back to its original position. Therefore, when using ln_M2016 and ln_icb_grd , special
care is needed in the calving file to be sure that the bathymetry is deep enough at the calving location so as
to prevent the accumulation of grounded icebergs. If this is not possible, then the user needs to build a file
describing the maxclass to prevent NEMO filling the icebergs classes that are too thick for the local bathymetry.

8.2.3. Iceberg thermodynamics ( icbthm.F90 )
The total iceberg melt and the associated latent heat flux are the only fields that feedback to NEMO. The
iceberg mass balance is driven by three components (bottom melt (Mb), lateral melt (Mv) and erosion by
surface waves (Me) ):

ρ
d(LWH)

dt
= ρ(−LWMb −H(L+W )(Me +Mv)) (8.9)

where L, W and H are respectively the iceberg length, width and thickness. The various melt formulations
are from Bigg et al. (1997) and Gladstone et al. (2001). A complete description is available in Appendix A of
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Martin and Adcroft (2010). Only the main characteristics are described below.

The wave erosion depends on the sea state (Ss) defined by a fit to the Beaufort scale, the ice concentration
(Ai) and the sea surface temperature (Tsurf ).

Me =
1

12
Ss(1 + cos(πA3

i ))(Tsurf + 2) (8.10)

By creating a notch at the floatation line by melting, the wave erosion acts to disintegrate the iceberg by break-
ing the overhanging slab of ice, thus creating small bits of ice which are assumed to propagate with their larger
parent and thus delay flux into the ocean. The proportion of the wave erosion that should be represented as
bits is controlled by rn_bits_erosion_fraction .

The lateral melt (Mv) is mainly driven by the buoyant convection along the side of the icebergs. El-Tahan
et al. (1987) empirically estimated to be:

Mv = 7.62× 10−3Tw + 1.29× 10−3T 2
w (8.11)

with Tw being the mean lateral temperature. By default NEMO uses the sea surface temperature for Tw.

The bottom melt (Mb) is mainly driven by the turbulence created by the relative motion of water with respect
to the iceberg velocity. Its empirical estimation is :

Mb = 0.58|v⃗icb − v⃗w|0.8
Tw − Ticb
L0.2

(8.12)

Where v⃗icb is the iceberg velocity, v⃗w the basal ocean velocity, Tw the bottom temperature and Ticb the esti-
mated internal temperature of the icebergs (Loset, 1993, −4◦C). By default, NEMO uses the ocean surface
properties for Tw. To avoid melting even under freezing condition, the basal melt is set to 0 is the surface
temperature is below the surface freezing point.

As for the iceberg dynamics, ocean vertical temperature profiles and ocean basal properties can be used to
compute the lateral and basal melt respectively, instead of the surface temperature, by using ln_M2016 .

If the iceberg width is too small compared to its draft, the iceberg becomes unstable and capsizes. The
iceberg thickness and width are then swapped. Such events are detected using the empirical criterion of Weeks
and Mellor (1978) :

W <
√
0.92D2 + 58.32D (8.13)

where W and D are the iceberg width and draft.
Finally, as mentioned above, iceberg melt rate is the only NEMO input from the iceberg model. The user

can, however, disable it by using ln_passive_mode . In this case, NEMO will affect the icebergs, the melt will
be computed and outputted, but the icebergs themselves will not have any impact on the NEMO solution.

8.2.4. Iceberg mpp ( icblbc.F90 )
The management of the communication between the subdomains of the iceberg model is very different to the
other components of NEMO, as particules (icebergs) are exchanged between subdomains. This is done every
iceberg time step, after the iceberg dynamics. The computation of the iceberg thermodynamics and dynamics
are done in the inner domain and over the first half of the overlap region (this is necessary as otherwise the
interpolation is not possible due to missing iceberg data). For now, NEMO does not make the most of the halos
(2 by default now). This leads to the limitation on the cfl to be 0.4 ( rn_speed_limit ) because of interpolation
of the ssh at 0.5 in this case. This is planned to be improve upon for the next version.

8.2.5. Iceberg diagnostics ( icbdia.F90 )
There are three types of diagnostics available: a text diagnostics for the budget, xios diagnostics for the
gridded output and the trajectory for diagnostics per iceberg. ln_bergdia activates one (or more) type(s) of
diagnostics. If set to false, no diagnostics will be outputted.
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Iceberg text diagnostics

Extensive text diagnostics can be produced mostly for debug purposes. Separate output files are maintained
for human-readable iceberg information. A separate file is produced for each processor (independent of ln_ctl
). The amount of information is controlled by two integer parameters:

nn_verbose_level takes a value between one and four. It represents an increasing level of verbosity.

nn_verbose_write is the number of time steps between each write.

XIOS diagnostics

The following outputs are available via XIOS:

<field_group id="icbvar" domain_ref="grid_T" >
<field id="berg_melt" long_name="icb melt rate of icebergs" unit="kg/m2/s"
/>↪→
<field id="berg_melt_hcflx" long_name="icb heat flux to ocean due to melting heat content" unit="J/m2/s"
/>↪→
<field id="berg_melt_qlat" long_name="icb heat flux to ocean due to melting latent heat" unit="J/m2/s"
/>↪→
<field id="berg_buoy_melt" long_name="icb buoyancy component of iceberg melt rate" unit="kg/m2/s"
/>↪→
<field id="berg_eros_melt" long_name="icb erosion component of iceberg melt rate" unit="kg/m2/s"
/>↪→
<field id="berg_conv_melt" long_name="icb convective component of iceberg melt rate" unit="kg/m2/s"
/>↪→
<field id="berg_virtual_area" long_name="icb virtual coverage by icebergs" unit="m2"
/>↪→
<field id="bits_src" long_name="icb mass source of bergy bits" unit="kg/m2/s"
/>↪→
<field id="bits_melt" long_name="icb melt rate of bergy bits" unit="kg/m2/s"
/>↪→
<field id="bits_mass" long_name="icb bergy bit density field" unit="kg/m2"
/>↪→
<field id="berg_mass" long_name="icb iceberg density field" unit="kg/m2"
/>↪→
<field id="calving" long_name="icb calving mass input" unit="kg/s"
/>↪→
<field id="berg_floating_melt" long_name="icb melt rate of icebergs + bits" unit="kg/m2/s"
/>↪→
<field id="berg_real_calving" long_name="icb calving into iceberg class" unit="kg/s" axis_ref="icbcla"
/>↪→
<field id="berg_stored_ice" long_name="icb accumulated ice mass by class" unit="kg" axis_ref="icbcla"
/>↪→

</field_group>

Iceberg trajectory ( icbtrj.F90 )

Iceberg trajectories (position as well as iceberg shapes and ocean properties at iceberg location) can also be
outputted, and this is enabled by setting nn_sample_rate > 0. A non-zero value represents the frequency
of timesteps that information is written to the output file. These output files are in NETCDF format. When
running with multiple processes, each output file contains only the icebergs in the corresponding sub-domain.
Trajectory points are written in the order of their parent iceberg in the model’s ”linked list” of icebergs. So
care is needed to recreate data for individual icebergs, since their trajectory data may be spread across multiple
files. To rebuild it, the user can use a specific python tools located in tools/MISCELLANEOUS/icb_pp.py.

8.3. Land Ice Runoff
Runoff from the ice sheet is produced by the melt of snow and ice at the ice sheet surface and by the basal melt
under the grounded area by friction and geothermal heating. It can be classified in two categories: the surface
runoff and the sub-glacial runoff.

The surface melt is originated from the melt at the ice sheet surface that runs directly off of the edge of the
ice shelf or glacier termini. NEMO is able to represent it as any other surface river runoff. The usage of this
module is described in section 7.9.

The subglacial runoff is produced by the melting at the interface bedrock-ice by geothermal heat and friction
of the ice, and also by the percolation of the ice sheet surface melt from the surface to the bedrock through
moulins. This kind of runoff joins the ocean at the grounding line of the ice sheet (line where ocean, bedrock and
the grounded ice meet). Because of the lack of observations of such runoff, subglacial runoff is not represented
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in NEMO.

NEMO Reference Manual Page 120 of 310



9
Lateral Boundary Condition (LBC)

Table of contents
9.1. Boundary condition at the continental interface (rn_shlat) . . . . . . . . . . . . . . . . . . . . . 122
9.2. Model-domain boundary condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9.2.1. Closed, cyclic (l_Iperio,l_Jperio) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
9.2.2. North-fold (l_NFold = .true., c_NFtype = 'T' or c_NFtype = 'F') . . . . . . . . . . . 124

9.3. Exchange with neighbouring processes (lbclnk.F90, lib_mpp.F90) . . . . . . . . . . . . . . . . . . 124
9.4. Unstructured open boundary conditions (BDY) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

9.4.1. Namelists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
9.4.2. Flow relaxation scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
9.4.3. Flather radiation scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
9.4.4. Orlanski radiation scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
9.4.5. Relaxation at the boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
9.4.6. Boundary geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9.4.7. Input boundary data files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9.4.8. Volume correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
9.4.9. Tidal harmonic forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Changes record

Release Author(s) Modifications
5.0 Simon Müller and Sébastien Masson Review and general revision
4.2 Simon Müller Minor update of subsection 9.4.9
4.0 ... ...
3.6 ... ...
3.4 ... ...
<=3.4 ... ...



Sect. 9.1 Boundary condition at the continental interface (rn_shlat)

!-----------------------------------------------------------------------
&namlbc ! lateral momentum boundary condition (default: NO selection)
!-----------------------------------------------------------------------

! ! free slip ! partial slip ! no slip ! strong slip
rn_shlat = -9999. ! shlat = 0 ! 0 < shlat < 2 ! shlat = 2 ! 2 < shlat
ln_vorlat = .false. ! consistency of vorticity boundary condition with analytical Eqs.

/

namelist 9.1.: &namlbc

Four types of lateral boundary conditions (LBC) can be specified or configured: boundary conditions at
the continental interface, at the boundaries of the model domain, between sub-domains defined for massively
parallel processing (MPP), and at open boundaries (BDY) for regional configurations.

9.1. Boundary condition at the continental interface ( rn_shlat )
Options are defined through the &namlbc (namelist 9.1) namelist variables. The discrete representation of a

domain with complex boundaries (coastlines and bottom topography) leads to arrays that include large portions
where a computation is not required as the model variables remain at zero. Nevertheless, vectorial supercom-
puters are far more efficient when computing over a whole array, and the readability of the code is greatly
improved when computational loops work across whole arrays and boundary conditions are applied through
multiplication with a mask array (a mask array contains elements of 1 at ocean locations and 0 elsewhere),
rather than by specific computations before or after each computational loop. The simple multiplication of a
variable by the relevant mask ensures that it remains zero over land areas; since the majority of the boundary
conditions implement a zero flux across solid boundaries, they can be simply applied through multiplication
with the mask array associated with the grid on which the flux is evaluated. For example, the diffusive heat
flux in the i-direction is evaluated at u-points. Evaluating this quantity as,

AlT

e1

∂T

∂i
≡ AlTu
e1u

δi+1/2 [T ] masku

(where masku corresponds to the mask array at a u-point) ensures that the heat flux is zero inside topographic
features and at their boundaries, since masku is zero at solid boundaries, which in this case are defined at
u-points (the normal velocity u also remains zero at such boundaries) (figure 9.1).

Figure 9.1.: Lateral boundary (thick line) at a T-level; the velocity normal to the boundary is set to zero.

For momentum the situation is a bit more complex as two boundary conditions must be provided along the
coast (one each for the normal and tangential velocities). The boundary of the ocean in the C-grid is defined
by the velocity-faces. For example, at a given T -level, the lateral boundary (a coastline or an intersection
with the bottom topography) is made of segments joining at f -points, and normal velocity points are located
between two f−point neighbours (figure 9.1). The boundary condition on the normal velocity (no flux through
solid boundaries) can thus be easily implemented using the mask arrays. The boundary condition on the
tangential velocity requires a more specific treatment. This boundary condition influences the relative vorticity
and momentum diffusive trends, and is required in order to compute the vorticity at the coast. Four different
types of lateral boundary condition are available, controlled by the value of the rn_shlat namelist parameter
(The value of the maskf array along the coastline and bottom topography is set equal to this parameter). These
are:
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Figure 9.2.: Lateral boundary conditions (a) free-slip ( rn_shlat=0 ); (b) no-slip ( rn_shlat=2 ); (c) ”partial” free-slip (0< rn_shlat<2
) and (d) ”strong” no-slip (2< rn_shlat ). Implied ”ghost” velocity inside land area is display in grey.

free-slip boundary condition ( rn_shlat=0 )
the tangential velocity at the boundary is equal to the offshore velocity, i.e. the normal derivative of the
tangential velocity is zero at the coast, so the vorticity array, maskf , is set to zero inside and at continental
boundaries (figure 9.2-a).

no-slip boundary condition ( rn_shlat=2 )
the tangential velocity vanishes at continental boundaries. Assuming that the tangential velocity decreases
linearly from the closest ocean velocity grid point to the coastline, the normal derivative is evaluated as
if the velocities at neighbouring cross-boundary velocity grid-points were of the same magnitude and
opposite direction (figure 9.2-b). Therefore, the vorticity along the boundary is given by:

ζ ≡ 2

e1fe2f

(
δi+1/2 [e2vv]− δj+1/2 [e1uu]

)
,

where u and v are masked fields. Setting the maskf array to 2 along the coastline provides a vorticity
field computed with the no-slip boundary condition as:

ζ ≡ 1

e1f e2f

(
δi+1/2 [e2v v]− δj+1/2 [e1u u]

)
maskf

”partial” free-slip boundary condition (0 < rn_shlat < 2)
the tangential velocity at the coastline is smaller than the offshore velocity, i.e. there is a lateral friction
but not strong enough to make the tangential velocity at the coast vanish (figure 9.2-c). This can be
selected by providing a value of maskf between 0 and 2.

”strong” no-slip boundary condition (2 < rn_shlat )
the viscous boundary layer is assumed to be smaller than half the grid size (figure 9.2-d). The friction is
thus larger than in the no-slip case.

Note that when the bottom topography is entirely represented by the s-coordinates (pure s-coordinate), the
lateral boundary condition on the tangential velocity is of much less importance as it is only applied next to
the coast where the minimum water depth can be quite shallow.

9.2. Model-domain boundary condition
Several options of global model-domain boundary conditions are available: closed, cyclic east-west, cyclic north-
south, cyclic east-west and a north fold, closed and a north fold, or bi-cyclic east-west and north-south. The
north-fold boundary condition is associated with the 3-pole ORCA meshes and is available in two variants. The
application of these boundary conditions is carried out by calling routine lbc_lnk (module lbclnk.F90 ).
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Figure 9.3.: Setting of east-west cyclic boundary conditions for nn_hls=2 . The orginal global domain (without halos) is delimited
by the bold lines.

9.2.1. Closed, cyclic (l_Iperio,l_Jperio)
The choice of closed or cyclic model domain boundary condition is controled by setting the internal code
variables l_Iperio,l_Jperio to .true. or .false.. The way these variables are defined will differ accoring
to the value of ln_read_cfg parameter in namelist &namcfg (namelist 17.1) , whose usage is detailed
in section 3.2. If ln_read_cfg=.false. , the user can define l_Iperio,l_Jperio in routine usrdef_nam
(module usrdef_nam.F90 ). If ln_read_cfg=.true. , l_Iperio,l_Jperio will be defined according to the
values of the global attributes (Iperio,Jperio = 0 or 1) in the NetCDF domain configuration file referred to
by the cn_domcfg parameter in namelist &namcfg (namelist 17.1) .

For a fully closed boundary (l_Iperio = .false.,l_Jperio = .false.) , solid walls are imposed at all four
model-domain boundaries; the first and last rows and columns of the domain must be set to zero and will
be forced to 0 if nedeed.

For a cyclic east-west boundary (l_Iperio = .true.,l_Jperio = .false.) , the first and last rows are set
to zero (closed); the first nn_hls columns (left halo) are defined with the last nn_hls columns of the
orginal global domain (without halos); the last nn_hls columns (right halo) are defined with the first
nn_hls columns of the orginal global domain (without halos); flows out of the eastern (western) boundary
re-enter through the western (eastern) boundary.

For a cyclic north-south boundary (l_Iperio = .false.,l_Jperio = .true.) , the first and last columns
are set to zero (closed); analogous to the east-west periodic option, the nn_hls first (last) rows are
replicated at the last (first) rows of the original global domain (without halos); flows out of the northern
(southern) boundary of the domain re-enter through the southern (northern) boundary. Note that the
cyclic north-south boundary requires the f-plan approximation so that f, the coriolis parameter, remains
constant in j-direction.

The bi-cyclic east-west and north-south boundary (l_Iperio = .true.,l_Jperio = .true.) combines the
two cyclic options.

9.2.2. North-fold (l_NFold = .true., c_NFtype = 'T' or c_NFtype = 'F')
The north fold boundary condition has been introduced in order to handle the northern boundary of a three-
polar ORCA grid. When mapping these grids onto a sphere, the last grid row of the original global domain
(without halo) folds onto itself to connect the model domain between the two poles in the northern hemisphere
(figure 17.1), and thus requires a specific treatment to implement such folding at the northern edge of the
domain. Further information can be found in appendix E and in the lbcnfd.F90 module, which contains the
subroutine that applies the north-fold boundary condition. The ln_nnogather parameter in namelist &nammpp
(namelist 9.2) must be set to .true. to get the best performances. It can be set to .false. for debugging purposes.

9.3. Exchange with neighbouring processes ( lbclnk.F90 ,
lib_mpp.F90 )

For massively parallel processing (MPP), a horizontal domain decomposition method is used, see figure 9.4.
The basic idea of the method is to split the computational domain of a large numerical experiment horizontally
into several smaller subdomains and solve the set of equations by addressing independent local problems. A
number of processes, each with its own local memory, that can communicate with each other, are utilised
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!-----------------------------------------------------------------------
&nammpp ! Massively Parallel Processing
!-----------------------------------------------------------------------

ln_listonly = .false. ! do nothing else than listing the best domain decompositions (with land domains suppression)
! ! if T: the largest number of cores tested is defined by max(mppsize, jpni*jpnj)
ln_nnogather = .true. ! activate code to avoid mpi_allgather use at the northfold
ln_mppdelay = .true. ! activate delayed global communications to go faster
jpni = 0 ! number of processors following i (set automatically if < 1), see also ln_listonly = T
jpnj = 0 ! number of processors following j (set automatically if < 1), see also ln_listonly = T
nn_hls = 2 ! halo width (applies to both rows and columns)
nn_comm = 1 ! comm choice

/

namelist 9.2.: &nammpp

to compute the model equations in parallel, with each process carrying out the computation restricted to an
individual subdomain. The present implementation is largely inspired by Guyon’s work [Guyon 1995].

Figure 9.4.: Horizontal domain decomposition in 3 × 3 subdomains. The thick line on the left panel delimits the original domain
(without halos). Subdomains numbering starts at 0 from the bottom-left subdomain. Communications of the subdomain
4 with its neighbours are represented by the blue arrows.

Each subdomain consists of an inner region and a boundary. The boundary, also called halo, overlaps with
neighbouring subdomains as show in the left panel of figure 9.4. The halo consist of nn_hls (namelist &nammpp
(namelist 9.2) ) rows or columns at each of the sides of the subdomain. It must be set to 1 in NEMO version
4.2 and to 2 in NEMO version 5.0.

The lbc_lnk routine (found in lbclnk.F90 module) is used to fill the halo either by communicating with
neighbouring subdomains or locally by applying a cyclic or closed boundary condition. To carry out exchanges
with neighbours, the Message Passing Interface (MPI; ) standard is utilised. When communicating, each process
sends to the processors associated with its neighbouring subdomains an update of the values of the points that
correspond to the interior part of the overlap (i.e. the nn_hls innermost of the 2* nn_hls rows and columns
of the overlap, see blue arrows in figure 9.4). The output file communication_report.txt provides an overview
of the number of such exchanges made by individual routines during each time step.
Since NEMO version 4.2, the MPP approach is activated by default. It can be deactivated (e.g. if no MPI

implementation is available on the target computer) by defining key_mpi_off , and for compatibility with the
MPI verstion 2 standard, key_mpi2 can be defined. With the NEMO version 4.2 release, a new communication
strategy, which preserves performance efficiency by reducing communication time, has been introduced by using
the neighbourhood collective communications avaialable with the MPI version 3 standard. It provides a way
to use sub-communicators to perform collective communications among neighbourhoods: a single MPI message
needs to be built for all neighbours before calling the collective operation, instead of four different messages. The
new communication approach can be selected by setting nn_comm=2 in the &nammpp (namelist 9.2) namelist
record. By default, nn_comm=1 , which activates the original point-to-point communication of NEMO which
has been further optimized in NEMO version 4.2. Note that other communication strategies are available in
the BENCH test case. These communication strategies are using non-blocking point-to-point communications

Page 125 of 310 NEMO Reference Manual

https://www.mpi-forum.org
https://sites.nemo-ocean.io/user-guide/tests.html#bench


Sect. 9.3 Exchange with neighbouring processes (lbclnk.F90, lib_mpp.F90)

with different approaches to test whether communications have been received: MPI_Iprobe ( nn_comm=30 ),
MPI_Waitany ( nn_comm=31 ), MPI_Waitall ( nn_comm=32 ).

In NEMO the decomposition of the model domain results in a regular horizontal grid of subdomains, which
can be manually configured with the parameters jpni and jpnj defined in the &nammpp (namelist 9.2) namelist
record to select the number of colums along the i-axis and the number of rows along the j-axis, respectively. If
both jpni and jpnj are less than 1 (default), they will be automatically set during model initialisation to
result in an optimal domain decomposition (see below and (Irrmann et al., 2022)) into a number of subdomains
that corresponds to the number of MPI processes allocated to NEMO when the model is launched (i.e. mpirun
-np <n> ./nemo will automatically result in a domain decomposition into <n> subdomains).

Figure 9.5.: Example of Atlantic domain defined for the CLIPPER projet. Initial grid is composed of 773 x 1236 horizontal points.
(a) the domain is split onto 9 times 20 subdomains (jpni=9, jpnj=20). Subdomains with ocean points are numbered
first starting from bottom-left. The 52 subdomains that are land areas are next numbered starting also from bottom-left
(in yellow). (b) The 52 subdomains are eliminated (white rectangles) and the resulting number of processors really
used during the computation is 128. Note that the subdomains with ocean points have the same number in both cases.

The NEMO model computes equation terms with the help of mask arrays (0 on land points and 1 on sea
points), see section 9.1. It is therefore possible that an MPI subdomain contains only land points, see figure 9.5.
To save ressources, the model initialisation attempts to suppress as many land subdomains as possible from
the computational domain. For example if Nmpi processes are allocated to NEMO the domain decomposisiton
results in the equality

Nmpi = jpni× jpnj −Nland +Nuseless

where Nland is the total number of land subdomains in the domain decomposition into jpni by jpnj subdomains.
Nuseless is the number of land subdomains that are kept in the compuational domain in order to ensure that all
Nmpi MPI processes are allocated a computational task. The values of Nmpi, jpni, jpnj, Nland and Nuseless are
reported in the output file ocean.output. Nuseless must, of course, be as small as possible to reduce a wasting
of ressources, and therefore a warning is issued in ocean.output if Nuseless is not zero. Note that a non-zero
value of Nuseless is usually required when using AGRIF as, up to now, the parent and all child grids must make
use of all Nmpi processes.
If the domain decomposition is performed automatically, the variant chosen by the model will both min-

imise the horizontal subdomain size (defined as maxalldomains(subdomainsize)) and maximize the number of
eliminated land subdomains. This means that no other decomposition will use fewer processes than (jpni ×
jpnj − Nland) while having a smaller subdomain size. In order to tune Nmpi (minimize Nuseless), the model
can initially be run with ln_listonly activated: the model will start the initialisation phase, print a list of
optimal decompositions (Nmpi, jpni and jpnj ) to ocean.output, and then halt. The maximum value of
Nmpi tested in this list is max(NMPI_tasks, jpni× jpnj). For example, NEMO can be run on a single process
with ln_listonly=.true. , jpni=1000 and jpnj=10 to obtain a list of optimal domain decompositions for
the number of processes ranging from 1 to about 10000.
The subdomains are numbered from 0 to Nmpi − 1: first, subdomains containing ocean points are numbered

from 0 to jpni ∗ jpnj − Nland − 1, starting with the bottom-left-most subdomain, see figure 9.5; then, the
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remaining Nuseless land subdomains are numbered, starting from the bottom-left-most land subdomain (yellow
numbers in figure 9.5a). This implies that, for given values of jpni and jpnj , the numbers attributed to the
ocean subdomains do not vary with Nuseless.
When land processors are eliminated, the value corresponding to these locations in the model output files

remain undefined by default, but to avoid missing-number entries in output files, ln_mskland can be activated.
Note that it may be beneficial to not eliminate land processes when creating the meshmask output file (i.e. when
setting a non-zero value to nn_msh ).

Figure 9.6.: Positioning of a sub-domain when massively parallel processing is used

With the exception of message passing or synchronisation, each process runs independently and accesses
solely its own local memory. For this reason, the main model dimensions, jpi, jpj, and jpk, correspond to
that of the local subdomain. As detailed in Irrmann et al. (2022), the value of jpi and jpj can differ between
subdomains. Note that if the configuration requires north folding (l_NFold = .True.), the jpj of the processes
involved in the folding are reduced in order to compensate for the extra cost of the north folding operation.
As shown in figure 9.6, the extents of the subdomain, jpi and jpj, account for both the the inner domain

and the halo. Nis0 (Njs0) and Nie0 (Nje0) are used to specify the start and end of the inner domain along the
i-axis (j-axis).
Several variables are available to convert between indices of the local subdomain and the global domain (with

or without halos). The dimensions of the whole model domain with a halo are referred to as jpiglo, jpjglo,
and jpk. Ni0glo and Ni0glo correspond to the actual domain size as seen in input and output files, without any
halo. The 1-d arrays mig(1 : jpi) and mjg(1 : jpj), defined in the init_locglo routine (module mppini.F90
), can be used to convert local indices to indices of the global domain with halos. For example, an element of Tl,
a local array (subdomain) corresponds to an element of Tg, a global array (model domain with halos) through
the relationship:

Tg(mig(i),mjg(j), k) = Tl(i, j, k),

with 1 ≤ i ≤ jpi, 1 ≤ j ≤ jpj , and 1 ≤ k ≤ jpk. Similarly, the 1-d arrays mig0(1 : jpi) and mjg0(1 : jpj)
can be used to convert local subdomain indices to indices of the global domain without halos. The 1-d ar-
rays mi0(1 : jpiglo), mi1(1 : jpiglo)m, mj0(1 : jpjglo), and mj1(1 : jpjglo) have the reverse purpose and can
be used as loop loop bounds formulated in terms of global domain indices (see module dtastd.F90 for examples).

9.4. Unstructured open boundary conditions (BDY)
Options are defined through the &nambdy (namelist 9.3) and &nambdy_dta (namelist 9.4) namelist variables.

For regional configurations, the BDY module is the core implementation for the application of open bound-
ary conditions to the ocean temperature, salinity, and barotropic-baroclinic velocities, as well as to ice-snow
concentration, thicknesses, temperatures, salinity, and melt-pond concentration and thickness.
The BDY module was modelled on the OBC module (see NEMO 3.4) and shares many features and a

similar coding structure (Chanut, 2005). The specification of the open-boundary location is completely flexible
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!-----------------------------------------------------------------------
&nambdy ! unstructured open boundaries (default: OFF)
!-----------------------------------------------------------------------

ln_bdy = .false. ! Use unstructured open boundaries
nb_bdy = 0 ! number of open boundary sets
ln_coords_file = .true. ! =T : read bdy coordinates from file

cn_coords_file = 'coordinates.bdy.nc' ! bdy coordinates files
ln_mask_file = .false. ! =T : read mask from file

cn_mask_file = '' ! name of mask file (if ln_mask_file=.TRUE.)
cn_dyn2d = 'none' !
nn_dyn2d_dta = 0 ! = 0, bdy data are equal to the initial state

! ! = 1, bdy data are read in 'bdydata .nc' files
! ! = 2, use tidal harmonic forcing data from files
! ! = 3, use external data AND tidal harmonic forcing

cn_dyn3d = 'none' !
nn_dyn3d_dta = 0 ! = 0, bdy data are equal to the initial state
! ! = 1, bdy data are read in 'bdydata .nc' files
cn_tra = 'none' !
nn_tra_dta = 0 ! = 0, bdy data are equal to the initial state
! ! = 1, bdy data are read in 'bdydata .nc' files
cn_ice = 'none' !
nn_ice_dta = 0 ! = 0, bdy data are equal to the initial state
! ! = 1, bdy data are read in 'bdydata .nc' files
!
ln_tra_dmp =.false. ! open boudaries conditions for tracers
ln_dyn3d_dmp =.false. ! open boundary condition for baroclinic velocities
rn_time_dmp = 1. ! Damping time scale in days
rn_time_dmp_out = 1. ! Outflow damping time scale
nn_rimwidth = 10 ! width of the relaxation zone
ln_vol = .false. ! total volume correction (see nn_volctl parameter)
nn_volctl = 1 ! = 0, the total water flux across open boundaries is zero

/

namelist 9.3.: &nambdy

and facilitates setups from regular boundaries to irregular contours (it includes the possibility to set an open
boundary able to follow an isobath). Boundary data files used with versions of NEMO prior to Version 3.4 may
need to be re-ordered to be compatible with the current version. See subsection 9.4.7 for details.

9.4.1. Namelists
The BDY module is activated by setting ln_bdy=.true. . It is possible to define more than one bound-
ary “set” and apply different boundary conditions to each set. The number of boundary sets is defined by
nb_bdy . Each boundary set can be either defined as a series of straight line segments with namelist records (
ln_coords_file=.false. ), in which case an additional record must be provided for each set (see the example
namelist records 9.5); or it can be read in from a file ( ln_coords_file=.true. ), in which case a file with the
name cn_coords_file (the default name, “coordinates.bdy.nc”, will be used below to refer to such input files)
must be provided for each set (the “coordinates.bdy” file is analagous to the usual NEMO “coordinates.nc” file).
For more details of the definition of the boundary geometry and coordinate files see section subsection 9.4.6.

For each boundary set a boundary condition has to be chosen for different field categories: the barotropic
solution, “u2d” (sea-surface height and barotropic velocities); the baroclinic velocities, “u3d”; the active tracers
∗, “tra”; and sea-ice, “ice”. For each category of variables an algorithm and the boundary data have to be
selected (set with cn_u2d and nn_u2d_dta , cn_u3d and nn_u3d_dta , cn_tra and nn_tra_dta , and
cn_ice and nn_ice_dta , respectively).

The choice of algorithm is currently:

'none'
no boundary condition is applied, the solution will “see” land points around the edge of the domain;

'specified'
the specified boundary condition is applied for baroclinic velocity and tracer variables;

'neumann'
the values at the boundary are duplicated (no gradient) for baroclinic velocity and tracer variables;

'frs'
the Flow Relaxation Scheme (FRS) for all variables;

'orlanski'
the Orlanski radiation scheme (fully oblique) for barotropic, baroclinic and tracer variables;

∗The current version of the BDY module does not extend to passive tracers.
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!-----------------------------------------------------------------------
&nambdy_dta ! open boundaries - external data (see nam_bdy)
!-----------------------------------------------------------------------

ln_zinterp = .false. ! T if a vertical interpolation is required. Variables gdep[tuv] and e3[tuv] must exist in the
file↪→

! ! automatically defined to T if the number of vertical levels in bdy dta /= jpk
ln_full_vel = .false. ! T if [uv]3d are "full" velocities and not only its baroclinic components
! ! in this case, baroclinic and barotropic velocities will be recomputed -> [uv]2d not needed
!
cn_dir = 'bdydta/' ! root directory for the BDY data location

!___________!_________________________!___________________!___________!_____________!________!___________!__________________!__________!_______________!↪→
! ! file name ! frequency (hours) ! variable ! time interp.! clim ! 'yearly'/ ! weights filename !
rotation ! land/sea mask !↪→

! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! !
pairing ! filename !↪→
bn_ssh = 'amm12_bdyT_u2d' , 24. , 'sossheig', .true. , .false., 'daily' , '' ,
'' , ''↪→
bn_u2d = 'amm12_bdyU_u2d' , 24. , 'vobtcrtx', .true. , .false., 'daily' , '' ,
'' , ''↪→
bn_v2d = 'amm12_bdyV_u2d' , 24. , 'vobtcrty', .true. , .false., 'daily' , '' ,
'' , ''↪→
bn_u3d = 'amm12_bdyU_u3d' , 24. , 'vozocrtx', .true. , .false., 'daily' , '' ,
'' , ''↪→
bn_v3d = 'amm12_bdyV_u3d' , 24. , 'vomecrty', .true. , .false., 'daily' , '' ,
'' , ''↪→
bn_tem = 'amm12_bdyT_tra' , 24. , 'votemper', .true. , .false., 'daily' , '' ,
'' , ''↪→
bn_sal = 'amm12_bdyT_tra' , 24. , 'vosaline', .true. , .false., 'daily' , '' ,
'' , ''↪→

!* for si3
bn_a_i = 'amm12_bdyT_ice' , 24. , 'siconc' , .true. , .false., 'daily' , '' ,
'' , ''↪→
bn_h_i = 'amm12_bdyT_ice' , 24. , 'sithic' , .true. , .false., 'daily' , '' ,
'' , ''↪→
bn_h_s = 'amm12_bdyT_ice' , 24. , 'snthic' , .true. , .false., 'daily' , '' ,
'' , ''↪→
bn_t_i = 'NOT USED' , 24. , 'sitemp' , .true. , .false., 'daily' , '' ,
'' , ''↪→
bn_t_s = 'NOT USED' , 24. , 'sntemp' , .true. , .false., 'daily' , '' ,
'' , ''↪→
bn_tsu = 'NOT USED' , 24. , 'sittop' , .true. , .false., 'daily' , '' ,
'' , ''↪→
bn_s_i = 'NOT USED' , 24. , 'sisalt' , .true. , .false., 'daily' , '' ,
'' , ''↪→

! melt ponds (be careful, bn_aip is the pond concentration (not fraction), so it differs from rn_iceapnd)
bn_aip = 'NOT USED' , 24. , 'siapnd' , .true. , .false., 'daily' , '' ,
'' , ''↪→
bn_hip = 'NOT USED' , 24. , 'sihpnd' , .true. , .false., 'daily' , '' ,
'' , ''↪→
bn_hil = 'NOT USED' , 24. , 'sihlid' , .true. , .false., 'daily' , '' ,
'' , ''↪→

! if bn_t_i etc are "not used", then define arbitrary temperatures and salinity and ponds
rn_ice_tem = 270. ! arbitrary temperature of incoming sea ice
rn_ice_sal = 10. ! -- salinity --
rn_ice_age = 30. ! -- age --
rn_ice_apnd = 0.2 ! -- pond fraction = a_ip/a_i --
rn_ice_hpnd = 0.05 ! -- pond depth --
rn_ice_hlid = 0.0 ! -- pond lid depth --

/

namelist 9.4.: &nambdy_dta

!-----------------------------------------------------------------------
&nambdy ! unstructured open boundaries (default: OFF)
!-----------------------------------------------------------------------

ln_bdy = .true. ! Use unstructured open boundaries
nb_bdy = 2 ! number of open boundary sets
ln_coords_file = F F ! =T : read bdy coordinates from file
nn_rimwidth = 1 1 ! width of the relaxation zone

/

! BDY segments
&nambdy_index

ctypebdy = 'S' ! South boundary segment
nbdyind = 1 ! Index along the constant dimension
nbdybeg = 2 ! Start point along the varying dimension
nbdyend = 200 ! Final point along the varying dimension

/
&nambdy_index

ctypebdy = 'E' ! East boundary segment
nbdyind = -1 ! Automatic boundary definition: if -1 set boundary to whole side of model domain.

/

namelist 9.5.: &nambdy & nambdy_index
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'orlanski_npo'
the Orlanski radiation scheme (NPO) for barotropic, baroclinic, and tracer variables; and

'flather'
the Flather radiation scheme for the barotropic variables.

The boundary data is either set to initial conditions ( nn_tra_dta=0 ) or forced with external data from a
file ( nn_tra_dta=1 ). If external boundary data is required then the &nambdy_dta (namelist 9.4) namelist
must be defined. One &nambdy_dta (namelist 9.4) namelist is required for each boundary set, adopting the
same order of indexes in which the boundary sets are defined in &nambdy (namelist 9.3) . The boundary data is
read in from directory cn_dir using module fldread.F90 (see subsection 7.2.1), and entries for each required
variable in the &nambdy_dta (namelist 9.4) namelist record can be formulated in the corresponding format
(filename, file and data frequency, time-interpolation, climatological (time-cyclic) data flag). For sea-ice salinity,
temperatures and melt ponds, constant values instead of input data can be selected by specifying the filename
as ’NOT USED’.
In case the “u3d” velocity data contains the total velocity (ie, baroclinic and barotropic velocity), the BDY code
can derive baroclinic and barotropic velocities by setting ln_full_vel=.true. For the barotropic solution
there is also the option to use tidal harmonic forcing without ( nn_dyn2d_dta=2 ) or in addition to external
tidal forcing data ( nn_dyn2d_dta=3 ).
If not set to initial conditions, sea-ice salinity, temperatures and melt ponds data at the boundary can either
be read in from a file or set to a constant value ( rn_ice_sal , rn_ice_tem , rn_ice_apnd , rn_ice_hpnd ,
and rn_ice_hlid ); the ice age is constant and defined by rn_ice_age .

There is also an option to vertically interpolate the open boundary data onto the native grid at run-time (
ln_zinterp=.true. ). For this to be successful the additional depth and scale-factor variables gdept, gdepu,
gdepv, e3t, e3u, and e3v are required to be present in the lateral boundary files, and the scale factors are used
to adjustment to velocity fields due to differences in the total water depths between the two vertical grids.

The AMM12 reference configuration, crgs/AMM12/EXPREF/namelist_cfg, provides an example with one
boundary set of external daily data provided in individual files (from a large-scale model): FRS conditions are
applied to temperature and salinity, and Flather conditions to the barotropic variables; no condition is specified
for the baroclinic velocities and sea-ice; tidal harmonic forcing is also used.

9.4.2. Flow relaxation scheme
The Flow Relaxation Scheme (FRS) (Davies, 1976; Engedahl, 1995), applies a simple relaxation of the model
fields to externally-specified values over a zone next to the edge of the model domain. Given a model prognostic
variable Φ

Φ(d) = α(d)Φe(d) + (1− α(d))Φm(d) d = 1, N

where Φm is the model solution and Φe is the specified external field, d gives the discrete distance from the
model boundary and α is a parameter that varies from 1 at d = 1 to a small value at d = N . It can be shown
that this scheme is equivalent to adding a relaxation term to the prognostic equation for Φ of the form:

−1

τ
(Φ− Φe)

where the relaxation time scale τ is given by a function of α and the model time step ∆t:

τ =
1− α
α

∆t

Thus, the model solution is completely prescribed by the external conditions at the edge of the model domain
and is relaxed towards the external conditions over the rest of the FRS zone. The application of a relaxation
zone helps to prevent spurious reflections of outgoing signals from the model boundary.
The function α is specified as a tanh function:

α(d) = 1− tanh
(
d− 1

2

)
, d = 1, N

The width of the FRS zone is specified in the namelist as nn_rimwidth . This is typically set to a value in the
range from 8 to 10 (default).
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9.4.3. Flather radiation scheme
The Flather (1994) scheme is a radiation condition on the normal, depth-mean transport across the open
boundary. It takes the form

U = Ue +
c

h
(η − ηe) , (9.1)

where U is the depth-mean velocity normal to the boundary and η is the sea surface height, both from the
model. The subscript e indicates the corresonding fields from external sources. The speed of external gravity
waves is given by c =

√
gh, and h is the depth of the water column. The depth-mean normal velocity along the

edge of the model domain is set to the external depth-mean normal velocity, plus a correction term that allows
gravity waves generated internally to exit the model boundary. Note that the sea-surface height difference in
equation 9.1 is a spatial gradient across the model boundary, so that ηe is defined on T -grid points with nbr=1
(adjacent to the boundary, see subsection 9.4.6) and η is defined on the T points with nbr=2. U and Ue are
defined on the u- or v-points with nbr=1, i.e. between the two T -grid points.

9.4.4. Orlanski radiation scheme
The Orlanski scheme is based on the algorithm described by (Marchesiello et al., 2001), hereafter MMS.

The adaptive Orlanski condition solves a wave plus relaxation equation at the boundary:

∂ϕ

∂t
+ cx

∂ϕ

∂x
+ cy

∂ϕ

∂y
= −1

τ
(ϕ− ϕext) (9.2)

where ϕ is the model field, x and y refer to the normal and tangential directions to the boundary, respectively,
and the phase velocities are diagnosed from the model fields as:

cx = −∂ϕ
∂t

∂ϕ/∂x

(∂ϕ/∂x)2 + (∂ϕ/∂y)2
(9.3)

cy = −∂ϕ
∂t

∂ϕ/∂y

(∂ϕ/∂x)2 + (∂ϕ/∂y)2
(9.4)

(As noted by MMS, this is a circular diagnosis of the phase speeds which only makes sense on a discrete
grid). Equation (equation 9.2) is defined adaptively depending on the sign of the phase velocity normal to the
boundary cx. For cx outward, we have

τ = τout (9.5)

For cx inward, the radiation equation is not applied:

τ = τin ; cx = cy = 0 (9.6)

Generally the relaxation time scale at inward propagation points ( rn_time_dmp ) is set much shorter than
the time scale at outward propagation points ( rn_time_dmp_out ) so that the solution is constrained more
strongly by the external data at inward propagation points. See subsection 9.4.5 for details on the spatial shape
of the scaling.
The “normal propagation of oblique radiation” or NPO approximation (called 'orlanski_npo') involves as-
suming that cy is zero in equation (equation 9.2), but including this term in the denominator of equation
(equation 9.3). Both versions of the scheme are options in BDY. Equations (equation 9.2) - (equation 9.6)
correspond to equations (13) - (15) and (2) - (3) in MMS.

9.4.5. Relaxation at the boundary
In addition to a specific boundary condition specified as cn_tra and cn_dyn3d , relaxation on baroclinic
velocities and tracers are available. This option can be selected with the namelist parameters ln_tra_dmp and
ln_dyn3d_dmp for each boundary set.
The relaxation time scale value ( rn_time_dmp and rn_time_dmp_out , τ) are defined at the boundaries

itself. This time scale (α) is weighted by the distance (d) from the boundary over nn_rimwidth cells (N):

α =
1

τ
(
N + 1− d

N
)2, d = 1, N

The same scaling is applied in the Orlanski damping.
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Figure 9.7.: Example of the geometry of unstructured open boundaries

9.4.6. Boundary geometry
Each open boundary set is defined as a list of points. The information is stored in the arrays nbi, nbj, and nbr
in the idx_bdy structure. The nbi and nbj arrays define the local (i, j) indexes of each point in the boundary
zone and the nbr array defines the discrete distance from the boundary: nbr=1 means that the boundary point
is next to the edge of the model domain, while nbr>1 means that the boundary point is increasingly further
away from the edge of the model domain. A set of nbi, nbj, and nbr arrays is defined for each of the T -, u-
and v-grids. figure 9.7 shows an example of an irregular boundary.

The boundary geometry for each set may be defined in a namelist &nambdy_index or by reading in a “coor-
dinates.bdy.nc” file.
The &nambdy_index namelist record defines straight-line segments for northern, eastern, southern or western

boundaries ( ctypebdy is set to 'N', 'E', 'S', or 'W', respectively), and contains the three values nbdybeg ,
nbdyend , and nbdyind that specify the first and final index on the axis along, as well as the position on the
axis perpendicular to, the segment, respectively. If parameter nbdyind is set to -1, the code will automatically
define the boundary segment to span the respective domain extent. These segments define a list of T grid points
along the outermost row of the boundary (nbr = 1). The code deduces the u- and v-points and also the points
for nbr > 1 if nn_rimwidth>1 .
The boundary geometry may alternatively be defined through a “coordinates.bdy.nc” file. figure 9.8 provides

an example of the header information of such a file. The file contains the index arrays for each of the T -, u- and
v-grids; prefixes nbi, nbj, and nbr identify the i-, j-, and boundary-width-indices relevant for the global domain
(the former two are internally converted to local domain indices), respectively; these arrays must be in order
of increasing nbr. Such files are also used to generate external boundary data via interpolation, and therefore
it also contains the latitudes and longitudes of each point as shown; horizontal interpolation is, however, not
relevant when running the model.
For some choices of an irregular boundary, the model domain may contain ocean areas which are not part of

the computational domain. For example, if an open boundary is defined along an isobath, say at the shelf break,
then the areas of ocean outside of this boundary will need to be masked out. Parameter ln_mask_file in the
&nambdy (namelist 9.3) namelist record can be used to activate the input of a mask file of name cn_mask_file
. Only one mask file can be used, even if multiple boundary sets are defined.

9.4.7. Input boundary data files
The data files contain the data arrays in the order in which the points are defined in the nbi and nbj arrays.
The data arrays have three dimensions: time; xb, the index of the boundary data point in the horizontal; and
yb, a dummy dimension of extent one that enables the file to be read by the standard NEMO I/O routines. 3D
fields also have a depth dimension.
From NEMO version 3.4 there are additional restrictions on the order in which boundary points are defined

(and therefore restrictions on the order of the data in the file). In particular:

1. the data points must be in order of increasing nbr;

2. all the data for a particular boundary set must be in the same order.

These restrictions mean that data files previously used with a NEMO model version lower than 3.4 may not
work from version 3.4 onwards.
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Figure 9.8.: Example of the header of a “coordinates.bdy.nc” file

9.4.8. Volume correction
A volume correction can be applied to ensure that the total volume of a regional model remains constant.
This option can be activated with parameter ln_vol of namelist &nambdy (namelist 9.3) ; ln_vol=.false.
(default) indicates that this option is not used. When active ( ln_vol=.true. ), two options are available with
parameter nn_volctl :

nn_volctl=0
the normal barotropic velocities around the boundary are adjusted at each timestep so that the integrated
volume flow through the boundary is zero;

nn_volctl=1
in addition to the integrated volume flow through the boundary, the change due to the surface freshwater
flux is taken into account to adjust the normal barotropic velocities around the boundary to achieve an
integrated volume flow of zero at each timestep.

If more than one boundary set is used, the volume correction is applied to all boundaries simulatneously.

9.4.9. Tidal harmonic forcing
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!-----------------------------------------------------------------------
&nambdy_tide ! tidal forcing at open boundaries (default: OFF)
!-----------------------------------------------------------------------

filtide = 'bdydta/amm12_bdytide_' ! file name root of tidal forcing files
ln_bdytide_2ddta = .false. !

/

namelist 9.6.: &nambdy_tide

Tidal forcing at open boundaries requires the activation of surface tides (i.e., in &nam_tide (namelist 7.8) ,
ln_tide=.true. with the active tidal constituents listed in the sn_tide_cnames array; see section 7.8). The
specific options related to the reading in of the complex harmonic amplitudes of elevation (SSH) and barotropic
velocity components (u,v) at the open boundaries are defined through the &nambdy_tide (namelist 9.6) namelist
parameters.
The tidal harmonic data at open boundaries can be specified in two different ways, either on a two-dimensional

grid covering the entire model domain or along open boundary segments; these two variants can be selected by
setting ln_bdytide_2ddta=.true. or ln_bdytide_2ddta=.false. , respectively. In either case, the real and
imaginary parts of SSH, u, and v amplitudes associated with each activated tidal constituent <constituent>
have to be provided separately as fields in input files with names based on filtide=<input> . When two-
dimensional data is used:

file <input>_grid_T.nc
is expected to contain variables <constituent>_z1 and <constituent>_z2 with the real and imaginary
parts of SSH, respectively;

file <input>_grid_U.nc
variables <constituent>_u1 and <constituent>_u2 with the real and imaginary parts of u, respectively;
and

file <input>_grid_V.nc
variables <constituent>_v1 and <constituent>_v2 with the real and imaginary parts of v, respectively.

When data along open boundary segments is used:

file <input><constituent>_grid_T.nc
is expected to contain variables z1 and z2 (real and imaginary part of SSH);

file <input><constituent>_grid_U.nc
variables u1 and u2 (real and imaginary part of u); and

file <input><constituent>_grid_V.nc
variables v1 and v2 (real and imaginary part of v).

Note that the barotropic velocity components are assumed to be defined on the native model grid and should
be rotated accordingly when they are converted from their definition on a different source grid. To do so, the u,
v amplitudes and phases can be converted into tidal ellipses, the grid rotation added to the ellipse inclination,
and then converted back (care should be taken regarding conventions of the direction of rotation).
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Sect. 10.2 Lateral mixing operators

The lateral physics terms in the momentum and tracer equations have been described in equation 1.17 and
their discrete formulation in section 6.2 and section 5.6). In this section we further discuss each lateral physics
option. Choosing one lateral physics scheme means for the user defining, (1) the type of operator used (laplacian
or bilaplacian operators, or no lateral mixing term); (2) the direction along which the lateral diffusive fluxes are
evaluated (model level, geopotential or isopycnal surfaces); and (3) the space and time variations of the eddy co-
efficients. These three aspects of the lateral diffusion are set through namelist parameters (see the &namtra_ldf
(namelist 6.2) and &namdyn_ldf (namelist 5.4) below). Note that this chapter describes the standard imple-
mentation of iso-neutral tracer mixing. Griffies’s implementation, which is used if ln_traldf_triad=.true. ,
is described in appendix D

10.1. Lateral mixing operators
We remind here the different lateral mixing operators that can be used. Further details can be found in
subsection 6.2.1 and section 5.6.

No lateral mixing ( ln_traldf_OFF & ln_dynldf_OFF )

It is possible to run without explicit lateral diffusion on tracers ( ln_traldf_OFF=.true. ) and/or momentum
( ln_dynldf_OFF=.true. ). The latter option is even recommended if using the UP3 advection scheme on
momentum ( ln_dynadv_up3=.true. , see subsubsection 5.3.2) and can be useful for testing purposes.

Laplacian mixing ( ln_traldf_lap & ln_dynldf_lap )

Setting ln_traldf_lap=.true. and/or ln_dynldf_lap=.true. enables a second order diffusion on tracers
and momentum respectively.

Bilaplacian mixing ( ln_traldf_blp & ln_dynldf_blp )

Setting ln_traldf_blp=.true. and/or ln_dynldf_blp=.true. enables a fourth order diffusion on tracers
and momentum respectively. It is implemented by calling the Laplacian operator twice. Note that one can not
combine Laplacian and Bilaplacian operators for the same variable.

10.2. Direction of lateral mixing ( ldfslp.F90 )
The direction for lateral mixing must be specified and can be oriented along the coordinate levels ( ln_traldf_lev
), horizontal surfaces ( ln_traldf_hor ), or iso-neutral surfaces ( ln_traldf_iso ). The operator does not
act along the model levels and must be rotated when (a) horizontal mixing is required on tracer or momentum
( ln_traldf_hor or ln_dynldf_hor ) in s- or mixed s-z- coordinates, and (b) isoneutral mixing is required
whatever the vertical coordinate is. This direction of mixing is defined by its slopes in the i- and j-directions
at the face of the cell of the quantity to be diffused. For a tracer, this leads to the following four slopes: r1u,
r1w, r2v, r2w (see equation 6.8), while for momentum the slopes are r1t, r1uw, r2f , r2uw for u and r1f , r1vw, r2t,
r2vw for v.

10.2.1. Slopes for geopotential mixing in the s-coordinate
In s-coordinates, geopotential mixing (i.e. horizontal mixing) r1 and r2 are the slopes between the geopotential
and computational surfaces. Their discrete formulation is found by locally solving equation 6.8 when the
diffusive fluxes in the three directions are set to zero and T is assumed to be horizontally uniform, i.e. a linear
function of zT , the depth of a T -point.

r1u =
e3u(

e1u e3w
i+1/2, k

) δi+1/2[zt] ≈ 1

e1u
δi+1/2[zt]

r2v =
e3v(

e2v e3w
j+1/2, k

) δj+1/2[zt] ≈
1

e2v
δj+1/2[zt]

r1w =
1

e1w
δi+1/2[zt]

i, k+1/2

≈ 1

e1w
δi+1/2[zuw]

r2w =
1

e2w
δj+1/2[zt]

j, k+1/2

≈ 1

e2w
δj+1/2[zvw]

(10.1)
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These slopes are computed once in ldf_slp_init when ln_sco=.true. , and either ln_traldf_hor=.true.
or ln_dynldf_hor=.true. .

10.2.2. Slopes for tracer iso-neutral mixing
In iso-neutral mixing r1 and r2 are the slopes between the iso-neutral and computational surfaces. Their
formulation does not depend on the vertical coordinate used. Their discrete formulation is found using the fact
that the diffusive fluxes of locally referenced potential density (i.e. insitu density) vanish. So, substituting T by
ρ in equation 6.8 and setting the diffusive fluxes in the three directions to zero leads to the following definition
for the neutral slopes:

r1u =
e3u
e1u

δi+1/2[ρ]

δk+1/2[ρ]
i+1/2, k

r2v =
e3v
e2v

δj+1/2 [ρ]

δk+1/2[ρ]
j+1/2, k

r1w =
e3w
e1w

δi+1/2[ρ]
i, k+1/2

δk+1/2[ρ]

r2w =
e3w
e2w

δj+1/2[ρ]
j, k+1/2

δk+1/2[ρ]

(10.2)

As the mixing is performed along neutral surfaces, the gradient of ρ in equation 10.2 has to be evaluated at
the same local pressure (which, in decibars, is approximated by the depth in meters in the model). Therefore
equation 10.2 cannot be used as such, but further transformation is needed depending on the vertical coordinate
used:

z-coordinate with full step or partial cell: in equation 10.2 the densities appearing in the i and j derivatives
are taken at the same depth, thus the insitu density can be used. This is not the case for the vertical
derivatives: δk+1/2[ρ] is replaced by −ρN2/g, where N2 is the local Brunt-Vaisälä frequency evaluated
following McDougall (1987) (see subsection 6.8.2).

s- or hybrid s-z- coordinate: in the current release of NEMO, iso-neutral mixing is only employed for s-
coordinates if the triad operator is used ( ln_traldf_triad=.true. ; see appendix D). In other words,
iso-neutral mixing will only be accurately represented with a linear equation of state ( ln_seos=.true. ).
In the case of a ”true” equation of state, the evaluation of i and j derivatives in equation 10.2 will include
a pressure dependent part, leading to the wrong evaluation of the neutral slopes.
Note: The solution for s-coordinate passes trough the use of different (and better) expression for the
constraint on iso-neutral fluxes. Following Griffies (2004), instead of specifying directly that there is a
zero neutral diffusive flux of locally referenced potential density, we stay in the T -S plane and consider
the balance between the neutral direction diffusive fluxes of potential temperature and salinity:

α F(T ) = β F(S)

This constraint leads to the following definition for the slopes:

r1u =
e3u
e1u

αu δi+1/2[T ]− βu δi+1/2[S]

αu δk+1/2[T ]
i+1/2, k

− βu δk+1/2[S]
i+1/2, k

r2v =
e3v
e2v

αv δj+1/2[T ]− βv δj+1/2[S]

αv δk+1/2[T ]
j+1/2, k

− βv δk+1/2[S]
j+1/2, k

r1w =
e3w
e1w

αw δi+1/2[T ]
i, k+1/2

− βw δi+1/2[S]
i, k+1/2

αw δk+1/2[T ]− βw δk+1/2[S]

r2w =
e3w
e2w

αw δj+1/2[T ]
j, k+1/2

− βw δj+1/2[S]
j, k+1/2

αw δk+1/2[T ]− βw δk+1/2[S]
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where α and β, the thermal expansion and saline contraction coefficients introduced in subsection 6.8.2,
have to be evaluated at the three velocity points. In order to save computation time, they should be
approximated by the mean of their values at T -points (for example in the case of α: αu = αT

i+1/2,
αv = αT

j+1/2 and αw = αT
k+1/2).

Note that such a formulation could be also used in the z-coordinate and z-coordinate with partial steps
cases.

This implementation is a rather old one. It is similar to the one proposed by Cox (1987), except for the back-
ground horizontal diffusion. Indeed, the Cox (1987) implementation of isopycnal diffusion in GFDL-type models
requires a minimum background horizontal diffusion for numerical stability reasons. To overcome this problem,
several techniques have been proposed in which the numerical schemes of the ocean model are modified (Weaver
and Eby, 1997; Griffies et al., 1998). Griffies’s scheme is now available in NEMO if ln_traldf_triad=.true.
; see appendix D. Here, another strategy is presented (Guilyardi et al., 2001): a local filtering of the iso-neutral
slopes (made on 9 grid-points) prevents the development of grid point noise generated by the iso-neutral diffusion
operator (figure 10.1). This allows an iso-neutral diffusion scheme without additional background horizontal
mixing. This technique can be viewed as a diffusion operator that acts along large-scale (2 ∆x) iso-neutral
surfaces. The diapycnal diffusion required for numerical stability is thus minimized and its net effect on the
flow is quite small when compared to the effect of an horizontal background mixing.
Nevertheless, this iso-neutral operator does not ensure that variance cannot increase, contrary to the Griffies

et al. (1998) operator which has that property.

Figure 10.1.: Averaging procedure for isopycnal slope computation

For numerical stability reasons (Cox, 1987; Griffies, 2004), the slopes must also be bounded by the namelist
scalar rn_slpmax (usually 1/100) everywhere. This constraint is applied in a piecewise linear fashion (see
figure 10.2), increasing from zero at the surface to 1/100 at 70 metres and thereafter decreasing to zero at the
bottom of the ocean (the fact that the eddies ”feel” the surface motivates this flattening of isopycnals near the
surface).

10.2.3. Slopes for momentum iso-neutral mixing
The iso-neutral diffusion operator on momentum is the same as the one used on tracers but applied to each
component of the velocity separately (see equation 5.18 in section subsection 5.6.2). The slopes between the
surface along which the diffusion operator acts and the surface of computation (z- or s-surfaces) are defined at
T -, f -, and uw- points for the u-component, and T -, f - and vw- points for the v-component. They are computed
from the slopes used for tracer diffusion, i.e. equation 10.1 and equation 10.2:

r1t = r1u
i r1f = r1u

i+1/2

r2f = r2v
j+1/2 r2t = r2v

j

r1uw = r1w
i+1/2 and r1vw = r1w

j+1/2

r2uw = r2w
j+1/2 r2vw = r2w

j+1/2

The major issue remaining is in the specification of the boundary conditions. The same boundary conditions
are chosen as those used for lateral diffusion along model level surfaces, i.e. using the shear computed along the
model levels and with no additional friction at the ocean bottom (see section 9.1).
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Figure 10.2.: Vertical profile of the slope used for lateral mixing in the mixed layer: (a) in the real ocean the slope is the iso-neutral
slope in the ocean interior, which has to be adjusted at the surface boundary i.e. it must tend to zero at the surface
since there is no mixing across the air-sea interface: wall boundary condition. Nevertheless, the profile between the
surface zero value and the interior iso-neutral one is unknown, and especially the value at the base of the mixed layer;
(b) profile of slope using a linear tapering of the slope near the surface and imposing a maximum slope of 1/100; (c)
profile of slope actually used in NEMO: a linear decrease of the slope from zero at the surface to its ocean interior
value computed just below the mixed layer. Note the huge change in the slope at the base of the mixed layer between
(b) and (c).

10.3. Lateral mixing coefficient ( nn_aht_ijk_t & nn_ahm_ijk_t )
The specification of the space variation of the coefficient is made in modules ldftra.F90 and ldfdyn.F90 . The
way the mixing coefficients are set in the reference version can be described as follows:

10.3.1. Mixing coefficients read from file ( nn_aht_ijk_t=-20, -30 &
nn_ahm_ijk_t=-20, -30 )

Mixing coefficients can be read from file if a particular geographical variation is needed. For example, in the
ORCA2 global ocean model, the laplacian viscosity operator uses Al = 4.104 m2/s poleward of 20◦ north and

Page 139 of 310 NEMO Reference Manual



Sect. 10.3 Lateral mixing coefficient (nn_aht_ijk_t & nn_ahm_ijk_t)

south and decreases linearly to Al = 2.103 m2/s at the equator (Madec et al., 1996; Delécluse and Madec,
1999). Similar modified horizontal variations can be found with the Antarctic or Arctic sub-domain options of
ORCA2 and ORCA05. The provided fields can either be 2d ( nn_aht_ijk_t=-20 , nn_ahm_ijk_t=-20 ) or 3d
( nn_aht_ijk_t=-30 , nn_ahm_ijk_t=-30 ). They must be given at U, V points for tracers and T, F points
for momentum (see table 10.1).

Namelist parameter Input filename dimensions variable names
nn_ahm_ijk_t=-20 eddy_viscosity_2D.nc (i, j) ahmt_2d, ahmf_2d
nn_aht_ijk_t=-20 eddy_diffusivity_2D.nc (i, j) ahtu_2d, ahtv_2d
nn_ahm_ijk_t=-30 eddy_viscosity_3D.nc (i, j, k) ahmt_3d, ahmf_3d
nn_aht_ijk_t=-30 eddy_diffusivity_3D.nc (i, j, k) ahtu_3d, ahtv_3d

Table 10.1.: Description of expected input files if mixing coefficients are read from NetCDF files

10.3.2. Constant mixing coefficients ( nn_aht_ijk_t=0 & nn_ahm_ijk_t=0 )
If constant, mixing coefficients are set thanks to a velocity and a length scales (Uscl, Lscl) such that:

Alo =


1

2
UsclLscl for laplacian operator
1

12
UsclL

3
scl for bilaplacian operator

(10.3)

Uscl and Lscl are given by the namelist parameters rn_Ud , rn_Uv , rn_Ld and rn_Lv .

10.3.3. Vertically varying mixing coefficients ( nn_aht_ijk_t=10 &
nn_ahm_ijk_t=10 )

In the vertically varying case, a hyperbolic variation of the lateral mixing coefficient is introduced in which the
surface value is given by equation 10.3, the bottom value is 1/4 of the surface value, and the transition takes
place around z=500 m with a width of 200 m. This profile is hard coded in module ldfc1d_c2d.F90 , but can
be easily modified by users.

10.3.4. Mesh size dependent mixing coefficients ( nn_aht_ijk_t=20 &
nn_ahm_ijk_t=20 )

In that case, the horizontal variation of the eddy coefficient depends on the local mesh size and the type of
operator used:

Al =


1

2
Usclmax(e1, e2) for laplacian operator
1

12
Usclmax(e1, e2)3 for bilaplacian operator

(10.4)

where Uscl is a user defined velocity scale ( rn_Ud , rn_Uv ). This variation is intended to reflect the lesser need
for subgrid scale eddy mixing where the grid size is smaller in the domain. It was introduced in the context of
the DYNAMO modelling project (Willebrand et al., 2001). Note that such a grid scale dependance of mixing
coefficients significantly increases the range of stability of model configurations presenting large changes in grid
spacing such as global ocean models. Indeed, in such a case, a constant mixing coefficient can lead to a blow
up of the model due to large coefficient compare to the smallest grid size (see subsection 2.2.2), especially when
using a bilaplacian operator.

10.3.5. Mesh size and depth dependent mixing coefficients ( nn_aht_ijk_t=30 &
nn_ahm_ijk_t=30 )

The 3D space variation of the mixing coefficient is simply the combination of the 1D and 2D cases above,
i.e. a hyperbolic tangent variation with depth associated with a grid size dependence of the magnitude of the
coefficient.
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10.3.6. Eddy parameterization ( nn_aht_ijk_t=21 )
This parameterization is designed to represent the tracer lateral mixing induced by (unresolved) quasi-geostrophic
eddies. It is originally combined with the Gent and McWilliams (1990) advective formulation but is also available
here for (Laplacian only) diffusion.

Tréguier et al. (1997) express tracer diffusivities as the product of a characteristic inverse timescale, T−1
eff , by

a wavenumber of the ”energy-containing scale”, k0:

AlT = k−2
0 T−1

eff (10.5)

T−1
eff is taken as the maximum growth rate of baroclinic waves, which reads:

T−1
eff =

(
1

H + η

∫ H+η

0

∇hb · ∇hb
∂zb

dz

) 1
2

(10.6)

where b = −gρ/ρ0 is the buoyancy. Taking advantage of the slope computation described previoulsy, this is
translated as follows in the code:

T−1
eff =

(
1

H + η

∫ H+η

0

N2
(
r21 + r22

)
dz

) 1
2

(10.7)

The exact formulation of the lengthscale is left open by Tréguier et al. (1997) but they suggest the first Rossby
radius of deformation as a possible choice, which is the case in NEMO. Hence, we have:

k−1
0 ≈ Ro ≈ 1

πf

∫ H+η

0

Ndz (10.8)

where Ro is constrained to be > 2km and < 40km. AlT is, in addition, progressively tapered to 0 equatorward
of 20◦N/S.

10.3.7. Flow dependent mixing coefficients ( nn_aht_ijk_t=31 & nn_ahm_ijk_t=31
)

In that case, the eddy coefficient is proportional to the local velocity magnitude so that the Reynolds number
Re = |U |e/Al is constant (and here hardcoded to 2 for the Laplacian and 12 for the Bilaplacian):

Al =


1

2
|U |e for laplacian operator
1

12
|U |e3 for bilaplacian operator

(10.9)

10.3.8. Deformation rate dependent viscosities ( nn_ahm_ijk_t=32 )
This option refers to the (Smagorinsky, 1963) scheme which is here implemented for momentum only. Smagorin-
sky chose as a characteristic time scale Tsmag the deformation rate and for the lengthscale Lsmag the maximum
wavenumber possible on the horizontal grid, e.g.:

T−1
smag =

√
(∂xu− ∂yv)2 + (∂yu+ ∂xv)

2

Lsmag =
1

π

e1e2
e1 + e2

(10.10)

Introducing a user defined constant C (given in the namelist as rn_csmc ), one can deduce the mixing
coefficients as follows:

Asmag =


C2T−1

smagL
2
smag for laplacian operator

C2

8
T−1
smagL

4
smag for bilaplacian operator

(10.11)

For stability reasons, upper and lower limits are applied on the resulting coefficient (see subsection 2.2.2) so
that:

Cmin
1

2
|U |e < Asmag < Cmax

e2

8∆t
for laplacian operator

Cmin
1

12
|U |e3 < Asmag < Cmax

e4

64∆t
for bilaplacian operator

(10.12)
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!-----------------------------------------------------------------------
&namtra_eiv ! eddy induced velocity param. (default: OFF)
!-----------------------------------------------------------------------

ln_ldfeiv = .false. ! use eddy induced velocity parameterization
!
! ! Coefficients:
nn_aei_ijk_t = 0 ! space/time variation of eddy coefficient:
! ! =-20 (=-30) read in eddy_induced_velocity_2D.nc (..._3D.nc) file
! ! = 0 constant
! ! = 10 F(k) =ldf_c1d
! ! = 20 F(i,j) =ldf_c2d
! ! = 21 F(i,j,t) =Treguier et al. JPO 1997 formulation
! ! = 30 F(i,j,k) =ldf_c2d * ldf_c1d
! ! = 32 F(i,j,t) = GEOMETRIC parameterization (=> fill namldf_eke)
! ! time invariant coefficients: aei0 = 1/2 Ue*Le
rn_Ue = 0.02 ! lateral diffusive velocity [m/s] (nn_aht_ijk_t= 0, 10, 20, 30)
rn_Le = 200.e+3 ! lateral diffusive length [m] (nn_aht_ijk_t= 0, 10)
!
ln_eke_equ =.false. ! switch on update of GEOMETRIC eddy energy equation (=> fill namldf_eke)

! forced to be true if nn_aei_ijk_t = 32
/

namelist 10.1.: &namtra_eiv

where Cmin and Cmax are adimensional namelist parameters given by rn_minfac and rn_maxfac respec-
tively.

10.3.9. About space and time varying mixing coefficients
The following points are relevant when the eddy coefficient varies spatially:
(1) the momentum diffusion operator acting along model level surfaces is written in terms of curl and divergent

components of the horizontal current (see subsection 1.5.2). Although the eddy coefficient could be set to
different values in these two terms, this option is not currently available.
(2) with an horizontally varying viscosity, the quadratic integral constraints on enstrophy and on the square

of the horizontal divergence for operators acting along model-surfaces are no longer satisfied (section C.7).

10.4. Eddy induced velocity ( ln_ldfeiv )
When Gent and McWilliams (1990) diffusion is used ( ln_ldfeiv=.true. ), an eddy induced tracer advection

term is added, the formulation of which depends on the slopes of iso-neutral surfaces. Contrary to the case of
iso-neutral mixing, the slopes used here are referenced to the geopotential surfaces, i.e. equation 10.1 is used in
z-coordinates, and the sum equation 10.1 + equation 10.2 in s-coordinates.

If isopycnal mixing is used in the standard way, i.e. ln_traldf_triad=.false. , the eddy induced velocity
is given by:

u∗ =
1

e2ue3u
δk

[
e2uA

eiv
uw r1w

i+1/2
]

v∗ =
1

e1ue3v
δk

[
e1v A

eiv
vw r2w

j+1/2
]

w∗ =
1

e1we2w

{
δi

[
e2uA

eiv
uw r1w

i+1/2
]
+ δj

[
e1v A

eiv
vw r2w

j+1/2
]} (10.13)

where Aeiv is the eddy induced velocity coefficient whose value is set through nn_aei_ijk_t &namtra_eiv
(namelist 10.1) namelist parameter. The three components of the eddy induced velocity are computed in
ldf_eiv_trp and added to the eulerian velocity in tra_adv where tracer advection is performed. This has
been preferred to a separate computation of the advective trends associated with the eiv velocity, since it allows
us to take advantage of all the advection schemes offered for the tracers (see section 6.1) and not just the 2nd

order advection scheme as in previous releases of OPA (Madec et al., 1998). This is particularly useful for
passive tracers where positivity of the advection scheme is of paramount importance.
At the surface, lateral and bottom boundaries, the eddy induced velocity, and thus the advective eddy fluxes

of heat and salt, are set to zero. The value of the eddy induced mixing coefficient and its space variation is
controlled in a similar way as for lateral mixing coefficient described in the preceding subsection ( nn_aei_ijk_t
, rn_Ue , rn_Le namelist parameters).
In the case of nn_aei_ijk_t = 32, the GEOMETRIC scaling for the eddy induced velocity coefficient from

Mak et al. (2022b)

Aeiv = α
Ê∫

sN Γ(z) dzΓ(z), (10.14)
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Chap. 10 Lateral Ocean Physics (LDF)

!----------------------------------------------------------------------------------
&namldf_eke ! GEOMETRIC param. (total EKE equation) (nn_aei_ijk_t = 32)
!----------------------------------------------------------------------------------

rn_ekedis = 100. ! dissipation time scale of EKE [days]
nn_eke_dis = 0 ! dissipation option
! ! = 0 constant in space
! ! =-20 read in geom_diss_2D.nc file

rn_geom = 0.04 ! geometric parameterization master coefficient (>0 & <1)
rn_eke_init = 1.e-1 ! initial total EKE value
rn_eke_min = 1.e+0 ! background value of total EKE
rn_ross_min = 4.e+3 ! tapering of aeiv based on min Rossby radius [m]
! ! set to zero to not taper it
rn_eke_lap = 500. ! Laplacian diffusion coefficient of EKE
! ! this is in all options below, so set it to zero and nothing is done
rn_aeiv_min = 1.e+1 ! minimum bound of eiv coefficient
rn_aeiv_max = 1.5e+4 ! maximum bound of eiv coefficient
rn_SFmin = 1.0 ! minimum bound of Structure Function
rn_SFmax = 1.0 ! maximum bound of Structure Function
nn_eke_opt = 1 ! options for terms to include in EKE budget
! ! = 0 PE->EKE conversion, dissipation only
! ! = 1 as 0 but with advection
! ! = 2 as 1 but with additional KE->EKE conversion
! ! for testing purposes:
! ! = 88 only advection by depth-averaged flow
! ! = 99 only Laplacian diffusion
ln_adv_wav = .false. ! include advection at long Rossby speed
ln_beta_plane = .false. ! beta plane option for computing long Rossby speed (default: sphere option)

/

namelist 10.2.: &namldf_eke

!-----------------------------------------------------------------------
&namtra_mle ! mixed layer eddy parametrisation (Fox-Kemper) (default: OFF)
!-----------------------------------------------------------------------

ln_mle = .false. ! (T) use the Mixed Layer Eddy (MLE) parameterisation
rn_ce = 0.06 ! magnitude of the MLE (typical value: 0.06 to 0.08)
nn_mle = 1 ! MLE type: =0 standard Fox-Kemper ; =1 new formulation
rn_lf = 5.e+3 ! typical scale of mixed layer front (meters) (case rn_mle=0)
rn_time = 172800. ! time scale for mixing momentum across the mixed layer (seconds) (case rn_mle=0)
rn_lat = 20. ! reference latitude (degrees) of MLE coef. (case rn_mle=1)
nn_mld_uv = 0 ! space interpolation of MLD at u- & v-pts (0=min,1=averaged,2=max)
nn_conv = 0 ! =1 no MLE in case of convection ; =0 always MLE
rn_rho_c_mle = 0.01 ! delta rho criterion used to calculate MLD for FK

/

namelist 10.3.: &namtra_mle

is used, where α ( rn_geom ) is a non-dimensional factor bounded in magnitude by 1, Γ(z) = N2/N2
ref (controlled

by rn_SFmin and rn_SFmax , switch off by setting them equal to 1) is a vertical structure function based on
Ferreira et al. (2005), and s is the isopycnal slope (s2 = r21w + r22w). The parameterized depth-integrated eddy
energy Ê is calculated from

dÊ
dt +∇H ·

(
(ũz − c) Ê

)
︸ ︷︷ ︸

advection

=

∫
Aeivs2N2 dz︸ ︷︷ ︸

source

−λ(Ê − Ê0)︸ ︷︷ ︸
dissipation

+ ηE∇2
HÊ︸ ︷︷ ︸

diffusion

, (10.15)

where∇H is the horiziontal gradient operator, ũz is the depth-averaged velocity in the 1, 2 direction, c is the long
Rossby phase velocity pointing into the i direction with speed |c| = π−1

∫
|N | dz via a WKB-type approximation,

λ ( rn_eke_dis ) is a linear dissipation time-scale in units of days (converted to per second in NEMO), Ê0

( rn_eke_min ) is a stabilizer for oscillations in Ê, and ηE ( rn_eke_lap ) is a diffusion coefficient. Various
options controlling the calculation of Aeiv or Ê may be made through namelist parameters in &namldf_eke
(namelist 10.2) .
An option is provided to read in a bespoke spatially varying but constant in time λ−1 in units of days (

rn_eke_dis = -20). See Mak et al. (2022a) and associated data repository for an estimate and some scripts to
regenerate the estimates and/or sample this on various ORCA grids.
In case of setting ln_traldf_triad=.true. , a skew form of the eddy induced advective fluxes is used, which

is described in appendix D.

10.5. Mixed layer eddies ( ln_mle )
Submesoscale dynamics are primarily driven by the formation of fronts and the associated ageostrophic cir-

culations. The parameterization introduced by Fox-Kemper et al. (2008), referred to here as the mixed-layer
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Sect. 10.5 Mixed layer eddies (ln_mle)

eddy (MLE) parameterization, represents mixed-layer restratification caused by frontal instabilities and fron-
togenesis. This parameterization incorporates an eddy-induced overturning streamfunction, scaled to account
for the MLE-induced vertical buoyancy flux, which acts to release potential energy. When ln_mle=.true.
in &namtra_mle (namelist 10.3) namelist, this parameterization of the mixing due to unresolved mixed layer
instabilities is activated. Additional transport derived from this streamfunction is computed in ldf_mle_trp
and added to the eulerian transport in tra_adv as done for eddy induced advection. The specific formulation
of the streamfunction depends on the chosen configuration:

nn_mle=0
Following Fox-Kemper et al. (2008), the streamfunction is defined as

Ψ = Ce
H2∇hb

z × k
|f |

µ(z) (10.16)

where H is s mixed layer depth, bz is the buoyancy averaged over the mixed layer depth f is the Coriolis
parameter and µ(z) the structure function µ(z) = max

(
0,
[
1−

(
2z
H + 1

)2]
,
[
1 + 5

21

(
2z
H + 1

)2])
nn_mle=1

Following Fox-Kemper et al. (2011), the streamfunction is defined as

Ψ = Ce
∆s

Lf

H2∇hb
z × k√

f2 + τ−2
µ(z) (10.17)

where τ is the time scale over which submesoscale eddies develop and restratify the mixed layer, ∆s is
the grid resolution, Lf is the typical scale of mixed layer front. Lf is known to varies from 20 km near
the Equator to 1 km or less at high latitude, taking a value of 5 km at mid latitudes (see Capet et al.
XXX). We choose Lf to be inversely proportional to f with a coefficient that is chosen to fit the above
Lf values. Lf = L0

f0
|f | The introduction of the timescale τ in to overcome the Equator singularity is not

required anymore.

MLE tends to restratify the mixed layer. The action of the parameterization is most pronounced where mixed
layers are deep and horizontal buoyancy gradients are large.
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Sect. 11.1 Vertical mixing

!-----------------------------------------------------------------------
&namzdf ! vertical physics manager (default: NO selection)
!-----------------------------------------------------------------------

! ! adaptive-implicit vertical advection
ln_zad_Aimp = .false. ! Courant number dependent scheme (Shchepetkin 2015)
!
! ! type of vertical closure (required)
ln_zdfcst = .false. ! constant mixing
ln_zdfric = .false. ! local Richardson dependent formulation (T => fill namzdf_ric)
ln_zdftke = .false. ! Turbulent Kinetic Energy closure (T => fill namzdf_tke)
ln_zdfgls = .false. ! Generic Length Scale closure (T => fill namzdf_gls)
ln_zdfosm = .false. ! OSMOSIS BL closure (T => fill namzdf_osm)
!
! ! convection
ln_zdfevd = .false. ! enhanced vertical diffusion

nn_evdm = 0 ! apply on tracer (=0) or on tracer and momentum (=1)
rn_evd = 100. ! mixing coefficient [m2/s]

ln_zdfnpc = .false. ! Non-Penetrative Convective algorithm
nn_npc = 1 ! frequency of application of npc
nn_npcp = 365 ! npc control print frequency

ln_zdfmfc = .false. ! Mass Flux Convection
!
ln_zdfddm = .false. ! double diffusive mixing

rn_avts = 1.e-4 ! maximum avs (vertical mixing on salinity)
rn_hsbfr = 1.6 ! heat/salt buoyancy flux ratio

!
! ! gravity wave-driven vertical mixing
ln_zdfiwm = .false. ! internal wave-induced mixing (T => fill namzdf_iwm)
ln_zdfswm = .false. ! surface wave-induced mixing (T => ln_wave=ln_sdw=T )
!
! ! coefficients
rn_avm0 = 1.2e-4 ! vertical eddy viscosity [m2/s] (background Kz if ln_zdfcst=F)
rn_avt0 = 1.2e-5 ! vertical eddy diffusivity [m2/s] (background Kz if ln_zdfcst=F)
nn_avb = 0 ! profile for background avt & avm (=1) or not (=0)
nn_havtb = 0 ! horizontal shape for avtb (=1) or not (=0)

/

namelist 11.1.: &namzdf

11.1. Vertical mixing

The discrete form of the ocean subgrid scale physics has been presented in section 6.3 and section 5.7. At the
surface and bottom boundaries, the turbulent fluxes of momentum, heat and salt have to be defined. At the
surface they are prescribed from the surface forcing (see chapter 7), while at the bottom they are set to zero for
heat and salt, unless a geothermal flux forcing is prescribed as a bottom boundary condition (i.e. ln_trabbc
defined, see subsection 6.4.3), and specified through a bottom friction parameterisation for momentum (see
section 11.4).
In this section we briefly discuss the various choices offered to compute the vertical eddy viscosity and

diffusivity coefficients, Avmu , Avmv and AvT (AvS), defined at uw-, vw- and w- points, respectively (see section 6.3
and section 5.7). These coefficients can be defined as constant, or a function of the local Richardson number,
or computed from a turbulent closure model (either TKE or GLS or OSMOSIS formulation). This choice is
specified via the appropriate namelist parameter in &namzdf (namelist 11.1) .

The computation of these coefficients is initialized in the zdfphy.F90 module and performed in the zdfric.F90
, zdftke.F90 or zdfgls.F90 or zdfosm.F90 modules. The trends due to the vertical momentum and tracer
diffusion, including the surface forcing, are computed and added to the general trend in the dynzdf.F90 and
trazdf.F90 modules, respectively.

11.1.1. Background values

To avoid numerical instabilities associated with weak vertical diffusion, all methods of calculating the eddy
viscosity and diffusivity coefficients will enforce a minimum background value on their final values: Avmb and AvTb
respectively. These background values are set by the namelist parameters rn_avm0 and rn_avt0 respectively,
which should be at least as large as molecular values (see subsection 11.1.2).

Vertical and horizontal profiles may be applied to AvTb via the nn_avb and nn_havtb namelist parameters
respectively. When these parameters are set to 0, no profile is applied and AvTb is constant everywhere. When
setting nn_avb=1 , a theoretical vertical profile will be applied to AvTb (Kraus, 1990). When setting nn_havtb=1
, AvTb will be reduced in the tropics, decreasing linearly from ±15o latitude to 10% of its nominal value ( rn_avt0
) at ±5o latitude.
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!-----------------------------------------------------------------------
&namzdf_ric ! richardson number dependent vertical diffusion (ln_zdfric =T)
!-----------------------------------------------------------------------

rn_avmri = 100.e-4 ! maximum value of the vertical viscosity
rn_alp = 5. ! coefficient of the parameterization
nn_ric = 2 ! coefficient of the parameterization
ln_mldw = .false. ! enhanced mixing in the Ekman layer

rn_ekmfc = 0.7 ! Factor in the Ekman depth Equation
rn_mldmin = 1.0 ! minimum allowable mixed-layer depth estimate (m)
rn_mldmax = 1000.0 ! maximum allowable mixed-layer depth estimate (m)
rn_wtmix = 10.0 ! vertical eddy viscosity coeff [m2/s] in the mixed-layer
rn_wvmix = 10.0 ! vertical eddy diffusion coeff [m2/s] in the mixed-layer

/

namelist 11.2.: &namzdf_ric

11.1.2. Constant ( ln_zdfcst )
When ln_zdfcst=.true. , the momentum and tracer vertical eddy coefficients are set to constant values over
the whole ocean. This is the crudest way to define the vertical ocean physics. It is recommended to use this
option only in process studies, not in basin scale simulations. Typical values used in this case are:

Avmu = Avmv = 1.2 10−4 m2.s−1

AvT = AvS = 1.2 10−5 m2.s−1

The coefficient values are set to their background values; see subsection 11.1.1 and the parameters described
within. In all cases, do not use values smaller that those associated with the molecular viscosity and diffusivity,
that is ∼ 10−6 m2.s−1 for momentum, ∼ 10−7 m2.s−1 for temperature and ∼ 10−9 m2.s−1 for salinity.

11.1.3. Richardson number dependent ( ln_zdfric )
When ln_zdfric=.true. , a local Richardson number dependent formulation for the vertical momentum

and tracer eddy coefficients is set through the &namzdf_ric (namelist 11.2) namelist variables. The vertical
mixing coefficients are diagnosed from the large scale variables computed by the model. In situ measurements
have been used to link vertical turbulent activity to large scale ocean structures. The hypothesis of a mixing
mainly maintained by the growth of Kelvin-Helmholtz like instabilities leads to a dependency between the
vertical eddy coefficients and the local Richardson number (i.e. the ratio of stratification to vertical shear).
Following Pacanowski and Philander (1981), the following formulation has been implemented:

Avm =
Avmric

(1 + a Ri)
n +Avmb

AvT =
Avm

(1 + a Ri)
+AvTb

where Ri = N2/ (∂zUh)
2 is the local Richardson number, N is the local Brunt-Vaisälä frequency (see subsec-

tion 6.8.2), AvTb and Avmb are the constant background values (see subsection 11.1.1), and AvTric = 10−4 m2.s−1

is the maximum value that can be reached by the coefficient when Ri ≤ 0, a = 5 and n = 2. The last three
values can be modified by setting the rn_avmri , rn_alp and nn_ric namelist parameters, respectively.
A simple mixing-layer model to transfer and dissipate the atmospheric forcings (wind-stress and buoyancy

fluxes) can be activated setting ln_mldw=.true. in the namelist. In this case, the local depth of turbulent
wind-mixing or ”Ekman depth” (he) is evaluated and the vertical eddy coefficients prescribed within this layer.
This depth is assumed proportional to the ”depth of frictional influence” that is limited by rotation:

he = Ek
u∗

f0

where Ek is an empirical parameter set by the namelist parameter rn_ekmfc , u∗ is the friction velocity and
f0 is the Coriolis parameter.
In this similarity height relationship, the turbulent friction velocity:

u∗ =

√
|τ |
ρo

is computed from the wind stress vector |τ | and the reference density ρo. The minimum and maximum value of
he is constrained by the namelist parameters rn_mldmin and rn_mldmax respectively. Once he is computed,
the minimum values of the vertical eddy coefficients AvT and Avm within he are constrained by the namelist
parameters rn_wtmix and rn_wvmix respectively (Lermusiaux, 2001).
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!-----------------------------------------------------------------------
&namzdf_tke ! turbulent eddy kinetic dependent vertical diffusion (ln_zdftke =T)
!-----------------------------------------------------------------------

rn_ediff = 0.1 ! coef. for vertical eddy coef. (avt=rn_ediff*mxl*sqrt(e) )
rn_ediss = 0.7 ! coef. of the Kolmogoroff dissipation
rn_ebb = 67.83 ! coef. of the surface input of tke (=67.83 suggested when ln_mxl0=T)
rn_emin = 1.e-6 ! minimum value of tke [m2/s2]
rn_emin0 = 1.e-4 ! surface minimum value of tke [m2/s2]
rn_bshear = 1.e-20 ! background shear (>0) currently a numerical threshold (do not change it)
nn_pdl = 1 ! Prandtl number function of richarson number (=1, avt=pdl(Ri)*avm) or not (=0, avt=avm)
nn_mxl = 3 ! mixing length: = 0 bounded by the distance to surface and bottom
! ! = 1 bounded by the local vertical scale factor
! ! = 2 first vertical derivative of mixing length bounded by 1
! ! = 3 as =2 with distinct dissipative an mixing length scale
ln_mxl0 = .true. ! surface mixing length scale = F(wind stress) (T) or not (F)

nn_mxlice = 0 ! type of scaling under sea-ice
! ! = 0 no scaling under sea-ice
! ! = 1 scaling with constant sea-ice thickness
! ! = 2 scaling with mean sea-ice thickness ( only with SI3 sea-ice model )
! ! = 3 scaling with maximum sea-ice thickness
rn_mxlice = 10. ! max constant ice thickness value when scaling under sea-ice ( nn_mxlice=1)

rn_mxl0 = 0.04 ! surface buoyancy lenght scale minimum value
ln_mxhsw = .false. ! surface mixing length scale = F(wave height)
ln_lc = .true. ! Langmuir cell parameterisation (Axell 2002)

rn_lc = 0.15 ! coef. associated to Langmuir cells
nn_etau = 1 ! penetration of tke below the mixed layer (ML) due to NIWs
! ! = 0 none ; = 1 add a tke source below the ML
! ! = 2 add a tke source just at the base of the ML
! ! = 3 as = 1 applied on HF part of the stress (ln_cpl=T)

rn_efr = 0.05 ! fraction of surface tke value which penetrates below the ML (nn_etau=1 or 2)
nn_htau = 1 ! type of exponential decrease of tke penetration below the ML
! ! = 0 constant 10 m length scale
! ! = 1 0.5m at the equator to 30m poleward of 40 degrees

nn_eice = 1 ! attenutaion of langmuir & surface wave breaking under ice
! ! = 0 no impact of ice cover on langmuir & surface wave breaking
! ! = 1 weigthed by 1-TANH(10*fr_i)
! ! = 2 weighted by 1-fr_i
! ! = 3 weighted by 1-MIN(1,4*fr_i)
nn_bc_surf = 1 ! surface condition (0/1=Dir/Neum) ! Only applicable for wave coupling (ln_cplwave=1)
nn_bc_bot = 1 ! bottom condition (0/1=Dir/Neum) ! Only applicable for wave coupling (ln_cplwave=1)

/

namelist 11.3.: &namzdf_tke

11.1.4. TKE turbulent closure scheme ( ln_zdftke )
When ln_zdftke=.true. , the vertical eddy viscosity and diffusivity coefficients are computed from a TKE

turbulent closure model based on a prognostic equation for ē, the turbulent kinetic energy, and a closure
assumption for the turbulent length scales. This turbulent closure model has been developed by Bougeault and
Lacarrere (1989) in the atmospheric case, adapted by Gaspar et al. (1990) for the oceanic case, and embedded
in OPA, the ancestor of NEMO, by Blanke and Delécluse (1993) for equatorial Atlantic simulations. Since
then, significant modifications have been introduced by Madec et al. (1998) in both the implementation and
the formulation of the mixing length scale.
The time evolution of ē is the result of the production of ē through vertical shear, its destruction through

stratification, its vertical diffusion, and its dissipation of Kolmogorov (1942) type:

∂ē

∂t
=
Km

e32

[(
∂u

∂k

)2

+

(
∂v

∂k

)2
]
−KρN

2 +
1

e3

∂

∂k

[
Avm

e3

∂ē

∂k

]
− cϵ

ē3/2

lϵ
(11.1)

Km = Ck lk
√
ē

Kρ = Avm/Prt

where N is the local Brunt-Vaisälä frequency (see subsection 6.8.2), lϵ and lκ are the dissipation and mixing
length scales, Prt is the Prandtl number, Km and Kρ are the vertical eddy viscosity and diffusivity coefficients.
The constants Ck = 0.1 and Cϵ =

√
2/2 ≈ 0.7 are designed to deal with vertical mixing at any depth (Gaspar

et al., 1990). They are set through namelist parameters nn_ediff and nn_ediss .
The definition used for Prt is controlled by the nn_pdl namelist parameter. If nn_pdl=0 , then Prt = 1. If

nn_pdl=1 , then Prt is a function of the local Richardson number (Ri) following Blanke and Delécluse (1993):

Prt =

{
1 if Ri ≤ 0.2

5Ri if 0.2 ≤ Ri ≤ 2

At the sea surface, the value of ē is prescribed from the wind stress field as ēo = ebb|τ |/ρo, where ebb is set by
the rn_ebb namelist parameter. The default value of ebb is 3.75 (Gaspar et al., 1990), however a much larger
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Figure 11.1.: Illustration of the mixing length computation

value can be used when taking into account the surface wave breaking (see below equation 11.4). The bottom
value of ē is assumed to be equal to the value of the level just above.
The time integration of the ē equation may formally lead to negative values because the numerical scheme

does not ensure its positivity. To overcome this problem, a cut-off in the minimum value of ē is used ( rn_emin
namelist parameter). Following Gaspar et al. (1990), the cut-off value is set to 10−6 m2s−2. This allows the
subsequent formulations to match that of Gargett (1984) for the diffusion in the thermocline and deep ocean:
Kρ = 10−3/N .
A separate minimum value is applied to the surface value of ē, set by the rn_emin0 namelist parameter.

This is typically larger; here it is set to 10−4 m2s−2 by default.

Turbulent length scale

For computational efficiency, the original formulation of the turbulent length scales proposed by Gaspar et al.
(1990) has been simplified. Four formulations are proposed, the choice of which is controlled by the nn_mxl
namelist parameter.
The first two are based on the following first order approximation (Blanke and Delécluse, 1993):

lk = lϵ =
√
2ē /N (11.2)

which is valid in a stable stratified region with constant values of the Brunt-Vaisälä frequency. The resulting
length scale is bounded by the distance to the surface or to the bottom ( nn_mxl=0 ) or by the local vertical
scale factor ( nn_mxl=1 ). Blanke and Delécluse (1993) notice that this simplification has two major drawbacks:
it makes no sense for locally unstable stratification and the computation no longer uses all the information
contained in the vertical density profile.
To overcome these drawbacks, Madec et al. (1998) introduces the nn_mxl=2, 3 cases, which add an extra

assumption concerning the vertical gradient of the computed length scale. The length scales are first evaluated
as in equation 11.2 and then bounded such that the vertical variations of the length scale cannot be larger than
the variations of depth:

1

e3

∣∣∣∣ ∂l∂k
∣∣∣∣ ≤ 1 with l = lk = lϵ (11.3)

This provides a better approximation of the Gaspar et al. (1990) formulation while being much less time
consuming. In particular, it allows the length scale to be limited not only by the distance to the surface or
to the ocean bottom but also by the distance to a strongly stratified portion of the water column such as the
thermocline (figure 11.1).

In order to impose the equation 11.3 constraint, we introduce two additional length scales: lup and ldwn, the
upward and downward length scales, and evaluate the dissipation and mixing length scales as (and note that
here we use numerical indexing):

l(k)up = min
(
l(k) , l(k+1)

up + e
(k)
3t

)
from k = 1 to jpk

l
(k)
dwn = min

(
l(k) , l

(k−1)
dwn + e

(k−1)
3t

)
from k = jpk to 1

where l(k) is computed using equation 11.2, i.e. l(k) =
√
2ē(k)/N2(k).
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In the nn_mxl=2 case, the dissipation and mixing length scales take the same value: lk = lϵ = min ( lup , ldwn ),
while in the nn_mxl=3 case, the dissipation and mixing turbulent length scales are as given in Gaspar et al.
(1990):

lϵ =
√

lup ldwn

lk = min ( lup , ldwn )

At the ocean surface, a non zero length scale is set through the rn_mxl0 namelist parameter. Usually the
surface scale is given by lo = κ zo where κ = 0.4 is von Karman’s constant and zo the roughness parameter of
the surface. Assuming zo = 0.1 m (Craig and Banner, 1994) leads to a default value for rn_mxl0 of 0.04 m. In
the ocean interior, a minimum length scale is set to recover the molecular viscosity when ē reaches its minimum
value (such that 1.10−6 = Ck lmin

√
ēmin ).

Surface wave breaking parameterization (no information from an external wave model)

Following Mellor and Blumberg (2004), the TKE turbulence closure model has been modified to include the
effect of surface wave breaking energetics. This results in a reduction of summertime surface temperature when
the mixed layer is relatively shallow. The Mellor and Blumberg (2004) modifications act on values of the surface
length scale, TKE and the air-sea drag coefficient. The latter concerns the bulk formulae and is not discussed
here.
Following Craig and Banner (1994), the boundary condition on surface TKE value is :

ēo =
1

2
(15.8αCB)

2/3 |τ |
ρo

(11.4)

where αCB is the Craig and Banner (1994) constant of proportionality which depends on the ”wave age”,
ranging from 57 for mature waves to 146 for younger waves (Mellor and Blumberg, 2004). Mellor and Blumberg
(2004) suggest αCB = 100 which, as the surface boundary condition on TKE in NEMO is prescribed through
ēo = ebb|τ |/ρo, corresponds to setting rn_ebb=67.83 .
The namelist parameter ln_mxl0 determines the surface boundary condition on the turbulent length scale,

lo. When ln_mxl0=.false. , lo is set to the value specified by the namelist parameter rn_mxl0 (see previous
subsection). When ln_mxl0=.true. , lo follows Charnock’s relation:

lo = κβ
|τ |
g ρo

(11.5)

where κ = 0.40 is the von Karman constant, and β = 2.105 is Charnock’s constant set to the value chosen by
Stacey (1999).

Surface wave breaking parameterization (using information from an external wave model)

Surface boundary conditions for the turbulent kinetic energy, the mixing length scale and the dissipative length
scale can be defined using wave fields provided from an external wave model (see chapter 7, section 7.10). The
injection of turbulent kinetic energy at the surface can be given by the dissipation of the wave field usually
dominated by wave breaking. In coupled mode, the wave to ocean energy flux term (Φo) from an external wave
model can be provided and then converted into an ocean turbulence source by setting ln_phioc=.true. .

The surface TKE can be defined by a Dirichlet boundary condition by setting nn_bc_surf=0 in the &namzdf
(namelist 11.1) namelist:

ēo =
1

2

(
15.8

Φo
ρo

)2/3

(11.6)

Due to the definition of the computational grid, the TKE flux is not applied at the free surface but at the
centre of the topmost grid cell (z = z1).

To be more accurate, a Neumann boundary condition equivalent to interpreting the half-grid cell at the top
as a constant flux layer (consistent with the surface layer Monin–Obukhov theory) can be applied by instead
setting nn_bc_surf=1 (Couvelard et al., 2020):(

Km

e3
∂ke

)
z=z1

=
Φo
ρo

(11.7)

The mixing length scale surface value l0 can be estimated from the surface roughness length z0:

lo = κ
(Ck Cϵ)

1/4

Ck
z0 (11.8)

where z0 is directly estimated from the significant wave height (Hs) provided by the external wave model as
z0 = 1.6Hs. To use this option, ln_mxhsw , ln_wave and ln_sdw have to be set to .true..
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Langmuir cells

Langmuir circulations (LC) can be described as organised large-scale vertical motions in the surface layer of
the oceans. Although LC have nothing to do with convection, the circulation pattern is rather similar to so-
called convective rolls in the atmospheric boundary layer. The detailed physics behind LC are described in, for
example, Craik and Leibovich (1976). The prevailing explanation is that LC arise from a nonlinear interaction
between the Stokes drift and wind drift currents.
Here we introduced in the TKE turbulent closure the simple parameterization of Langmuir circulations pro-

posed by (Axell, 2002) for a k−ϵ turbulent closure. The parameterization, tuned against large-eddy simulations,
includes the whole effect of LC in an extra source term of TKE, PLC . The presence of PLC in equation 11.1,
the TKE equation, is controlled by setting ln_lc=.true. in the &namzdf_tke (namelist 11.3) namelist.

By making an analogy with the characteristic convective velocity scale (e.g., D’Alessio et al. (1998)), PLC is
assumed to be :

PLC(z) = (1− Fi)
w3
LC(z)

HLC

where wLC(z) is the vertical velocity profile of LC, HLC is the LC depth and Fi is a function of sea ice
concentration (fi) representing the attenuation of wind-driven mixing under sea ice.
Fi has several possible definitions, chosen via the nn_eice namelist parameter:

nn_eice=0
No attenuation of mixing under sea ice (Fi = 0)

nn_eice=1
TANH profile with no mixing at 100% ice concentration (Fi = tanh (10fi))

nn_eice=2
Linear profile with no mixing at 100% ice concentration (Fi = fi)

nn_eice=3
Linear profile with no mixing at 25% ice concentration (Fi = min (4fi, 1))

wLC is assumed to be zero at the surface and at a finite depth HLC (which is often close to the mixed layer
depth), and simply varies as a sine function in between (a first-order profile for the Langmuir cell structures).
The resulting expression for wLC is :

wLC =

{
cLC ∥uLCs ∥ sin(−π z/HLC) if −z ≤ HLC

0 otherwise

In the absence of information about the wave field, wLC is assumed to be proportional to the surface Stokes
drift (uLCs = us0) empirically estimated by us0 = 0.377 |τ |1/2, where |τ | is the surface wind stress module ∗.

In the case of online coupling with an external wave model (see chapter 7, section 7.10), wLC is proportional
to the component of the Stokes drift aligned with the wind (Couvelard et al., 2020) and uLCs = max(us0.eτ , 0)
where eτ is the unit vector in the wind stress direction and us0 is the surface Stokes drift provided by the
external wave model.
cLC = 0.15 has been chosen by Axell (2002) as a good compromise to fit large-eddy simulation data and

yields maximum vertical velocities wLC of the order of a few centimetres per second. The value of cLC is set
through the rn_lc namelist parameter and should have a value of between 0.15 and 0.54 (Axell, 2002).
HLC is estimated in a similar way to the turbulent length scale of TKE equations: it is the depth to which

a water parcel with kinetic energy due to Stokes drift can reach on its own by converting its kinetic energy to
potential energy, according to

−
∫ 0

−HLC

N2 z dz =
1

2
∥uLCs ∥2

Mixing just below the mixed layer

Vertical mixing parameterizations commonly used in ocean general circulation models tend to produce mixed-
layer depths that are too shallow during summer months and windy conditions. This bias is particularly
acute over the Southern Ocean. To overcome this systematic bias, an ad hoc parameterization is introduced
into the TKE scheme (Rodgers et al., 2014). The parameterization is an empirical one, i.e. not derived from
theoretical considerations, but rather is meant to account for observed processes that affect the density structure

∗Following Li and Garrett (1993), the surface Stoke drift velocity may be expressed as us0 = 0.016 |U10m|. Assuming an air
density of ρa = 1.22Kg/m3 and a drag coefficient of 1.5 10−3 allows us0 to be expressed as a function of the module of surface
stress
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!-----------------------------------------------------------------------
&namzdf_gls ! GLS vertical diffusion (ln_zdfgls =T)
!-----------------------------------------------------------------------

rn_emin = 1.e-7 ! minimum value of e [m2/s2]
rn_epsmin = 1.e-12 ! minimum value of eps [m2/s3]
ln_length_lim = .true. ! limit on the dissipation rate under stable stratification (Galperin et al., 1988)
rn_clim_galp = 0.267 ! galperin limit
ln_sigpsi = .true. ! Activate or not Burchard 2001 mods on psi schmidt number in the wb case
rn_crban = 100. ! Craig and Banner 1994 constant for wb tke flux
rn_charn = 70000. ! Charnock constant for wb induced roughness length
rn_hsro = 0.02 ! Minimum surface roughness
rn_hsri = 0.03 ! Ice-ocean roughness
rn_frac_hs = 1.3 ! Fraction of wave height as roughness (if nn_z0_met>1)
nn_z0_met = 2 ! Method for surface roughness computation (0/1/2/3)
! ! = 3 requires ln_wave=T
nn_z0_ice = 1 ! attenutaion of surface wave breaking under ice
! ! = 0 no impact of ice cover
! ! = 1 roughness uses rn_hsri and is weigthed by 1-TANH(10*fr_i)
! ! = 2 roughness uses rn_hsri and is weighted by 1-fr_i
! ! = 3 roughness uses rn_hsri and is weighted by 1-MIN(1,4*fr_i)
nn_mxlice = 0 ! mixing under sea ice

! = 0 No scaling under sea-ice
! = 1 scaling with constant Ice-ocean roughness (rn_hsri)
! = 2 scaling with mean sea-ice thickness
! = 3 scaling with max sea-ice thickness

nn_bc_surf = 1 ! surface condition (0/1=Dir/Neum)
nn_bc_bot = 1 ! bottom condition (0/1=Dir/Neum)
nn_stab_func = 2 ! stability function (0=Galp, 1= KC94, 2=CanutoA, 3=CanutoB)
nn_clos = 1 ! predefined closure type (0=MY82, 1=k-eps, 2=k-w, 3=Gen)

/

namelist 11.4.: &namzdf_gls

of the ocean’s planetary boundary layer that are not explicitly captured by the TKE scheme (i.e. near-inertial
oscillations and ocean swells and waves).
When using this parameterization (i.e. when nn_etau=1 ), the TKE input to the ocean (S) imposed by the

winds in the form of near-inertial oscillations, swell and waves is parameterized by equation 11.4, the standard
TKE surface boundary condition, plus a depth dependance given by:

S = (1− Fi) fr es e−z/hτ (11.9)

where z is the depth, es is TKE surface boundary condition, fr is the fraction of the surface TKE that penetrates
into the ocean, hτ is a vertical mixing length scale that controls the exponential shape of the penetration, and
Fi is a function of sea ice concentration (fi) representing the attenuation of wind-driven mixing under sea ice.
The value of fr, usually a few percent, is specified through the rn_efr namelist parameter. The vertical

mixing length scale, hτ , can be set as a 10 m uniform value ( nn_htau=0 ) or a latitude dependent value
varying from 0.5 m at the Equator to a maximum value of 30 m at high latitudes ( nn_htau=1 ). As for the
parameterisation of Langmuir Circulations, Fi has several possible definitions chosen via the nn_eice namelist
parameter (see subsubsection 11.1.4).
Note that two other options exist, nn_etau=2, 3 . They correspond to applying equation 11.9 only at the

base of the mixed layer, or to using the high frequency part of the stress to evaluate the fraction of TKE that
penetrates the ocean. Those two options are obsolescent features introduced for test purposes. They will be
removed in the next release.

11.1.5. GLS: Generic Length Scale ( ln_zdfgls )

When ln_zdfgls=.true. , the vertical eddy viscosity and diffusivity coefficients are computed using the
Generic Length Scale (GLS) scheme. The GLS scheme is a turbulent closure model based on two prognostic
equations: one for the turbulent kinetic energy ē, and another for the generic length scale, ψ (Umlauf and
Burchard, 2003, 2005). This later variable is defined as: ψ = C0µ

p ēm ln, where the triplet (p,m, n) value given
in table 11.1 allows to recover a number of well-known turbulent closures including k-kl (Mellor and Yamada,
1982), k-ϵ (Rodi, 1987) and k-ω (Wilcox, 1988) among others (Umlauf and Burchard, 2003; Kantha and Carniel,
2003).
The GLS scheme is given by the following set of equations:
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∂ψ
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l

where N is the local Brunt-Vaisälä frequency (see subsection 6.8.2) and ϵ the dissipation rate.
The constants C1, C2, C3, σe, σψ and the wall function (Fw) depend on the choice of the turbulence model.

Four different turbulent models are pre-defined (table 11.1). They are made available through the nn_clo
namelist parameter.

k − kl k − ϵ k − ω generic
nn_clo 0 1 2 3
(p, n,m) ( 0 , 1 , 1 ) ( 3 , 1.5 , -1 ) ( -1 , 0.5 , -1 ) ( 2 , 1 , -0.67 )
σk 2.44 1. 2. 0.8
σψ 2.44 1.3 2. 1.07
C1 0.9 1.44 0.555 1.
C2 0.5 1.92 0.833 1.22
C3 1. 1. 1. 1.
Fwall Yes – – –

Table 11.1.: Set of predefined GLS parameters, or equivalently predefined turbulence models available with ln_zdfgls=.true. and
controlled by the nn_clo namelist variable in &namzdf_gls (namelist 11.4) .

In the Mellor-Yamada model, the negativity of n requires the use of a wall function to force the convergence
of the mixing length towards κzb (where κ is the Von Karman constant and zb the rugosity length scale) value
near physical boundaries (logarithmic boundary layer law).
The stability functions Cµ and Cµ′ have several definitions, chosen via the namelist parameter nn_stab_func

:

nn_stab_func=0
Galperin et al. (1988) functions

nn_stab_func=1
Kantha and Clayson (1994) functions

nn_stab_func=2
Canuto et al. (2001) ”model A” functions

nn_stab_func=3
Canuto et al. (2001) ”model B” functions

The value of C0µ depends on this choice of the stability function.
The surface and bottom boundary conditions on both ē and ψ are chosen via the nn_bc_surf and nn_bc_bot

namelist parameters respectively. They can be calculated using a Dirichlet (= 0) or Neumann (= 1) condition.
As for the TKE turbulent closure scheme (subsection 11.1.4), the wave effect on the mixing is parameterised

following Mellor and Blumberg (2004) and Craig and Banner (1994). The namelist parameters rn_crban and
rn_charn correspond to αCB in equation 11.4 and β in equation 11.5. Setting rn_crban=0. will disable this
parameterisation.
The ψ equation is known to fail in stably stratified flows, and for this reason almost all authors apply a

clipping of the length scale as an ad hoc remedy. With this clipping, the maximum permissible length scale is
determined by lmax = clim

√
2ē/N where a value of clim = 0.53 is often used (Galperin et al., 1988). Umlauf and

Burchard (2005) show that the value of the clipping factor is of crucial importance for the entrainment depth
predicted in stably stratified situations, and that its value has to be chosen in accordance with the algebraic
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!-----------------------------------------------------------------------
&namzdf_osm ! OSM vertical diffusion (ln_zdfosm =T)
!-----------------------------------------------------------------------

ln_use_osm_la = .false. ! Use rn_osm_la
rn_osm_la = 0.3 ! Turbulent Langmuir number
rn_zdfosm_adjust_sd = 1.0 ! Stokes drift reduction factor
rn_osm_hblfrac = 0.1 ! specify top part of hbl for nn_osm_wave = 3 or 4
rn_osm_bl_thresh = 5.e-5 !Threshold buoyancy for deepening of OSBL base
nn_ave = 0 ! choice of horizontal averaging on avt, avmu, avmv
ln_dia_osm = .true. ! output OSMOSIS-OBL variables
rn_osm_hbl0 = 10. ! initial hbl value
ln_kpprimix = .true. ! Use KPP-style Ri# mixing below BL
rn_riinfty = 0.7 ! Highest local Ri_g permitting shear instability
rn_difri = 0.005 ! max Ri# diffusivity at Ri_g = 0 (m^2/s)
ln_convmix = .true. ! Use convective instability mixing below BL
rn_difconv = 1. !0.01 !1. ! diffusivity when unstable below BL (m2/s)
rn_osm_dstokes = 5. ! Depth scale of Stokes drift (m)
nn_osm_wave = 0 ! Method used to calculate Stokes drift

! ! = 2: Use ECMWF wave fields
! ! = 1: Pierson Moskowitz wave spectrum
! ! = 0: Constant La# = 0.3

nn_osm_SD_reduce = 0 ! Method used to get active Stokes drift from surface value
! ! = 0: No reduction

! = 1: use SD avged over top 10% hbl
! = 2:use surface value of SD fit to slope at rn_osm_hblfrac*hbl below surface

ln_zdfosm_ice_shelter = .true. ! reduce surface SD and depth scale under ice
ln_osm_mle = .true. ! Use integrated FK-OSM model

/

namelist 11.5.: &namzdf_osm

model for the turbulent fluxes. This clipping is activated by setting ln_length_lim=.true. and clim is set
to the value of rn_clim_galp .
The time and space discretization of the GLS equations follows the same energetic consideration as for the

TKE case described in subsection 11.1.7 (Burchard, 2002). An evaluation of the 4 GLS turbulent closure
schemes can be found in Warner et al. (2005) for the ROMS model and in Reffray. et al. (2015) for the NEMO
model.

11.1.6. OSMOSIS boundary layer scheme ( ln_zdfosm )
When ln_zdfosm=.true. , the vertical eddy viscosity and diffusivity coefficients are computed using the

OSMOSIS scheme.

Namelist choices Most of the namelist options refer to how to specify the Stokes surface drift and penetration
depth. There are three options:

nn_osm_wave=0 Default value in namelist_ref. In this case the Stokes drift is assumed to be parallel to
the surface wind stress, with magnitude consistent with a constant turbulent Langmuir number Lat =
rn_m_la i.e. us0 = τ/(La2tρ0). Default value of rn_m_la is 0.3. The Stokes penetration depth δ =
rn_osm_dstokes ; this has default value of 5 m.

nn_osm_wave=1 In this case the Stokes drift is assumed to be parallel to the surface wind stress, with magnitude
as in the classical Pierson-Moskowitz wind-sea spectrum. Significant wave height and wave-mean period
taken from this spectrum are used to calculate the Stokes penetration depth, following the approach set
out in Breivik et al. (2014).

nn_osm_wave=2 In this case the Stokes drift is calculated by the NEMO surface wave module (see section 7.10),
though only the component parallel to the wind stress is retained. Significant wave height and wave-mean
period are used to calculate the Stokes penetration depth, again following Breivik et al. (2014).

Others refer to the treatment of diffusion and viscosity beneath the surface boundary layer:

ln_kpprimix Default is .true.. Switches on KPP-style Ri #-dependent mixing below the surface boundary
layer. If this is set .true. the following variable settings are honoured:

rn_riinfty Critical value of local Ri # below which shear instability increases vertical mixing from background
value.

rn_difri Maximum value of Ri #-dependent mixing at Ri = 0.

ln_convmix If .true. then, where water column is unstable, specify diffusivity equal to rn_dif_conv
(default value is 1 m s−2).
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Diagnostic output is controlled by:

ln_dia_osm Default is .false.; allows XIOS output of OSMOSIS internal fields.

Obsolete namelist parameters include:

ln_use_osm_la With nn_osm_wave=0 , rn_osm_dstokes is always used to specify the Stokes penetration
depth.

nn_ave Choice of averaging method for KPP-style Ri # mixing. Not taken account of.

rn_osm_hbl0 Depth of initial boundary layer is now set by a density criterion similar to that used in calculating
hmlp (output as mldr10_1) in zdfmxl.F90 .

Summary

Much of the time the turbulent motions in the ocean surface boundary layer (OSBL) are not given by classical
shear turbulence. Instead they are in a regime known as ‘Langmuir turbulence’, dominated by an interaction
between the currents and the Stokes drift of the surface waves (e.g. McWilliams et al., 1997). This regime
is characterised by strong vertical turbulent motion, and appears when the surface Stokes drift us0 is much
greater than the friction velocity u∗. More specifically Langmuir turbulence is thought to be crucial where the
turbulent Langmuir number Lat = (u∗/us0) > 0.4.

The OSMOSIS model is fundamentally based on results of Large Eddy Simulations (LES) of Langmuir
turbulence and aims to fully describe this Langmuir regime. The description in this section is of necessity
incomplete and further details are available in Grant. A (2019); in prep.

The OSMOSIS turbulent closure scheme is a similarity-scale scheme in the same spirit as the K-profile
parameterization (KPP) scheme of Large et al. (1994). A specified shape of diffusivity, scaled by the (OSBL)
depth hBL and a turbulent velocity scale, is imposed throughout the boundary layer −hBL < z < η. The
turbulent closure model also includes fluxes of tracers and momentum that are “non-local” (independent of the
local property gradient).
Rather than the OSBL depth being diagnosed in terms of a bulk Richardson number criterion, as in KPP,

it is set by a prognostic equation that is informed by energy budget considerations reminiscent of the classical
mixed layer models of Kraus and Turner (1967). The model also includes an explicit parametrization of the
structure of the pycnocline (the stratified region at the bottom of the OSBL).
Presently, mixing below the OSBL is handled by the Richardson number-dependent mixing scheme used in

Large et al. (1994).
Convective parameterizations such as described in section 11.2 below should not be used with the OSMOSIS-

OBL model: instabilities within the OSBL are part of the model, while instabilities below the ML are handled
by the Ri # dependent scheme.

Depth and velocity scales

The model supposes a boundary layer of thickness hbl enclosing a well-mixed layer of thickness hml and a
relatively thin pycnocline at the base of thickness ∆h; figure 11.2 shows typical (a) buoyancy structure and (b)
turbulent buoyancy flux profiles for the unstable boundary layer (losing buoyancy at the surface; e.g. cooling).
The pycnocline in the OSMOSIS scheme is assumed to have a finite thickness, and may include a number of

model levels. This means that the OSMOSIS scheme must parametrize both the thickness of the pycnocline,
and the turbulent fluxes within the pycnocline.
Consideration of the power input by wind acting on the Stokes drift suggests that the Langmuir turbulence

has velocity scale:
w∗L =

(
u2∗us 0

)1/3
; (11.11)

but at times the Stokes drift may be weak due to e.g. ice cover, short fetch, misalignment with the surface
stress, etc. so a composite velocity scale is assumed for the stable (warming) boundary layer:

ν∗ =
{
u3∗
[
1− exp(−.5La2t )

]
+ w3

∗L
}1/3

. (11.12)

For the unstable boundary layer this is merged with the standard convective velocity scale w∗C =
(
w′b′0 hml

)1/3,
where w′b′0 is the upwards surface buoyancy flux, to give:

ω∗ =
(
ν3∗ + 0.5w3

∗C
)1/3

. (11.13)
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Figure 11.2.: The structure of the entraining boundary layer. (a) Mean buoyancy profile. (b) Profile of the buoyancy flux.

The flux gradient model

The flux-gradient relationships used in the OSMOSIS scheme take the form:

w′χ′ = −K∂χ

∂z
+Nχ,s +Nχ,b +Nχ,t, (11.14)

where χ is a general variable and Nχ,s, Nχ,b and Nχ,t are the non-gradient terms, and represent the effects of
the different terms in the turbulent flux-budget on the transport of χ. Nχ,s represents the effects that the Stokes
shear has on the transport of χ, Nχ,b the effect of buoyancy, and Nχ,t the effect of the turbulent transport. The
same general form for the flux-gradient relationship is used to parametrize the transports of momentum, heat
and salinity.
In terms of the non-dimensionalized depth variables

σml = −z/hml; σbl = −z/hbl, (11.15)

in unstable conditions the eddy diffusivity (Kd) and eddy viscosity (Kν) profiles are parametrized as:

Kd =0.8ω∗ hml σml (1− βdσml)
3/2 (11.16)

Kν =0.3ω∗ hml σml (1− βνσml)
(
1− 1

2σ
2
ml
)

(11.17)

where βd and βν are parameters that are determined by matching equation 11.16 and equation 11.17 to the
eddy diffusivity and viscosity at the base of the well-mixed layer, given by

Kd,ml = Kν,ml = 0.16ω∗∆h. (11.18)

For stable conditions the eddy diffusivity/viscosity profiles are given by:

Kd =0.75 ν∗ hml exp
[
−2.8 (hbl/LL)

2
]
σml (1− σml)

3/2 (11.19)

Kν =0.375 ν∗ hml exp
[
−2.8 (hbl/LL)

2
]
σml (1− σml)

(
1− 1

2σ
2
ml
)
. (11.20)

The shape of the eddy viscosity and diffusivity profiles is the same as the shape in the unstable OSBL. The
eddy diffusivity/viscosity depends on the stability parameter hbl/LL where LL is analogous to the Obukhov
length, but for Langmuir turbulence:

LL = −w3
∗L/

〈
w′b′

〉
L
, (11.21)

with the mean turbulent buoyancy flux averaged over the boundary layer given in terms of its surface value
w′b′0 and (downwards) solar irradiance I(z) by〈

w′b′
〉
L
= 1

2w
′b′0 − gαE

[
1
2 (I(0) + I(−h))− ⟨I⟩

]
. (11.22)
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In unstable conditions the eddy diffusivity and viscosity depend on stability through the velocity scale ω∗,
which depends on the two velocity scales ν∗ and w∗C .
Details of the non-gradient terms in equation 11.14 and of the fluxes within the pycnocline −hbl < z < hml

can be found in Grant (2019).

Evolution of the boundary layer depth

The prognostic equation for the depth of the neutral/unstable boundary layer is given by

∂hbl
∂t

=Wb −
w′b′ent
∆Bbl

(11.23)

where hbl is the horizontally-varying depth of the OSBL, Ub and Wb are the mean horizontal and vertical
velocities at the base of the OSBL, w′b′ent is the buoyancy flux due to entrainment and ∆Bbl is the difference
between the buoyancy averaged over the depth of the OSBL (i.e. including the ML and pycnocline) and the
buoyancy just below the base of the OSBL. This equation for the case when the pycnocline has a finite thickness,
based on the potential energy budget of the OSBL, is the leading term of a generalization of that used in mixed-
layer models e.g. Kraus and Turner (1967), in which the thickness of the pycnocline is taken to be zero.

The entrainment flux for the combination of convective and Langmuir turbulence is given by

w′b′ent = −αBw′b′0 − αS
u3∗
hml

+G (δ/hml)

[
αSe

−1.5 Lat − αL
w3

∗L
hml

]
(11.24)

where the factorG ≡ 1−e−25δ/hbl(1−4δ/hbl)models the lesser efficiency of Langmuir mixing when the boundary-
layer depth is much greater than the Stokes depth, and αB, αS and αL depend on the ratio of the appropriate
eddy turnover time to the inertial timescale f−1. Results from the LES suggest αB = 0.18F (fhbl/w∗C),
αS = 0.15F (fhbl/u∗ and αL = 0.035F (fhbl/u∗L), where F (x) ≡ tanh(x−1)0.69.
For the stable boundary layer, the equation for the depth of the OSBL is:

max
(
∆Bbl,

w2
∗L
hbl

)
∂hbl
∂t

=

(
0.06 + 0.52

hbl
LL

)
w3

∗L
hbl

+
〈
w′b′

〉
L
. (11.25)

equation 11.23 always leads to the depth of the entraining OSBL increasing (ignoring the effect of the mean
vertical motion), but the change in the thickness of the stable OSBL given by equation 11.25 can be positive
or negative, depending on the magnitudes of

〈
w′b′

〉
L
and hbl/LL. The rate at which the depth of the OSBL

can decrease is limited by choosing an effective buoyancy w2
∗L/hbl, in place of ∆Bbl which will be ≈ 0 for the

collapsing OSBL.

11.1.7. Discrete energy conservation for TKE and GLS schemes
The production of turbulence by vertical shear (the first term of the right hand side of equation 11.1 and
equation 11.10) should balance the loss of kinetic energy associated with the vertical momentum diffusion (first
line in equation 1.17). To do so, a special care has to be taken for both the time and space discretization of the
kinetic energy equation (Burchard, 2002; Marsaleix et al., 2008).

Let us first address the time stepping issue. figure 11.3 shows how the two-level Leap-Frog time stepping
of the momentum and tracer equations interplays with the one-level forward time stepping of the equation
for ē. With this framework, the total loss of kinetic energy (in 1D for the demonstration) due to the vertical
momentum diffusion is obtained by multiplying this quantity by ut and summing the result vertically:∫ η

−H
ut ∂z

(
Km

t (∂zu)
t+∆t

)
dz

=
[
utKm

t (∂zu)
t+∆t

]η
−H
−
∫ η

−H
Km

t ∂zu
t ∂zu

t+∆t dz

(11.26)

Here, the vertical diffusion of momentum is discretized backward in time with a coefficient, Km, known at time
t (figure 11.3), as it is required when using the TKE scheme (see subsection 2.2.2). The first term of the right
hand side of equation 11.26 represents the kinetic energy transfer at the surface (atmospheric forcing) and at
the bottom (friction effect). The second term is always negative. It is the dissipation rate of kinetic energy,
and thus minus the shear production rate of ē. equation 11.26 implies that, to be energetically consistent, the
production rate of ē used to compute (ē)t (and thus Km

t) should be expressed as Km
t−∆t (∂zu)

t−∆t (∂zu)
t (and

not by the more straightforward Km (∂zu)
2 expression taken at time t or t−∆t).

A similar consideration applies on the destruction rate of ē due to stratification (second term of the right hand
side of equation 11.1 and equation 11.10). This term must balance the input of potential energy resulting from
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Figure 11.3.: Illustration of the subgrid kinetic energy integration in GLS and TKE schemes and its links to the momentum and
tracer time integration.

vertical mixing. The rate of change of potential energy (in 1D for the demonstration) due to vertical mixing is
obtained by multiplying the vertical density diffusion tendency by g z and and summing the result vertically:

∫ η

−H
g z ∂z

(
Kρ

t (∂kρ)
t+∆t

)
dz

=
[
g z Kρ

t (∂zρ)
t+∆t

]η
−H
−
∫ η

−H
g Kρ

t (∂kρ)
t+∆t dz

= −
[
z Kρ

t (N2)t+∆t
]η
−H

+

∫ η

−H
ρt+∆tKρ

t (N2)t+∆t dz

(11.27)

where we use N2 = −g ∂kρ/(e3ρ). The first term of the right hand side of equation 11.27 is always zero because
there is no diffusive flux through the ocean surface and bottom. The second term is minus the destruction rate
of ē due to stratification. Therefore equation 11.26 implies that, to be energetically consistent, the product
Kρ

t−∆t (N2)t should be used in equation 11.1 and equation 11.10.

Let us now address the space discretization issue. The vertical eddy coefficients are defined at w-point whereas
the horizontal velocity components are in the centre of the side faces of a t-box in staggered C-grid (figure 3.1).
A space averaging is thus required to obtain the shear TKE production term. By redoing the equation 11.26 in
the 3D case, it can be shown that the product of eddy coefficient by the shear at t and t−∆t must be performed
prior to the averaging. Furthermore, the time variation of e3 has be taken into account.
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The above energetic considerations lead to the following final discrete form for the TKE equation:

(ē)t − (ē)t−∆t

∆t
≡

{((
Km

i+1/2
)t−∆t δk+1/2[ut+∆t]

e3ut+∆t

δk+1/2[ut]

e3ut

) i

+

((
Km

j+1/2
)t−∆t δk+1/2[vt+∆t]

e3vt+∆t

δk+1/2[vt]

e3vt

) j}
−Kρ

t−∆t (N2)t

+
1

e3wt+∆t
δk+1/2

[
Km

t−∆t δk[(ē)
t+∆t]

e3wt+∆t

]
−cϵ

(√
ē

lϵ

)t−∆t

(ē)t+∆t

(11.28)

where the last two terms in equation 11.28 (vertical diffusion and Kolmogorov dissipation) are time stepped
using a backward scheme (see subsection 2.2.2). Note that the Kolmogorov term has been linearized in time in
order to render the implicit computation possible.

11.2. Convection
Static instabilities (i.e. light potential densities under heavy ones) may occur at particular ocean grid points.
In nature, convective processes quickly re-establish the static stability of the water column. These processes
have been removed from the model via the hydrostatic assumption, so they must be parameterized.
Two parameterisations are available to deal specifically with convective processes: a non-penetrative convec-

tive adjustment (subsection 11.2.1) or an enhanced vertical diffusion (subsection 11.2.2). It is recommended
that one of these parameterisations be enabled when using either the TKE or GLS turbulent closure scheme,
but not when using the OSMOSIS turbulent closure scheme (see subsection 11.2.4).

11.2.1. Non-penetrative convective adjustment ( ln_tranpc )

Figure 11.4.: Example of an unstable density profile treated by the non penetrative convective adjustment algorithm. 1st step: the
initial profile is checked from the surface to the bottom. It is found to be unstable between levels 3 and 4. They
are mixed. The resulting ρ is still larger than ρ(5): levels 3 to 5 are mixed. The resulting ρ is still larger than ρ(6):
levels 3 to 6 are mixed. The 1st step ends since the density profile is then stable below the level 3. 2nd step: the new
ρ profile is checked following the same procedure as in 1st step: levels 2 to 5 are mixed. The new density profile is
checked. It is found stable: end of algorithm.

Options are defined through the &namzdf (namelist 11.1) namelist variables. The non-penetrative convective
adjustment is used when ln_zdfnpc=.true. . It is applied at each nn_npc time step and mixes downwards

Page 159 of 310 NEMO Reference Manual



Sect. 11.2 Convection

instantaneously the statically unstable portion of the water column, but only until the density structure becomes
neutrally stable (i.e. until the mixed portion of the water column has exactly the density of the water just below)
(Madec et al., 1991b). The associated algorithm is an iterative process used in the following way (figure 11.4):
starting from the top of the ocean, the first instability is found. Assume in the following that the instability
is located between levels k and k + 1. The temperature and salinity in the two levels are vertically mixed,
conserving the heat and salt contents of the water column. The new density is then computed by a linear
approximation. If the new density profile is still unstable between levels k+1 and k+2, levels k, k+1 and k+2
are then mixed. This process is repeated until stability is established below the level k (the mixing process can
go down to the ocean bottom). The algorithm is repeated to check if the density profile between level k− 1 and
k is unstable and/or if there is no deeper instability.
This algorithm is significantly different from mixing statically unstable levels two by two. The latter procedure

cannot converge with a finite number of iterations for some vertical profiles while the algorithm used in NEMO
converges for any profile in a number of iterations which is less than the number of vertical levels. This
property is of paramount importance as pointed out by Killworth (1989): it avoids the existence of permanent
and unrealistic static instabilities at the sea surface. This non-penetrative convective algorithm has been proved
successful in studies of the deep water formation in the north-western Mediterranean Sea (Madec et al., 1991b,a;
Madec and Crépon, 1991).
The current implementation has been modified in order to deal with any non linear equation of seawater

(L. Brodeau, personnal communication). Two main differences have been introduced compared to the original
algorithm: (i) the stability is now checked using the Brunt-Väisälä frequency (not the difference in potential
density); (ii) when two levels are found unstable, their thermal and haline expansion coefficients are vertically
mixed in the same way their temperature and salinity has been mixed. These two modifications allow the algo-
rithm to perform properly and accurately with TEOS10 or EOS-80 without having to recompute the expansion
coefficients at each mixing iteration.

11.2.2. Enhanced vertical diffusion ( ln_zdfevd )
Options are defined through the &namzdf (namelist 11.1) namelist variables. The enhanced vertical diffusion
parameterisation is used when ln_zdfevd=.true. . In this case, the vertical eddy mixing coefficients are as-
signed very large values in regions where the stratification is unstable (i.e. when N2 the Brunt-Vaisälä frequency
is negative) (Lazar, 1997; Lazar et al., 1999). This is done either on tracers only ( nn_evdm=0 ) or on both
momentum and tracers ( nn_evdm=1 ).

In practice, where N2 ≤ 10−12, AvTT and AvST , and if nn_evdm=1 , the four neighbouring Avmu and Avmv values
also, are set equal to the namelist parameter rn_evd . A typical value for rn_evd is between 1 and 100 m2s−1.
This parameterisation of convective processes is less time consuming than the convective adjustment algorithm
presented above when mixing both tracers and momentum in the case of static instabilities.
Note that the stability test is performed on both before and now values of N2. This removes a potential

source of divergence of odd and even time step in a leapfrog environment (Leclair, 2010) (see subsection 2.2.3).

11.2.3. Mass Flux Convection ( ln_zdfmfc )
The ln_zdfmfc option offers a new, coherent way to simultaneously parameterize local and non-local trans-
port within the oceanic convective mixing layer (Giordani et al., 2020). This approach, initially developed for
atmospheric models (Grant (2001); Soares et al. (2004); Pergaud et al. (2009)), assumes that subgrid turbulent
fluxes in the convective boundary layer result from two distinct mixing scales: the local scale of small eddies,
represented by vertical diffusion (TKE, GLS, etc.), and the scale of large eddies or convective thermals, repre-
sented by a non-local mass flux approach. The combination of both diffusive and convective schemes operating
simultaneously is called as Eddy Diffusivity Mass Flux (EDMF).
The mass flux scheme is designed to represent all convection regimes, i.e., from moderate to strong, and

from intermediate to deep convection. Its goal is to calculate the effects of a population of convective plumes
occupying a fraction of an ocean model grid cell on its prognostic variables. This scheme thus parameterizes
the subgrid-scale effects of very fine-scale convective plumes on the resolved variables at the model grid scale.
This phenomenon is a one-dimensional vertical process. Since convection is a non-local phenomenon, this
scheme complements mixing schemes such as the TKE and Richardson schemes. It serves as an alternative
to the ”Enhanced Vertical Diffusion” ( ln_zdfevd ) or ”Non-Penetrative Convection” ( ln_zdfnpc ) schemes
currently implemented in NEMO. The scheme is active at every model time step, alongside diffusion. It is
broken down into several steps, corresponding to the evolution equations for tracers within convective plumes
and the mass flux resulting from the work of buoyancy forces in the vertical direction and the conservation of
energy. The system of equations, along with its implementation in NEMO, is described in (Giordani et al.,
2020), specifically in equations 12 and 13.
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Figure 11.5.: From Merryfield et al. (1999): (a) Diapycnal diffusivities AvT
f and AvS

f for temperature and salt in regions of salt
fingering. Heavy curves denote A∗v = 10−3 m2.s−1 and thin curves A∗v = 10−4 m2.s−1; (b) diapycnal diffusivities
AvT

d and AvS
d for temperature and salt in regions of diffusive convection. Heavy curves denote the Federov parame-

terisation and thin curves the Kelley parameterisation. The latter is not implemented in NEMO.

11.2.4. Handling convection with turbulent closure schemes
(ln_zdf{tke,gls,osm})

The TKE and GLS turbulent closure schemes presented in subsection 11.1.4 and subsection 11.1.5 are, in theory,
able to handle statically unstable density profiles. In such a case, the term corresponding to the destruction of
turbulent kinetic energy through stratification in equation 11.1 or equation 11.10 becomes a source term, since
N2 is negative. It results in large values of AvTT and AvTT , and also of the four neighboring values at velocity
points Avmu and Avmv (up to 1 m2s−1). These large values restore the static stability of the water column in
a way similar to that of the enhanced vertical diffusion parameterisation (subsection 11.2.2). However, in the
vicinity of the sea surface (first ocean layer), the eddy coefficients computed by the turbulent closure scheme do
not usually exceed 10−2 ms−1, because the mixing length scale is bounded by the distance to the sea surface.
When using either the TKE ( ln_zdftke=.true. ) or GLS ( ln_zdfgls=.true. ) turbulent closure scheme,

it is therefore recommended to also enable the enhanced vertical diffusion parameterisation ( ln_zdfevd=.true.
). This should not be done when using the OSMOSIS turbulent closure scheme ( ln_zdfosm=.true. ), as this
already includes enhanced vertical diffusion in the case of convection (see subsection 11.1.6).

11.3. Double diffusion mixing ( ln_zdfddm )
This parameterisation has been introduced in zdfddm.F90 module and is controlled by the namelist parameter
ln_zdfddm in &namzdf (namelist 11.1) . Double diffusion occurs when relatively warm, salty water overlies
cooler, fresher water, or vice versa. The former condition leads to salt fingering and the latter to diffusive
convection. Double-diffusive phenomena contribute to diapycnal mixing in extensive regions of the ocean.
Merryfield et al. (1999) include a parameterisation of such phenomena in a global ocean model and show that
it leads to relatively minor changes in circulation but exerts significant regional influences on temperature and
salinity.
Diapycnal mixing of S and T are described by diapycnal diffusion coefficients

AvT = AvTo +AvTf +AvTd

AvS = AvSo +AvSf +AvSd

where subscript f represents mixing by salt fingering, d by diffusive convection, and o by processes other than
double diffusion. The rates of double-diffusive mixing depend on the buoyancy ratio Rρ = α∂zT/β∂zS, where
α and β are coefficients of thermal expansion and saline contraction (see subsection 6.8.1). To represent mixing
of S and T by salt fingering, we adopt the diapycnal diffusivities suggested by Schmitt (1981):

AvSf =

{
A∗v

1+(Rρ/Rc)n
if Rρ > 1 and N2 > 0

0 otherwise
(11.29)

AvTf = 0.7 AvSf /Rρ (11.30)

The factor 0.7 in equation 11.30 reflects the measured ratio αFT /βFS ≈ 0.7 of buoyancy flux of heat to
buoyancy flux of salt, e.g. McDougall and Taylor (1984). Following Merryfield et al. (1999), we adopt Rc = 1.6,
n = 6, and A∗v = 10−4 m2s−1.
To represent mixing of S and T by diffusive layering, the diapycnal diffusivities suggested by Fedorov (1988)
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!-----------------------------------------------------------------------
&namdrg ! top/bottom drag coefficient (default: NO selection)
!-----------------------------------------------------------------------

ln_drg_OFF = .false. ! free-slip : Cd = 0 (F => fill namdrg_bot
ln_lin = .false. ! linear drag: Cd = Cd0 Uc0 & namdrg_top)
ln_non_lin = .false. ! non-linear drag: Cd = Cd0 |U|
ln_loglayer = .false. ! logarithmic drag: Cd = vkarmn/log(z/z0) |U|
!
ln_drgimp = .true. ! implicit top/bottom friction flag

ln_drgice_imp = .true. ! implicit ice-ocean drag
/

namelist 11.6.: &namdrg

!-----------------------------------------------------------------------
&namdrg_top ! TOP friction (ln_drg_OFF =F & ln_isfcav=T)
!-----------------------------------------------------------------------

rn_Cd0 = 1.e-3 ! drag coefficient [-]
rn_Uc0 = 0.4 ! ref. velocity [m/s] (linear drag=Cd0*Uc0)
rn_Cdmax = 0.1 ! drag value maximum [-] (logarithmic drag)
rn_ke0 = 2.5e-3 ! background kinetic energy [m2/s2] (non-linear cases)
rn_z0 = 3.0e-3 ! roughness [m] (ln_loglayer=T)
ln_boost = .false. ! =T regional boost of Cd0 ; =F constant

rn_boost = 50. ! local boost factor [-]
/

namelist 11.7.: &namdrg_top

are used:

AvTd =

{
1.3635 exp

(
4.6 exp

[
−0.54 (R−1

ρ − 1)
])

if 0 < Rρ < 1 and N2 > 0

0 otherwise

AvSd =


AvTd (1.85Rρ − 0.85) if 0.5 ≤ Rρ < 1 and N2 > 0

AvTd 0.15 Rρ if 0 < Rρ < 0.5 and N2 > 0

0 otherwise
(11.31)

The dependencies of equation 11.29 to equation 11.31 on Rρ are illustrated in figure 11.5. Implementing this
requires computing Rρ at each grid point on every time step. This is done in eosbn2.F90 (section 6.8) at
the same time as N2 is computed, avoiding duplication in the computation of α and β (which is usually quite
expensive).

11.4. Bottom and top friction ( zdfdrg.F90 )
Options to define the top and bottom friction are defined via parameters in the &namdrg (namelist 11.6)

namelist, and, for top and bottom friction specifically, in the &namdrg_top (namelist 11.7) and &namdrg_bot
(namelist 11.8) namelists respectively. The bottom friction represents the friction generated by the bathymetry.
The top friction represents the friction generated by the ice shelf/ocean interface. As the friction processes at
the top and the bottom are treated in an identical way, the description below considers mostly the bottom
friction case, if not stated otherwise.
Both the surface momentum flux (wind stress) and the bottom momentum flux (bottom friction) enter the

equations as a condition on the vertical diffusive flux. For the bottom boundary layer, one has:

Avm (∂Uh/∂z) = FU
h

!-----------------------------------------------------------------------
&namdrg_bot ! BOTTOM friction (ln_drg_OFF =F)
!-----------------------------------------------------------------------

rn_Cd0 = 1.e-3 ! drag coefficient [-]
rn_Uc0 = 0.4 ! ref. velocity [m/s] (linear drag=Cd0*Uc0)
rn_Cdmax = 0.1 ! drag value maximum [-] (logarithmic drag)
rn_ke0 = 2.5e-3 ! background kinetic energy [m2/s2] (non-linear cases)
rn_z0 = 3.e-3 ! roughness [m] (ln_loglayer=T)
ln_boost = .false. ! =T regional boost of Cd0 ; =F constant

rn_boost = 50. ! local boost factor [-]
/

namelist 11.8.: &namdrg_bot
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where FU
h represents the downward flux of horizontal momentum outside the logarithmic turbulent boundary

layer (thickness of the order of 1 m in the ocean).
How FU

h influences the interior depends on the vertical resolution of the model near the bottom relative to the
Ekman layer depth. For example, in order to obtain an Ekman layer depth d =

√
2 Avm/f = 50 m, one needs a

vertical diffusion coefficient Avm = 0.125 m2s−1 (for a Coriolis frequency f = 10−4 m2s−1). With a background
value, Avm = 10−4 m2s−1, the Ekman layer depth is only 1.4 m. When the vertical mixing coefficient is this
small, using a flux condition is equivalent to entering the viscous forces (either wind stress or bottom friction)
as a body force over the depth of the top or bottom model layer.
To illustrate this, consider the equation for u at k, the last ocean level:

∂uk
∂t

=
1

e3u

[
Avmuw
e3uw

δk+1/2 [u]−Fuh
]
≈ −F

u
h

e3u
(11.32)

If the bottom layer thickness is 200 m, the Ekman transport will be distributed over that depth. On the other
hand, if the vertical resolution is high (1 m or less) and a turbulent closure model is used, the turbulent Ekman
layer will be represented explicitly by the model. However, the logarithmic layer is never represented in current
primitive equation model applications: it is necessary to parameterize the flux Fuh . Two choices are available
in NEMO: a linear and a quadratic bottom friction. Note that in both cases, the rotation between the interior
velocity and the bottom friction is neglected in the present release of NEMO.

In the code, the bottom friction is imposed by adding the trend due to the bottom friction to the general
momentum trend in dynzdf.F90 (section 5.7). For the time-split surface pressure gradient algorithm, the
momentum trend due to the barotropic component needs to be handled separately. For this purpose it is
convenient to compute and store coefficients which can be simply combined with bottom velocities and geometric
values to provide the momentum trend due to bottom friction. These coefficients are computed in zdfdrg.F90
and generally take the form cU

b where:
∂Uh

∂t
= −F

U
h

e3u
=
cU
b

e3u
Ub
h (11.33)

where Ub
h = (ub , vb) is the near-bottom, horizontal, ocean velocity.

Note that from NEMO 4.0, drag coefficients are only computed at cell centers (i.e. at T-points) and are
referred to as cTb in the following. These are then linearly interpolated in space to get cU

b at velocity points.

11.4.1. Free-slip boundary conditions ( ln_drg_OFF )
When setting ln_drg_OFF=.true. free-slip conditions are used at the top and bottom boundaries, i.e. the
drag coefficient used in equation 11.33 is set to cTb = 0.

11.4.2. Linear top/bottom friction ( ln_lin )
The linear friction parameterisation (including the special case of a free-slip condition, subsection 11.4.1) assumes
that the friction is proportional to the interior velocity (i.e. the velocity of the first/last model level):

FU
h =

Avm

e3

∂Uh

∂k
= r Ub

h

where r is a friction coefficient expressed in ms−1. The drag coefficient used in the general expression (equa-
tion 11.33) is therefore:

cTb = −r
r is generally estimated as H/τ , where τ is a typical decay time in the deep ocean and H is the ocean

depth. Commonly accepted values of τ are of the order of 100 to 200 days (Weatherly, 1984). A value of
τ−1 = 10−7 s−1, equivalent to 115 days, is usually used in quasi-geostrophic models. One may consider the
linear friction as an approximation of quadratic friction, r ≈ 2 CD Uav (Gill, 1982, Eq. 9.6.6).

In NEMO, linear friction is enabled by setting ln_lin=.true. . cTb is calculated in zdfdrg.F90 and the
trend due to the friction is added to the general momentum trend in dynzdf.F90 . r is calculated as rn_Cd0
* rn_Uc0, where rn_Cd0 and rn_Uc0 are namelist parameters corresponding to the drag coefficient CD
and velocity scale Uav respectively. Their default values (0.001 and 0.4 m s−1 respectively) result in a friction
coefficient of r = 4 10−4 m s−1, corresponding to a decay time scale of 115 days when assuming an ocean depth
of H = 4000 m.
Local enhancements may be applied to the values of cTb by setting ln_boost=.true. and providing a 2D

mask array (with values 0 ≤Mb ≤ 1) via a NetCDF file. For bottom (top) friction, the array and file are named
bfr_coef and bfr_coef.nc (tfr_coef and tfr_coef.nc) respectively. Locations with a non-zero mask value will
have the friction coefficient increased by Mb ∗ rn_boost ∗ rn_Cd0.
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11.4.3. Non-linear top/bottom friction ( ln_non_lin )
The non-linear bottom friction parameterisation assumes that the top/bottom friction is quadratic:

FU
h =

Avm

e3

∂Uh

∂k
= CD

√
u2b + v2b + eb Ub

h

where CD is a drag coefficient, and eb a top/bottom turbulent kinetic energy due to tides, internal waves
breaking and other short time scale currents. The drag coefficient used in the general expression (equation 11.33)
is therefore:

cTb = − CD
[(
ūb
i
)2

+
(
v̄b
j
)2

+ eb

]1/2
A typical value of the drag coefficient is CD = 10−3. As an example, the CME experiment (Tréguier, 1992)

uses CD = 10−3 and eb = 2.5 10−3m2 s−2, while the FRAM experiment (Killworth, 1992) uses CD = 1.4 10−3

and eb = 2.5 10−3m2 s−2.

In NEMO, non-linear friction is enabled by setting ln_non_lin=.true. . As for linear friction, cTb is
calculated in zdfdrg.F90 and the trend due to the friction is added to the general momentum trend in
dynzdf.F90 . CD and eb correspond to the namelist parameters rn_Cd0 and rn_ke0 respectively, with their
default values set to those of the CME experiment. Note that for applications which consider tides explicitly,
a low or even zero value of rn_ke0 is recommended.
As for linear friction, local enhancements may be applied to the values of cTb by setting ln_boost=.true.

(see subsection 11.4.2).

11.4.4. Log-layer top/bottom friction ( ln_loglayer )
In the non-linear friction case, the drag coefficient, CD, can be optionally enhanced using a ”law of the wall”
scaling. CD is then no longer constant, but instead related to the distance to the wall (or equivalently, to the
half of the top/bottom layer thickness):

CD =

(
κ

log (0.5 e3b/z0)

)2

where κ is the von-Karman constant and z0 is a roughness length. This assumes that the model vertical
resolution can capture the logarithmic layer, which typically occurs for layers thinner than 1 m or so.
This special case of the non-linear friction is enabled by setting ln_loglayer=.true. instead of ln_non_lin=.true.

. z0 corresponds to the namelist parameter rn_z0 , while CD is bounded by the namelist parameters rn_Cd0
and rn_Cdmax such that rn_Cd0 ≤ CD ≤ rn_Cdmax. The lower bound of rn_Cd0 covers large layer thick-
nesses where logarithmic layers are presumably not resolved, while the upper bound of rn_Cdmax is applied
for stability reasons.
The log-layer enhancement can also be applied to the top boundary friction if ice-shelf cavities are activated (
ln_isfcav=.true. ).

11.4.5. Explicit top/bottom friction ( ln_drgimp=.false. )
Setting ln_drgimp=.false. means that bottom friction is treated explicitly in time, which has the advantage
of simplifying the interaction with the split-explicit free surface (see subsection 11.4.7). The latter does indeed
require the knowledge of bottom stresses in the course of the barotropic sub-iteration, which becomes less
straightforward in the implicit case. In the explicit case, top/bottom stresses can be computed using before
velocities and inserted in the overall momentum tendency budget. This reads:
At the top (below an ice shelf cavity): (

Avm

e3

∂Uh

∂k

)∣∣∣∣
t

= cU
t un−1

t

At the bottom (above the sea floor): (
Avm

e3

∂Uh

∂k

)∣∣∣∣
b

= cU
b un−1

b

Since this is conditionally stable, some care needs to exercised over the choice of parameters to ensure that
the implementation of explicit top/bottom friction does not induce numerical instability. For the purposes of

NEMO Reference Manual Page 164 of 310



Chap. 11 Vertical Ocean Physics (ZDF)

stability analysis, an approximation to equation 11.32 is:

∆u = −Fh
u

e3u
2∆t

= − ru

e3u
2∆t

(11.34)

where linear friction and a leapfrog timestep have been assumed. To ensure that the friction cannot reverse the
direction of flow it is necessary to have:

|∆u| < |u|
which, using equation 11.34, gives:

r
2∆t

e3u
< 1 ⇒ r <

e3u
2∆t

This same inequality can also be derived in the non-linear bottom friction case if a velocity of 1 m.s−1 is
assumed. Alternatively, this criterion can be rearranged to suggest a minimum bottom box thickness to ensure
stability:

e3u > 2 r ∆t

which it may be necessary to impose if partial steps are being used. For example, if |u| = 1 ms−1, ∆t = 1800 s,
r = 10−3 then e3u should be greater than 3.6 m. For most applications, with physically sensible parameters these
restrictions should not be of concern. But caution may be necessary if attempts are made to locally enhance the
bottom friction parameters. To ensure stability limits are imposed on the top/bottom friction coefficients both
during initialisation and at each time step, checks at initialisation are made in zdfdrg.F90 (assuming a 1 ms−1

velocity in the non-linear case). The number of breaches of the stability criterion are reported as well as the
minimum and maximum values that have been set. The criterion is also checked at each time step, using the
actual velocity, in dynzdf.F90 . Values of the friction coefficient are reduced as necessary to ensure stability;
these changes are not reported.
Limits on the top/bottom friction coefficient are not imposed if the user has elected to handle the friction

implicitly (see subsection 11.4.6). The number of potential breaches of the explicit stability criterion are still
reported for information purposes.

11.4.6. Implicit top/bottom friction ( ln_drgimp=.true. )
An optional implicit form of bottom friction has been implemented to improve model stability. We recommend
this option for shelf sea and coastal ocean applications. This option can be invoked by setting ln_drgimp to
.true. in the &namdrg (namelist 11.6) namelist.

This implementation is performed in dynzdf.F90 where the following boundary conditions are set while
solving the fully implicit diffusion step:
At the top (below an ice shelf cavity): (

Avm

e3

∂Uh

∂k

)∣∣∣∣
t

= cU
t un+1

t

At the bottom (above the sea floor): (
Avm

e3

∂Uh

∂k

)∣∣∣∣
b

= cU
b un+1

b

where t and b refers to top and bottom layers respectively. Superscript n+ 1 means the velocity used in the
friction formula is to be calculated, so it is implicit.

11.4.7. Bottom friction with split-explicit free surface
With split-explicit free surface, the sub-stepping of barotropic equations needs the knowledge of top/bottom
stresses. An obvious way to satisfy this is to take them as constant over the course of the barotropic integration
and equal to the value used to update the baroclinic momentum trend. Provided ln_drgimp=.false. and a
centred or leap-frog like integration of barotropic equations is used (i.e. ln_bt_fw=.false., cf subsection 4.1.2),
this does ensure that barotropic and baroclinic dynamics feel the same stresses during one leapfrog time step.
However if ln_drgimp=.true. , stresses depend on the after value of the velocities which themselves depend

on the barotropic iteration result. This cyclic dependency makes it difficult to obtain consistent stresses in 2d
and 3d dynamics. Part of this mismatch is then removed when setting the final barotropic component of 3d
velocities to the time splitting estimate. This last step can be seen as a necessary evil but should be minimized
since it interferes with the adjustment to the boundary conditions.
The strategy to handle top/bottom stresses with split-explicit free surface in NEMO is as follows:
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!-----------------------------------------------------------------------
&namzdf_iwm ! internal wave-driven mixing parameterization (ln_zdfiwm =T)
!-----------------------------------------------------------------------

ln_mevar = .false. ! variable (T) or constant (F) mixing efficiency
ln_tsdiff = .true. ! account for differential T/S mixing (T) or not (F)

cn_dir = './' ! root directory for the iwm data location
↪→

!___________!_________________________!___________________!___________!_____________!________!___________!__________________!__________!_______________!↪→
! ! file name ! frequency (hours) ! variable ! time interp.! clim ! 'yearly'/ ! weights filename !
rotation ! land/sea mask !↪→

! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! !
pairing ! filename !↪→
sn_mpb = 'NOT USED' , -12. , 'power_bot' , .false. , .true. , 'yearly' , '' , '' , ''
sn_mpc = 'NOT USED' , -12. , 'power_cri' , .false. , .true. , 'yearly' , '' , '' , ''
sn_mpn = 'NOT USED' , -12. , 'power_nsq' , .false. , .true. , 'yearly' , '' , '' , ''
sn_mps = 'NOT USED' , -12. , 'power_sho' , .false. , .true. , 'yearly' , '' , '' , ''
sn_dsb = 'NOT USED' , -12. , 'scale_bot' , .false. , .true. , 'yearly' , '' , '' , ''
sn_dsc = 'NOT USED' , -12. , 'scale_cri' , .false. , .true. , 'yearly' , '' , '' , ''

/

namelist 11.9.: &namzdf_iwm

1. To extend the stability of the barotropic sub-stepping, bottom stresses are refreshed at each sub-iteration.
The baroclinic part of the flow entering the stresses is frozen at the initial time of the barotropic iteration.
In case of non-linear friction, the drag coefficient is also constant.

2. In case of an implicit drag, specific computations are performed in dynzdf.F90 which renders the overall
scheme mixed explicit/implicit: the barotropic components of 3d velocities are removed before obtaining
the implicit vertical diffusion result. Top/bottom stresses due to the barotropic components are explicitly
accounted for due to the updated values of barotropic velocities. Then the implicit solution of 3d velocities
is obtained. Lastly, the residual barotropic component is replaced by the time split estimate.

Note that other strategies are possible, like considering vertical diffusion step in advance, i.e. prior barotropic
integration.

11.5. Internal wave-driven mixing ( ln_zdfiwm )
The parameterization of mixing induced by breaking internal waves (de Lavergne et al., 2020) is a general-

ization of the approach originally proposed by St Laurent et al. (2002). A three-dimensional field of turbulence
production by breaking internal waves ϵ(i, j, k) is first constructed, and the resulting diffusivity is obtained as

AvTwave = Rf
ϵ

ρN2

where Rf is the mixing efficiency (Osborn, 1980). If the ln_mevar namelist parameter is set to .false., the
mixing efficiency is taken as constant and equal to 1/6 (Osborn, 1980). In the opposite case, Rf is instead a
function of the turbulence intensity parameter Reb = ϵ

ν N2 , with ν the molecular viscosity of seawater, following
the model of Bouffard and Boegman (2013) and the implementation of de Lavergne et al. (2016). Note that
AvTwave is bounded by 10−2 m2 s−1, a limit that is often reached in weak stratification when the mixing efficiency
is constant. In addition to the mixing efficiency, the ratio of salt to heat diffusivities can be chosen to vary as a
function of Reb by setting the ln_tsdiff parameter to .true., a recommended choice. This parameterization
of differential mixing, due to Jackson and Rehmann (2014), is implemented as in de Lavergne et al. (2016).
This parameterization of internal wave-driven mixing is energetically constrained because vertical diffusivities

derive from a known and globally constant power supply (de Lavergne et al., 2020). In the routine zdfiwm.F90
, the background diffusivity (avtb) is forced to a very small value (10−10 m2 s−1), irrespective of namelist
choices for background mixing. In addition, in the zdftke.F90 routine, when ln_zdfiwm is set to .true., the
background level of turbulent kinetic energy and the minimum mixing length are set to small values avoiding
background diffusivities higher than molecular rates of diffusion. Hence, when the parameterization of internal
wave-driven mixing is activated, vertical mixing in the deep ocean is truly energy constrained.
The three-dimensional distribution of turbulence production, ϵ(i, j, k) [W kg−1], is constructed from four

static maps of column-integrated internal wave energy dissipation [W m−2] (figure 11.6):

• Ensq(i, j): dissipation scaling with the squared buoyancy frequency N2;

• Esho(i, j): dissipation due to shoaling (scales with N in the vertical);
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Figure 11.6.: Four power maps (in log10(W m−2)), as estimated by de Lavergne et al. (2024), that enter the parameterization of
internal wave-driven mixing. The globally integrated power (in GW) within each field is indicated at the top left of
each panel. The overall power amounts to 1.40 TW.

• Ecri(i, j): bottom-intensified dissipation at critical slopes;

• Ebot(i, j): bottom-intensified dissipation above abyssal hills.

These power fields are read in a NetCDF forcing file whose name is set in the namelist section &namzdf
(namelist 11.1) . This forcing file also contains two maps of decay scales [m] necessary for the vertical distribution
of Ecri and Ebot:

• Hcri(i,j): related to the height difference of the critical slope.

• Hbot(i,j): related to the wavelength of abyssal hills and to the energy flux Ebot.

Each power field goes with a specific vertical structure. The local turbulence production ϵ(i, j, k) is thus obtained
as the sum of four contributions,

ϵ = ϵnsq + ϵsho + ϵcri + ϵbot,

where, within each (i, j) water column,

• ϵnsq ∝ N2

• ϵsho ∝ N

• ϵcri ∝ exp(−hab/Hcri)

• ϵbot ∝ 1/(1 + hab/Hbot)
2

with hab the height above bottom and N the simulated buoyancy frequency. These vertical structures are
interactive in the sense that they depend on the simulated stratification and sea surface height. Vertical
distributions are thus computed every time step and are normalized so that∫

ρ ϵnsq dz = Ensq ,

∫
ρ ϵsho dz = Esho ,

∫
ρ ϵcri dz = Ecri ,

∫
ρ ϵbot dz = Ebot .

As of now, the parameterization only accounts for mixing powered by internal tides, thought to be the dom-
inant supply of small-scale turbulence in the ocean interior (de Lavergne et al., 2020). It is recommended to
use the forcing fields available at https://doi.org/10.17882/103233. These fields are state-of-the-art estimates of
internal tide energy dissipation, including subinertial tides (de Lavergne et al., 2024). Details on the implemen-
tation of this parameterization and impacts in long NEMO eORCA1 experiments can be found in (de Lavergne
et al., 2024).
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11.6. Surface wave-induced mixing ( ln_zdfswm )
Surface waves produce an enhanced mixing through wave-turbulence interaction. In addition to breaking waves
induced turbulence (subsection 11.1.4), the influence of non-breaking waves can be accounted for by introducing
wave-induced viscosity and diffusivity as a function of the wave number spectrum.
Following Qiao et al. (2010), a formulation of wave-induced mixing coefficient is provided as a function of

wave amplitude, Stokes Drift and wave-number:

Bv = αAUstexp(3kz) (11.35)

Where Bv is the wave-induced mixing coefficient, A is the wave amplitude, Ust is the Stokes Drift velocity, k
is the wave number and α is a constant which should be determined by observations or numerical experiments
and is set to be 1.
The coefficient Bv is then directly added to the vertical viscosity and diffusivity coefficients.
This parameterisation is enabled by setting ln_zdfswm=.true. . Additionally, both wave interaction (

ln_wave=.true. ) and calculation of the Stokes Drift ( ln_sdw=.true. ) must be enabled. The required wave
fields (significant wave height and mean wave number) can be provided either in forced or coupled mode. For
more information on wave parameters and settings, see section 7.10.
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Sect. 12.2 Model outputs

12.1. Model outputs
The model outputs are of three types: the output log/progress listings; the diagnostic output file(s); and the
restart file(s).
The output log and progress listings are output in the ocean.output file(s), which contains information printed

from within the code on the logical unit numout. To locate these prints, use the UNIX command ”grep -i numout”
in the source code directory. Model errors that are caught by NEMO (via the ctl_stop subroutine) will issue
a return code of 123 and information on the errors will be written to the ocean.output file. Additional progress
information can be requested using the options explained in subsection 16.4.1.

Diagnostic output files are written in NetCDF4 format and are generated by one of two available methods.
With the legacy method (used when key_xios is not specified), output files have a predefined structure
and contain time averaged diagnostics. If key_diainstant is specified, instantaneous diagnostics are instead
output. With the standard method (used when key_xios is specified), NEMO can employ the full capability
of the XIOS I/O server, which provides flexibility in the choice of the fields to be written as well as how the
writing tasks are distributed over the processors in a massively parallel computing environment. A complete
description of the use of this I/O server is presented in the next section.
The restart file is used by the code when the user wants to start the model with initial conditions defined by

a previous simulation. Restart files are NetCDF files containing all the information that is necessary in order
for there to be no changes in the model results (even at the computer precision) between a run performed with
several stops and restarts and the same run performed in one continuous integration step. It should be noted
that this requires that the restart file contains two consecutive time steps for all the prognostic variables.
Two methods are available to read and write restart files. The default method is for NEMO to perform

these tasks: NEMO will generate a restart file for each MPP subdomain, which will then be read by the same
subdomain on restarting. Therefore if a change in MPP decomposition is required between runs, then the
individual restart files must first be combined into a single restart file for the full domain. This can be done
using the REBUILD_NEMO tool. The alternative method is to use XIOS to read and/or write restart files
(see section 12.3). This functionality was introduced in NEMO v4.2 and includes the ability to write restart
data directly to a single file for the full domain.

12.2. Standard model diagnostic output with XIOS ( iom_put ,
key_xios )

The standard NEMO diagnostic output method (activated when key_xios is specified) uses an external I/O
library and server named XIOS with the NEMO subroutine iom_put serving as the main interface to this
library.
XIOS is developed by Yann Meurdesoif and his team at IPSL, and has its own repository and support pages.

NEMO v5 can be used with either version 2 or version 3 of XIOS. NEMO expects XIOS v2 by default and
requires at least SVN revision 2131 of this version of the library. The use of XIOS v3 requires that the NEMO
key key_xios3 be specified. Further details are available in the NEMO user guide. XIOS will create output files
in NetCDF4 format, which is incompatible with the older NetCDF3 libraries. Post-processing and visualization
tools must therefore be linked to NetCDF4 libraries to be able to handle the NetCDF files created by XIOS.//
XIOS has been designed to be simple to use, flexible and efficient. Its two main purposes are:

1. The complete and flexible control of the output files through external XML files adapted by the user from
standard templates.

2. To achieve high performance and scalable output through the optional distribution of all diagnostic output
related tasks to dedicated processes.

The first functionality allows the user to specify, without code changes or recompilation, aspects of the diagnostic
output stream, such as:

• The choice of output frequencies that can be different for each file (including real months and years).

• The choice of file contents; includes complete flexibility over which data are written in which files (the
same data can be written in different files).

• The possibility to split output files at a chosen frequency.

• The possibility to extract a vertical or an horizontal subdomain.

• The choice of the temporal operation to perform, e.g.: average, accumulate, instantaneous, min, max and
once.
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Table 12.1.: ”xios” context variables typically used in the iodef.xml configuration files used by NEMO
variable name description example
info_level verbosity level (0 to 100) 0
using_server activate attached (false) or detached(true) mode true
using_oasis XIOS is used with OASIS (true) or not (false) false
oasis_codes_id [XIOS 2 only] when using oasis, define the identifier of NEMO in the nam-

couple. Note that the identifier of XIOS is ”xios.x”
oceanx

• Control over metadata via a large XML ”database” of possible output fields.

• Control over the compression and/or precision of output fields (subject to certain conditions)

In addition, the iom_put interface allows the user to add in the NEMO code the output of any new variable
(scalar, 1D, 2D or 3D) in a very easy way. The functionalities of XIOS and the iom_put interface are listed
in the following subsections.

The second functionality targets output performance when running in parallel. XIOS provides the possibility
to specify N dedicated I/O servers (in addition to the NEMO processes) to collect and write the outputs. With
an appropriate choice of N by the user, the bottleneck associated with the writing of the output files can be
greatly reduced.
XIOS can take advantage of the parallel I/O functionality of NetCDF4∗ to have each XIOS server write to a

single output file. This facility is ideal for small to moderate size configurations but can be problematic with
large models due to the large memory requirements and the inability to use NetCDF4’s compression capabilities
in this ”one_file” mode.
XIOS2 has the option of using two levels of I/O servers so it may be possible, in some circumstances, to use

a single I/O server at the second level to enable compression. In many cases though, it is often more robust to
use ”multiple_file” mode (where each XIOS server writes to a separate file) and to recombine these files as a
post-processing step. The REBUILD_NEMO tool is provided for this purpose. As the number of XIOS servers
is typically much less than the number of NEMO processes, significantly fewer output files will be generated
compared to the legacy method (which outputs one file per NEMO process), reducing the overhead of this
post-processing step. For smaller configurations this post-processing step can be avoided entirely, even without
a parallel-enabled NetCDF4 library, by using only one XIOS server.
XIOS3 provides a more versatile approach with the concept of ”pools and services” where different ”pools”

of XIOS processes can be assigned to perform different services. Chief amongst these services are ”gatherers”
and ”writers” which are similar to the two-level server capabilties of XIOS2, but, crucially, allow the user better
control over the assignment of resources. With care, it is possible to achieve sustained ”one_file” output even
with large models. These capabilities are relatively new at the time of the 5.0 release, but the approach is
documented in the XIOS3 demonstrator of the on-line user guide.

12.2.1. Main XIOS configuration file (iodef.xml)
The behaviour of XIOS is controlled by settings in external XML configuration files, with settings for different
applications (or components of one) split into separate ”contexts”. These settings are specified via the top-level
iodef.xml file (see for example ./cfgs/ORCA2_ICE_PISCES/EXPREF/iodef.xml). Basic details on XML syntax
and rules can be found in subsection 12.2.3.

In NEMO, the iodef.xml file typically contains settings for the ”xios” context (controlling the overall func-
tionality of XIOS) and for one or more ”nemo” contexts (defining the fields and grids used, as well as the output
files to be generated, by NEMO and any AGRIF child grids). Further information on these contexts can be
found in subsubsection 12.2.3.

The ”xios” context

”xios” context settings that might commonly be configured are shown in table 12.1.

The ”nemo” context

”nemo” context settings are usually separated into several XML files, each handling a different component of the
configuration. These files are included in iodef.xml via a nested set of src directives (see subsubsection 12.2.3),

∗This requires that your NetCDF4 library is linked to an HDF5 library that has been correctly compiled (i.e. with the configure
option --enable-parallel)
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usually via an intermediate file context_nemo.xml. e.g. for the ORCA2_ICE_PISCES reference configuration,
this hierarchy of files can be represented as:

iodef.xml <----------- <context id="nemo" src="./context_nemo.xml"/>
context_nemo.xml <-+

|
+-- <field_definition src="./field_def_nemo-oce.xml"/>
+-- <field_definition src="./field_def_nemo-ice.xml"/>
+-- <field_definition src="./field_def_nemo-pisces.xml"/>
|
+-- <file_definition src="./file_def_nemo-oce.xml"/>
+-- <file_definition src="./file_def_nemo-ice.xml"/>
+-- <file_definition src="./file_def_nemo-pisces.xml"/>
|
+-- <axis_definition src="./axis_def_nemo.xml"/>
|
+-- <domain_definition src="./domain_def_nemo.xml"/>
|
+-- <grid_definition src="./grid_def_nemo.xml"/>

The purposes and contents of these XML files will be explained further in later sections.

12.2.2. Practical issues
Installation

As mentioned, XIOS is supported separately and must be downloaded and compiled before it can be used with
NEMO. See the installation guide on the XIOS wiki for help and guidance. NEMO will then need to link to
the compiled XIOS library- see the NEMO user guide.

Attached or detached mode?

For both XIOS2 and XIOS3, a key setting in the ”xios” context (iodef.xml) is:

<variable id="using_server" type="bool"></variable>

which determines whether or not the server will be used in attached mode (as a library) [.false.] or in
detached mode (as an external executable on N additional, dedicated cpus) [.true.]. The attached mode is
simpler to use but much less efficient for massively parallel applications. The output produced will also depend
on the type of each file requested in the file_definition sections. The type can be either ”multiple_file” or
”one_file” (explained more fully in later sections).
In attached mode and if the type of file is ”multiple_file”, then each NEMO process will also act as an I/O

server and produce its own set of output files. Superficially, this emulates the standard behaviour of NEMO
without XIOS. However, the subdomain written out by each process does not correspond to the jpi x jpj
domain actually computed by the process (although it may if jpni=1). Instead each process will have collected
and written out a number of complete longitudinal strips. If the ”one_file” option is chosen then all processes
will collect their longitudinal strips and write (in parallel) to a single output file.
In detached mode and if the type of file is ”multiple_file”, then each stand-alone XIOS process will collect

data for a range of complete longitudinal strips and write to its own set of output files. If the ”one_file” option
is chosen then all XIOS processes will collect their longitudinal strips and write (in parallel) to a single output
file. Note running in detached mode requires launching a Multiple Process Multiple Data (MPMD) parallel job.
The following subsection provides a typical example but the syntax will vary in different MPP environments.

Number of cpus used by XIOS in detached mode

The number of cores used by the XIOS servers is specified when launching the model. This number should be
from �1/10 to �1/50 of the number of cores dedicated to NEMO. Some manufacturers suggest using O(

√
N)

dedicated I/O processors for N processors, but this is a general recommendation and not specific to NEMO. It is
difficult to provide precise recommendations because the optimal choice will depend on the particular hardware
properties of the target system (parallel filesystem performance, available memory, memory bandwidth etc.)
and the volume and frequency of data to be created. Here is an example of using 2 cpus for XIOS servers and
62 cpus for NEMO with mpirun:
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mpirun -np 62 ./nemo.exe : -np 2 ./xios_server.exe

Add your own outputs

It is very easy to add your own outputs with XIOS and the NEMO iom_put interface. Many standard fields
and diagnostics are already prepared (i.e., steps 1 to 3 below have been done) and simply need to be activated
by including the required output in a file definition (step 4). To add new diagnostics, all 4 of the following steps
must be taken.

1. In the NEMO code, add a ”CALL iom_put( 'identifier', array )” for the array that is to be output
as a diagnostic. In most cases, this will be in a part of the code which is executed only once per timestep
and after the array has been updated for that timestep.
Adding this call simply exposes the array to the XIOS workflow; whether or not (and at which frequency)
the corresponding diagnostic is actually output by XIOS will be determined by the contents of the file
definition (see step 4).

2. If necessary, add ”USE iom ! I/O manager library” to the list of used modules in the upper part of
your module.

3. In the appropriate ./cfgs/SHARED/field_def_nemo-....xml files, add a definition for your diagnostic to
the field definition using the same identifier you used in the NEMO Fortran code (see subsequent sections
for details of the XML syntax and rules). For example:

<field_definition>
<field_group id="grid_T" grid_ref="grid_T_3D"> <!-- T grid -->

<field id="identifier" long_name="blabla" />
</field_group>

</field_definition>

This definition must be added to the field_group whose reference grid (grid_ref) is consistent with the
size of the array passed to iom_put . The grid_ref attribute refers to definitions set in grid_def_nemo.xml
which, in turn, reference domains and axes defined either in the code ( iom_set_domain_attr and
iom_set_axis_attr in iom.F90 ) or in the XML configuration files (domain_def_nemo.xml and
axis_def_nemo.xml). e.g. :

<grid_definition>
<grid id="grid_T_3D" >

<domain domain_ref="grid_T" />
<axis axis_ref="deptht" />

</grid>
</grid_definition>

Note that if the array passed to iom_put is computed within the Surface Boundary Condition mod-
ule (chapter 7), then the corresponding field definition must be added within the SBC field_group,
<field_group id="SBC" ...>. This is because the array is updated every nn_fsbc time steps and the
frequency of operations in the SBC field_group has been defined accordingly (see iom_set_field_attr
in iom.F90 ).

4. Finally, add your field to one or more file definitions defined in file_def_nemo-*.xml (each corresponding
to an output file- again, see the subsequent sections for XML syntax and rules)

<file_definition>
<file_group id="5d" output_freq="5d" output_level="10" enabled=".TRUE."> <!-- 5d files -->

<file id="file1" name_suffix="_grid_T" description="ocean T grid variables" >
<field field_ref="identifier" />

</file>
</file_group>

</file_definition>

12.2.3. XML fundamentals
This subsection discusses some basic aspects of the XML syntax used by XIOS. Further information can be
found in the XIOS reference and user guides available here.
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Table 12.2.: Hierarchy of scopes used by tags in the XIOS XML configuration files
Scope description example
root declaration of the root element that can con-

tain element groups or elements
<file_definition ... >

group declaration of a group element that can con-
tain element groups or elements

<file_group ... >

element declaration of an element that can contain
elements

<file ... >

Table 12.3.: XIOS contexts used by NEMO
context description example
xios context containing information for XIOS <context id="xios" ... >
nemo context containing I/O information for

NEMO (mother grid when using AGRIF)
<context id="nemo" ... >

n_nemo context containing I/O information for
NEMO child grid n (when using AGRIF)

<context id="n_nemo" ... >

XML basic rules

XML tags begin with the less-than character (”<”) and end with the greater-than character (”>”). You use
tags to mark the start and end of elements, which are the logical units of information in an XML document.
In addition to marking the beginning of an element, XML start tags also provide a place to specify attributes.
An attribute specifies a single property for an element, using a name/value pair, for example: <a b="x" c="y"
d="z"> ... </a>. See here for more details.

XML tags

The XML tags used by XIOS are organised into 7 families: context, axis, domain, grid, field, file and
variable. Each tag family has a hierarchy of three scopes (except for context), shown in table 12.2.

Each element may have several attributes. Some attributes are mandatory, some are optional with a default
value, and others are completely optional. A special attribute, id, is used to identify an element (or a group
of elements) and must have a unique value within each element family. This attribute is optional, but the
corresponding element cannot be referenced if this is not defined.
XIOS ”contexts” (definitions and settings for different applications or components of one) are separated by

the context tag. No interference is possible between 2 different contexts. Each context has its own calendar
and an associated timestep. The contexts used by NEMO (which can be defined in any order) are shown in
table 12.3. The ”xios” context uses only 1 tag (table 12.4), while the other contexts related to NEMO use 5
tags (table 12.5).

Nesting XML files

The main XML file (iodef.xml) can be split into different parts to improve its readability. These other XML
files can then be included in the iodef.xml file via the src attribute:

<context id="nemo" src="./context_nemo.xml"/>

In the NEMO reference configurations, the field, file and grid definitions are typically split over several XML
files in this manner. e.g. the context_nemo.xml file for AGRIF_DEMO contains:

<!-- Fields definition -->
<field_definition src="./field_def_nemo-oce.xml" /> <!-- NEMO ocean dynamics -->
<field_definition src="./field_def_nemo-ice.xml" /> <!-- NEMO ocean sea ice -->
<field_definition src="./field_def_nemo-pisces.xml" /> <!-- NEMO ocean biogeochemical -->

Table 12.4.: XIOS tags used by the xios context
context tag description example
variable_definition define variables needed by XIOS. This

can be seen as a kind of namelist for
XIOS.

<variable_definition ... >
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Table 12.5.: XIOS tags used by the nemo contexts (both mother and child grids when using AGRIF)
context tag description example
field_definition define all variables that can potentially

be outputted
<field_definition ... >

file_definition define the netcdf files to be created and
the variables they will contain

<file_definition ... >

axis_definition define vertical axis <axis_definition ... >
domain_definition define the horizontal grids <domain_definition ... >
grid_definition define the 2D and 3D grids (association

of an axis and a domain)
<grid_definition ... >

<field_definition src="./field_def_nemo-innerttrc.xml"/> <!-- NEMO ocean inert passive tracer -->

<!-- Files definition -->
<file_definition src="./file_def_nemo-oce.xml"/> <!-- NEMO ocean dynamics -->
<file_definition src="./file_def_nemo-ice.xml"/> <!-- NEMO ocean sea ice -->
<file_definition src="./file_def_nemo-innerttrc.xml"/> <!-- NEMO ocean inert passive tracer -->

<!-- Grids/domains/axes definition -->
<axis_definition src="./axis_def_nemo.xml"/> <!-- Axis definition -->
<domain_definition src="./domain_def_nemo.xml"/> <!-- Domain definition -->
<grid_definition src="./grid_def_nemo.xml"/> <!-- Grids definition -->

Use of inheritance

XML extensively uses the concept of inheritance. XML has a tree based structure with a parent-child oriented
relation: all children inherit attributes from their parent, and an attribute defined in a child replaces the inher-
ited attribute value. Note that the special attribute id is never inherited.

Example 1: direct inheritance.

<field_definition operation="average" >
<field_group id="grid_T" grid_ref="grid_T_2D"> <!-- T grid -->

<field id="sst" /> <!-- averaged sst -->
<field id="sss" operation="instant"/> <!-- instantaneous sss -->

</field_group>
</field_definition>

The field ”sst” which is part (or a child) of the field_definition will inherit the value ”average” of the at-
tribute ”operation” from its parent. Note that a child can overwrite the attribute definition inherited from its
parents. In the example above, the field ”sss” will for example output instantaneous values instead of average
values.

Example 2: inheritance by reference: inherit (and overwrite, if needed) the attributes of a tag you are re-
ferring to:

<field_definition>
<field_group id="grid_T" grid_ref="grid_T_2D"> <!-- T grid -->

<field id="sst" long_name="sea surface temperature" />
<field id="sss" long_name="sea surface salinity" />

</field_group>
</field_definition>

<file_definition>
<file id="myfile" output_freq="1d" />

<field field_ref="sst" /> <!-- default -->
<field field_ref="sss" long_name="my description" /> <!-- overwritten -->

</file>
</file_definition>

Use of groups

Groups can be used for 2 purposes. Firstly, a group can be used to define common attributes to be shared by
the elements of the group through inheritance. In the following example, we define a group of 2D and 3D fields
on the T grid:
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<field_definition>
<field_group id="grid_T" grid_ref="grid_T_2D">

<field id="toce" long_name="temperature" unit="degC" grid_ref="grid_T_3D"/>
<field id="sst" long_name="sea surface temperature" unit="degC" />
<field id="sss" long_name="sea surface salinity" unit="psu" />
<field id="ssh" long_name="sea surface height" unit="m" />

</field_group>
</field_definition>

Most of the fields are 2D, so the 2D grid definition (”grid_T_2D”) is used by the group. Field ”toce” is 3D,
so the 2D grid definition inherited from the group is overwritten by that of the 3D grid (”grid_T_3D”).

Secondly, a group can be used to refer to multiple elements with a single reference. Several examples of groups
of fields are included at the end of the field definition XML configuration files ( ./cfgs/SHARED/field_def_
nemo-oce.xml, ./cfgs/SHARED/field_def_nemo-pisces.xml and ./cfgs/SHARED/field_def_nemo-ice.xml
) . For example, a shortlist of variables on the U grid:

<field_definition>
<field_group id="groupU" >

<field field_ref="uoce" />
<field field_ref="ssu" />
<field field_ref="utau" />

</field_group>
</field_definition>

can be included in a file definition via the group_ref attribute:

<file_definition>
<file id="myfile_U" output_freq="1d" />

<field_group group_ref="groupU" />
<field field_ref="uocetr_eff" /> <!-- add another field -->

</file>
</file_definition>

12.2.4. Detailed functionalities
This subsection discusses some of the functionality offered by XIOS, several examples of which can be found
within the files ./cfgs/ORCA2_ICE_PISCES/EXPREF/*.xml. Again, refer to the XIOS reference and user guides,
available here, for more information.

Define horizontal subdomains/zooms

Horizontal subdomains (”zooms”) are defined through the attributes ibegin, jbegin, ni, nj of the zoom_domain
tag. This must appear within a domain tag, and must therefore be placed in the domain definition part of the
XML (i.e. between the domain_definition tags in ./cfgs/SHARED/domain_def_nemo.xml).

Note that zoom_domain is deprecated in XIOS3 and will eventually be removed; extract_domain should
be used instead. XIOS3 still supports the use of zoom_domain, but will generate warnings stating that this has
been renamed to extract_domain.
For example, a 5 by 5 box with the bottom left corner at point (10,10) would be defined as:

<domain_definition>
<domain id="myzoomT" domain_ref="grid_T">

<zoom_domain ibegin="10" jbegin="10" ni="5" nj="5" />
</domain>

</domain_definition>

and would then be used for diagnostic output via the domain_ref attribute of the field tag family, e.g.

<file_definition>
<file id="myfile_zoom" output_freq="1d" >

<field field_ref="toce" domain_ref="myzoomT"/>
</file>

</file_definition>

However, only grid_ref or a domain_ref/axis_ref pair may be specified, not both. In the example above,
field ”toce” has likely been defined with grid_ref="grid_T_3D" in the field definition XML configuration file.
This will be inherited, so we must override grid_ref instead of domain_ref by defining a new grid (a copy of
”grid_T_3D” in ./cfgs/SHARED/grid_def_nemo.xml):
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<grid_definition>
<grid id="grid_T_3D_myzoomT">

<domain domain_ref="myzoomT" />
<axis axis_ref="deptht" />

</grid>
</grid_definition>

and then referencing this in the field tag:

<file_definition>
<file id="myfile_zoom" output_freq="1d" >

<field field_ref="toce" grid_ref="grid_T_3D_myzoomT"/>
</file>

</file_definition>

Moorings are seen as an extreme case corresponding to a 1 by 1 subdomain. The Equatorial section, the TAO,
RAMA and PIRATA moorings are already defined in the code and can therefore be used without needing
to specify their (i,j) position in the grid. These predefined zooms can be activated by the use of a specific
domain_ref: ”EqT”, ”EqU” or ”EqW” for the equatorial sections and the mooring position for TAO, RAMA
and PIRATA followed by ”T”, e.g.

<file_definition>
<file id="myfile_zoom" output_freq="1d" >

<field field_ref="sst" domain_ref="0n180wT"/>
</file>

</file_definition>

A full list of these section and mooring domains can be found in ./cfgs/SHARED/domain_def_nemo.xml.

As noted in section 12.2, using ”multiple_file” type output will produce one file per XIOS server with each file
containing a different part of the full domain, which may split the subdomain across several files. In this case,
tools like REBUILD_NEMO should be used to combine these files.

Define vertical zooms

Vertical zooms are defined through the attributes begin and n of the zoom_axis tag. This must appear
within an axis tag, and must therefore be placed in the axis definition part of the XML (i.e. between the
axis_definition tags in ./cfgs/SHARED/axis_def_nemo.xml). Note that as for zoom_domain, zoom_axis is
deprecated in XIOS3 and extract_axis should be used instead.
For example, a zoom corresponding to the top 300m of the ocean would be defined as:

<axis_definition>
<!-- Vertical zoom for a 31-levels ORCA2 grid. For eORCA1 300m corresponds to n=35 -->
<axis id="deptht300" axis_ref="deptht" >

<zoom_axis begin="0" n="19" />
</axis>

</axis_definition>

and would then be used for diagnostic output via the axis_ref attribute of the field tag family, e.g.

<file_definition>
<file id="myfile_zoom" output_freq="1d" >

<field field_ref="diag_1d" axis_ref="deptht300"/>
</file>

</file_definition>

As noted in the previous section, only grid_ref or a domain_ref/axis_ref pair may be specified, not both.
Therefore in the case of a 3D diagnostic, we must override grid_ref instead of axis_ref by defining a new
grid (a copy of grid_T_3D in ./cfgs/SHARED/grid_def_nemo.xml):

<grid_definition>
<grid id="grid_T_3D_0_300m">

<domain domain_ref="grid_T" />
<axis axis_ref="deptht300" />

</grid>
</grid_definition>

and then referencing this in the field tag:

<file_definition>
<file id="myfile_zoom" output_freq="1d" >

<field field_ref="toce" grid_ref="grid_T_3D_0_300m"/>
</file>

</file_definition>
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Table 12.6.: Placeholder strings for the names of diagnostic output files generated by XIOS and the strings they are substituted
for, when the file id has the form ”fileN”

Placeholder string Automatically replaced by
@expname@ The experiment name (from cn_exp in the namelist)
@freq@ Output frequency (from XML attribute output_freq)
@startdate@ Starting date of the simulation (from nn_date0 in the restart or the namelist).

yyyymmdd format
@startdatefull@ Starting date of the simulation (from nn_date0 in the restart or the namelist).

yyyymmdd_hh:mm:ss format
@enddate@ Ending date of the simulation (from nn_date0 and nn_itend in the namelist).

yyyymmdd format
@enddatefull@ Ending date of the simulation (from nn_date0 and nn_itend in the namelist).

yyyymmdd_hh:mm:ss format

Changes to the names of output files applied by NEMO

The output file names are defined by the attributes name and name_suffix of the file tag family. For example:

<file_definition>
<file_group id="1d" output_freq="1d" name="myfile_1d" >

<file id="myfileA" name_suffix="_AAA" > <!-- will create file "myfile_1d_AAA" -->
...
</file>
<file id="myfileB" name_suffix="_BBB" > <!-- will create file "myfile_1d_BBB" -->
...
</file>

</file_group>
</file_definition>

However it is often very convenient to include the name of the experiment, the output file frequency and the
start/end dates of the simulation in the file name, which are stored either in the namelist or in the XML file.
To achieve this, we added the following rule: if the id of the file tag is ”fileN” (where N = 1 to 999 on 1 to 3
digits) or one of the predefined sections or moorings (see next subsection), parts of the name and name_suffix
attributes (which can be inherited) will be automatically replaced if they correspond to any of the placeholders
in table 12.6.

For example,

<file_definition>
<file id="file66" name="myfile_@expname@_@startdate@_freq@freq@" output_freq="1d" >

</file_definition>

with the namelist:

cn_exp = "ORCA2"
nn_date0 = 19891231
ln_rstart = .false.

will give the following file name radical: myfile_ORCA2_19891231_freq1d

Other XML attributes set by NEMO

The values of some XML attributes (including name_suffix, discussed in the previous subsection) are auto-
matically set by the set_xmlatt subroutine in NEMO ( iom.F90 ). These attributes and their values are
given in table 12.7. Any definition of these attributes in the XML files will be overwritten; by convention their
values are set to ”auto” (for strings) or ”0000” (for integers), although this is not necessary.

Advanced use of XIOS functionalities

XIOS can do far more than just gather and write output. Importantly, it can perform computations with the
fields it receives providing opportunities to create derived quantities without burdening the model simulation.
This section provides a few illustrations of the possibilities:

1. Using algebraic expressions
A new diagnostic can be derived from existing diagnostics, either in the file definition:
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Table 12.7.: XIOS XML attributes that are set automatically by NEMO, excluding name and name_suffix
Tag family and id affected by automatic definition Attribute name Attribute value
of some of their attributes
field_definition freq_op rn_rdt
field: SBC, SBC_scalar, ABL freq_op rn_rdt × nn_fsbc
field: trendT_even freq_op 2× rn_rdt
field: trendT_odd freq_op 2× rn_rdt

freq_offset −1
zoom_domain: EqT, EqU, EqW jbegin, ni, set according to the grid
zoom_domain: TAO, RAMA and PIRATA moorings ibegin, jbegin, set according to the grid

<file_definition>
<file id="derived_vars" output_freq="1d" >

<field field_ref="sst" name="tosK" unit="degK" > sst + 273.15 </field>
<field field_ref="taum" name="taum2" unit="N2/m4" long_name="square of wind stress module" > taum * taum </field>
<field field_ref="qt" name="stupid_check" > qt - qsr - qns </field>

</file>
</file_definition>

or in the field definition:

<field_definition>
<field id="sst2" field_ref="sst" long_name="square of sea surface temperature" unit="degC2" > sst * sst </field>

</field_definition>

and then referenced in the file definition:

<file_definition>
<file id="derived_vars" output_freq="1d" >

<field field_ref="sst2" > sst2 </field>
</file>

</file_definition>

Note that in this case, simply adding ”<field field_ref="sst2" />” to the file definition would not
work since ”sst2” would not be evaluated.

2. Use of the “@” function: example 1, weighted temporal average
The “@” function can be used in algebraic expressions to chain temporal operations. In this example, it
is used to output a weighted temporal average of the temperature (with the time-varying layer thickness
as the weight).
The product of the two quantities is first added as a new variable in the field definition:

<field_definition operation="average" freq_op="1ts">
<field id="toce_e3t" long_name="temperature * e3t" unit="degC*m" grid_ref="grid_T_3D" >toce * e3t</field>

</field_definition>

The operation="average" and freq_op="1ts" attributes specify the temporal operation and its sampling
frequency- toce and e3t will be used to calculate toce_e3t for every timestep, which will then be averaged
over a time period set by the output_freq or freq_op attributes (the latter is given priority) in the file
definition. For example:

<file_definition>
<file_group id="5d" output_freq="5d" output_level="10" enabled=".true." > <!-- 5d files -->

<file id="file1" name_suffix="_grid_T" description="ocean T grid variables" >
<!-- 5-day averages -->
<field field_ref="toce" />
<!-- 1-day averages, output once every 5 days -->
<field field_ref="toce" freq_op="1d" name="toce_1d" />

</file>
</file_group>

</file_definition>

To produce a 5-day weighted average, the 5-day average of the weighted temperature (@toce_e3t) must
be divided by that of the layer thickness (@e3t):
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<file_definition>
<file_group id="5d" output_freq="5d" output_level="10" enabled=".true." > <!-- 5d files -->

<file id="file1" name_suffix="_grid_T" description="ocean T grid variables" >
<field field_ref="toce" operation="instant" freq_op="5d" > @toce_e3t / @e3t </field>

</file>
</file_group>

</file_definition>

Normally, the operation="average" and freq_op="1ts" attributes inherited from the field definition
would be overwritten by the operation="instant" and freq_op="5d" attributes in the file definition.
This would result in instantaneous output (data for one timestep) every 5 days.
The “@” function overrides this behaviour so that instead, the temporal operations are applied separately.
Specifically, it indicates that the temporal operation for the adjacent field should be performed before
evaluating the algebraic expression it is part of. This results in 2 chained temporal operations:
- Temporal operation 1: the operation type and sampling frequency are set by the operation and freq_op
attributes in the field definition, while the temporal period of the operation is set by the freq_op attribute
in the file definition.
- Temporal operation 2: the operation type, sampling frequency and temporal period are specified by the
operation, freq_op and output_freq attributes in the file definition.
For the above thickness-weighted temperature example, the following operations occur in order:
- toce_e3t is calculated from toce and e3t for every timestep
- 5-day averages of toce_e3t and e3t are calculated (temporal operation 1)
- The weighted average, toce_e3t / e3t, is calculated using these 5-day averages
- The instantaneous value of this expression is output every 5 days (temporal operation 2)
The last of these (the 2nd temporal operation) simply returns the result of the 3rd operation- a 5-day
weighted average every 5 days. One could equivalently specify operation="average" in the file definition
and get the same result, although the time coordinate for the diagnostic would be that of an average (with
values of 2.5, 7.5, ... days) rather than an instantaneous quantity (with values of 5, 10, ... days).

3. Use of the “@” function: example 2, monthly SSH standard deviation
The square of the SSH is added as a new variable in the field definition:

<field_definition operation="average" freq_op="1ts">
<field id="ssh2" long_name="square of sea surface temperature" unit="degC2" > ssh * ssh </field>

</field_definition>

In the file definition, monthly averages of this variable and ssh are then calculated and used to calculate
the monthly standard deviation:

<file_definition>
<file_group id="1m" output_freq="1m" output_level="10" enabled=".true." > <!-- 1m files -->

<file id="file1" name_suffix="_grid_T" description="ocean T grid variables" >
<field field_ref="ssh" name="sshstd" long_name="sea_surface_temperature_standard_deviation"

operation="instant" freq_op="1m" >
sqrt( @ssh2 - @ssh * @ssh )

</field>
</file>

</file_group>
</file_definition>

In this example, the following operations occur in order:
- ssh2 is calculated from ssh for every timestep
- 1-month averages of ssh2 and ssh are calculated (temporal operation 1)
- The standard deviation, sqrt(ssh2 - ssh * ssh), is calculated using these 1-month averages
- The instantaneous value of this expression is output every month (temporal operation 2)

4. Use of the “@” function: example 3, monthly average of SST diurnal cycle
The temporal minimum and maximum of the SST are added as new variables in the field definition:
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<field_definition operation="average" freq_op="1ts">
<field id="sstmax" field_ref="sst" long_name="max of sea surface temperature" operation="maximum" />
<field id="sstmin" field_ref="sst" long_name="min of sea surface temperature" operation="minimum" />

</field_definition>

In the file definition, these variables are then evaluated over a 1-day period and used to calculate the
diurnal amplitude of the SST and its monthly average:

<file_definition>
<file_group id="1m" output_freq="1m" output_level="10" enabled=".true." > <!-- 1m files -->

<file id="file1" name_suffix="_grid_T" description="ocean T grid variables" >
<field field_ref="sst" name="sstdcy" long_name="amplitude of sst diurnal cycle"

operation="average" freq_op="1d" >
@sstmax - @sstmin

</field>
</file>

</file_group>
</file_definition>

In this example, the following operations occur in order:
- Daily minima (sstmin) and maxima (sstmax) of sst are calculated (temporal operation 1)
- The amplitude, sstmax - sstmin, is calculated using these daily extrema
- The monthly average of this expression is calculated and output every month (temporal operation 2)

5. Changing variable precision
Diagnostic output precision can be modified with the prec attribute of the field tag family. Data packing
is also supported via the add_offset and scale_factor attributes.

<!-- 64-bit (8-byte) float -->
<field field_ref="sst" name="tos_r8" prec="8" />
<!-- Packing to 16-bit (2-byte) integer -->
<field field_ref="sss" name="sos_i2" prec="2" add_offset="20." scale_factor="1.e-3" />

If the data cannot be converted to the target precision, XIOS will crash with a ”NetCDF: Numeric
conversion not representable” error. In the case of single-precision floating point diagnostics (prec="4"),
this often happens when NEMO has sent XIOS data containing NaNs or very large/small values, which
can result from e.g. floating point calculation errors. Forcing double-precision output (prec="8") may
bypass the XIOS crash, but it is usually better to inspect and troubleshoot the diagnostic data being sent
from NEMO.

6. Adding user-defined NetCDF file attributes
User-defined NetCDF attributes can added to the output file metadata at the global and variable levels:

<file_definition>
<file id="file1" name_suffix="_grid_T" description="ocean T grid variables" >

<!-- Variable attributes -->
<field field_ref="sst" name="tos" >

<variable id="my_attribute1" type="string" > blabla </variable>
<variable id="my_attribute2" type="integer" > 3 </variable>
<variable id="my_attribute3" type="float" > 5.0 </variable>

</field>
<!-- Global attributes -->
<variable id="my_global_attribute" type="string" > blabla_global </variable>

</file>
</file_definition>

12.2.5. CF metadata standard compliance
Output from XIOS is compliant with version 1.5 of the CF metadata standard. Therefore while a user may
wish to add their own metadata to the output files (as demonstrated in example 3 of subsubsection 12.2.4) the
metadata should, for the most part, comply with the CF-1.5 standard.
Some metadata required for full compliance with the CF standard (horizontal cell areas and vertices) are not

output by default. It can be output by setting ln_cfmeta=.true. in the &namrun (namelist 2.1) namelist,
but note that it will be added to all files with variables on the horizontal domain, which may significantly
increase the file size.
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12.2.6. Enabling NetCDF4 compression with XIOS
XIOS supports the use of gzip compression when compiled with NetCDF4 libraries but is subject to the same
restrictions as the underlying HDF5 component: compression is not available when the XIOS servers are writing
in parallel to a single output file. Thus, compression can only be applied in ”multiple_file” mode only, or with
two levels of servers using multiple level 1 servers and a single level 2 server. Compression is activated by using
the compression_level attribute of the field or file tag families:

<file_definition>
<file name="output" output_freq="1ts" compression_level="2">

<field id="field_A" grid_ref="grid_A" operation="average" compression_level=" 4" />
<field id="field_B" grid_ref="grid_A" operation="average" compression_level=" 0" />
<field id="field_C" grid_ref="grid_A" operation="average" />

</file>
</file_definition>

Its value is an integer between 0 and 9. A value of 2 is normally recommended as a suitable trade-off between
algorithm performance and compression levels.
It is unclear how XIOS2 decides on suitable chunking parameters before applying compression, so it may

be necessary to re-chunk data when combining files produced with the ”multiple_file” output mode. The
REBUILD_NEMO tool is capable of doing this. With XIOS3, the user is provided with more control over
the chunking but the relationship between input settings and final chunk sizes is complex. See the XIOS3
demonstrator section of the user guide for an illustration.

12.3. Reading and writing restart files
From NEMO v4.2, XIOS may be used to read in a single-file restart dump produced by NEMO. This does not
add new functionality (NEMO has long had the capability for all processes to read their subdomain from a
single, combined restart file) but it may be advantageous on systems which struggle with too many simultaneous
accesses to one file. The variables written to files associated with the logical units numror (OCE), numrir (SI3),
numrtr (TOP) and numrsr (SED) can be handled by XIOS.

The use of XIOS to read restart files is activated by setting ln_xios_read=.true. in &namcfg (namelist 17.1)
. This setting will be ignored when multiple restart files are present, and default NEMO functionality will instead
be used for reading.
The iodef.xml XIOS configuration file does not need to be changed to use this functionality, as all definitions

are implemented within the NEMO code as a separate XIOS context. For high resolution configurations,
however, there may be a need to add the following line in iodef.xml:

<variable_definition>
<variable id="recv_field_timeout" type="double">1800</variable>

</variable_definition>

which sets the timeout period for reading data.
If XIOS is to be used to read from restart files generated with an earlier NEMO version (3.6 for instance), the
dimension z defined in the restart file must be renamed to nav_lev.

XIOS can also be used to write NEMO restarts. The namelist parameter nn_wxios is used to determine
the type of restart NEMO will write:

nn_wxios=0
Default functionality: each NEMO process writes its own restart file

nn_wxios=1
XIOS will write to a single restart file

nn_wxios=2
XIOS will write to multiple restart files, one per server

This option aims to reduce the number of restart files generated by NEMO, and may be useful when there is
a need to change the number of processors used to run the simulation. Note that NEMO will not be able
to read the restart files generated by XIOS with nn_wxios=2 . These files will have to be combined
(with e.g. REBUILD_NEMO) before continuing the run.

The use of XIOS to read and write restart files is in preparation for running NEMO on exascale computing
platforms. While this may not yield significant performance gains on current clusters, it should reduce file
system bottlenecks in future attempts to run NEMO on hundreds of thousands of cores.
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!-----------------------------------------------------------------------
&namnc4 ! netcdf4 chunking and compression settings
!-----------------------------------------------------------------------

nn_nchunks_i = 4 ! number of chunks in i-dimension
nn_nchunks_j = 4 ! number of chunks in j-dimension
nn_nchunks_k = 31 ! number of chunks in k-dimension
! ! setting nn_nchunks_k = jpk will give a chunk size of 1 in the vertical which
! ! is optimal for postprocessing which works exclusively with horizontal slabs
ln_nc4zip = .false. ! (T) use netcdf4 chunking and compression
! ! (F) ignore chunking and compression information (netcdf3 compatible file)

/

namelist 12.1.: &namnc4

12.4. NetCDF4 support (legacy output file method)
As of NEMO v5, the legacy output method (where diagnostic and/or restart files are written by NEMO using the
old IOIPSL interface, rather than by XIOS) only supports NetCDF4 (version 4.1 and later are recommended)
built with HDF5 (version 1.8.4 and later are recommended). This allows chunking and (loss-less) compression,
which can achieve a significant reduction in file size for a small runtime overhead. For a fuller discussion on
chunking and other performance issues the reader is referred to the NetCDF4 documentation found here.

Datasets created with chunking and compression are not backwards compatible with the NetCDF3 ”classic”
format, but most analysis codes can simply be relinked with the NetCDF4 libraries and will then read both
NetCDF3 and NetCDF4 files. NEMO executables linked with NetCDF4 libraries can be made to produce
NetCDF3 files by setting ln_nc4zip=.false. in the &namnc4 (namelist 12.1) namelist.
Chunking and compression are applied only to 4D fields and there is no advantage in chunking across more

than one time dimension, since previously written chunks would have to be read back and decompressed before
being added to. Therefore, user control over chunk sizes is provided only for the three spatial dimensions. The
user sets an approximate number of chunks along each spatial axis. The actual size of the chunks will depend
on the global domain size for mono-processors and the local processor domain size for distributed processing.
The derived values are subject to practical minimum values (to avoid wastefully small chunk sizes) and cannot
be greater than the domain size in any dimension. The algorithm used is:

ichunksz(1) = MIN(idomain_size, MAX((idomain_size-1) / nn_nchunks_i + 1 ,16 ))
ichunksz(2) = MIN(jdomain_size, MAX((jdomain_size-1) / nn_nchunks_j + 1 ,16 ))
ichunksz(3) = MIN(kdomain_size, MAX((kdomain_size-1) / nn_nchunks_k + 1 , 1 ))
ichunksz(4) = 1

As an example, setting:

nn_nchunks_i=4
nn_nchunks_j=4
nn_nchunks_k=31

for a standard ORCA2_ICE_PISCES configuration (with a global domain of 182x149x31) gives chunk sizes
of 46x38x1 respectively in the mono-processor case. An illustration of the potential space savings that NetCDF4
chunking and compression provides is given in table 12.8, which compares the results of two short runs of the
deprecated ORCA2_LIM reference configuration (now the ORCA2_ICE_PISCES configuration) with a 4x2
MPI decomposition. Note the variation in the compression ratio achieved, which reflects chiefly the dry to wet
volume ratio of each processing region.
Note that chunking and compression can also be applied when combining output files with e.g. REBUILD_NEMO.

12.5. Tracer/Dynamics trends ( &namtrd (namelist 12.2) ,
&namtrc_trd (namelist 12.3) )

Each trend of the time evolution equations for the dynamics ( trddyn.F90 ) and both active ( trdtra.F90 )
and passive ( trdtrc.F90 ) tracers can be output following their computation, via calls to the trd_tra (active
and passive tracers), trd_dyn (dynamics) and trd_trc (passive tracers) subroutines.

The output of trends diagnostics for the dynamics and active tracers is controlled by parameters in the
&namtrd (namelist 12.2) namelist:

ln_glo_trd=.true.
Every nn_trd time-steps, a check of the basin averaged properties of the momentum and tracer equations
is performed. This also includes a check of T 2, S2, 1

2 (u
2+v2), and potential energy time evolution equations

properties.
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Table 12.8.: Filesize comparison between NetCDF3 and NetCDF4 with chunking and compression
Filename NetCDF3 NetCDF4 Reduction

filesize filesize %
(KB) (KB)

ORCA2_restart_0000.nc 16420 8860 47%
ORCA2_restart_0001.nc 16064 11456 29%
ORCA2_restart_0002.nc 16064 9744 40%
ORCA2_restart_0003.nc 16420 9404 43%
ORCA2_restart_0004.nc 16200 5844 64%
ORCA2_restart_0005.nc 15848 8172 49%
ORCA2_restart_0006.nc 15848 8012 50%
ORCA2_restart_0007.nc 16200 5148 69%
ORCA2_2d_grid_T_0000.nc 2200 1504 32%
ORCA2_2d_grid_T_0001.nc 2200 1748 21%
ORCA2_2d_grid_T_0002.nc 2200 1592 28%
ORCA2_2d_grid_T_0003.nc 2200 1540 30%
ORCA2_2d_grid_T_0004.nc 2200 1204 46%
ORCA2_2d_grid_T_0005.nc 2200 1444 35%
ORCA2_2d_grid_T_0006.nc 2200 1428 36%
ORCA2_2d_grid_T_0007.nc 2200 1148 48%
... ... ... ...
ORCA2_2d_grid_W_0000.nc 4416 2240 50%
ORCA2_2d_grid_W_0001.nc 4416 2924 34%
ORCA2_2d_grid_W_0002.nc 4416 2512 44%
ORCA2_2d_grid_W_0003.nc 4416 2368 47%
ORCA2_2d_grid_W_0004.nc 4416 1432 68%
ORCA2_2d_grid_W_0005.nc 4416 1972 56%
ORCA2_2d_grid_W_0006.nc 4416 2028 55%
ORCA2_2d_grid_W_0007.nc 4416 1368 70%

!-----------------------------------------------------------------------
&namtrd ! trend diagnostics (default: OFF)
!-----------------------------------------------------------------------

ln_glo_trd = .false. ! (T) global domain averaged diag for T, T^2, KE, and PE
ln_dyn_trd = .false. ! (T) 3D momentum trend output
ln_dyn_mxl = .false. ! (T) 2D momentum trends averaged over the mixed layer (not coded yet)
ln_vor_trd = .false. ! (T) 2D barotropic vorticity trends (not coded yet)
ln_KE_trd = .false. ! (T) 3D Kinetic Energy trends
ln_PE_trd = .false. ! (T) 3D Potential Energy trends
ln_tra_trd = .false. ! (T) 3D tracer trend output
ln_tra_mxl = .false. ! (T) 2D tracer trends averaged over the mixed layer (not coded yet)
nn_trd = 365 ! print frequency (ln_glo_trd=T) (unit=time step)

/

namelist 12.2.: &namtrd

!-----------------------------------------------------------------------
&namtrc_trd ! diagnostics on tracer trends ('key_trdtrc')
! or mixed-layer trends ('key_trdmld_trc')
!----------------------------------------------------------------------

nn_trd_trc = 5475 ! time step frequency and tracers trends
nn_ctls_trc = 0 ! control surface type in mixed-layer trends (0,1 or n<jpk)
rn_ucf_trc = 1 ! unit conversion factor (=1 -> /seconds ; =86400. -> /day)
ln_trdmld_trc_restart = .false. ! restart for ML diagnostics
ln_trdmld_trc_instant = .true. ! flag to diagnose trends of instantantaneous or mean ML T/S
ln_trdtrc( 1) = .true.
ln_trdtrc( 2) = .true.
ln_trdtrc(23) = .true.

/

namelist 12.3.: &namtrc_trd
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!-----------------------------------------------------------------------
&nam_diadct ! transports through some sections (default: OFF)
!-----------------------------------------------------------------------

ln_diadct = .false. ! Calculate transport thru sections or not
nn_dct = 15 ! time step frequency for transports computing
nn_dctwri = 15 ! time step frequency for transports writing
nn_secdebug = 112 ! 0 : no section to debug
! ! -1 : debug all section
! ! 0 < n : debug section number n

/

namelist 12.4.: &nam_diadct

ln_dyn_trd=.true.
Each 3D trend of the evolution of the two momentum components is output.

ln_dyn_mxl=.true. (currently not working)
Each 3D trend of the evolution of the two momentum components averaged over the mixed layer is output.

ln_vor_trd=.true. (currently not working)
A vertical summation of the moment tendencies is performed, then the curl is computed to obtain the
barotropic vorticity tendencies which are output.

ln_KE_trd=.true.
Each 3D trend of the Kinetic Energy equation is output.

ln_PE_trd=.true. (currently not working with nonlinear free surface)
Each 3D trend of the Potential Energy equation is output.

ln_tra_trd=.true.
Each 3D trend of the evolution of temperature and salinity is output.

ln_tra_mxl=.true. (currently not working)
Each 2D trend of the evolution of temperature and salinity averaged over the mixed layer is output.

while the output of trends diagnostics for the passive tracers is controlled by parameters in the &namtrc_trd
(namelist 12.3) namelist.

As all 3D trends are output using XIOS, key_xios must generally be specified. Additionally, the passive
tracer trends require key_trdtrc (for 3D trends) and/or key_trdmxl_trc (for 2D trends averaged over the
mixed layer) to be specified.
Note that currently, the trends diagnostics are not fully functional or tested and a warning will be

raised if they are used. In particular, the code associated with the ln_dyn_mxl , ln_vor_trd , and ln_tra_mxl
namelist options is not working and an error will be raised if they are used.

12.6. Transports across sections
Diagnostics to compute the transport of volume, heat and salt through sections can be activated by setting

ln_diadct=.true. in the &nam_diadct (namelist 12.4) namelist. Each section is defined by the coordinates
of its 2 extremities. The pathways between them are constructed using the SECTIONS_DIADCT tool and are
written to a binary file section_ijglobal.diadct, which is later read in by NEMO to compute on-line transports.

The on-line transports module ( diadct.F90 ) outputs three ascii files:

- volume_transport for volume transports (unit: 106 m3s−1)
- heat_transport for heat transports (unit: 1015 W )
- salt_transport for salt transports (unit: 109 Kgs−1)

Namelist variables in the &nam_diadct (namelist 12.4) namelist control how frequently the flows are summed
and the time scales over which they are averaged, as well as the level of output for debugging:

nn_dct
Frequency of computation of the transports (in time steps)
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nn_dctwri
Averaging period of the transports (as a frequency, in time steps)

nn_secdebug
Sections to debug:
0 - Do not debug any sections
-1 - Debug all sections
n - Debug section number n

Creating a binary file containing the pathway of each section

In ./tools/SECTIONS_DIADCT/run, the file list_sections.ascii_global contains a list of all the sections (based
on MERSEA project metrics) that are to be computed. Another file is available for the GYRE configuration (
list_sections.ascii_GYRE).

Each section in this file is defined by a line containing, in order:

long1 lat1
Coordinates of the first extremity of the section, e.g. -68. -54.5

long2 lat2
Coordinates of the second extremity of the section, e.g. -60. -64.7

nclass
The number of bounds in each class type (nclass - 1 classes per type), e.g. 2

okstrpond or nostrpond
A string controlling whether to compute heat and salt transports (okstrpond) or not (nostrpond)

ice or noice
A string controlling whether to compute surface and volume ice transports (ice) or not (noice)

section_name
The name of the section, e.g. ACC_Drake_Passage

Note that neither the results of the transport calculations nor the directions of positive and negative flow depend
on the order in which the 2 extremities are specified in this file.

If nclass ̸= 0, the following nclass + 1 lines contain a class type and its bounds, which may be repeated for
several class types. e.g. for 2 class types with 2 bounds (1 class per type):

long1 lat1 long2 lat2 nclass (ok/no)strpond (no)ice section_name
classtype
bound_1
bound_2
classtype
bound_1
bound_2

where classtype can be:

- zsal for salinity classes
- ztem for temperature classes
- zlay for depth classes
- zsigi for insitu density classes
- zsigp for potential density classes

The script job.ksh computes the pathway for each section and creates a binary file section_ijglobal.diadct
which is read by NEMO. The top part of this script should be modified for the user’s configuration, including
setting the name and path of the coordinates file to use.

Examples of two sections, ACC_Drake_Passage with no classes, and ATL_Cuba_Florida with 4 temperature
clases (5 class bounds), are shown:
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Table 12.9.: Transport section slope coefficients
Section slope coefficient Section type Direction 1 Direction 2 Total transport
0. Horizontal Northward Southward positive: northward
1000. Vertical Eastward Westward positive: eastward
̸= 0, ̸= 1000. Diagonal Eastward Westward positive: eastward

-68. -54.5 -60. -64.7 00 okstrpond noice ACC_Drake_Passage
-80.5 22.5 -80.5 25.5 05 nostrpond noice ATL_Cuba_Florida
ztem
-2.0
4.5
7.0
12.0
40.0

Reading the output files

The format of the output file is:

date, time-step number, section number,
section name, section slope coefficient, class number,
class name, class bound 1, class bound2,
transport direction 1, transport direction 2,
transport total

For sections with classes, the first nclass - 1 lines correspond to the transport for each class and the last
line corresponds to the total transport summed over all classes. For sections with no classes, class number 1
corresponds to total class and this class is called N, meaning none. transport direction 1 is the positive
part of the transport (≥ 0) and transport direction 2 is the negative part of the transport (≤ 0).
section slope coefficient gives information about the significance of transports signs and direction (see
table 12.9).

12.7. Diagnosing the steric effect on sea surface height
Changes in steric sea level are caused when changes in the density of the water column imply an expansion
or contraction of the column. It is essentially produced through surface heating/cooling and to a lesser extent
through non-linear effects of the equation of state (cabbeling, thermobaricity...). Non-Boussinesq models contain
all ocean effects within the ocean acting on the sea level. In particular, they include the steric effect. In contrast,
Boussinesq models, such as NEMO, conserve volume, rather than mass, and so do not properly represent
expansion or contraction. The steric effect is therefore not explicitely represented. This approximation does
not represent a serious error with respect to the flow field calculated by the model (Greatbatch, 1994), but
extra attention is required when investigating sea level, as steric changes are an important contribution to local
changes in sea level on seasonal and climatic time scales. This is especially true for investigation into sea level
rise due to global warming.
Fortunately, the steric contribution to the sea level consists of a spatially uniform component that can be

diagnosed by considering the mass budget of the world ocean (Greatbatch, 1994). In order to better understand
how global mean sea level evolves and thus how the steric sea level can be diagnosed, we compare, in the
following, the non-Boussinesq and Boussinesq cases.
Let denoteM the total mass of liquid seawater (M =

∫
D
ρdv), V the total volume of seawater (V =

∫
D
dv),

A the total surface of the ocean (A =
∫
S
ds), ρ̄ the global mean seawater (in situ) density (ρ̄ = 1/V

∫
D
ρ dv),

and η̄ the global mean sea level (η̄ = 1/A
∫
S
η ds).

A non-Boussinesq fluid conserves mass. It satisfies the following relations:

M = V ρ̄
V = A η̄

(12.1)

Temporal changes in total mass are obtained from the density conservation equation:
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1

e3
∂t(e3 ρ) +∇(ρU) =

emp
e3

∣∣∣∣
surface

(12.2)

where ρ is the in situ density, and emp the surface mass exchanges with the other media of the Earth system
(atmosphere, sea-ice, land). Its global average leads to the total mass change

∂tM = A emp (12.3)

where emp =
∫
S
emp ds is the net mass flux through the ocean surface. Bringing equation 12.3 and the time

derivative of equation 12.1 together leads to the evolution equation of the mean sea level

∂tη̄ =
emp
ρ̄
− V
A

∂tρ̄

ρ̄
(12.4)

The first term in equation equation 12.4 alters sea level by adding or subtracting mass from the ocean. The
second term arises from temporal changes in the global mean density; i.e. from steric effects.

In a Boussinesq fluid, ρ is replaced by ρo in all the equation except when ρ appears multiplied by the gravity
(i.e. in the hydrostatic balance of the primitive equations). In particular, the mass conservation equation,
equation 12.2, degenerates into the incompressibility equation:

1

e3
∂t(e3) +∇(U) =

emp
ρo e3

∣∣∣∣
surface

and the global average of this equation now gives the temporal change of the total volume,

∂tV = A emp
ρo

Only the volume is conserved, not mass, or, more precisely, the mass which is conserved is the Boussinesq
mass, Mo = ρoV. The total volume (or equivalently the global mean sea level) is altered only by net volume
fluxes across the ocean surface, not by changes in mean mass of the ocean: the steric effect is missing in a
Boussinesq fluid.

Nevertheless, following Greatbatch (1994), the steric effect on the volume can be diagnosed by considering
the mass budget of the ocean. The apparent changes inM, mass of the ocean, which are not induced by surface
mass flux must be compensated by a spatially uniform change in the mean sea level due to expansion/contraction
of the ocean (Greatbatch, 1994). In other words, the Boussinesq mass,Mo, can be related toM, the total mass
of the ocean seen by the Boussinesq model, via the steric contribution to the sea level, ηs, a spatially uniform
variable, as follows:

Mo =M+ ρo ηsA (12.5)

Any change in M which cannot be explained by the net mass flux through the ocean surface is converted
into a mean change in sea level. Introducing the total density anomaly, D =

∫
D
da dv, where da = (ρ− ρo)/ρo

is the density anomaly used in NEMO (cf. subsection 6.8.1) in equation 12.5 leads to a very simple form for
the steric height:

ηs = −
1

A
D (12.6)

The above formulation of the steric height of a Boussinesq ocean requires four remarks. First, one can be
tempted to define ρo as the initial value ofM/V, i.e. set Dt=0 = 0, so that the initial steric height is zero. We
do not recommend that. Indeed, in this case ρo depends on the initial state of the ocean. Since ρo has a direct
effect on the dynamics of the ocean (it appears in the pressure gradient term of the momentum equation) it
is definitively not a good idea when inter-comparing experiments. We instead recommend to set a fixed value
ρo = 1035 Kgm−3. This value is a sensible choice for the reference density used in a Boussinesq ocean climate
model since, with the exception of only a small percentage of the ocean, density in the World Ocean varies by
no more than 2% from this value (Gill, 1982, page 47).

Second, we have assumed here that the total ocean surface, A, does not change when the sea level is changing
as it is the case in all global ocean GCMs (wetting and drying of grid point is not allowed).
Third, the discretisation of equation 12.6 depends on the type of free surface which is considered. In the non

linear free surface case, it is given by

ηs = −
∑
i, j, k da e1te2te3t∑
i, j, k e1te2te3t
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whereas in the linear free surface, i.e. when key_linssh is specified, the volume above the z=0 surface must
be explicitly taken into account to better approximate the total ocean mass and thus the steric sea level:

ηs = −
∑
i, j, k da e1te2te3t +

∑
i, j da e1te2tη∑

i, j, k e1te2te3t +
∑
i, j e1te2tη

The fourth and last remark concerns the effective sea level and the presence of sea-ice. In the real ocean, sea
ice (and snow above it) depresses the liquid seawater through its mass loading. This depression is a result of
the mass of sea ice/snow system acting on the liquid ocean. There is, however, no dynamical effect associated
with these depressions in the liquid ocean sea level, so that there are no associated ocean currents. Hence, the
dynamically relevant sea level is the effective sea level, i.e. the sea level as if sea ice (and snow) were converted to
liquid seawater (Campin et al., 2008). However, in the current version of NEMO the sea-ice is levitating above
the ocean without mass exchanges between ice and ocean. Therefore the model effective sea level is always
given by η + ηs, whether or not there is sea ice present.
Global averages of both the steric (sshsteric diagnostic) and thermosteric (sshthster diagnostic) sea level

can be output by the AR5 diagnostics module ( diaar5.F90 , see subsection 12.9.2). The latter is the steric sea
level due to changes in ocean density arising only from changes in temperature. It is given by:

ηs = −
1

A

∫
D

da(T, So, po) dv

where So and po are the initial salinity and pressure, respectively.
When this diagnostic is output, salinity data for So must be provided via a variable named vosaline in a

file named sali_ref_clim_monthly.nc. This data must be provided as a monthly climatology; i.e. the file’s time
coordinate must have a length of 12.

12.8. Tidal harmonic and generic multiple-linear-regression analysis
( diamlr.F90 )

Functionality for multiple-linear-regression (MLR) analysis of arbitrary output fields, using regressors that are
a function of the continuous model time, is available as a diagnostic option of NEMO. Its implementation
makes use of the ordinary-least-squares method (a method overview can be found here), it depends on XIOS
for generating a set of intermediate output files, the set of regressors is configurable as part of the model-
output XIOS configuration, and the regression analyses can be completed versatilely in a post-processing step.
In particular, the analysis time window remains flexible until the post-processing step, from partial model
runs (depending on the selected temporal resolution for the intermediate output) to spanning multiple restart
segments; also, the original regressor set can be restricted at the post-processing step. For the specific case of
tidal harmonic analysis, the configuration of regressors that correspond to tidal constituents available for tidal
forcing (see section 7.8) is facilitated through a substitution mechanism (i.e. model-provided tidal frequencies,
phases, and amplitudes can be referred to symbolically in MLR analysis configurations).

12.8.1. Configuration of the multiple-linear-regression analysis
The MLR analysis is activated by defining an empty file-group entry

<file_group id="diamlr_files" output_freq="<output frequency>" enabled=".TRUE." />

in the XIOS configuration, where <output frequency> specifies the temporal resolution of the intermediate
output: if defined, this file group will be populated during model initialisation. Other prerequisite XIOS-
configuration elements (regressors and the time variable) are pre-defined in the default XIOS configuration file
./cfgs/SHARED/field_def_nemo-oce.xml, and can be modified if required.

Regressors are defined and enabled within the XIOS field group <field_group id="diamlr_fields"> in the
form of individual fields that are computed from the spatially uniform field diamlr_time as

<field id="diamlr_r<mmm>" field_ref="diamlr_time" expr="<expression>" enabled=".TRUE." comment="<comment>" />,

where <mmm> is a 3-digit identification number, <expression> a functional expression, and <comment> an
arbitrary string (which may be utilised to pass information to post-processing utilities); field diamlr_time
contains the continuous model time in seconds. In the functional expression, XIOS requires the specified
reference field diamlr_time to be included; therefore, in order to obtain a constant expression for fitting an
intercept, diamlr_time^0 can be chosen. The model time diamlr_time corresponds to module variable adatrj
of module dom_oce.F90 and is defined in module daymod.F90 ; its continuity across model restarts depends
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on a selection made in &namdom (namelist 3.2) . Similarly, a XIOS field <field name> can be selected for MLR
analysis through the definition of a new field

<field id="diamlr_f<nnn>" field_ref="<field name>" enabled=".TRUE." />

in field group <field_group id="diamlr_fields">, where <nnn> is a 3-digit identification number.
For the purpose of tidal harmonic analysis, two orthogonal regressors per analysed tidal-constituent signal

need to be defined in order to fit both the amplitude and phase of the corresponding harmonic, typically
a sine and cosine function with identical argument. Further, regressor configurations can be equipped with
placeholders to refer to the frequency, phase, and amplitude of each of the constituents available and evaluated
for tidal forcing of the model. In particular:

__TDE_<constituent>_omega__
refers to the angular velocity (in units of rad s−1);

__TDE_<constituent>_phase__
refers to the phase, including the nodel correction at the beginning of the model run (in units of rad); and

__TDE_<constituent>_amplitude__
refers to the equilibrium-tide amplitude (in units of m)

of tidal constituent <constituent>. During model initialisation, these placeholders are automatically substi-
tuted with the corresponding model-computed values for the respective tidal constituent.
A default set of regressors relevant for tidal harmonic analysis has been pre-defined (see ./cfgs/SHARED/

field_def_nemo-oce.xml) and can be redefined. An example of such a redefinition can be found in the
AMM12 reference configuration, in file ./cfgs/AMM12/EXPREF/context_nemo.xml.

12.8.2. The intermediate output and its post-processing
Internally, during model initialisation, the initial XIOS configuration for MLR analysis is expanded automat-
ically through the generation of field and output-file definitions for the relevant intermediate model output.
The resulting intermediate output consists of fields of scalar products between each regressor and the values
of the fields selected for MLR analysis, as well as of scalar products between each regressor-regressor pair, all
sampled at the configured interval. For the final analysis only the scalar products over the analysis time span
are required, thus the intermediate output can be freely subset or combined (added) along its time dimension
to select the analysis window (which enables analyses across multiple restart segments) during post-processing.
The total number of intermediate output variables depends on the number of analysed fields (nf ) and the

number of regressors (nr) (for tidal analysis, nr = 2nc + 1, i.e. twice the number of tidal constituents, nc,
plus one regressor to fit the intercept) and amounts to nfnr + 2n2r − nr (of which 2n2r − nr variables are scalar
time series). These output variables are written to output files labelled with diamlr_scalar, which contain
the regressor-regressor scalar products, and with diamlr_grid_<grid_type>, which contain the regressor-
diagnostic scalar-product fields for the fields defined on a grid of type <grid_type>.
For the computation of regression coefficients from previously generated intermediate output files, the rudi-

mentary script ./tools/DIAMLR/diamlr.py can be used. This script is provided as a simple example of the
final analysis step: it processes suitable intermediate-output files by adding all available time slices and by com-
puting regression coefficients for all available analysed fields and for all or a subset of the regressors identified
from the content of the intermediate-output files. To complete a tidal harmonic analysis, the pairs of regression
coefficients associated with each of the tidal constituents selected for analysis (the comment attribute could be
used for identifying such pairs) could in turn be converted into maps of amplitudes and phases.

12.9. Other diagnostics
Aside from the standard model variables, other diagnostics can be computed on-line. The available ready-to-add
diagnostics modules can be found in directory DIA.

12.9.1. Depth of various quantities ( diahth.F90 )
The following diagnostics are available via the diahth.F90 module when key_diahth is specified:

- the mixed layer depth (based on the density criterion of de Boyer Montégut et al., 2004)
- the turbocline depth (based on a turbulent mixing coefficient criterion)
- the depth of the 20◦C isotherm
- the depth of the thermocline (maximum of the vertical temperature gradient)
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Figure 12.1.: Decomposition of the World Ocean (shown here for the ORCA2 grid) into sub-basins used to compute the heat and
salt transports as well as the meridional stream-function: Atlantic basin (red), Pacific basin (green), Indian basin
(blue), Indo-Pacific basin (blue+green). Note that semi-enclosed seas (Red, Med and Baltic seas) as well as Hudson
Bay are removed from the sub-basins, and that the Arctic Ocean has been split into Atlantic and Pacific basins along
the North fold line.

12.9.2. CMIP-specific and poleward transport diagnostics ( diaar5.F90 ,
diaptr.F90 )

Diagnostics in the diaar5.F90 module correspond to outputs that are required for the AR5/CMIP5 simulations
(see for example, the thermosteric sea level diagnostic in section 12.7).

The diaptr.F90 module computes the online poleward heat and salt transports, their advective and diffusive
component, the meridional stream function, and the zonal mean temperature, salinity and cell i-k surface
area. These are computed by default for the global ocean, but if the file subbasins.nc is provided then these
diagnostics are also computed for the Atlantic, Indian, Pacific and Indo-Pacific Ocean basins (defined north of
30◦S). The atlmsk, indmsk and pacmsk variables in this file are masks corresponding to the Atlantic, Indian
and Pacific basins, while the Indo-Pacific basin mask is computed as the union of the Indian and Pacific basin
masks (figure 12.1).

The diagnostics available from both modules are listed in the ./cfgs/SHARED/field_def_nemo-oce.xml
XIOS configuration file: diaar5.F90 diagnostics are listed under <!-- variables available with diaar5
--> comment headers, while diaptr.F90 diagnostics are listed within the <field_group id="diaptr" > ele-
ment.

12.9.3. De-tided diagnostic output from tidal models ( dia25h.F90 ,
diadetide.F90 )

25-hour averages ( dia25h.F90 )

Modelled fields of potential temperature, salinity, SSH, velocity, vertical diffusivity and viscosity, TKE, and
the mixing length can be approximately de-tided by crudely (fully) removing the signal of the M2 (S2) tidal
constituent. This operation is carried out by the dia25h.F90 module by averaging 25 instantaneous values
at one-hour intervals that span consecutive periods of 24 model hours (i.e. the model state at the boundaries
of such sampling windows is accounted for in both adjacent averages). As a consequence of this method of
averaging 25 hourly values, the least common multiple of the time-step length rn_Dt and 3600 s is required
to be 3600 s. This diagnostic is activated when any of the available daily 25-hour-average output fields is
selected in the XIOS model-output configuration: temper25h, salin25h, ssh25h, vozocrtx25h, vomecrty25h,
vovecrtz25h, avt25h, avm25h, tke25h, or mxln25h.

Generic de-tiding of model output ( diadetide.F90 , experimental)

A more generic alternative to the de-tiding option provided by module dia25h.F90 is available with module
diadetide.F90 ; this option, however, has not been fully developed and well tested, and therefore should be
considered to be an experimental feature and used with care. Like for the dia25h.F90 implementation, the
current version of this alternative de-tiding option computes daily averages with an averaging window that
corresponds to twice the M2 tidal period; in contrast to module dia25h.F90 , the averaging procedure is more
accurate for sufficiently small time steps, the method can be used with an arbitrary time-step length, and it
can be applied to analyse arbitrary output fields available for XIOS-based model output.
An example of the application of the de-tiding option provided by module diadetide.F90 has been in-

cluded in the AMM12 reference configuration. The corresponding activation can be found in the XIOS file
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group diadetide_files defined in file cfgs/AMM12/EXPREF/context_nemo.xml. Implementation details (in
particular the computation of the averaging weights) can be found in module diadetide.F90 .

12.9.4. Courant numbers
Courant numbers provide a theoretical indication of the model’s numerical stability. The advective Courant
numbers can be calculated according to

Cu = |u|∆t
e1u

, Cv = |v|
∆t

e2v
, Cw = |w| ∆t

e3w

in the zonal, meridional and vertical directions respectively. The vertical component is included although it is
not strictly valid as the vertical velocity is calculated from the continuity equation rather than as a prognostic
variable. Physically this represents the rate at which information is propogated across a grid cell. Values greater
than 1 indicate that information is propagated across more than one grid cell in a single time step.

Courant number diagnostics can be activated by setting ln_diacfl=.true. in the &namctl (namelist 16.2)
namelist. The global maximum values of Cu, Cv, Cw, and their coordinates, for each timestep and for the whole
model run, are written to an ascii file named cfl_diagnostics.ascii. The maximum values for the whole model
run are also copied to the ocean.output file. Additionally, the depth maxima of Cu, Cv, and Cw are available as
2D XIOS diagnostics (cfl_cu, cfl_cv, and cfl_cw fields respectively).
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Sect. 13.1 Running the observation operator code example

The observation and model comparison code, the observation operator (OBS), reads in observation files
(temperature profiles, salinity profiles, velocity profiles, sea surface temperature, sea surface salinity, sea level
anomaly, sea surface velocity, sea ice concentration, sea ice thickness) and calculates an interpolated model
equivalent value at the observation location and nearest model time step. The resulting data are saved in a
“feedback” file (or files). The code was originally developed for use with the NEMOVAR data assimilation code,
but can be used for validation or verification of the model or with any other data assimilation system. Its use
can be extended to other variables, for instance biogeochemistry, with small changes to the code.
The OBS code is called from nemogcm.F90 for model initialisation and to calculate the model equivalent

values for observations on the 0th time step. The code is then called again after each time step from step.F90
. The code is only activated if the &namobs (namelist 13.1) namelist logical ln_diaobs is set to true.

For all data types a 2D horizontal interpolator or averager is needed to interpolate/average the model fields to
the observation location. For in situ profiles, a 1D vertical interpolator is needed in addition to provide model
fields at the observation depths. This now works in a generalised vertical coordinate system.
Some profile observation types (e.g. tropical moored buoys) are made available as daily averaged quantities.

The observation operator code can be set-up to calculate the equivalent daily average model temperature fields
using the nn_profdavtypes namelist array. Some SST observations are equivalent to a night-time average
value and the observation operator code can calculate equivalent night-time average model fields by setting the
namelist value ln_night to true. Otherwise (by default) the model value from the nearest time step to the
observation time is used.
The code is controlled by the namelist &namobs (namelist 13.1) and multiple instances of the namelist

&namobs_dta (namelist 13.2) , one for each observation group. See the following sections for more details on
setting up the namelists.
In section 13.1 a test example of the observation operator code is introduced, including where to obtain

data and how to setup the namelists. In section 13.2 some more technical details of the available options
are introduced, and we also show more complete namelists. In section 13.3 example “feedback” file NetCDF
headers are shown. In section 13.4 a description of how to add an observation operator for a new variable
is given. In section 13.5 some of the theoretical aspects of the observation operator are described including
interpolation methods and running on multiple processors. In section 13.6 the standalone observation operator
code is described. In section 13.7 we describe some utilities to help work with the files produced by the OBS
code.

13.1. Running the observation operator code example
In this section an example of running the observation operator code is described using profile observation
data which can be freely downloaded. It shows how to adapt an existing run and build of NEMO to run the
observation operator. Note also the observation operator and the assimilation increments code are run in the
ORCA2_ICE_OBS SETTE test.

1. Compile NEMO.

2. Download some EN4 data from www.metoffice.gov.uk/hadobs. Choose observations which are valid for
the period of your test run because the observation operator compares the model and observations for a
matching date and time.

3. Compile the OBSTOOLS code in the tools directory using:

./maketools -n OBSTOOLS -m [ARCH]

replacing [ARCH] with the build architecture file for your machine. Note the tools are checked out from a
separate location of the repository (under /utils/tools).

4. Convert the EN4 data into feedback format:

enact2fb.exe profiles_01.nc EN.4.1.1.f.profiles.g10.YYYYMM.nc

5. Include the following in the NEMO namelist to run the observation operator on this data:

Top-level options are defined through the &namobs (namelist 13.1) namelist variables.

• ln_diaobs turns on the observation operator code.
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!-----------------------------------------------------------------------
&namobs ! observation and model comparison (default: OFF)
!-----------------------------------------------------------------------

ln_diaobs = .false. ! Logical switch for the observation operator
nn_obsgroups = 0 ! Number of observation group namelists (namobs_dta) to read in
ln_grid_global = .true. ! Logical switch for global distribution of observations
ln_grid_search_lookup = .false. ! Logical switch for obs grid search w/lookup table
cn_gridsearchfile = 'grid_search' ! Grid search file name header
rn_gridsearchres = 0.5 ! Grid search resolution
dn_dobsini = 00010101.000000 ! Initial date in window YYYYMMDD.HHMMSS
dn_dobsend = 99991231.000000 ! Final date in window YYYYMMDD.HHMMSS

/

namelist 13.1.: &namobs

• nn_obsgroups specifies the number of observation groups and therefore number of &namobs_dta (namelist 13.2)
namelists required; in this example it should be 1, as the temperature and salinity data are grouped to-
gether in the same input file(s).

• The model grid points for a particular observation latitude and longitude are found using the grid search-
ing part of the code. This can be expensive, particularly for large numbers of observations, setting
ln_grid_search_lookup allows the use of a lookup table which is saved into an cn_gridsearchfile
file (or files). This will need to be generated the first time if it does not exist in the run directory. How-
ever, once produced it will significantly speed up future grid searches. rn_gridsearchres specifies the
resolution (in degrees) of the grid search.

• Setting ln_grid_global means that the code distributes the observations evenly between processors.
Alternatively each processor will work with observations located within the model subdomain (see sub-
section 13.5.3).

• rn_dobsini and rn_dobsend can be used to restrict the period the observation operator is run for.

A &namobs_dta (namelist 13.2) namelist is then needed for each observation group. Typically, an individual
variable (e.g. sea surface temperature) would be its own group, but if variables are collocated in the input files
(e.g. temperature and salinity profiles, or meridional and zonal velocities) they would be considered as a single
group.

• cn_groupname is used to name the output “feedback” file(s).

• ln_enabled must be .true. for the observation operator to be run on this group, setting it to .false.
allows it to be turned off without needing to remove the instance of &namobs_dta (namelist 13.2) .

• Setting ln_prof specifies the observations consist of vertical profiles, as in this example. ln_surf
indicates surface data. One and only one of ln_prof and ln_surf must be .true..

• cn_obsfiles specifies the input filename or array of filenames.

• cn_obstypes specifies the observation variable(s). In this example it should be set to ’POTM’,’PSAL’
for profile temperature and profile salinity. A full list of cn_obstypes options is given in section 13.3.

Other &namobs_dta (namelist 13.2) options are available to control specific behaviour, as detailed in sec-
tion 13.2.
A number of utilities are now provided to plot the feedback files, convert and recombine the files. These are

explained in more detail in section 13.7. Utilities to convert other input data formats into the feedback format
are also described in section 13.7.

13.2. Technical details and full namelist options
Here we show more complete information about the available options in the &namobs_dta (namelist 13.2)
namelists. Each item in &namobs (namelist 13.1) has already been described in section 13.1. The first six
entries in &namobs_dta (namelist 13.2) , which are the ones most likely to be modified by users, have also been
described in section 13.1.
The remaining options in &namobs_dta (namelist 13.2) offer more specialist control, with some only relevant

to specific observation types.
The following are relevant to all observation types:

• Setting ln_nea rejects observations within a grid cell that neighbours land.
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Sect. 13.2 Technical details and full namelist options

!-----------------------------------------------------------------------
&namobs_dta ! observation and model comparison - external data (see: namobs)
!-----------------------------------------------------------------------

cn_groupname = '' ! Name of obs group (output file will be cn_groupname//'fb_????.nc')
ln_enabled = .true. ! Logical switch for group being processed not ignored
ln_prof = .false. ! Logical switch for profile data
ln_surf = .false. ! Logical switch for surface data
cn_obsfiles = '' ! Observation file names
cn_obstypes = '' ! Observation types to read from files
ln_nea = .false. ! Logical switch for rejecting observations near land
ln_bound_reject = .false. ! Logical switch for rejecting obs near the boundary
ln_ignmis = .true. ! Logical switch for ignoring missing files
nn_2dint = 0 ! Type of horizontal interpolation method

! Relevant if ln_prof = .true.:
nn_1dint = 0 ! Type of vertical interpolation method
nn_profdavtypes = -1 ! Profile data types representing a daily average
ln_all_at_all = .false. ! Logical switch for computing all model variables at all obs points

! Relevant if ln_surf = .true.:
ln_fp_indegs = .true. ! Logical: T=> averaging footprint is in degrees, F=> in metres
rn_avglamscl = 0. ! E/W diameter of observation footprint (metres/degrees)
rn_avgphiscl = 0. ! N/S diameter of observation footprint (metres/degrees)
ln_night = .false. ! Logical switch for calculating night-time average for obs
ln_time_mean_bkg = .false. ! Logical switch for applying time mean of background (e.g. to remove tidal signal)
rn_time_mean_period = 24.8333 ! Meaning period in hours if ln_time_mean_bkg (default is AMM tidal period)
ln_obsbias = .false. ! Logical switch for bias correction
cn_obsbiasfiles = '' ! Bias input file names
cn_type_to_biascorrect = '' ! Observation type to bias correct
cn_obsbiasfile_varname = '' ! Bias variable name in input file

! Relevant if 'SLA' in cn_obstypes:
ln_altbias = .false. ! Logical switch for altimeter bias correction
cn_altbiasfile = '' ! Altimeter bias input file name
nn_msshc = 0 ! MSSH correction scheme
rn_mdtcorr = 1.61 ! MDT correction
rn_mdtcutoff = 65.0 ! MDT cutoff for computed correction

! Relevant if 'POTM', 'PSAL', 'SST', or 'SSS' in cn_obstypes:
ln_output_clim = .false. ! Logical switch to output climatological temperature/salinity (if ln_tradmp)

! Relevant if 'FBD' in cn_obstypes:
rn_radar_snow_penetr = 1.0 ! Snow depth penetration factor for radar ice freeboard conversion

/

namelist 13.2.: &namobs_dta

• Setting ln_bound_reject rejects observations within a grid cell that neighbours a boundary point.

• Setting ln_ignmis merely issues a warning if a file listed in cn_obsfiles is missing, otherwise execution
of the code ceases with an error.

• nn_2dint sets the type of horizontal interpolation method, see section 13.5 for details.

The following are only relevant to profile observations:

• nn_1dint sets the type of vertical interpolation method, see section 13.5 for details.

• nn_profdavtypes is an array of profile observation types corresponding to entries in the STATION_TYPE
variable in the feedback file (see section 13.3) which should be treated as daily averages rather than at a
specific time. Set to -1 if no daily averaged types.

• Setting ln_all_at_all means that if there is more than one variable in cn_obstypes , then a model
counterpart is calculated for all variables at any location for which there is an observation of any of the
variables.

The following are only relevant to surface observations:

• Setting ln_fp_indegs means that the footprint of the observations (see options below) is in units of
degrees rather than metres.

• rn_avglamscl and rn_avgphiscl specify the east/west and north/south footprint of the observations
respectively. This is only relevant if nn_2dint is set to 5 or 6. See section 13.5 for details.

• Setting ln_night calculates a night-time average model counterpart rather than one at the nearest model
time step.

• Setting ln_time_mean_bkg calculates a model counterpart averaged over rn_time_mean_period (in
hours) rather than one at the nearest model time step.
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• Setting ln_obsbias allows a NetCDF file containing an estimate of the observation bias on the model
grid to be read in, and this bias to be removed from the observation values. cn_obsbiasfiles is a list of
observation bias file names. cn_type_to_biascorrect is the variable in cn_obstypes to bias correct.
cn_obsbiasfile_varname is the NetCDF variable to read from cn_obsbiasfiles .

The following are only relevant to sea level anomaly observations (’SLA’ is in cn_obstypes ), which require
use of a mean dynamic topography (MDT) (see section 13.3) which may need bias correcting:

• Setting ln_altbias means that the MDT used is bias corrected using a bias file on the model grid in
the NetCDF file cn_altbiasfile .

• nn_msshc sets the mean sea surface height (MSSH) correction to apply to the MDT. 0 means no correction
is applied. 1 means a correction based on the mean difference between the MDT and model SSH is applied.
2 means a correction of rn_mdtcorr is applied. Either correction is only applied at latitudes between
rn_mdtcutoff degrees north and rn_mdtcutoff degrees south.

The following is only relevant to temperature and salinity observations (’POTM’, ’PSAL’, ’SST’, or ’SSS’ in
cn_obstypes ):

• Setting ln_output_clim means that as well as a model counterpart, an equivalent climatological coun-
terpart is output. The climatology used is the same as used for tracer damping (see section 6.6). Therefore,
this option also requires ln_tradmp to be set in &namtra_dmp (namelist 6.6) .

The following is only relevant to sea ice freeboard observations (’FBD’ is in cn_obstypes ):

• rn_radar_snow_penetr sets the snow depth penetration factor for the radar ice freeboard conversion.

13.3. Example feedback type observation file headers
The observation operator code uses the feedback observation file format for all data types. All the observation
files must be in NetCDF format. Some example headers (produced using ncdump -h) for temperature and
salinity profile data, sea level anomaly and sea surface temperature are in the following subsections.
The VARIABLES in the feedback files must match those specified in cn_obstypes in &namobs_dta

(namelist 13.2) . The following variable names can be used:

• POTM: temperature profiles

• PSAL: salinity profiles

• UVEL: zonal velocities (profile or surface)

• VVEL: meridional velocities (profile or surface)

• SST: sea surface temperature

• SLA: sea level anomaly

• SSS: sea surface salinity

• ICECONC: sea ice concentration

• SIT: sea ice thickness

• FBD: sea ice freeboard

Other variables, such as biogeochemical variables from PISCES, are not currently available. However, to
define a new variable a user need only add an extra option to the relevant SELECT CASE statement in the
routine dia_obs, that matches a new observation type with the desired model variable (see section 13.4).

13.3.1. Temperature and salinity profile feedback file
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Sect. 13.3 Example feedback type observation file headers

netcdf profiles_01 {
dimensions:

N_OBS = 603 ;
N_LEVELS = 150 ;
N_VARS = 2 ;
N_QCF = 2 ;
N_ENTRIES = 1 ;
N_EXTRA = 1 ;
STRINGNAM = 8 ;
STRINGGRID = 1 ;
STRINGWMO = 8 ;
STRINGTYP = 4 ;
STRINGJULD = 14 ;

variables:
char VARIABLES(N_VARS, STRINGNAM) ;

VARIABLES:long_name = "List of variables in feedback files" ;
char ENTRIES(N_ENTRIES, STRINGNAM) ;

ENTRIES:long_name = "List of additional entries for each variable in feedback files" ;
char EXTRA(N_EXTRA, STRINGNAM) ;

EXTRA:long_name = "List of extra variables" ;
char STATION_IDENTIFIER(N_OBS, STRINGWMO) ;

STATION_IDENTIFIER:long_name = "Station identifier" ;
char STATION_TYPE(N_OBS, STRINGTYP) ;

STATION_TYPE:long_name = "Code instrument type" ;
double LONGITUDE(N_OBS) ;

LONGITUDE:long_name = "Longitude" ;
LONGITUDE:units = "degrees_east" ;
LONGITUDE:_Fillvalue = 99999.f ;

double LATITUDE(N_OBS) ;
LATITUDE:long_name = "Latitude" ;
LATITUDE:units = "degrees_north" ;
LATITUDE:_Fillvalue = 99999.f ;

double DEPTH(N_OBS, N_LEVELS) ;
DEPTH:long_name = "Depth" ;
DEPTH:units = "metre" ;
DEPTH:_Fillvalue = 99999.f ;

int DEPTH_QC(N_OBS, N_LEVELS) ;
DEPTH_QC:long_name = "Quality on depth" ;
DEPTH_QC:Conventions = "q where q =[0,9]" ;
DEPTH_QC:_Fillvalue = 0 ;

int DEPTH_QC_FLAGS(N_OBS, N_LEVELS, N_QCF) ;
DEPTH_QC_FLAGS:long_name = "Quality flags on depth" ;
DEPTH_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;

double JULD(N_OBS) ;
JULD:long_name = "Julian day" ;
JULD:units = "days since JULD_REFERENCE" ;
JULD:Conventions = "relative julian days with decimal part (as parts of day)" ;
JULD:_Fillvalue = 99999.f ;

char JULD_REFERENCE(STRINGJULD) ;
JULD_REFERENCE:long_name = "Date of reference for julian days" ;
JULD_REFERENCE:Conventions = "YYYYMMDDHHMMSS" ;

int OBSERVATION_QC(N_OBS) ;
OBSERVATION_QC:long_name = "Quality on observation" ;
OBSERVATION_QC:Conventions = "q where q =[0,9]" ;
OBSERVATION_QC:_Fillvalue = 0 ;

int OBSERVATION_QC_FLAGS(N_OBS, N_QCF) ;
OBSERVATION_QC_FLAGS:long_name = "Quality flags on observation" ;
OBSERVATION_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
OBSERVATION_QC_FLAGS:_Fillvalue = 0 ;

int POSITION_QC(N_OBS) ;
POSITION_QC:long_name = "Quality on position (latitude and longitude)" ;
POSITION_QC:Conventions = "q where q =[0,9]" ;
POSITION_QC:_Fillvalue = 0 ;

int POSITION_QC_FLAGS(N_OBS, N_QCF) ;
POSITION_QC_FLAGS:long_name = "Quality flags on position" ;
POSITION_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
POSITION_QC_FLAGS:_Fillvalue = 0 ;

int JULD_QC(N_OBS) ;
JULD_QC:long_name = "Quality on date and time" ;
JULD_QC:Conventions = "q where q =[0,9]" ;
JULD_QC:_Fillvalue = 0 ;

int JULD_QC_FLAGS(N_OBS, N_QCF) ;
JULD_QC_FLAGS:long_name = "Quality flags on date and time" ;
JULD_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
JULD_QC_FLAGS:_Fillvalue = 0 ;

int ORIGINAL_FILE_INDEX(N_OBS) ;
ORIGINAL_FILE_INDEX:long_name = "Index in original data file" ;
ORIGINAL_FILE_INDEX:_Fillvalue = -99999 ;

float POTM_OBS(N_OBS, N_LEVELS) ;
POTM_OBS:long_name = "Potential temperature" ;
POTM_OBS:units = "Degrees Celsius" ;
POTM_OBS:_Fillvalue = 99999.f ;

float POTM_Hx(N_OBS, N_LEVELS) ;
POTM_Hx:long_name = "Model interpolated potential temperature" ;
POTM_Hx:units = "Degrees Celsius" ;
POTM_Hx:_Fillvalue = 99999.f ;

int POTM_QC(N_OBS) ;
POTM_QC:long_name = "Quality on potential temperature" ;
POTM_QC:Conventions = "q where q =[0,9]" ;
POTM_QC:_Fillvalue = 0 ;
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int POTM_QC_FLAGS(N_OBS, N_QCF) ;
POTM_QC_FLAGS:long_name = "Quality flags on potential temperature" ;
POTM_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
POTM_QC_FLAGS:_Fillvalue = 0 ;

int POTM_LEVEL_QC(N_OBS, N_LEVELS) ;
POTM_LEVEL_QC:long_name = "Quality for each level on potential temperature" ;
POTM_LEVEL_QC:Conventions = "q where q =[0,9]" ;
POTM_LEVEL_QC:_Fillvalue = 0 ;

int POTM_LEVEL_QC_FLAGS(N_OBS, N_LEVELS, N_QCF) ;
POTM_LEVEL_QC_FLAGS:long_name = "Quality flags for each level on potential temperature" ;
POTM_LEVEL_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
POTM_LEVEL_QC_FLAGS:_Fillvalue = 0 ;

int POTM_IOBSI(N_OBS) ;
POTM_IOBSI:long_name = "ORCA grid search I coordinate" ;

int POTM_IOBSJ(N_OBS) ;
POTM_IOBSJ:long_name = "ORCA grid search J coordinate" ;

int POTM_IOBSK(N_OBS, N_LEVELS) ;
POTM_IOBSK:long_name = "ORCA grid search K coordinate" ;

char POTM_GRID(STRINGGRID) ;
POTM_GRID:long_name = "ORCA grid search grid (T,U,V)" ;

float PSAL_OBS(N_OBS, N_LEVELS) ;
PSAL_OBS:long_name = "Practical salinity" ;
PSAL_OBS:units = "PSU" ;
PSAL_OBS:_Fillvalue = 99999.f ;

float PSAL_Hx(N_OBS, N_LEVELS) ;
PSAL_Hx:long_name = "Model interpolated practical salinity" ;
PSAL_Hx:units = "PSU" ;
PSAL_Hx:_Fillvalue = 99999.f ;

int PSAL_QC(N_OBS) ;
PSAL_QC:long_name = "Quality on practical salinity" ;
PSAL_QC:Conventions = "q where q =[0,9]" ;
PSAL_QC:_Fillvalue = 0 ;

int PSAL_QC_FLAGS(N_OBS, N_QCF) ;
PSAL_QC_FLAGS:long_name = "Quality flags on practical salinity" ;
PSAL_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
PSAL_QC_FLAGS:_Fillvalue = 0 ;

int PSAL_LEVEL_QC(N_OBS, N_LEVELS) ;
PSAL_LEVEL_QC:long_name = "Quality for each level on practical salinity" ;
PSAL_LEVEL_QC:Conventions = "q where q =[0,9]" ;
PSAL_LEVEL_QC:_Fillvalue = 0 ;

int PSAL_LEVEL_QC_FLAGS(N_OBS, N_LEVELS, N_QCF) ;
PSAL_LEVEL_QC_FLAGS:long_name = "Quality flags for each level on practical salinity" ;
PSAL_LEVEL_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
PSAL_LEVEL_QC_FLAGS:_Fillvalue = 0 ;

int PSAL_IOBSI(N_OBS) ;
PSAL_IOBSI:long_name = "ORCA grid search I coordinate" ;

int PSAL_IOBSJ(N_OBS) ;
PSAL_IOBSJ:long_name = "ORCA grid search J coordinate" ;

int PSAL_IOBSK(N_OBS, N_LEVELS) ;
PSAL_IOBSK:long_name = "ORCA grid search K coordinate" ;

char PSAL_GRID(STRINGGRID) ;
PSAL_GRID:long_name = "ORCA grid search grid (T,U,V)" ;

float TEMP(N_OBS, N_LEVELS) ;
TEMP:long_name = "Insitu temperature" ;
TEMP:units = "Degrees Celsius" ;
TEMP:_Fillvalue = 99999.f ;

// global attributes:
:title = "NEMO observation operator output" ;
:Convention = "NEMO unified observation operator output" ;

}

13.3.2. Sea level anomaly feedback file

netcdf sla_01 {
dimensions:

N_OBS = 41301 ;
N_LEVELS = 1 ;
N_VARS = 1 ;
N_QCF = 2 ;
N_ENTRIES = 1 ;
N_EXTRA = 1 ;
STRINGNAM = 8 ;
STRINGGRID = 1 ;
STRINGWMO = 8 ;
STRINGTYP = 4 ;
STRINGJULD = 14 ;

variables:
char VARIABLES(N_VARS, STRINGNAM) ;

VARIABLES:long_name = "List of variables in feedback files" ;
char ENTRIES(N_ENTRIES, STRINGNAM) ;

ENTRIES:long_name = "List of additional entries for each variable in feedback files" ;
char EXTRA(N_EXTRA, STRINGNAM) ;

EXTRA:long_name = "List of extra variables" ;
char STATION_IDENTIFIER(N_OBS, STRINGWMO) ;

STATION_IDENTIFIER:long_name = "Station identifier" ;
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char STATION_TYPE(N_OBS, STRINGTYP) ;
STATION_TYPE:long_name = "Code instrument type" ;

double LONGITUDE(N_OBS) ;
LONGITUDE:long_name = "Longitude" ;
LONGITUDE:units = "degrees_east" ;
LONGITUDE:_Fillvalue = 99999.f ;

double LATITUDE(N_OBS) ;
LATITUDE:long_name = "Latitude" ;
LATITUDE:units = "degrees_north" ;
LATITUDE:_Fillvalue = 99999.f ;

double DEPTH(N_OBS, N_LEVELS) ;
DEPTH:long_name = "Depth" ;
DEPTH:units = "metre" ;
DEPTH:_Fillvalue = 99999.f ;

int DEPTH_QC(N_OBS, N_LEVELS) ;
DEPTH_QC:long_name = "Quality on depth" ;
DEPTH_QC:Conventions = "q where q =[0,9]" ;
DEPTH_QC:_Fillvalue = 0 ;

int DEPTH_QC_FLAGS(N_OBS, N_LEVELS, N_QCF) ;
DEPTH_QC_FLAGS:long_name = "Quality flags on depth" ;
DEPTH_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;

double JULD(N_OBS) ;
JULD:long_name = "Julian day" ;
JULD:units = "days since JULD_REFERENCE" ;
JULD:Conventions = "relative julian days with decimal part (as parts of day)" ;
JULD:_Fillvalue = 99999.f ;

char JULD_REFERENCE(STRINGJULD) ;
JULD_REFERENCE:long_name = "Date of reference for julian days" ;
JULD_REFERENCE:Conventions = "YYYYMMDDHHMMSS" ;

int OBSERVATION_QC(N_OBS) ;
OBSERVATION_QC:long_name = "Quality on observation" ;
OBSERVATION_QC:Conventions = "q where q =[0,9]" ;
OBSERVATION_QC:_Fillvalue = 0 ;

int OBSERVATION_QC_FLAGS(N_OBS, N_QCF) ;
OBSERVATION_QC_FLAGS:long_name = "Quality flags on observation" ;
OBSERVATION_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
OBSERVATION_QC_FLAGS:_Fillvalue = 0 ;

int POSITION_QC(N_OBS) ;
POSITION_QC:long_name = "Quality on position (latitude and longitude)" ;
POSITION_QC:Conventions = "q where q =[0,9]" ;
POSITION_QC:_Fillvalue = 0 ;

int POSITION_QC_FLAGS(N_OBS, N_QCF) ;
POSITION_QC_FLAGS:long_name = "Quality flags on position" ;
POSITION_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
POSITION_QC_FLAGS:_Fillvalue = 0 ;

int JULD_QC(N_OBS) ;
JULD_QC:long_name = "Quality on date and time" ;
JULD_QC:Conventions = "q where q =[0,9]" ;
JULD_QC:_Fillvalue = 0 ;

int JULD_QC_FLAGS(N_OBS, N_QCF) ;
JULD_QC_FLAGS:long_name = "Quality flags on date and time" ;
JULD_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
JULD_QC_FLAGS:_Fillvalue = 0 ;

int ORIGINAL_FILE_INDEX(N_OBS) ;
ORIGINAL_FILE_INDEX:long_name = "Index in original data file" ;
ORIGINAL_FILE_INDEX:_Fillvalue = -99999 ;

float SLA_OBS(N_OBS, N_LEVELS) ;
SLA_OBS:long_name = "Sea level anomaly" ;
SLA_OBS:units = "metre" ;
SLA_OBS:_Fillvalue = 99999.f ;

float SLA_Hx(N_OBS, N_LEVELS) ;
SLA_Hx:long_name = "Model interpolated sea level anomaly" ;
SLA_Hx:units = "metre" ;
SLA_Hx:_Fillvalue = 99999.f ;

int SLA_QC(N_OBS) ;
SLA_QC:long_name = "Quality on sea level anomaly" ;
SLA_QC:Conventions = "q where q =[0,9]" ;
SLA_QC:_Fillvalue = 0 ;

int SLA_QC_FLAGS(N_OBS, N_QCF) ;
SLA_QC_FLAGS:long_name = "Quality flags on sea level anomaly" ;
SLA_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
SLA_QC_FLAGS:_Fillvalue = 0 ;

int SLA_LEVEL_QC(N_OBS, N_LEVELS) ;
SLA_LEVEL_QC:long_name = "Quality for each level on sea level anomaly" ;
SLA_LEVEL_QC:Conventions = "q where q =[0,9]" ;
SLA_LEVEL_QC:_Fillvalue = 0 ;

int SLA_LEVEL_QC_FLAGS(N_OBS, N_LEVELS, N_QCF) ;
SLA_LEVEL_QC_FLAGS:long_name = "Quality flags for each level on sea level anomaly" ;
SLA_LEVEL_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
SLA_LEVEL_QC_FLAGS:_Fillvalue = 0 ;

int SLA_IOBSI(N_OBS) ;
SLA_IOBSI:long_name = "ORCA grid search I coordinate" ;

int SLA_IOBSJ(N_OBS) ;
SLA_IOBSJ:long_name = "ORCA grid search J coordinate" ;

int SLA_IOBSK(N_OBS, N_LEVELS) ;
SLA_IOBSK:long_name = "ORCA grid search K coordinate" ;

char SLA_GRID(STRINGGRID) ;
SLA_GRID:long_name = "ORCA grid search grid (T,U,V)" ;

float MDT(N_OBS, N_LEVELS) ;
MDT:long_name = "Mean Dynamic Topography" ;
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MDT:units = "metre" ;
MDT:_Fillvalue = 99999.f ;

// global attributes:
:title = "NEMO observation operator output" ;
:Convention = "NEMO unified observation operator output" ;

}

To use Sea Level Anomaly (SLA) data the mean dynamic topography (MDT) must be provided in a separate
file defined on the model grid called slaReferenceLevel.nc. The MDT is required in order to produce the model
equivalent sea level anomaly from the model sea surface height. Below is an example header for this file (on the
ORCA025 grid).

dimensions:
x = 1442 ;
y = 1021 ;

variables:
float nav_lon(y, x) ;

nav_lon:units = "degrees_east" ;
float nav_lat(y, x) ;

nav_lat:units = "degrees_north" ;
float sossheig(y, x) ;

sossheig:_FillValue = -1.e+30f ;
sossheig:coordinates = "nav_lon nav_lat" ;
sossheig:long_name = "Mean Dynamic Topography" ;
sossheig:units = "metres" ;
sossheig:grid = "orca025T" ;

13.3.3. Sea surface temperature feedback file

netcdf sst_01 {
dimensions:

N_OBS = 33099 ;
N_LEVELS = 1 ;
N_VARS = 1 ;
N_QCF = 2 ;
N_ENTRIES = 1 ;
STRINGNAM = 8 ;
STRINGGRID = 1 ;
STRINGWMO = 8 ;
STRINGTYP = 4 ;
STRINGJULD = 14 ;

variables:
char VARIABLES(N_VARS, STRINGNAM) ;

VARIABLES:long_name = "List of variables in feedback files" ;
char ENTRIES(N_ENTRIES, STRINGNAM) ;

ENTRIES:long_name = "List of additional entries for each variable in feedback files" ;
char STATION_IDENTIFIER(N_OBS, STRINGWMO) ;

STATION_IDENTIFIER:long_name = "Station identifier" ;
char STATION_TYPE(N_OBS, STRINGTYP) ;

STATION_TYPE:long_name = "Code instrument type" ;
double LONGITUDE(N_OBS) ;

LONGITUDE:long_name = "Longitude" ;
LONGITUDE:units = "degrees_east" ;
LONGITUDE:_Fillvalue = 99999.f ;

double LATITUDE(N_OBS) ;
LATITUDE:long_name = "Latitude" ;
LATITUDE:units = "degrees_north" ;
LATITUDE:_Fillvalue = 99999.f ;

double DEPTH(N_OBS, N_LEVELS) ;
DEPTH:long_name = "Depth" ;
DEPTH:units = "metre" ;
DEPTH:_Fillvalue = 99999.f ;

int DEPTH_QC(N_OBS, N_LEVELS) ;
DEPTH_QC:long_name = "Quality on depth" ;
DEPTH_QC:Conventions = "q where q =[0,9]" ;
DEPTH_QC:_Fillvalue = 0 ;

int DEPTH_QC_FLAGS(N_OBS, N_LEVELS, N_QCF) ;
DEPTH_QC_FLAGS:long_name = "Quality flags on depth" ;
DEPTH_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;

double JULD(N_OBS) ;
JULD:long_name = "Julian day" ;
JULD:units = "days since JULD_REFERENCE" ;
JULD:Conventions = "relative julian days with decimal part (as parts of day)" ;
JULD:_Fillvalue = 99999.f ;

char JULD_REFERENCE(STRINGJULD) ;
JULD_REFERENCE:long_name = "Date of reference for julian days" ;
JULD_REFERENCE:Conventions = "YYYYMMDDHHMMSS" ;

int OBSERVATION_QC(N_OBS) ;
OBSERVATION_QC:long_name = "Quality on observation" ;
OBSERVATION_QC:Conventions = "q where q =[0,9]" ;
OBSERVATION_QC:_Fillvalue = 0 ;

int OBSERVATION_QC_FLAGS(N_OBS, N_QCF) ;
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OBSERVATION_QC_FLAGS:long_name = "Quality flags on observation" ;
OBSERVATION_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
OBSERVATION_QC_FLAGS:_Fillvalue = 0 ;

int POSITION_QC(N_OBS) ;
POSITION_QC:long_name = "Quality on position (latitude and longitude)" ;
POSITION_QC:Conventions = "q where q =[0,9]" ;
POSITION_QC:_Fillvalue = 0 ;

int POSITION_QC_FLAGS(N_OBS, N_QCF) ;
POSITION_QC_FLAGS:long_name = "Quality flags on position" ;
POSITION_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
POSITION_QC_FLAGS:_Fillvalue = 0 ;

int JULD_QC(N_OBS) ;
JULD_QC:long_name = "Quality on date and time" ;
JULD_QC:Conventions = "q where q =[0,9]" ;
JULD_QC:_Fillvalue = 0 ;

int JULD_QC_FLAGS(N_OBS, N_QCF) ;
JULD_QC_FLAGS:long_name = "Quality flags on date and time" ;
JULD_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
JULD_QC_FLAGS:_Fillvalue = 0 ;

int ORIGINAL_FILE_INDEX(N_OBS) ;
ORIGINAL_FILE_INDEX:long_name = "Index in original data file" ;
ORIGINAL_FILE_INDEX:_Fillvalue = -99999 ;

float SST_OBS(N_OBS, N_LEVELS) ;
SST_OBS:long_name = "Sea surface temperature" ;
SST_OBS:units = "Degree centigrade" ;
SST_OBS:_Fillvalue = 99999.f ;

float SST_Hx(N_OBS, N_LEVELS) ;
SST_Hx:long_name = "Model interpolated sea surface temperature" ;
SST_Hx:units = "Degree centigrade" ;
SST_Hx:_Fillvalue = 99999.f ;

int SST_QC(N_OBS) ;
SST_QC:long_name = "Quality on sea surface temperature" ;
SST_QC:Conventions = "q where q =[0,9]" ;
SST_QC:_Fillvalue = 0 ;

int SST_QC_FLAGS(N_OBS, N_QCF) ;
SST_QC_FLAGS:long_name = "Quality flags on sea surface temperature" ;
SST_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
SST_QC_FLAGS:_Fillvalue = 0 ;

int SST_LEVEL_QC(N_OBS, N_LEVELS) ;
SST_LEVEL_QC:long_name = "Quality for each level on sea surface temperature" ;
SST_LEVEL_QC:Conventions = "q where q =[0,9]" ;
SST_LEVEL_QC:_Fillvalue = 0 ;

int SST_LEVEL_QC_FLAGS(N_OBS, N_LEVELS, N_QCF) ;
SST_LEVEL_QC_FLAGS:long_name = "Quality flags for each level on sea surface temperature" ;
SST_LEVEL_QC_FLAGS:Conventions = "NEMOVAR flag conventions" ;
SST_LEVEL_QC_FLAGS:_Fillvalue = 0 ;

int SST_IOBSI(N_OBS) ;
SST_IOBSI:long_name = "ORCA grid search I coordinate" ;

int SST_IOBSJ(N_OBS) ;
SST_IOBSJ:long_name = "ORCA grid search J coordinate" ;

int SST_IOBSK(N_OBS, N_LEVELS) ;
SST_IOBSK:long_name = "ORCA grid search K coordinate" ;

char SST_GRID(STRINGGRID) ;
SST_GRID:long_name = "ORCA grid search grid (T,U,V)" ;

// global attributes:
:title = "NEMO observation operator output" ;
:Convention = "NEMO unified observation operator output" ;

}

13.4. Adding code for a new variable
As detailed in section 13.3, the OBS interface is only defined for specific physics variables. However, the internal
observation operator code is largely generic, and for observation types which can be directly matched to model
variables, is relatively straightforward to implement for additional variables. This could include biogeochemical
variables from PISCES or another coupled model.
In the routine dia_obs in diaobs.F90 (src/OCE/OBS/diaobs.F90) there are two SELECT CASE con-

structs, one for surface variables and one for profile variables. To implement an observation operator for a new
variable, an extra CASE need simply be added to the relevant SELECT CASE construct. To give a generic
example for a profile variable:

CASE('OBSNAME')
zprofvar(:,:,:) = MODELVARIABLE(:,:,:,Kmm)

where MODELVARIABLE is the model variable to be matched to the observation type, and OBSNAME
is the name of the observation variable used in the feedback file and in cn_obstypes in the &namobs_dta
(namelist 13.2) namelist. OBSNAME must have a maximum of eight characters.

Then, a corresponding namelist and feedback file(s) just need to be supplied, following the method described
in section 13.1.
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13.5. Theoretical details
13.5.1. Horizontal interpolation and averaging methods
For most observation types, the horizontal extent of the observation is small compared to the model grid size
and so the model equivalent of the observation is calculated by interpolating from the four surrounding grid
points to the observation location. Some satellite observations (e.g. microwave satellite SST data, or satellite
SSS data) have a footprint which is similar in size or larger than the model grid size (particularly when the grid
size is small). In those cases the model counterpart should be calculated by averaging the model grid points
over the same size as the footprint. NEMO therefore has the capability to specify either an interpolation or an
averaging (for surface observation types only).
The main namelist option associated with the interpolation/averaging is nn_2dint . This default option can

be set to values from 0 to 6. Values between 0 to 4 are associated with interpolation while values 5 or 6 are
associated with averaging.

• nn_2dint=0 : Distance-weighted interpolation

• nn_2dint=1 : Distance-weighted interpolation (small angle)

• nn_2dint=2 : Bilinear interpolation (geographical grid)

• nn_2dint=3 : Bilinear remapping interpolation (general grid)

• nn_2dint=4 : Polynomial interpolation

• nn_2dint=5 : Radial footprint averaging with diameter specified in the namelist as rn_avglamscl in
degrees or metres (set using ln_fp_indegs)

• nn_2dint=6 : Rectangular footprint averaging with E/W and N/S size specified in the namelist as
rn_avglamscl and rn_avgphiscl in degrees or metres (set using ln_fp_indegs)

Below is some more detail on the various options for interpolation and averaging available in NEMO.

Horizontal interpolation

Consider an observation point P with longitude and latitude (λP, ϕP) and the four nearest neighbouring model
grid points A, B, C and D with longitude and latitude (λA, ϕA),(λB, ϕB) etc. All horizontal interpolation
methods implemented in NEMO estimate the value of a model variable x at point P as a weighted linear
combination of the values of the model variables at the grid points A, B etc.:

xP =
1

w
(wAxA + wBxB + wCxC + wDxD)

where wA, wB etc. are the respective weights for the model field at points A, B etc., and w = wA + wB +
wC + wD.
Four different possibilities are available for computing the weights.

1. Great-Circle distance-weighted interpolation. The weights are computed as a function of the great-
circle distance s(P, ·) between P and the model grid points A, B etc. For example, the weight given to
the field xA is specified as the product of the distances from P to the other points:

wA = s(P,B) s(P,C) s(P,D)

where

s (P,M) = cos−1{sinϕP sinϕM + cosϕP cosϕM cos(λM − λP)}

and M corresponds to B, C or D. A more stable form of the great-circle distance formula for small
distances (x near 1) involves the arcsine function (e.g. see p. 101 of Daley and Barker (2001):

s (P,M) = sin−1
{√

1− x2
}
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where

x = aMaP + bMbP + cMcP

and

aM= sinϕM,

aP = sinϕP,

bM= cosϕM cosϕM,

bP = cosϕP cosϕP,

cM= cosϕM sinϕM,

cP = cosϕP sinϕP.

2. Great-Circle distance-weighted interpolation with small angle approximation. Similar to the
previous interpolation but with the distance s computed as

s (P,M) =

√
(ϕM − ϕP)

2
+ (λM − λP)

2 cos2 ϕM

where M corresponds to A, B, C or D.

3. Bilinear interpolation for a regular spaced grid. The interpolation is split into two 1D interpolations
in the longitude and latitude directions, respectively.

4. Bilinear remapping interpolation for a general grid. An iterative scheme that involves first mapping
a quadrilateral cell into a cell with coordinates (0,0), (1,0), (0,1) and (1,1). This method is based on the
SCRIP interpolation package.

Horizontal averaging

For each surface observation type:

• The standard grid-searching code is used to find the nearest model grid point to the observation location
(see next subsection).

• The maximum number of grid points required for that observation in each local grid domain is calculated.
Some of these points may later turn out to have zero weight depending on the shape of the footprint.

• The longitudes and latitudes of the grid points surrounding the nearest model grid box are extracted using
existing MPI routines.

• The weights for each grid point associated with each observation are calculated, either for radial or
rectangular footprints. For grid points completely within the footprint, the weight is one; for grid points
completely outside the footprint, the weight is zero. For grid points which are partly within the footprint
the ratio between the area of the footprint within the grid box and the total area of the grid box is used
as the weight.

• The weighted average of the model grid points associated with each observation is calculated, and this is
then given as the model counterpart of the observation.

Examples of the weights calculated for an observation with rectangular and radial footprints are shown in
figure 13.1 and figure 13.2.

13.5.2. Grid search
For many grids used by the NEMO model, such as the ORCA family, the horizontal grid coordinates i and j
are not simple functions of latitude and longitude. Therefore, it is not always straightforward to determine the
grid points surrounding any given observational position. Before the interpolation can be performed, a search
algorithm is then required to determine the corner points of the quadrilateral cell in which the observation is
located. This is the most difficult and time consuming part of the 2D interpolation procedure. A robust test
for determining if an observation falls within a given quadrilateral cell is as follows. Let P(λP, ϕP) denote the
observation point, and let A(λA, ϕA), B(λB, ϕB), C(λC, ϕC) and D(λD, ϕD) denote the bottom left, bottom
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Figure 13.1.: Weights associated with each model grid box (blue lines and numbers) for an observation at -170.5◦E, 56.0◦N with a
rectangular footprint of 1◦ x 1◦.

Figure 13.2.: Weights associated with each model grid box (blue lines and numbers) for an observation at -170.5◦E, 56.0◦N with a
radial footprint with diameter 1◦.
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right, top left and top right corner points of the cell, respectively. To determine if P is inside the cell, we verify
that the cross-products

rPA × rPC = [(λA − λP)(ϕC − ϕP)− (λC − λP)(ϕA − ϕP)] k̂
rPB × rPA = [(λB − λP)(ϕA − ϕP)− (λA − λP)(ϕB − ϕP)] k̂
rPC × rPD = [(λC − λP)(ϕD − ϕP)− (λD − λP)(ϕC − ϕP)] k̂
rPD × rPB = [(λD − λP)(ϕB − ϕP)− (λB − λP)(ϕD − ϕP)] k̂

point in the opposite direction to the unit normal k̂ (i.e. that the coefficients of k̂ are negative), where rPA,
rPB , etc. correspond to the vectors between points P and A, P and B, etc.. The method used is similar to the
method used in the SCRIP interpolation package.
In order to speed up the grid search, there is the possibility to construct a lookup table for a user specified

resolution. This lookup table contains the lower and upper bounds on the i and j indices to be searched for on
a regular grid. For each observation position, the closest point on the regular grid of this position is computed
and the i and j ranges of this point searched to determine the precise four points surrounding the observation.

13.5.3. Parallel aspects of horizontal interpolation
For horizontal interpolation, there is the basic problem that the observations are unevenly distributed on the
globe. In NEMO the model grid is divided into subgrids (or domains) where each subgrid is executed on a single
processing element with explicit message passing for exchange of information along the domain boundaries when
running on a massively parallel processor (MPP) system.
For observations there is no natural distribution since the observations are not equally distributed on the

globe. Two options have been made available: 1) geographical distribution; and 2) round-robin.

Geographical distribution of observations among processors

This is the simplest option in which the observations are distributed according to the domain of the grid-point
parallelization. figure 13.3 shows an example of the distribution of the in situ data on processors with a different
colour for each observation on a given processor for a 4 × 2 decomposition with ORCA2. The grid-point domain
decomposition is clearly visible on the plot.
The advantage of this approach is that all information needed for horizontal interpolation is available without

any MPP communication. This is under the assumption that we are dealing with point observations and only
using a 2× 2 grid-point stencil for the interpolation (e.g. bilinear interpolation). For higher order interpolation
schemes this is no longer valid. A disadvantage with the above scheme is that the number of observations
on each processor can be very different. If the cost of the actual interpolation is expensive relative to the
communication of data needed for interpolation, this could lead to load imbalance.

Round-robin distribution of observations among processors

An alternative approach is to distribute the observations equally among processors and use message passing
in order to retrieve the stencil for interpolation. The simplest distribution of the observations is to distribute
them using a round-robin scheme. figure 13.4 shows the distribution of the in situ data on processors for the
round-robin distribution of observations with a different colour for each observation on a given processor for
a 4 × 2 decomposition with ORCA2 for the same input data as in figure 13.3. The observations are now
clearly randomly distributed on the globe. In order to be able to perform horizontal interpolation in this case,
a subroutine has been developed that retrieves any grid points in the global space.

13.5.4. Vertical interpolation operator
Vertical interpolation is achieved using either a cubic spline or linear interpolation. For the cubic spline, the
top and bottom boundary conditions for the second derivative of the interpolating polynomial in the spline are
set to zero. At the bottom boundary, this is done using the land-ocean mask.
For profile observation types we do both vertical and horizontal interpolation. NEMO has a generalised verti-

cal coordinate system this means the vertical level depths can vary with location. Therefore, it is necessary first
to perform vertical interpolation of the model value to the observation depths for each of the four surrounding
grid points. After this the model values, at these points, at the observation depth, are horizontally interpolated
to the observation location.
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Figure 13.3.: Example of the distribution of observations with the geographical distribution of observational data
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Figure 13.4.: Example of the distribution of observations with the round-robin distribution of observational data.
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!----------------------------------------------------------------------
! namsao Standalone obs_oper namelist
!----------------------------------------------------------------------
! sao_files specifies the files containing the model counterpart
! nn_sao_idx specifies the time_counter index within the model file
&namsao

sao_files = "foo.nc"
nn_sao_idx = 2

/

namelist 13.3.: &namsao

13.6. Standalone observation operator (SAO)
13.6.1. Concept
The observation operator maps model variables to observation space. This is normally done while the model is
running, i.e. online, it is possible to apply this mapping offline without running the model with the standalone
observation operator (SAO). The process is divided into an initialisation phase, an interpolation phase and
an output phase. During the interpolation phase the SAO populates the model arrays by reading saved model
fields from disk. The interpolation and the output phases use the same OBS code described in the preceding
sections.
There are two ways of exploiting the standalone capacity. The first is to mimic the behaviour of the online

system by supplying model fields at regular intervals between the start and the end of the run. This approach
results in a single model counterpart per observation. This kind of usage produces feedback files the same file
format as the online observation operator. The second is to take advantage of the ability to run offline by
calculating multiple model counterparts for each observation. In this case it is possible to consider all forecasts
verifying at the same time. By forecast, we mean any method which produces an estimate of physical reality
which is not an observed value.

13.6.2. Using the standalone observation operator
Building

In addition to OCE the SAO requires the inclusion of the SAO directory. SAO contains a replacement
nemogcm.F90 which overwrites the resultant nemo.exe. Note this a similar approach to that taken by
the standalone surface scheme SAS and the offline TOP model OFF.

Running

The simplest way to use the executable is to edit and append the &namsao (namelist 13.3) namelist to a full
NEMO namelist and then to run the executable as if it were nemo.exe.

13.6.3. Configuring the standalone observation operator
The observation files and settings understood by &namobs (namelist 13.1) have been outlined in the online
observation operator section. In addition is a further namelist &namsao (namelist 13.3) which used to set the
input model fields for the SAO

Single field

In the SAO the model arrays are populated at appropriate time steps via input files. At present, tsn and sshn
are populated by the default read routines. These routines will be expanded upon in future versions to allow
the specification of any model variable. As such, input files must be global versions of the model domain with
votemper, vosaline and optionally sshn present.
For each field read there must be an entry in the &namsao (namelist 13.3) namelist specifying the name of

the file to read and the index along the time_counter. For example, to read the second time counter from a
single file the namelist would be.

Multiple fields per run

Model field iteration is controlled via nn_sao_freq which specifies the number of model steps at which the
next field gets read. For example, if 12 hourly fields are to be interpolated in a setup where 288 steps equals 24
hours.
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!----------------------------------------------------------------------
! namsao Standalone obs_oper namelist
!----------------------------------------------------------------------
! sao_files specifies the files containing the model counterpart
! nn_sao_idx specifies the time_counter index within the model file
! nn_sao_freq specifies number of time steps between read operations
&namsao

sao_files = "foo.nc" "foo.nc"
nn_sao_idx = 1 2
nn_sao_freq = 144

/

The above namelist will result in feedback files whose first 12 hours contain the first field of foo.nc and the
second 12 hours contain the second field.

Note Missing files can be denoted as ”nofile”.
A collection of fields taken from a number of files at different indices can be combined at a particular frequency

in time to generate a pseudo model evolution. If all that is needed is a single model counterpart at a regular
interval then the standard SAO is all that is required. However, just to note, it is possible to extend this
approach by comparing multiple forecasts, analyses, persisted analyses and climatologies with the same set
of observations. This approach is referred to as Class 4 since it is the fourth metric defined by the GODAE
intercomparison project. This requires multiple runs of the SAO and running an additional utility (not currently
in the NEMO repository) to combine the feedback files into one class 4 file.

13.7. Observation utilities
For convenience some tools for viewing and processing of observation and feedback files are provided in the
NEMO repository. These tools include OBSTOOLS which are a collection of Fortran programs which are
helpful to deal with feedback files. They do such tasks as observation file conversion, printing of file contents,
some basic statistical analysis of feedback files. The other main tool is an IDL program called dataplot which
uses a graphical interface to visualise observations and feedback files. OBSTOOLS and dataplot are described
in more detail below.

13.7.1. Obstools
A series of Fortran utilities is provided with NEMO called OBSTOOLS. This are helpful in handling observa-
tion files and the feedback file output from the observation operator. A brief description of some of the utilities
follows

corio2fb

The program corio2fb converts profile observation files from the Coriolis format to the standard feedback format.
It is called in the following way:

corio2fb.exe outputfile inputfile1 inputfile2 ...

enact2fb

The program enact2fb converts profile observation files from the ENACT format to the standard feedback
format. It is called in the following way:

enact2fb.exe outputfile inputfile1 inputfile2 ...

fbcomb

The program fbcomb combines multiple feedback files produced by individual processors in an MPI run of
NEMO into a single feedback file. It is called in the following way:

fbcomb.exe outputfile inputfile1 inputfile2 ...
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fbmatchup

The program fbmatchup will match observations from two feedback files. It is called in the following way:

fbmatchup.exe outputfile inputfile1 varname1 inputfile2 varname2 ...

fbprint

The program fbprint will print the contents of a feedback file or files to standard output. Selected information
can be output using optional arguments. It is called in the following way:

fbprint.exe [options] inputfile

options:
-b shorter output
-q Select observations based on QC flags
-Q Select observations based on QC flags
-B Select observations based on QC flags
-u unsorted
-s ID select station ID
-t TYPE select observation type
-v NUM1-NUM2 select variable range to print by number

(default all)
-a NUM1-NUM2 select additional variable range to print by number

(default all)
-e NUM1-NUM2 select extra variable range to print by number

(default all)
-d output date range
-D print depths
-z use zipped files

fbsel

The program fbsel will select or subsample observations. It is called in the following way:

fbsel.exe <input filename> <output filename>

fbstat

The program fbstat will output summary statistics in different global areas into a number of files. It is called
in the following way:

fbstat.exe [-nmlev] <filenames>

fbthin

The program fbthin will thin the data to 1 degree resolution. The code could easily be modified to thin to a
different resolution. It is called in the following way:

fbthin.exe inputfile outputfile

sla2fb

The program sla2fb will convert an AVISO SLA format file to feedback format. It is called in the following way:

sla2fb.exe [-s type] outputfile inputfile1 inputfile2 ...

Option:
-s Select altimeter data_source

vel2fb

The program vel2fb will convert TAO/PIRATA/RAMA currents files to feedback format. It is called in the
following way:
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vel2fb.exe outputfile inputfile1 inputfile2 ...

13.7.2. Building the obstools
To build the obstools use in the tools directory use ./maketools -n OBSTOOLS -m [ARCH].

13.7.3. Dataplot
An IDL program called dataplot is included which uses a graphical interface to visualise observations and
feedback files. Note a similar package has recently developed in python (also called dataplot) which does some
of the same things that the IDL dataplot does. Please contact the authors of the this chapter if you are interested
in this.
It is possible to zoom in, plot individual profiles and calculate some basic statistics. To plot some data run

IDL and then:

IDL> dataplot, "filename"

To read multiple files into dataplot, for example multiple feedback files from different processors or from
different days, the easiest method is to use the spawn command to generate a list of files which can then be
passed to dataplot.

IDL> spawn, 'ls profb*.nc', files
IDL> dataplot, files

figure 13.5 shows the main window which is launched when dataplot starts. This is split into three parts.
At the top there is a menu bar which contains a variety of drop down menus. Areas - zooms into prespecified
regions; plot - plots the data as a timeseries or a T-S diagram if appropriate; Find - allows data to be searched;
Config - sets various configuration options.
The middle part is a plot of the geographical location of the observations. This will plot the observation

value, the model background value or observation minus background value depending on the option selected in
the radio button at the bottom of the window. The plotting colour range can be changed by clicking on the
colour bar. The title of the plot gives some basic information about the date range and depth range shown, the
extreme values, and the mean and RMS values. It is possible to zoom in using a drag-box. You may also zoom
in or out using the mouse wheel.
The bottom part of the window controls what is visible in the plot above. There are two bars which select

the level range plotted (for profile data). The other bars below select the date range shown. The bottom of
the figure allows the option to plot the mean, root mean square, standard deviation or mean square values.
As mentioned above you can choose to plot the observation value, the model background value or observation
minus background value. The next group of radio buttons selects the map projection. This can either be regular
longitude latitude grid, or north or south polar stereographic. The next group of radio buttons will plot bad
observations, switch to salinity and plot density for profile observations. The rightmost group of buttons will
print the plot window as a postscript, save it as png, or exit from dataplot.
If a profile point is clicked with the mouse button a plot of the observation and background values as a

function of depth (figure 13.6).
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Figure 13.5.: Main window of dataplot
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Figure 13.6.: Profile plot from dataplot produced by right clicking on a point in the main window
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Sect. 14.2 Direct initialization

The ASM code adds the functionality to apply increments to the model variables: temperature, salinity, sea
surface height, velocity and sea ice concentration. These are read into the model from a NetCDF file which may
be produced by separate data assimilation code. The code can also output model background fields which are
used as an input to data assimilation code. This is all controlled by the namelist &nam_asminc (namelist 14.1)
. There is a brief description of all the namelist options provided. To build the ASM code key_asminc must
be set.

14.1. Direct initialization
Direct initialization (DI) refers to the instantaneous correction of the model background state using the analysis
increment. DI is used when ln_asmdin is set to true.

14.2. Incremental analysis updates
Rather than updating the model state directly with the analysis increment, it may be preferable to introduce the
increment gradually into the ocean model in order to minimize spurious adjustment processes. This technique
is referred to as Incremental Analysis Updates (IAU) (Bloom et al., 1996). IAU is a common technique used
with 3D assimilation methods such as 3D-Var or OI. IAU is used when ln_asmiau is set to true.

With IAU, the model state trajectory x in the assimilation window (t0 ≤ ti ≤ tN ) is corrected by adding the
analysis increments for temperature, salinity, horizontal velocity and SSH as additional tendency terms to the
prognostic equations:

xa(ti) =M(ti, t0)[xb(t0)] + Fiδx̃a

where Fi is a weighting function for applying the increments δx̃a defined such that
∑N
i=1 Fi = 1. xb denotes the

model initial state and xa is the model state after the increments are applied. To control the adjustment time
of the model to the increment, the increment can be applied over an arbitrary sub-window, tm ≤ ti ≤ tn, of the
main assimilation window, where t0 ≤ tm ≤ ti and ti ≤ tn ≤ tN . Typically the increments are spread evenly
over the full window. In addition, two different weighting functions have been implemented. The first function
(namelist option niaufn =0) employs constant weights,

F
(1)
i =

 0 if ti < tm
1/M if tm < ti ≤ tn
0 if ti > tn

(14.1)

where M = m−n. The second function (namelist option niaufn =1) employs peaked hat-like weights in order
to give maximum weight in the centre of the sub-window, with the weighting reduced linearly to a small value
at the window end-points:

F
(2)
i =


0 if ti < tm
α i if tm ≤ ti ≤ tM/2

α (M − i+ 1) if tM/2 < ti ≤ tn
0 if ti > tn

(14.2)

where α−1 =
∑M/2
i=1 2i andM is assumed to be even. The weights described by equation 14.2 provide a smoother

transition of the analysis trajectory from one assimilation cycle to the next than that described by equation 14.1.
The NEMO IAU code for assimilation of conservative temperature, absolute salinity and horizontal veloc-

ity increments is conceptually straightforward. The horizontal velocity increments are applied by SUBROU-
TINE dyn_asm_inc and the conservative temperature and absolute salinity increments by SUBROUTINE
tra_asm_inc . Those subroutines are called by stp_rk3_stg3 or by stp_mlf depending on whether the
RK3 timestep or the MLF timestep scheme is being used.
The assimilation of surface height increments is less conceptually straightforward because of the way that

NEMO updates the tracer fields. The NEMO model is designed to conserve total heat and salt content. For
each baroclinic timestep, the model calculates the total flux of heat and salt through all the faces of each grid
cell in a single baroclinic time-step. The volume of the cell at the end of the time-step is calculated from the
volume at the start and the volume fluxes through all of its faces. The heat and salt content of the cell at the
start of the timestep is calculated from its conservative temperature, T , and absolute salinity, S, values and its
volume at that time. The heat and salt content at the end of the timestep are those at the start minus the
fluxes of heat and salt out of the cell in that timestep. T and S at the end of the timestep are then calculated
using the volume at the end of the timestep.
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The surface height assimilation increments change the volume of the cells. In order for this change in volume
to be distributed proportionately across all the cells in a vertical column, increments are made to the horizontal
divergence that is used to calculate the rate of change of the cell thicknesses, ∂e3/∂t, see equation A.13 in
appendix A. These increments are calculated by ssh_asm_div which is called from within div_hor . In
addition tra_sbc calculates and applies increments to T and S that are proportional to the surface height
assimilation increments. Any other tracers should be updated similarly (the code does not do that currently).
This is the correct thing to do for balanced ssh increments (the ones which do not propagate away within a
baroclinic timestep) but does not appear to be conceptually sound for unbalanced ssh increments. It would be
cleaner conceptually to apply the model increments and the assimilation increments as interleaved, independent
steps but that scheme has not been implemented in NEMO v5.0.

The tests of the IAU code for NEMO v5.0 utilised SETTE’s ORCA2_OBS configuration. This has globally
uniform T , S and horizontal velocity increment fields. The velocity increments had little impact on the velocities
in the RK3 and the MLF.
The assimilation increments are currently applied at all three sub-stages of the RK3 scheme. Tests applying

the increments only on the third sub-stage gave similar results but that code is not included in NEMO v5.0
because of the limitations of the tests made (see previous paragraph).
The IAU code to assimilate sea-ice concentration data has not been tested at v5.0.

14.3. Divergence damping initialisation
It is quite challenging for data assimilation systems to provide non-divergent velocity increments. Applying
divergent velocity increments will likely cause spurious vertical velocities in the model. This section describes a
method to take velocity increments provided to NEMO (u0I and v0I ) and adjust them by the iterative application
of a divergence damping operator. The method is also described in Dobricic et al. (2007).
In iteration step n (starting at n = 1) new estimates of velocity increments unI and vnI are updated by:

unI = un−1
I +

1

e1u
δi+1/2

(
AD χn−1

I

)

vnI = vn−1
I +

1

e2v
δj+1/2

(
AD χn−1

I

) , (14.3)

where the divergence is defined as

χn−1
I =

1

e1t e2t e3t

(
δi
[
e2u e3u u

n−1
I

]
+ δj

[
e1v e3v v

n−1
I

])
.

By the application of equation 14.3 the divergence is filtered in each iteration, and the vorticity is left
unchanged. In the presence of coastal boundaries with zero velocity increments perpendicular to the coast
the divergence is strongly damped. This type of the initialisation reduces the vertical velocity magnitude and
alleviates the problem of the excessive unphysical vertical mixing in the first steps of the model integration
(Talagrand, 1972; Dobricic et al., 2007). Diffusion coefficients are defined as AD = αe1te2t, where α = 0.2. The
divergence damping is activated by assigning to nn_divdmp in the &nam_asminc (namelist 14.1) namelist a
value greater than zero. This specifies the number of iterations of the divergence damping. Setting a value of
the order of 100 will result in a significant reduction in the vertical velocity induced by the increments.

14.4. Implementation details
Here we show an example &nam_asminc (namelist 14.1) namelist and the header of an example assimilation
increments file on the ORCA2 grid.
The header of an assimilation increments file produced using the NetCDF tool ncdump -h is shown below

netcdf assim_background_increments {
dimensions:

x = 182 ;
y = 149 ;
z = 31 ;
t = UNLIMITED ; // (1 currently)

variables:
float nav_lon(y, x) ;
float nav_lat(y, x) ;
float nav_lev(z) ;
double time_counter(t) ;
double time ;
double z_inc_dateb ;
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!-----------------------------------------------------------------------
&nam_asminc ! assimilation increments ('key_asminc')
!-----------------------------------------------------------------------

ln_bkgwri = .false. ! Logical switch for writing out background state
ln_trainc = .false. ! Logical switch for applying tracer increments
ln_dyninc = .false. ! Logical switch for applying velocity increments
ln_sshinc = .false. ! Logical switch for applying SSH increments
ln_sicinc = .false. ! Logical switch for applying sea ice concentration increments
ln_sitinc = .false. ! Logical switch for applying sea ice thickness increments
ln_asmdin = .false. ! Logical switch for Direct Initialization (DI)
ln_asmiau = .false. ! Logical switch for Incremental Analysis Updating (IAU)
nn_itbkg = 0 ! Timestep of background in [0,nitend-nit000-1]
nn_itdin = 0 ! Timestep of background for DI in [0,nitend-nit000-1]
nn_itiaustr = 1 ! Timestep of start of IAU interval in [0,nitend-nit000-1]
nn_itiaufin = 15 ! Timestep of end of IAU interval in [0,nitend-nit000-1]
nn_iaufn = 0 ! Type of IAU weighting function
ln_temnofreeze=.false. ! Don't allow the temperature to drop below freezing
nn_divdmp = 0 ! Number of iterations of divergence damping operator
ln_bv_check = .false. ! Don't apply T/S increments where Brunt-Vaisala (N2) checks fail
rn_bv_thres = 0.0 ! Brunt-Vaisala threshold for applying T/S increments
rn_zmin_bv = 400.0 ! Min depth to verify Brunt-Vaisala (N2) values
rn_zmax_bv = 1500.0 ! Max depth to verify Brunt-Vaisala (N2) values
ln_salfix = .false. ! Logical switch for ensuring that the sa > salfixmin
rn_salfixmin = -9999.0 ! Minimum salinity after applying the increments
rn_zhi_damin = 0.45 ! Ice thickness for new sea ice from DA increment
rn_ai_damin = 0.15 ! Minimum total ice concentration to apply ice thickness increments
rn_acat_damin = 0.01 ! Minimum ice concentration at category level to apply ice thickness increments

/

namelist 14.1.: &nam_asminc

double z_inc_datef ;
double bckint(t, z, y, x) ;
double bckins(t, z, y, x) ;
double bckinu(t, z, y, x) ;
double bckinv(t, z, y, x) ;
double bckineta(t, y, x) ;

// global attributes:
:DOMAIN_number_total = 1 ;
:DOMAIN_number = 0 ;
:DOMAIN_dimensions_ids = 1, 2 ;
:DOMAIN_size_global = 182, 149 ;
:DOMAIN_size_local = 182, 149 ;
:DOMAIN_position_first = 1, 1 ;
:DOMAIN_position_last = 182, 149 ;
:DOMAIN_halo_size_start = 0, 0 ;
:DOMAIN_halo_size_end = 0, 0 ;
:DOMAIN_type = "BOX" ;

}
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Sect. 15.2 Stochastic processes

As a result of the nonlinearity of the seawater equation of state, unresolved scales represent a major source of
uncertainties in the computation of the large-scale horizontal density gradient from the large-scale temperature
and salinity fields. Following Brankart (2013), the impact of these uncertainties can be simulated by random
processes representing unresolved T/S fluctuations. The Stochastic Parametrization of EOS (STO) module
implements this parametrization.
As detailed in Brankart (2013), the stochastic formulation of the equation of state can be written as:

ρ =
1

2

m∑
i=1

{ρ[T +∆Ti, S +∆Si, po(z)] + ρ[T −∆Ti, S −∆Si, po(z)]} (15.1)

where po(z) is the reference pressure depending on the depth and, ∆Ti and ∆Si (i=1,m) is a set of T/S
perturbations defined as the scalar product of the respective local T/S gradients with random walks ξ:

∆Ti = ξi · ∇T and ∆Si = ξi · ∇S (15.2)

ξi are produced by a first-order autoregressive process (AR-1) with a parametrized decorrelation time scale,
and horizontal and vertical standard deviations σs. ξ are uncorrelated over the horizontal and fully correlated
along the vertical.

15.1. Stochastic processes
There are many existing parameterizations based on autoregressive processes, which are used as a basic source
of randomness to transform a deterministic model into a probabilistic model. The generic approach adopted in
the STO module is to generate processes features with appropriate statistics to simulate these uncertainties in
the model (see Brankart et al. (2015) for more details).
In practice, at each model grid point, independent Gaussian autoregressive processes ξ(i), i = 1, . . . ,m are

first generated using the same basic equation:

ξ
(i)
k+1 = a(i)ξ

(i)
k + b(i)w(i) + c(i) (15.3)

where k is the index of the model timestep and a(i), b(i), c(i) are parameters defining the mean (µ(i)) standard
deviation (σ(i)) and correlation timescale (τ (i)) of each process:

• for order 1 processes, w(i) is a Gaussian white noise, with zero mean and standard deviation equal to 1,
and the parameters a(i), b(i), c(i) are given by:

a(i) = φ

b(i) = σ(i)
√
1− φ2 with φ = exp

(
−1/τ (i)

)
c(i) = µ(i) (1− φ)

• for order n > 1 processes, w(i) is an order n−1 autoregressive process, with zero mean, standard deviation
equal to σ(i); correlation timescale equal to τ (i); and the parameters a(i), b(i), c(i) are given by:


a(i) = φ

b(i) = n−1
2(4n−3)

√
1− φ2 with φ = exp

(
−1/τ (i)

)
c(i) = µ(i) (1− φ)

(15.4)

In this way, higher order processes can be easily generated recursively using the same piece of code implementing
equation 15.3, and using successive processes from order 0 to n − 1 as w(i). The parameters in equation 15.4
are computed so that this recursive application of equation 15.3 leads to processes with the required standard
deviation and correlation timescale, with the additional condition that the n − 1 first derivatives of the auto-
correlation function are equal to zero at t = 0, so that the resulting processes become smoother and smoother
as n increases.
Overall, this method provides quite a simple and generic way of generating a wide class of stochastic processes.

However, this also means that new model parameters are needed to specify each of these stochastic processes. As
in any parameterization, the main issue is to tune the parameters using either first principles, model simulations,
or real-world observations. The parameters are set by default as described in Brankart (2013), which has
been shown in the paper to give good results for a global low resolution (2°) NEMO configuration. This
parametrization produces a major effect on the average large-scale circulation, especilally in regions of intense
mesoscale activity. The set of parameters will need further investigation to find appropriate values for any other
configuration or resolution of the model.
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15.2. Implementation details
The code implementing stochastic parametrisation is located in the src/OCE/STO directory. It contains three
modules :
stopar.F90 : define the Stochastic parameters and their time evolution
storng.F90 : random number generator based on and including the 64-bit KISS (Keep It Simple Stupid)

random number generator distributed by George Marsaglia
stopts.F90 : stochastic parametrisation associated with the non-linearity of the equation of seawater, imple-

menting equation 15.2 so as specifics in the equation of state implementing equation 15.1.
The stopar.F90 module includes three public routines called in the model:
( sto_par ) is a direct implementation of equation 15.3, applied at each model grid point (in 2D or 3D), and

called at each model time step (k) to update every autoregressive process (i = 1, . . . ,m). This routine also
includes a filtering operator, applied to w(i), to introduce a spatial correlation between the stochastic processes.
( sto_par_init ) is the initialization routine computing the values a(i), b(i), c(i) for each autoregressive process,

as a function of the statistical properties required by the model user (mean, standard deviation, time correlation,
order of the process,…). This routine also includes the initialization (seeding) of the random number generator.
( sto_rst_write ) writes a restart file (which suffix name is given by cn_storst_out namelist parame-

ter) containing the current value of all autoregressive processes to allow creating the file needed for a restart.
This restart file also contains the current state of the random number generator. When ln_rststo is set
to .true.), the restart file (which suffix name is given by cn_storst_in namelist parameter) is read by the
initialization routine ( sto_par_init ). The simulation will continue exactly as if it was not interrupted only
when ln_rstseed is set to .true., i.e. when the state of the random number generator is read in the restart file.

The implementation includes the basics for a few possible stochastic parametrisations including equation of
state ( ln_sto_eos ), lateral diffusion ( ln_sto_ldf ), horizontal pressure gradient ( ln_sto_hpg ), ice strength
( ln_sto_pstar ), trend ( ln_sto_trd ), tracers dynamics ( ln_sto_trc ).

As for the current release, only the stochastic parametrisation of equation of state is fully available
and tested.

Options and parameters

The ln_sto_eos namelist variable activates stochastic parametrisation of equation of state. By default it
set to .false.) and not active. The set of parameters is available in &namsto (namelist 15.1) namelist (only
the subset for equation of state stochastic parametrisation is listed below):
The variables of stochastic paramtetrisation itself (based on the global 2° experiments as in Brankart (2013)

are:

nn_sto_eos : number of independent random walks

rn_eos_stdxy : random walk horizontal standard deviation (in grid points)

rn_eos_stdz : random walk vertical standard deviation (in grid points)

rn_eos_tcor : random walk time correlation (in timesteps)

nn_eos_ord : order of autoregressive processes

nn_eos_flt : passes of Laplacian filter

rn_eos_lim : limitation factor (default = 3.0)

The first four parameters define the stochastic part of equation of state.
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!-----------------------------------------------------------------------
&namsto ! Stochastic parametrization of EOS (default: OFF)
!-----------------------------------------------------------------------

ln_sto_ldf = .false. ! stochastic lateral diffusion
rn_ldf_std = 0.1 ! lateral diffusion standard deviation (in percent)
rn_ldf_tcor = 1440. ! lateral diffusion correlation timescale (in timesteps)
ln_sto_hpg = .false. ! stochastic pressure gradient
rn_hpg_std = 0.1 ! density gradient standard deviation (in percent)
rn_hpg_tcor = 1440. ! density gradient correlation timescale (in timesteps)
ln_sto_pstar = .false. ! stochastic ice strength
rn_pstar_std = 0.1 ! ice strength standard deviation (in percent)
rn_pstar_tcor = 1440. ! ice strength correlation timescale (in timesteps)
nn_pstar_ord = 1 ! order of autoregressive processes
nn_pstar_flt = 0 ! passes of Laplacian filter
ln_sto_trd = .false. ! stochastic model trend
rn_trd_std = 0.1 ! trend standard deviation (in percent)
rn_trd_tcor = 1440. ! trend correlation timescale (in timesteps)
ln_sto_eos = .false. ! stochastic equation of state
nn_sto_eos = 1 ! number of independent random walks
rn_eos_stdxy = 1.4 ! random walk horz. standard deviation (in grid points)
rn_eos_stdz = 0.7 ! random walk vert. standard deviation (in grid points)
rn_eos_tcor = 1440. ! random walk time correlation (in timesteps)
nn_eos_ord = 1 ! order of autoregressive processes
nn_eos_flt = 0 ! passes of Laplacian filter
rn_eos_lim = 2.0 ! limitation factor (default = 3.0)
ln_sto_trc = .false. ! stochastic tracer dynamics
nn_sto_trc = 1 ! number of independent random walks
rn_trc_stdxy = 1.4 ! random walk horz. standard deviation (in grid points)
rn_trc_stdz = 0.7 ! random walk vert. standard deviation (in grid points)
rn_trc_tcor = 1440. ! random walk time correlation (in timesteps)
nn_trc_ord = 1 ! order of autoregressive processes
nn_trc_flt = 0 ! passes of Laplacian filter
rn_trc_lim = 3.0 ! limitation factor (default = 3.0)
ln_rststo = .false. ! start from mean parameter (F) or from restart file (T)
ln_rstseed = .true. ! read seed of RNG from restart file
cn_storst_in = "restart_sto" ! suffix of stochastic parameter restart file (input)
cn_storst_out = "restart_sto" ! suffix of stochastic parameter restart file (output)

/

namelist 15.1.: &namsto
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Sect. 16.2 Representation of unresolved straits

16.1. Representation of unresolved straits
In climate modeling, it often occurs that a crucial connections between water masses is broken as the grid mesh
is too coarse to resolve narrow straits. For example, coarse grid spacing typically closes off the Mediterranean
from the Atlantic at the Strait of Gibraltar. In this case, it is important for climate models to include the effects
of salty water entering the Atlantic from the Mediterranean. Likewise, it is important for the Mediterranean to
replenish its supply of water from the Atlantic to balance the net evaporation occurring over the Mediterranean
region. This problem occurs even in eddy permitting simulations. For example, in ORCA 1/4◦ several straits
of the Indonesian archipelago (Ombai, Lombok...) are much narrow than even a single ocean grid-point.
We describe briefly here the two methods that can be used in NEMO to handle such improperly resolved

straits. The methods consist of opening the strait while ensuring that the mass exchanges through the strait are
not too large by either artificially reducing the cross-sectional area of the strait grid-cells or, locally increasing
the lateral friction.

16.1.1. Hand made geometry changes
The first method involves reducing the scale factor in the cross-strait direction to a value in better agreement
with the true mean width of the strait (figure 16.1). This technique is sometime called ”partially open face”
or ”partially closed cells”. The key issue here is only to reduce the faces of T -cell (i.e. change the value of the
horizontal scale factors at u- or v-point) but not the volume of the T -cell. Indeed, reducing the volume of strait
T -cell can easily produce a numerical instability at that grid point which would require a reduction of the model
time step. Thus to instigate a local change in the width of a Strait requires two steps:

• Add e1e2u and e1e2v arrays to the cn_domcfg file. These 2D arrays should contain the products of
the unaltered values of: e1u ∗ e2u and e1u ∗ e2v respectively. That is the original surface areas of u-
and v- cells respectively. These areas are usually defined by the corresponding product within the NEMO
code but the presence of e1e2u and e1e2v in the cn_domcfg file will suppress this calculation and use
the supplied fields instead. If the model domain is provided by user-supplied code in usrdef_hgr.F90 ,
then this routine should also return e1e2u and e1e2v and set the integer return argument ie1e2u_v to a
non-zero value. Values other than 0 for this argument will suppress the calculation of the areas.

• Change values of e2u or e1v (either in the cn_domcfg file or via code in usrdef_hgr.F90 ), whereever a
Strait reduction is required. The choice of whether to alter e2u or e1v depends. respectively, on whether
the Strait in question is North-South orientated (e.g. Gibraltar) or East-West orientated (e.g.Lombok).

The second method is to increase the viscous boundary layer thickness by a local increase of the fmask value
at the coast. This method can also be effective in wider passages. The concept is illustarted in the second
part of figure 16.1 and changes to specific locations can be coded in usrdef_fmask.F90 . The usr_def_fmask
routine is always called after fmask has been defined according to the choice of lateral boundary condition as
discussed in section 9.1. The default version of usrdef_fmask.F90 contains settings specific to ORCA2 and
ORCA1 configurations. These are meant as examples only; it is up to the user to verify settings and provide
alternatives for their own configurations. The default usr_def_fmask makes no changes to fmask for any other
configuration.

16.2. Closed seas ( closea.F90 )
Some configurations include inland seas and lakes as ocean points. This is particularly the case for configura-

tions that are coupled to an atmosphere model where one might want to include inland seas and lakes as ocean
model points in order to provide a better bottom boundary condition for the atmosphere. However there is no
route for freshwater to run off from the lakes to the ocean and this can lead to large drifts in the sea surface
height over the lakes. The closea module provides options to either fill in closed seas and lakes at run time, or
to set the net surface freshwater flux for each lake to zero and put the residual flux into the ocean.
The inland seas and lakes are defined using mask fields in the domain configuration file. Special treatment of

the closed sea (redistribution of net freshwater or mask those), are defined in namelist 16.1 and can be trigger
by ln_closea =.true. in namelist namcfg.
The options available are the following:

ln_maskcs = .true. All the closed seas are masked using mask_opensea variable.

ln_maskcs = .false. The net surface flux over each inland sea or group of inland seas is set to zero each
timestep and the residual flux is distributed over a target area.
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Figure 16.1.: Example of the Gibraltar strait defined in a 1◦ × 1◦ mesh. Top: using partially open cells. The meridional scale
factor at v-point is reduced on both sides of the strait to account for the real width of the strait (about 20 km). Note
that the scale factors of the strait T -point remains unchanged. Bottom: using viscous boundary layers. The four
fmask parameters along the strait coastlines are set to a value larger than 4, i.e. ”strong” no-slip case (see figure 9.2)
creating a large viscous boundary layer that allows a reduced transport through the strait.

!-----------------------------------------------------------------------
&namclo ! parameters of the closed sea (cs) behavior (default: OFF)
!-----------------------------------------------------------------------

ln_maskcs = .false. ! (=T) cs are masked ; So, in this case ln_mask_csundef and ln_clo_rnf have no effect.
! ! (=F => set ln_mask_csundef and ln_clo_rnf)
! ! cs masks are read and net evap/precip over closed sea spread out depending on domain_cfg.nc

masks.↪→
! ! See ln_mask_csundef and ln_clo_rnf for specific option related to this case
!
ln_mask_csundef = .true. ! (=T) undefined closed seas are masked ;
! ! (=F) undefined closed seas are kept and no specific treatment is done for these closed seas
!
ln_clo_rnf = .true. ! (=T) river mouth specified in domain_cfg.nc masks (rnf and emp case) are added to the runoff

mask.↪→
! ! allow the treatment of closed sea outflow grid-points to be the same as river mouth

grid-points↪→
/

namelist 16.1.: &namclo
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Figure 16.2.: Example of mask fields for the closea.F90 module. Left: a mask_csrnf field; Right: a mask_csgrprnf field. In this
example, if ln_closea is set to .true., the mean freshwater flux over each of the American Great Lakes will be set
to zero, and the total residual for all the lakes, if negative, will be put into the St Laurence Seaway in the area shown.

When ln_maskcs = .false., 3 options are available for the redistribution (set up of these options is done
in the tool DOMAINcfg):

• glo : The residual flux is redistributed globally.

• emp : The residual flux is redistributed as emp in a river outflow.

• rnf : The residual flux is redistributed as rnf in a river outflow if negative. If there is a net evaporation, the
residual flux is redistributed globally.

For each case, 2 masks are needed (figure 16.2):

• one describing the ’sources’ (ie the closed seas concerned by each options) called mask_csglo, mask_csrnf,
mask_csemp.

• one describing each group of inland seas (the Great Lakes for example) and the target area (river outflow
or world ocean) for each group of inland seas (St Laurence for the Great Lakes for example) called
mask_csgrpglo, mask_csgrprnf, mask_csgrpemp.

Closed sea not defined (because too small, issue in the bathymetry definition ...) are defined in mask_csundef.
These points can be masked using the namelist option ln_mask_csundef = .true. or used to correct the
bathymetry input file.

The masks needed for the closed sea can be created using the DOMAINcfg tool in the utils/tools/DOMAINcfg
directory. See section F.4 for details on the usage of definition of the closed sea masks.

16.3. Accuracy and reproducibility ( lib_fortran.F90 )
16.3.1. Issues with intrinsinc SIGN function ( key_nosignedzero )
The SIGN(A, B) is the Fortran intrinsic function delivers the magnitude of A with the sign of B. For example,
SIGN(-3.0,2.0) has the value 3.0. The problematic case is when the second argument is zero, because, on
platforms that support IEEE arithmetic, zero is actually a signed number. There is a positive zero and a
negative zero.
In Fortran 90, the processor was required always to deliver a positive result for SIGN(A, B) if B was zero.

Nevertheless, in Fortran 90, the processor is allowed to do the correct thing and deliver ABS(A) when B is a
positive zero and -ABS(A) when B is a negative zero. This change in the specification becomes apparent only
when B is of type real, and is zero, and the processor is capable of distinguishing between positive and negative
zero, and B is negative real zero. Then SIGN delivers a negative result where, under Fortran 90 rules, it
used to return a positive result. This change may be especially sensitive for the ice model, so we overwrite the
intrinsinc function with our own function simply performing :

IF( B >= 0.e0 ) THEN ; SIGN(A,B) = ABS(A)
ELSE ; SIGN(A,B) =-ABS(A)
ENDIF

This feature can be found in lib_fortran.F90 module and it is effective when the macro key_nosignedzero
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!-----------------------------------------------------------------------
&namctl ! Control prints (default: OFF)
!-----------------------------------------------------------------------

sn_cfctl%l_runstat = .FALSE. ! switches and which areas produce reports with the proc integer settings.
sn_cfctl%l_trcstat = .FALSE. ! The default settings for the proc integers should ensure
sn_cfctl%l_oceout = .FALSE. ! that all areas report.
sn_cfctl%l_layout = .FALSE. !
sn_cfctl%l_prtctl = .FALSE. !
sn_cfctl%l_prttrc = .FALSE. !
sn_cfctl%l_oasout = .FALSE. !
sn_cfctl%l_obsstat = .FALSE. !
sn_cfctl%procmin = 0 ! Minimum area number for reporting [default:0]
sn_cfctl%procmax = 1000000 ! Maximum area number for reporting [default:1000000]
sn_cfctl%procincr = 1 ! Increment for optional subsetting of areas [default:1]
sn_cfctl%ptimincr = 1 ! Timestep increment for writing time step progress info
nn_ictls = 0 ! start i indice of control sum (use to compare mono versus
nn_ictle = 0 ! end i indice of control sum multi processor runs
nn_jctls = 0 ! start j indice of control over a subdomain)
nn_jctle = 0 ! end j indice of control
nn_isplt = 1 ! number of processors in i-direction
nn_jsplt = 1 ! number of processors in j-direction
ln_timing = .false. ! timing by routine write out in timing.output file
ln_diacfl = .false. ! CFL diagnostics write out in cfl_diagnostics.ascii

/

namelist 16.2.: &namctl

is defined within the cpp file of the configuration. We use a CPP key as the overwritting of a intrinsic function
can present performance issues with some computers/compilers.

16.3.2. MPP reproducibility
The numerical reproducibility of simulations on distributed memory parallel computers is a critical issue. In
particular, within NEMO global summation of distributed arrays is most susceptible to rounding errors, and
their propagation and accumulation cause uncertainty in final simulation reproducibility on different numbers
of processors. To avoid so, based on He and Ding (2001) review of different technics, we use a so called self-
compensated summation method. The idea is to estimate the roundoff error, store it in a buffer, and then add
it back in the next addition.
Suppose we need to calculate b = a1 + a2 + a3. The following algorithm will allow to split the sum in two

(sum1 = a1 + a2 and b = sum2 = sum1 + a3) with exactly the same rounding errors as the sum performed all
at once.

sum1 = a1 + a2

error1 = a2 + (a1 − sum1)

sum2 = sum1 + a3 + error1

error2 = a3 + error1 + (sum1 − sum2)

b = sum2

An example of this feature can be found in lib_fortran.F90 module. It is systematicallt used in glob_sum
function (summation over the entire basin excluding duplicated rows and columns due to cyclic or north fold
boundary condition as well as overlap MPP areas). The self-compensated summation method should be used
in all summation in i- and/or j-direction. See closea.F90 module for an example. Note also that this imple-
mentation may be sensitive to the optimization level.

16.4. Model optimisation, control print and benchmark
Options are defined through the &namctl (namelist 16.2) namelist variables.

16.4.1. Status and debugging information output
NEMO can produce a range of text information output either: in the main output file (ocean.output) written
by the normal reporting processor (narea == 1) or various specialist output files (e.g. layout.dat, run.stat,
tracer.stat etc.). Some, for example run.stat and tracer.stat, contain globally collected values for which a single
file is sufficient. Others, however, contain information that could, potentially, be different for each processing
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region. For computational efficiency, the default volume of text information produced is reduced to just a few
files from the narea=1 processor.
When more information is required for monitoring or debugging purposes, the various forms of output can

be selected via the sn_cfctl structure. As well as simple on-off switches this structure also allows selection
of a range of processors for individual reporting (where appropriate) and a time-increment option to restrict
globally collected values to specified time-step increments.
Options within the structure are selected by the top-level switches shown here with their default settings:

sn_cfctl%l_runstat = .TRUE. ! switches and which areas produce reports with the proc integer settings.
sn_cfctl%l_trcstat = .FALSE. ! The default settings for the proc integers should ensure
sn_cfctl%l_oceout = .FALSE. ! that all areas report.
sn_cfctl%l_layout = .FALSE. !
sn_cfctl%l_prtctl = .FALSE. !
sn_cfctl%l_prttrc = .FALSE. !
sn_cfctl%l_oasout = .FALSE. !
sn_cfctl%procmin = 0 ! Minimum area number for reporting [default:0]
sn_cfctl%procmax = 1000000 ! Maximum area number for reporting [default:1000000]
sn_cfctl%procincr = 1 ! Increment for optional subsetting of areas [default:1]
sn_cfctl%ptimincr = 1 ! Timestep increment for writing time step progress info

Details of the suboptions follow:

16.4.2. Control print suboptions
The options that can be individually selected fall into three categories:

1. Time step progress information
This category includes run.stat and tracer.stat files which record certain physical and passive tracer
metrics (respectively). Typical contents of run.stat include global maximums of ssh, velocity; and global
minimums and maximums of temperature and salinity. A netCDF version of run.stat (run.stat.nc)
is also produced with the same time-series data and this can easily be expanded to include extra mon-
itoring information. tracer.stat contains the volume-weighted average tracer value for each passive
tracer. Collecting these metrics involves global communications and will impact on model efficiency so
both these options are disabled by default by setting the respective options, sn_cfctl%runstat and
sn_cfctl%trcstat to false. A compromise can be made by activating either or both of these options and
setting the sn_cfctl%timincr entry to an integer value greater than one. This increment determines the
time-step frequency at which the global metrics are collected and reported. This increment also applies
to the time.step file which is otherwise updated every timestep.

2. One-time configuration information/progress logs
Some run-time configuration information and limited progress information is always produced by the
first ocean process. This includes the ocean.output file which reports on all the namelist options read
by the model and remains open to catch any warning or error messages generated during execution. A
layout.dat file is also produced which details the MPI-decomposition used by the model. The subop-
tions: sn_cfctl%oceout and sn_cfctl%layout can be used to activate the creation of these files by all
ocean processes. For example, when sn_cfctl%oceout is true all processors produce their own version
of ocean.output. All files, beyond the the normal reporting processor (narea == 1), are named with a
_XXXX extension to their name, where XXXX is a zero-padded, 4-digit area number (more than 4 digits
will be used if the processor count exceeds 9999). This is useful as a debugging aid since all processes
can report their local conditions. Note though that these files are buffered on most UNIX systems so
bug-hunting efforts using this facility should also utilise the Fortran:

CALL FLUSH(numout)

statement after any additional write statements to ensure that file contents reflect the last model state.
Associated with the sn_cfctl%oceout option is the additional sn\_cfctl%oasout suboption. This does
not activate its own output file but rather activates the writing of addition information regarding the
OASIS configuration when coupling via oasis and the sbccpl routine. This information is written to any
active ocean.output files.

3. Control sums of trends for debugging
NEMO includes an option for debugging reproducibility differences between a MPP and mono-processor
runs. This is somewhat dated and clearly only useful for this purpose when dealing with configurations
that can be run on a single processor. The full details can be found in this report: The control print
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option in NEMO The switches to activate production of the control sums of trends for either the physics
or passive tracers are the sn_cfctl%prtctl and sn_cfctl%prttrc suboptions, respectively. Although,
perhaps, of limited use for its original intention, the ability to produce these control sums of trends in
specific areas provides another tool for diagnosing model behaviour.
If only the output from a select few regions is required then additional options are available to activate
options for only a simple subset of processing regions. These are: sn_cfctl%procmin, sn_cfctl%procmax
and sn_cfctl%procincr which can be used to specify the minimum and maximum active areas and the
increment. The default values are set such that all regions will be active. Note this subsetting can also be
used to limit which additional ocean.output and layout.dat files are produced if those suboptions are
active.
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!-----------------------------------------------------------------------
&namcfg ! parameters of the configuration (default: use namusr_def in namelist_cfg)
!-----------------------------------------------------------------------

ln_read_cfg = .false. ! (=T) read the domain configuration file
! ! (=F) user defined configuration (F => create/check namusr_def)
cn_domcfg = "domain_cfg" ! domain configuration filename
!
ln_closea = .false. ! (=T => fill namclo)
! ! (=F) no control of net precip/evap over closed sea
!

ln_write_cfg = .false. ! (=T) create the domain configuration file
cn_domcfg_out = "domain_cfg_out" ! newly created domain configuration filename

/

namelist 17.1.: &namcfg

17.1. Introduction
The purpose of this part of the manual is to introduce the NEMO reference configurations. These configurations
are offered as means to explore various numerical and physical options, thus allowing the user to verify that the
code is performing in a manner consistent expectations. This form of verification is critical as one adopts the
code for his or her particular research purposes. The reference configurations also provide a sense for some of
the options available in the code, though by no means are all options exercised in the reference configurations.
Configuration is defined manually through the &namcfg (namelist 17.1) namelist variables.

17.2. List of NEMO Idealised Configurations and Test Cases
• GYRE PISCES

• VORTEX

• LOCK EXCHANGE

• OVERFLOW

• WAD - wetting and drying

• DOME - Dynamics of Overflow Mixing and Entrainment

• ISOMIP

• ICE AGRIF

• ICE ADV2D

• ICE ADV1D

• ICE RHEO

• BENCH

• CPL OASIS

• DIA GPU

• TSUNAMI

• DONUT

• C1D ASICS

• STATION ASF

• SWG

• ADIAB WAVE
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Figure 17.1.: ORCA mesh conception. The departure from an isotropic Mercator grid start poleward of 20◦N. The two ”north
pole” are the foci of a series of embedded ellipses (blue curves) which are determined analytically and form the i-lines
of the ORCA mesh (pseudo latitudes). Then, following Madec and Imbard (1996), the normal to the series of ellipses
(red curves) is computed which provides the j-lines of the mesh (pseudo longitudes).

17.3. List of NEMO Realistic Regional Configurations
• AMM12

• AGRIF DEMO

• WED025 Worked example available here

17.4. Global configurations: the ORCA family
The ORCA family is a series of global ocean configurations that are run together with the SI3 model (ORCA-
ICE) and possibly with PISCES biogeochemical model (ORCA-ICE-PISCES). An appropriate namelist is avail-
able in ./cfgs/ORCA2_ICE_PISCES/EXPREF/namelist_cfg for ORCA2. The domain of ORCA2 configuration
is defined in ORCA_R2_zps_domcfg.nc file, this file is available in tar file on the NEMO community zenodo
platform:
https://doi.org/10.5281/zenodo.3767939
In this namelist_cfg the name of domain input file is set in &namcfg (namelist 17.1) block of namelist.

17.4.1. ORCA tripolar grid
The ORCA grid is a tripolar grid based on the semi-analytical method of Madec and Imbard (1996). It allows
to construct a global orthogonal curvilinear ocean mesh which has no singularity point inside the computational
domain since two north mesh poles are introduced and placed on lands. The method involves defining an
analytical set of mesh parallels in the stereographic polar plan, computing the associated set of mesh meridians,
and projecting the resulting mesh onto the sphere. The set of mesh parallels used is a series of embedded ellipses
which foci are the two mesh north poles (figure 17.1). The resulting mesh presents no loss of continuity in either
the mesh lines or the scale factors, or even the scale factor derivatives over the whole ocean domain, as the
mesh is not a composite mesh.
The method is applied to Mercator grid (i.e. same zonal and meridional grid spacing) poleward of 20◦N, so

that the Equator is a mesh line, which provides a better numerical solution for equatorial dynamics. The choice
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Figure 17.2.: Top: Horizontal scale factors (e1, e2) and Bottom: ratio of anisotropy (e1/e2) for ORCA 0.5◦ mesh. South of 20◦N
a Mercator grid is used (e1 = e2) so that the anisotropy ratio is 1. Poleward of 20◦N, the two ”north pole” introduce
a weak anisotropy over the ocean areas (< 1.2) except in vicinity of Victoria Island (Canadian Arctic Archipelago).
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Horizontal Grid ORCA_index jpiglo jpjglo
2 ◦ 2 182 149
1 ◦ 1 362 292
0.5 ◦ 05 722 511
0.25◦ 025 1442 1021

Table 17.1.: Domain size of ORCA family configurations. The flag for configurations of ORCA family need to be set in domain_cfg
file.

of the series of embedded ellipses (position of the foci and variation of the ellipses) is a compromise between
maintaining the ratio of mesh anisotropy (e1/e2) close to one in the ocean (especially in area of strong eddy
activities such as the Gulf Stream) and keeping the smallest scale factor in the northern hemisphere larger than
the smallest one in the southern hemisphere. The resulting mesh is shown in figure 17.1 and figure 17.2 for a
half a degree grid (ORCA_R05). The smallest ocean scale factor is found in along Antarctica, while the ratio
of anisotropy remains close to one except near the Victoria Island in the Canadian Archipelago.

17.4.2. ORCA pre-defined resolution
The NEMO system is provided with five built-in ORCA configurations which differ in the horizontal resolution.
The value of the resolution is given by the resolution at the Equator expressed in degrees. Each of configuration
is set through the domain_cfg domain configuration file, which sets the grid size and configuration name
parameters. The NEMO System Team provides only ORCA2 domain input file ”ORCA_R2_zps_domcfg.nc”
file (table 17.1).

The ORCA_R2 configuration has the following specificity: starting from a 2◦ ORCA mesh, local mesh
refinements were applied to the Mediterranean, Red, Black and Caspian Seas, so that the resolution is 1◦ there.
A local transformation were also applied with in the Tropics in order to refine the meridional resolution up to
0.5◦ at the Equator.
The ORCA_R1 configuration has only a local tropical transformation to refine the meridional resolution up

to 1/3◦ at the Equator. Note that the tropical mesh refinements in ORCA_R2 and R1 strongly increases the
mesh anisotropy there.

The ORCA_R05 and higher global configurations do not incorporate any regional refinements.
For ORCA_R1 and R025, setting the configuration key to 75 allows to use 75 vertical levels, otherwise 46

are used. In the other ORCA configurations, 31 levels are used (see table 17.1).
Only the ORCA_R2 is provided with all its input files in the NEMO distribution.
This version of ORCA_R2 has 31 levels in the vertical, with the highest resolution (10m) in the upper 150m

(see table 17.1 and figure 3.2). The bottom topography and the coastlines are derived from the global atlas of
Smith and Sandwell (1997). The default forcing uses the boundary forcing from Large and Yeager (2004) (see
subsection 7.4.2), which was developed for the purpose of running global coupled ocean-ice simulations without
an interactive atmosphere. This Large and Yeager (2004) dataset is available through the GFDL web site. The
”normal year” of Large and Yeager (2004) has been chosen of the NEMO distribution since release v3.3.
ORCA_R2 pre-defined configuration can also be run with multiple online nested zooms, i.e. using AGRIF with

key_agrif defined. This is available in the AGRIF_DEMO configuration (located in ./cfgs/AGRIF_DEMO/
directory) that accounts for two nested refinements over the Arctic region and a third zoom over the central
Pacific area using a two-ways coupling procedure.

17.5. A special mention of the double gyre basin: GYRE family
The GYRE configuration (Lévy et al., 2010) has been built to simulate the seasonal cycle of a double-gyre
box model. It consists in an idealized domain similar to that used in the studies of Drijfhout (1994) and
Hazeleger and Drijfhout (1998, 1999, 2000b,a), over which an analytical seasonal forcing is applied. This allows
to investigate the spontaneous generation of a large number of interacting, transient mesoscale eddies and their
contribution to the large scale circulation.
The GYRE configuration run together with the PISCES biogeochemical model (GYRE-PISCES). The domain

geometry is a closed rectangular basin on the β-plane centred at ∼ 30◦N and rotated by 45◦, 3180 km long,
2120 km wide and 4 km deep (figure 16.1). The domain is bounded by vertical walls and by a flat bottom. The
configuration is meant to represent an idealized North Atlantic or North Pacific basin. The circulation is forced
by analytical profiles of wind and buoyancy fluxes. The applied forcings vary seasonally in a sinusoidal manner
between winter and summer extrema (Lévy et al., 2010). The wind stress is zonal and its curl changes sign
at 22◦N and 36◦N. It forces a subpolar gyre in the north, a subtropical gyre in the wider part of the domain
and a small recirculation gyre in the southern corner. The net heat flux takes the form of a restoring toward
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!-----------------------------------------------------------------------
&namusr_def ! GYRE user defined namelist
!-----------------------------------------------------------------------

nn_GYRE = 1 ! GYRE resolution [1/degrees]
ln_bench = .false. ! ! =T benchmark with gyre: the gridsize is kept constant
jpkglo = 31 ! number of model levels

/

namelist 17.2.: &namusr_def

Figure 17.3.: Snapshot of relative vorticity at the surface of the model domain in GYRE R9, R27 and R54. From Lévy et al. (2010).

a zonal apparent air temperature profile. A portion of the net heat flux which comes from the solar radiation
is allowed to penetrate within the water column. The fresh water flux is also prescribed and varies zonally. It
is determined such as, at each time step, the basin-integrated flux is zero. The basin is initialised at rest with
vertical profiles of temperature and salinity uniformly applied to the whole domain.
The GYRE configuration is set like an analytical configuration by setting ln_read_cfg=.false. in &namcfg

(namelist 17.1) part of the reference configuration namelist ./cfgs/GYRE_PISCES/EXPREF/namelist_cfg. The
analytical definition of grid in GYRE is done in usrdef_hrg.F90 and usrdef_zgr.F90 routines. Its horizontal
resolution (and thus the size of the domain) is determined by setting nn_GYRE in &namusr_def (namelist 17.2)
:

jpiglo = 30× nn_GYRE + 2 + 2× nn_hls
jpjglo = 20× nn_GYRE + 2 + 2× nn_hls

Obviously, the namelist parameters have to be adjusted to the chosen resolution, see the Configurations pages
on the NEMO web site (NEMO Configurations). In the vertical, GYRE uses the default 30 ocean levels (jpk
= 31, figure 3.2).
The GYRE configuration is also used in benchmark test as it is very simple to increase its resolution and as it

does not requires any input file. For example, keeping a same model size on each processor while increasing the
number of processor used is very easy, even though the physical integrity of the solution can be compromised.
Benchmark is activate via ln_bench=.true. in &namusr_def (namelist 17.2) in namelist ./cfgs/GYRE_
PISCES/EXPREF/namelist_cfg.

17.6. Other well documented configurations
Please note that the following configurations are not distributed, maintained or documented by NEMO but we
provide simply a list here of possibly useful resources.

• NEMO-PISCES 1D

• SEAsia

• SEVERN-SWOT

• SRIL34
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Apdx A Curvilinear s−Coordinate Equations

A.1. Chain rule for s−coordinates
In order to establish the set of Primitive Equation in curvilinear s-coordinates (i.e. an orthogonal curvilinear
coordinate in the horizontal and an Arbitrary Lagrangian Eulerian (ALE) coordinate in the vertical), we start
from the set of equations established in subsection 1.3.2 for the special case k = z and thus e3 = 1, and we
introduce an arbitrary vertical coordinate a = a(i, j, z, t). Let us define a new vertical scale factor by e3 = ∂z/∂s
(which now depends on (i, j, z, t)) and the horizontal slope of s−surfaces by:

σ1 =
1

e1

∂z

∂i

∣∣∣∣
s

and σ2 =
1

e2

∂z

∂j

∣∣∣∣
s

. (A.1)

The model fields (e.g. pressure p) can be viewed as functions of (i, j, z, t) (e.g. p(i, j, z, t)) or as functions of
(i, j, s, t) (e.g. p(i, j, s, t)). The symbol • will be used to represent any one of these fields. Any “infinitesimal”
change in • can be written in two forms:

δ• = δi
∂•
∂i

∣∣∣∣
j,s,t

+ δj
∂•
∂i

∣∣∣∣
i,s,t

+ δs
∂•
∂s

∣∣∣∣
i,j,t

+ δt
∂•
∂t

∣∣∣∣
i,j,s

,

δ• = δi
∂•
∂i

∣∣∣∣
j,z,t

+ δj
∂•
∂i

∣∣∣∣
i,z,t

+ δz
∂•
∂z

∣∣∣∣
i,j,t

+ δt
∂•
∂t

∣∣∣∣
i,j,z

.

(A.2)

Using the first form and considering a change δi with j, z and t held constant, shows that

∂•
∂i

∣∣∣∣
j,z,t

=
∂•
∂i

∣∣∣∣
j,s,t

+
∂s

∂i

∣∣∣∣
j,z,t

∂•
∂s

∣∣∣∣
i,j,t

. (A.3)

The term ∂s/∂i|j,z,t can be related to the slope of constant s surfaces, (equation A.1), by applying the second
of (equation A.2) with • set to s and j, t held constant

δs|j,t = δi
∂s

∂i

∣∣∣∣
j,z,t

+ δz
∂s

∂z

∣∣∣∣
i,j,t

. (A.4)

Choosing to look at a direction in the (i, z) plane in which δs = 0 and using (equation A.1) we obtain

∂s

∂i

∣∣∣∣
j,z,t

= − ∂z

∂i

∣∣∣∣
j,s,t

∂s

∂z

∣∣∣∣
i,j,t

= −e1
e3
σ1. (A.5)

Another identity, similar in form to (equation A.5), can be derived by choosing • to be s and using the second
form of (equation A.2) to consider changes in which i, j and s are constant. This shows that

ws =
∂z

∂t

∣∣∣∣
i,j,s

= − ∂z

∂s

∣∣∣∣
i,j,t

∂s

∂t

∣∣∣∣
i,j,z

= −e3
∂s

∂t

∣∣∣∣
i,j,z

. (A.6)

In what follows, for brevity, indication of the constancy of the i, j and t indices is usually omitted. Using
the arguments outlined above one can show that the chain rules needed to establish the model equations in the
curvilinear s−coordinate system are:

∂•
∂t

∣∣∣∣
z

=
∂•
∂t

∣∣∣∣
s

+
∂•
∂s

∂s

∂t
,

∂•
∂i

∣∣∣∣
z

=
∂•
∂i

∣∣∣∣
s

+
∂•
∂s

∂s

∂i
=
∂•
∂i

∣∣∣∣
s

− e1
e3
σ1
∂•
∂s
,

∂•
∂j

∣∣∣∣
z

=
∂•
∂j

∣∣∣∣
s

+
∂•
∂s

∂s

∂j
=
∂•
∂j

∣∣∣∣
s

− e2
e3
σ2
∂•
∂s
,

∂•
∂z

=
1

e3

∂•
∂s
.

(A.7)

A.2. Continuity equation in s−coordinates
Using (equation A.3) and the fact that the horizontal scale factors e1 and e2 do not depend on the vertical
coordinate, the divergence of the velocity relative to the (i,j,z) coordinate system is transformed as follows in
order to obtain its expression in the curvilinear s−coordinate system:
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∇ ·U = 1
e1 e2

[
∂(e2 u)
∂i

∣∣∣
z
+ ∂(e1 v)

∂j

∣∣∣
z

]
+ ∂w

∂z

= 1
e1 e2

[
∂(e2 u)
∂i

∣∣∣
s
− e1

e3
σ1

∂(e2 u)
∂s + ∂(e1 v)

∂j

∣∣∣
s
− e2

e3
σ2

∂(e1 v)
∂s

]
+ ∂w

∂s
∂s
∂z

= 1
e1 e2

[
∂(e2 u)
∂i

∣∣∣
s
+ ∂(e1 v)

∂j

∣∣∣
s

]
+ 1

e3

[
∂w
∂s − σ1

∂u
∂s − σ2

∂v
∂s

]
= 1

e1 e2 e3

[
∂(e2 e3 u)

∂i

∣∣∣
s
− e2 u

∂e3
∂i

∣∣
s
+ ∂(e1 e3 v)

∂j

∣∣∣
s
− e1v

∂e3
∂j

∣∣∣
s

]
+ 1
e3

[
∂w
∂s − σ1

∂u
∂s − σ2

∂v
∂s

]
Noting that 1

e1
∂e3
∂i

∣∣
s
= 1

e1
∂2z
∂i ∂s

∣∣∣
s
= ∂

∂s

(
1
e1

∂z
∂i

∣∣
s

)
= ∂σ1

∂s and 1
e2

∂e3
∂j

∣∣∣
s
= ∂σ2

∂s , it becomes:

∇ ·U = 1
e1 e2 e3

[
∂(e2 e3 u)

∂i

∣∣∣
s
+ ∂(e1 e3 v)

∂j

∣∣∣
s

]
+ 1
e3

[
∂w
∂s − u

∂σ1

∂s − v
∂σ2

∂s − σ1
∂u
∂s − σ2

∂v
∂s

]
= 1

e1 e2 e3

[
∂(e2 e3 u)

∂i

∣∣∣
s
+ ∂(e1 e3 v)

∂j

∣∣∣
s

]
+ 1

e3
∂
∂s [w − u σ1 − v σ2]

Here, w is the vertical velocity relative to the z−coordinate system. Using the first form of (equation A.2)
and the definitions (equation A.1) and (equation A.6) for σ1, σ2 and ws, one can show that the vertical velocity,
wp of a point moving with the horizontal velocity of the fluid along an s surface is given by

wp =
∂z

∂t

∣∣∣∣
s

+
u

e1

∂z

∂i

∣∣∣∣
s

+
v

e2

∂z

∂j

∣∣∣∣
s

=ws + uσ1 + vσ2.

(A.9)

The vertical velocity across this surface is denoted by

ω = w − wp = w − (ws + σ1 u+ σ2 v). (A.10)

Hence
1

e3

∂

∂s
[w − u σ1 − v σ2] =

1

e3

∂

∂s
[ω + ws] =

1

e3

[
∂ω

∂s
+

∂

∂t

∣∣∣∣
s

∂z

∂s

]
=

1

e3

∂ω

∂s
+

1

e3

∂e3
∂t

.

∣∣∣∣
s

(A.11)

Using (equation A.10) in our expression for ∇ · U we obtain our final expression for the divergence of the
velocity in the curvilinear s−coordinate system:

∇ ·U =
1

e1 e2 e3

[
∂(e2 e3 u)

∂i

∣∣∣∣
s

+
∂(e1 e3 v)

∂j

∣∣∣∣
s

]
+

1

e3

∂ω

∂s
+

1

e3

∂e3
∂t

∣∣∣∣
s

. (A.12)

As a result, the continuity equation equation 1.3 in the s−coordinates is:

1

e3

∂e3
∂t

+
1

e1 e2 e3

[
∂(e2 e3 u)

∂i

∣∣∣∣
s

+
∂(e1 e3 v)

∂j

∣∣∣∣
s

]
+

1

e3

∂ω

∂s
= 0. (A.13)

An additional term has appeared that takes into account the contribution of the time variation of the vertical
coordinate to the volume budget.

A.3. Momentum equation in s−coordinate
Here we only consider the first component of the momentum equation, the generalization to the second one
being straightforward.
• Total derivative in vector invariant form
Let us consider equation 1.13, the first component of the momentum equation in the vector invariant form.

Its total z−coordinate time derivative, Du
Dt

∣∣
z
can be transformed as follows in order to obtain its expression in

the curvilinear s−coordinate system:
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Du
Dt

∣∣
z

= ∂u
∂t

∣∣
z
− ζ|z v +

1
2e1

∂(u2+v2)
∂i

∣∣∣
z
+ w ∂u

∂z

= ∂u
∂t

∣∣
z
− 1

e1 e2

[
∂(e2 v)
∂i

∣∣∣
z
− ∂(e1 u)

∂j

∣∣∣
z

]
v + 1

2e1

∂(u2+v2)
∂i

∣∣∣
z
+ w ∂u

∂z

introducing the chain rule (equation A.3)

= ∂u
∂t

∣∣
z
− 1

e1 e2

[
∂(e2 v)
∂i

∣∣∣
s
− ∂(e1 u)

∂j

∣∣∣
s
− e1e3σ1

∂(e2 v)
∂s + e2

e3
σ2

∂(e1 u)
∂s

]
v

+ 1
2e1

(
∂(u2+v2)

∂i

∣∣∣
s
− e1

e3
σ1

∂(u2+v2)
∂s

)
+ w

e3
∂u
∂s

= ∂u
∂t

∣∣
z
− ζ|s v +

1
2 e1

∂(u2+v2)
∂i

∣∣∣
s

+ w
e3

∂u
∂s +

[
σ1

e3
∂v
∂s −

σ2

e3
∂u
∂s

]
v − σ1

2e3

∂(u2+v2)
∂s

= ∂u
∂t

∣∣
z
− ζ|s v +

1
2 e1

∂(u2+v2)
∂i

∣∣∣
s

+ 1
e3

[
w ∂u
∂s + σ1v

∂v
∂s − σ2v

∂u
∂s − σ1u

∂u
∂s − σ1v

∂v
∂s

]
= ∂u

∂t

∣∣
z
− ζ|s v +

1
2 e1

∂(u2+v2)
∂i

∣∣∣
s
+ 1

e3
[w − σ2v − σ1u] ∂u

∂s .

Introducing ω, the dia-s-surface velocity given by (equation A.10)

= ∂u
∂t

∣∣
z
− ζ|s v +

1
2 e1

∂(u2+v2)
∂i

∣∣∣
s
+ 1

e3
(ω + ws)

∂u
∂s

Applying the time derivative chain rule (first equation of (equation A.3)) to u and using (equation A.6) provides
the expression of the last term of the right hand side,

ws

e3
∂u
∂s = − ∂s

∂t

∣∣
z
∂u
∂s = ∂u

∂t

∣∣
s
− ∂u

∂t

∣∣
z
.

This leads to the s−coordinate formulation of the total z−coordinate time derivative, i.e. the total s−coordinate
time derivative :

Du

Dt

∣∣∣∣
s

=
∂u

∂t

∣∣∣∣
s

− ζ|s v +
1

2 e1

∂(u2 + v2)

∂i

∣∣∣∣
s

+
1

e3
ω
∂u

∂s
. (A.15)

Therefore, the vector invariant form of the total time derivative has exactly the same mathematical form in z−
and s−coordinates. This is not the case for the flux form as shown in next paragraph.

• Total derivative in flux form

Let us start from the total time derivative in the curvilinear s−coordinate system we have just establish.
Following the procedure used to establish (equation 1.12), it can be transformed into :

Du
Dt

∣∣
s

= ∂u
∂t

∣∣
s
−ζ v + 1

2 e1

∂(u2+v2)
∂i + 1

e3
ω ∂u

∂s

= ∂u
∂t

∣∣
s

+ 1
e1 e2

(
∂(e2 uu)

∂i + ∂(e1 u v)
∂j

)
+ 1

e3

∂(ω u)
∂s

−u
[

1
e1e2

(
∂(e2u)
∂i + ∂(e1v)

∂j

)
+ 1

e3
∂ω
∂s

]
− v
e1e2

(
v ∂e2

∂i − u
∂e1
∂j

)
.

Introducing the vertical scale factor inside the horizontal derivative of the first two terms (i.e. the horizontal
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divergence), it becomes :

= ∂u
∂t

∣∣
s

+ 1
e1 e2 e3

(
∂(e2e3 u

2)
∂i + ∂(e1e3 uv)

∂j − e2uu∂e3∂i − e1uv
∂e3
∂j

)
+ 1

e3

∂(ω u)
∂s

−u
[

1
e1e2e3

(
∂(e2e3 u)

∂i + ∂(e1e3 v)
∂j − e2u ∂e3

∂i − e1v
∂e3
∂j

)
+ 1

e3
∂ω
∂s

]
− v
e1e2

(
v ∂e2

∂i − u
∂e1
∂j

)
= ∂u

∂t

∣∣
s

+ 1
e1 e2 e3

(
∂(e2e3 uu)

∂i + ∂(e1e3 u v)
∂j

)
+ 1

e3

∂(ω u)
∂s

−u
[

1
e1e2e3

(
∂(e2e3 u)

∂i + ∂(e1e3 v)
∂j

)
+ 1

e3
∂ω
∂s

]
− v

e1e2

(
v ∂e2

∂i − u
∂e1
∂j

)
.

Introducing a more compact form for the divergence of the momentum fluxes, and using (equation A.13), the
s−coordinate continuity equation, it becomes :

= ∂u
∂t

∣∣
s

+ ∇ · (Uu)|s + u 1
e3
∂e3
∂t −

v
e1e2

(
v ∂e2

∂i − u
∂e1
∂j

)
which leads to the s−coordinate flux formulation of the total s−coordinate time derivative, i.e. the total
s−coordinate time derivative in flux form:

Du

Dt

∣∣∣∣
s

=
1

e3

∂(e3 u)

∂t

∣∣∣∣
s

+ ∇ · (Uu)|s −
v

e1e2

(
v
∂e2
∂i
− u ∂e1

∂j

)
. (A.16)

which is the total time derivative expressed in the curvilinear s−coordinate system. It has the same form as
in the z−coordinate but for the vertical scale factor that has appeared inside the time derivative which comes
from the modification of (equation A.13), the continuity equation.
• horizontal pressure gradient
The horizontal pressure gradient term can be transformed as follows:

− 1

ρo e1

∂p

∂i

∣∣∣∣
z

= − 1

ρoe1

[
∂p

∂i

∣∣∣∣
s

− e1
e3
σ1
∂p

∂s

]
= − 1

ρo e1

∂p

∂i

∣∣∣∣
s

+
σ1
ρo e3

(−g ρ e3)

= − 1

ρo e1

∂p

∂i

∣∣∣∣
s

− g ρ

ρo
σ1.

Applying similar manipulation to the second component and replacing σ1 and σ2 by their expression equa-
tion A.1, it becomes:

− 1

ρo e1

∂p

∂i

∣∣∣∣
z

= − 1

ρo e1

(
∂p

∂i

∣∣∣∣
s

+ g ρ
∂z

∂i

∣∣∣∣
s

)
− 1

ρo e2

∂p

∂j

∣∣∣∣
z

= − 1

ρo e2

(
∂p

∂j

∣∣∣∣
s

+ g ρ
∂z

∂j

∣∣∣∣
s

)
.

(A.17)

An additional term appears in (equation A.17) which accounts for the tilt of s−surfaces with respect to
geopotential z−surfaces.
As in z-coordinate, the horizontal pressure gradient can be split in two parts following Marsaleix et al.

(2008). Let defined a density anomaly, d, by d = (ρ − ρo)/ρo, and a hydrostatic pressure anomaly, p′h, by
p′h = g

∫ η
z
d e3 dk. The pressure is then given by:

p = g

∫ η

z

ρ e3 dk = g

∫ η

z

ρo (d+ 1) e3 dk

= g ρo

∫ η

z

d e3 dk + ρog

∫ η

z

e3 dk.

Therefore, p and p′h are linked through:

p = ρo p
′
h + ρo g (η − z) (A.18)

and the hydrostatic pressure balance expressed in terms of p′h and d is:

∂p′h
∂k

= −d g e3.
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Substituing equation A.18 in equation A.17 and using the definition of the density anomaly it becomes an
expression in two parts:

− 1

ρo e1

∂p

∂i

∣∣∣∣
z

= − 1

e1

(
∂p′h
∂i

∣∣∣∣
s

+ g d
∂z

∂i

∣∣∣∣
s

)
− g

e1

∂η

∂i
,

− 1

ρo e2

∂p

∂j

∣∣∣∣
z

= − 1

e2

(
∂p′h
∂j

∣∣∣∣
s

+ g d
∂z

∂j

∣∣∣∣
s

)
− g

e2

∂η

∂j
.

(A.19)

This formulation of the pressure gradient is characterised by the appearance of a term depending on the sea
surface height only (last term on the right hand side of expression equation A.19). This term will be loosely
termed surface pressure gradient whereas the first term will be termed the hydrostatic pressure gradient by
analogy to the z-coordinate formulation. In fact, the true surface pressure gradient is 1/ρo∇(ρη), and η is
implicitly included in the computation of p′h through the upper bound of the vertical integration.
• The other terms of the momentum equation
The coriolis and forcing terms as well as the the vertical physics remain unchanged as they involve neither

time nor space derivatives. The form of the lateral physics is discussed in appendix B.
• Full momentum equation
To sum up, in a curvilinear s-coordinate system, the vector invariant momentum equation solved by the

model has the same mathematical expression as the one in a curvilinear z−coordinate, except for the pressure
gradient term:

∂u

∂t
= +(ζ + f) v − 1

2 e1

∂

∂i

(
u2 + v2

)
− 1

e3
ω
∂u

∂k

− 1

e1

(
∂p′h
∂i

+ g d
∂z

∂i

)
− g

e1

∂η

∂i
+DU

u + FUu , (A.20a)

∂v

∂t
= − (ζ + f) u− 1

2 e2

∂

∂j

(
u2 + v2

)
− 1

e3
ω
∂v

∂k

− 1

e2

(
∂p′h
∂j

+ g d
∂z

∂j

)
− g

e2

∂η

∂j
+DU

v + FUv . (A.20b)

whereas the flux form momentum equation differs from it by the formulation of both the time derivative and
the pressure gradient term:

1

e3

∂ (e3 u)

∂t
= −∇ · (Uu) +

{
f +

1

e1e2

(
v
∂e2
∂i
− u ∂e1

∂j

)}
v

− 1

e1

(
∂p′h
∂i

+ g d
∂z

∂i

)
− g

e1

∂η

∂i
+DU

u + FUu , (A.21a)

1

e3

∂ (e3 v)

∂t
= −∇ · (U v)−

{
f +

1

e1e2

(
v
∂e2
∂i
− u ∂e1

∂j

)}
u

− 1

e2

(
∂p′h
∂j

+ g d
∂z

∂j

)
− g

e2

∂η

∂j
+DU

v + FUv . (A.21b)

Both formulation share the same hydrostatic pressure balance expressed in terms of hydrostatic pressure and
density anomalies, p′h and d = ( ρρo − 1):

∂p′h
∂k

= −d g e3. (A.22)

It is important to realize that the change in coordinate system has only concerned the position on the vertical.
It has not affected (i,j,k), the orthogonal curvilinear set of unit vectors. (u,v) are always horizontal velocities
so that their evolution is driven by horizontal forces, in particular the pressure gradient. By contrast, ω is not
w, the third component of the velocity, but the dia-surface velocity component, i.e. the volume flux across the
moving s-surfaces per unit horizontal area.

A.4. Tracer equation
The tracer equation is obtained using the same calculation as for the continuity equation and then regrouping
the time derivative terms in the left hand side :
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1

e3

∂ (e3T )

∂t
= − 1

e1 e2 e3

[
∂

∂i
(e2 e3 Tu) +

∂

∂j
(e1 e3 Tv)

]
− 1

e3

∂

∂k
(Tw) +DT + FT (A.23)

The expression for the advection term is a straight consequence of (equation A.13), the expression of the 3D
divergence in the s−coordinates established above.
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Sect. B.1 Horizontal/Vertical 2nd order tracer diffusive operators

B.1. Horizontal/Vertical 2nd order tracer diffusive operators

In z-coordinates

In z-coordinates, the horizontal/vertical second order tracer diffusion operator is given by:

DT =
1

e1 e2

[
∂

∂i

(
e2
e1
AlT

∂T

∂i

∣∣∣∣
z

)∣∣∣∣
z

+
∂

∂j

(
e1
e2
AlT

∂T

∂j

∣∣∣∣
z

)∣∣∣∣
z

]
+

∂

∂z

(
AvT

∂T

∂z

)
(B.1)

In generalized vertical coordinates

In s-coordinates, we defined the slopes of s-surfaces, σ1 and σ2 by equation A.1 and the vertical/horizontal ratio
of diffusion coefficient by ϵ = AvT /AlT . The diffusion operator is given by:

DT = ∇|s ·
[
AlT ℜ · ∇|s T

]
where ℜ =

 1 0 −σ1
0 1 −σ2
−σ1 −σ2 ε+ σ2

1 + σ2
2

 (B.2)

or in expanded form:

DT = 1
e1 e2 e3

{
∂
∂i

[
e2 e3A

lT
(

1
e1

∂T
∂i

∣∣
s
− σ1

e3
∂T
∂s

)]∣∣∣
s

+ ∂
∂j

[
e1 e3A

lT
(

1
e2

∂T
∂j

∣∣∣
s
− σ2

e3
∂T
∂s

)]∣∣∣
s

+ e1 e2
∂
∂s

[
AlT

(
−σ1

e1
∂T
∂i

∣∣
s
− σ2

e2
∂T
∂j

∣∣∣
s
+
(
ε+ σ2

1 + σ2
2

)
1
e3

∂T
∂s

) ] }
.

equation B.2 is obtained from equation B.1 without any additional assumption. Indeed, for the special case
k = z and thus e3 = 1, we introduce an arbitrary vertical coordinate s = s(i, j, z) as in appendix A and use
equation A.1 and equation A.3. Since no cross horizontal derivative ∂i∂j appears in equation B.1, the (i,z) and
(j,z) planes are independent. The derivation can then be demonstrated for the (i,z) → (j,s) transformation
without any loss of generality:
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DT = 1
e1 e2

∂
∂i

(
e2
e1
AlT ∂T

∂i

∣∣
z

)∣∣∣
z
+ ∂

∂z

(
AvT ∂T

∂z

)
= 1

e1 e2

[
∂
∂i

(
e2
e1
AlT

(
∂T
∂i

∣∣
s
− e1 σ1

e3
∂T
∂s

))∣∣∣
s

− e1 σ1

e3
∂
∂s

(
e2
e1
AlT

(
∂T
∂i

∣∣
s
− e1 σ1

e3
∂T
∂s

)∣∣∣
s

) ]
+ 1

e3
∂
∂s

[
AvT

e3
∂T
∂s

]
= 1

e1 e2 e3

[
∂
∂i

(
e2 e3
e1

AlT ∂T
∂i

∣∣
s

)∣∣∣
s
− e2

e1
AlT ∂e3

∂i

∣∣∣
s

∂T
∂i

∣∣
s

−e3 ∂∂i
(
e2 σ1

e3
AlT ∂T

∂s

)∣∣∣
s
− e1 σ1 ∂

∂s

(
e2
e1
AlT ∂T

∂i

∣∣
s

)
−e1 σ1 ∂

∂s

(
− e2 σ1

e3
AlT ∂T

∂s

)
+ ∂
∂s

(
e1 e2
e3

AvT ∂T
∂s

) ]
Noting that 1

e1
∂e3
∂i

∣∣
s
= ∂σ1

∂s , this becomes:

DT = 1
e1 e2 e3

[
∂
∂i

(
e2 e3
e1

AlT ∂T
∂i

∣∣
s

)∣∣∣
s
− e3 ∂∂i

(
e2 σ1

e3
AlT ∂T

∂s

)∣∣∣
s

−e2AlT ∂σ1

∂s
∂T
∂i

∣∣
s
− e1 σ1 ∂

∂s

(
e2
e1
AlT ∂T

∂i

∣∣
s

)
+e1 σ1

∂
∂s

(
e2 σ1

e3
AlT ∂T

∂s

)
+ ∂

∂s

(
e1 e2
e3

AvT ∂T
∂s

) ]
= 1

e1 e2 e3

[
∂
∂i

(
e2 e3
e1

AlT ∂T
∂i

∣∣
s

)∣∣∣
s
− ∂
∂i

(
e2 σ1A

lT ∂T
∂s

)∣∣
s

+ e2 σ1

e3
AlT ∂T

∂s
∂e3
∂i

∣∣∣
s
− e2AlT ∂σ1

∂s
∂T
∂i

∣∣
s

−e2 σ1 ∂
∂s

(
AlT ∂T

∂i

∣∣
s

)
+ ∂

∂s

(
e1 e2 σ

2
1

e3
AlT ∂T

∂s

)
−∂(e1 e2 σ1)

∂s

(
σ1

e3
AlT ∂T

∂s

)
+ ∂

∂s

(
e1 e2
e3

AvT ∂T
∂s

) ]
.

Using the same remark as just above, DT becomes:

DT = 1
e1 e2 e3

[
∂
∂i

(
e2 e3
e1

AlT ∂T
∂i

∣∣
s
− e2 σ1AlT ∂T

∂s

)∣∣∣
s

+ e1 e2 σ1

e3
AlT ∂T

∂s
∂σ1

∂s −
σ1

e3
AlT ∂(e1 e2 σ1)

∂s
∂T
∂s

−e2
(
AlT ∂σ1

∂s
∂T
∂i

∣∣
s
+ ∂

∂s

(
σ1A

lT ∂T
∂i

∣∣
s

)
− ∂σ1

∂s AlT ∂T
∂i

∣∣
s

)
+ ∂
∂s

(
e1 e2 σ

2
1

e3
AlT ∂T

∂s + e1 e2
e3

AvT ∂T
∂s

) ]
.

Since the horizontal scale factors do not depend on the vertical coordinate, the two terms on the second line
cancel, while the third line reduces to a single vertical derivative, so it becomes:

DT = 1
e1 e2 e3

[
∂
∂i

(
e2 e3
e1

AlT ∂T
∂i

∣∣
s
− e2 σ1AlT ∂T

∂s

)∣∣∣
s

+ ∂
∂s

(
−e2 σ1AlT ∂T

∂i

∣∣
s
+AlT e1 e2e3

(
ε+ σ2

1

)
∂T
∂s

) ]
In other words, the horizontal/vertical Laplacian operator in the (i,s) plane takes the following form:

1

e1 e2 e3

(
∂(e2e3•)

∂i

∣∣∣
s

∂(e1e2•)
∂s

)
·
[
AlT

(
1 −σ1
−σ1 ε+ σ2

1

)
·
( 1

e1
∂•
∂i

∣∣
s

1
e3

∂•
∂s

)
(T )

]

B.2. Iso/Diapycnal 2nd order tracer diffusive operators

In z-coordinates

The iso/diapycnal diffusive tensor AI expressed in the (i,j,k) curvilinear coordinate system in which the equa-
tions of the ocean circulation model are formulated, takes the following form (Redi, 1982):

AI =
AlT

(1 + a21 + a22)

 1 + a22 + εa21 −a1a2(1− ε) −a1(1− ε)
−a1a2(1− ε) 1 + a21 + εa22 −a2(1− ε)
−a1(1− ε) −a2(1− ε) ε+ a21 + a22

 (B.3)
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where (a1, a2) are (−1)× the isopycnal slopes in (i, j) directions, relative to geopotentials (or equivalently the
slopes of the geopotential surfaces in the isopycnal coordinate framework):

a1 =
e3
e1

(
∂ρ

∂i

)(
∂ρ

∂k

)−1

, a2 =
e3
e2

(
∂ρ

∂j

)(
∂ρ

∂k

)−1

and, as before, ϵ = AvT /AlT .
In practice, ϵ is small and isopycnal slopes are generally less than 10−2 in the ocean, so AI can be simplified

appreciably (Cox, 1987). Keeping leading order terms∗:

AI ≈ AlT ℜ where ℜ =

 1 0 −a1
0 1 −a2
−a1 −a2 ε+ a21 + a22

 , (B.4a)

and the iso/dianeutral diffusive operator in z-coordinates is then

DT = ∇|z ·
[
AlT ℜ · ∇|z T

]
. (B.4b)

Physically, the full tensor equation B.3 represents strong isoneutral diffusion on a plane parallel to the
isoneutral surface and weak dianeutral diffusion perpendicular to this plane. However, the approximate ‘weak-
slope’ tensor equation B.4a represents strong diffusion along the isoneutral surface, with weak vertical diffusion
– the principal axes of the tensor are no longer orthogonal. This simplification also decouples the (i,z) and (j,z)
planes of the tensor. The weak-slope operator therefore takes the same form, equation B.4, as equation B.2, the
diffusion operator for geopotential diffusion written in non-orthogonal i, j, s-coordinates. Written out explicitly,

DT =
1

e1e2

{
∂

∂i

[
Ah

(
e2
e1

∂T

∂i
− a1

e2
e3

∂T

∂k

)]
+
∂

∂j

[
Ah

(
e1
e2

∂T

∂j
− a2

e1
e3

∂T

∂k

)] }
+

1

e3

∂

∂k

[
Ah

(
−a1
e1

∂T

∂i
− a2
e2

∂T

∂j
+

(
a21 + a22 + ε

)
e3

∂T

∂k

)]
.

(B.5)

The isopycnal diffusion operator equation B.4, equation B.5 conserves tracer quantity and dissipates its
square. As equation B.4 is the divergence of a flux, the demonstration of the first property is trivial, providing
that the flux normal to the boundary is zero (as it is when Ah is zero at the boundary). Let us demonstrate
the second one: ∫∫∫

D

T ∇. (AI∇T ) dv = −
∫∫∫
D

∇T . (AI∇T ) dv,

and since

∇T . (AI∇T ) = AlT
[(

∂T
∂i

)2 − 2a1
∂T
∂i

∂T
∂k +

(
∂T
∂j

)2
− 2a2

∂T
∂j

∂T
∂k +

(
a21 + a22 + ε

) (
∂T
∂k

)2]
= Ah

[(
∂T
∂i − a1

∂T
∂k

)2
+
(
∂T
∂j − a2

∂T
∂k

)2
+ ε

(
∂T
∂k

)2]
≥ 0.

the property becomes obvious.

In generalized vertical coordinates

Because the weak-slope operator equation B.4, equation B.5 is decoupled in the (i,z) and (j,z) planes, it may
be transformed into generalized s-coordinates in the same way as section B.1 was transformed into section B.2.
The resulting operator then takes the simple form

DT = ∇|s ·
[
AlT ℜ · ∇|s T

]
where ℜ =

 1 0 −r1
0 1 −r2
−r1 −r2 ε+ r21 + r22

 , (B.6)

∗Apart from the (1,0) and (0,1) elements which are set to zero. See Griffies (2004), section 14.1.4.1 for a discussion of this point.
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where (r1, r2) are (−1)× the isopycnal slopes in (i, j) directions, relative to s-coordinate surfaces (or equiv-
alently the slopes of the s-coordinate surfaces in the isopycnal coordinate framework):

r1 =
e3
e1

(
∂ρ

∂i

)(
∂ρ

∂s

)−1

, r2 =
e3
e2

(
∂ρ

∂j

)(
∂ρ

∂s

)−1

.

To prove equation B.6 by direct re-expression of equation B.5 is straightforward, but laborious. An easier
way is first to note (by reversing the derivation of section B.2 from section B.1 ) that the weak-slope operator
may be exactly reexpressed in non-orthogonal i, j, ρ-coordinates as

DT = ∇|ρ ·
[
AlT ℜ · ∇|ρ T

]
where ℜ =

 1 0 0
0 1 0
0 0 ε

 . (B.7)

Then direct transformation from i, j, ρ-coordinates to i, j, s-coordinates gives equation B.6 immediately.
Note that the weak-slope approximation is only made in transforming from the (rotated,orthogonal) isoneu-

tral axes to the non-orthogonal i, j, ρ-coordinates. The further transformation into i, j, s-coordinates is exact,
whatever the steepness of the s-surfaces, in the same way as the transformation of horizontal/vertical Laplacian
diffusion in z-coordinates in section B.1 onto s-coordinates is exact, however steep the s-surfaces.

B.3. Lateral/Vertical momentum diffusive operators
The second order momentum diffusion operator (Laplacian) in z-coordinates is found by applying equation 1.8e,
the expression for the Laplacian of a vector, to the horizontal velocity vector:

∆Uh = ∇ (∇ ·Uh)−∇× (∇×Uh)

=


1
e1

∂χ
∂i

1
e2

∂χ
∂j

1
e3

∂χ
∂k

−


1
e2

∂ζ
∂j −

1
e3

∂
∂k

(
1
e3
∂u
∂k

)
1
e3

∂
∂k

(
− 1
e3
∂v
∂k

)
− 1

e1

∂ζ
∂i

1
e1e2

[
∂
∂i

(
e2
e3
∂u
∂k

)
− ∂

∂j

(
− e1e3

∂v
∂k

)]


=

 1
e1

∂χ
∂i −

1
e2

∂ζ
∂j

1
e2

∂χ
∂j + 1

e1

∂ζ
∂i

0

+
1

e3


∂
∂k

(
1
e3
∂u
∂k

)
∂
∂k

(
1
e3
∂v
∂k

)
∂χ
∂k −

1
e1e2

(
∂2(e2 u)
∂i∂k + ∂2(e1 v)

∂j∂k

)


Using equation 1.8b, the definition of the horizontal divergence, the third component of the second vector is
obviously zero and thus :

∆Uh = ∇h (χ)−∇h × (ζk) + 1

e3

∂

∂k

(
1

e3

∂ Uh

∂k

)
.

Note that this operator ensures a full separation between the vorticity and horizontal divergence fields (see
appendix C). It is only equal to a Laplacian applied to each component in Cartesian coordinates, not on the
sphere.
The horizontal/vertical second order (Laplacian type) operator used to diffuse horizontal momentum in the

z-coordinate therefore takes the following form:

DU = ∇h
(
Alm χ

)
−∇h ×

(
Alm ζ k

)
+

1

e3

∂

∂k

(
Avm

e3

∂Uh

∂k

)
, (B.8)

that is, in expanded form:

DU
u =

1

e1

∂
(
Almχ

)
∂i

− 1

e2

∂
(
Almζ

)
∂j

+
1

e3

∂

∂k

(
Avm

e3

∂u

∂k

)
,

DU
v =

1

e2

∂
(
Almχ

)
∂j

+
1

e1

∂
(
Almζ

)
∂i

+
1

e3

∂

∂k

(
Avm

e3

∂v

∂k

)
.

Note Bene: introducing a rotation in equation B.8 does not lead to a useful expression for the iso/diapycnal
Laplacian operator in the z-coordinate. Similarly, we did not found an expression of practical use for the
geopotential horizontal/vertical Laplacian operator in the s-coordinate. Generally, equation B.8 is used in
both z- and s-coordinate systems, that is a Laplacian diffusion is applied on momentum along the coordinate
directions.
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Apdx C Discrete Invariants of the Equations

C.1. Introduction / Notations
Notation used in this appendix in the demonstations:
fluxes at the faces of a T -box:

U = e2u e3u u V = e1v e3v v W = e1w e2w ω

volume of cells at u-, v-, and T -points:

bu = e1u e2u e3u bv = e1v e2v e3v bt = e1t e2t e3t

partial derivative notation: ∂• = ∂
∂•

dv = e1 e2 e3 di dj dk is the volume element, with only e3 that depends on time. D and S are the ocean
domain volume and surface, respectively. No wetting/drying is allow (i.e. ∂S∂t = 0). Let ks and kb be the ocean
surface and bottom, resp. (i.e. s(ks) = η and s(kb) = −H, where H is the bottom depth).

z(k) = η −
k̃=ks∫
k̃=k

e3(k̃) dk̃ = η −
ks∫
k

e3 dk̃

Continuity equation with the above notation:

1

e3t
∂t(e3t) +

1

bt

{
δi[U ] + δj [V ] + δk[W ]

}
= 0

A quantity, Q is conserved when its domain averaged time change is zero, that is when:

∂t

(∫
D

Q dv

)
= 0

Noting that the coordinate system used .... blah blah

∂t

(∫
D

Q dv

)
=

∫
D

∂t (e3Q) e1e2 di dj dk =

∫
D

1

e3
∂t (e3Q) dv = 0

equation of evolution of Q written as the time evolution of the vertical content of Q like for tracers, or momentum
in flux form, the quadratic quantity 1

2Q
2 is conserved when:

∂t

(∫
D

1

2
Q2 dv

)
=

∫
D

1

2
∂t

(
1

e3
(e3Q)

2

)
e1e2 di dj dk

=

∫
D

Q ∂t (e3Q) e1e2 di dj dk −
∫
D

1

2
Q2 ∂t(e3) e1e2 di dj dk

that is in a more compact form :

∂t

(∫
D

1

2
Q2 dv

)
=

∫
D

Q

e3
∂t (e3Q) dv − 1

2

∫
D

Q2

e3
∂t(e3) dv (C.1)

equation of evolution of Q written as the time evolution of Q like for momentum in vector invariant form, the
quadratic quantity 1

2Q
2 is conserved when:

∂t

(∫
D

1

2
Q2 dv

)
=

∫
D

1

2
∂t
(
e3Q

2
)
e1e2 di dj dk

=

∫
D

Q∂tQ e1e2e3 di dj dk +

∫
D

1

2
Q2 ∂te3 e1e2 di dj dk

that is in a more compact form:

∂t

(∫
D

1

2
Q2 dv

)
=

∫
D

Q∂tQ dv +
1

2

∫
D

1

e3
Q2∂te3 dv (C.2)
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Sect. C.2 Continuous conservation

C.2. Continuous conservation
The discretization of pimitive equation in s-coordinate (i.e. time and space varying vertical coordinate) must
be chosen so that the discrete equation of the model satisfy integral constrains on energy and enstrophy.
Let us first establish those constraint in the continuous world. The total energy (i.e. kinetic plus potential

energies) is conserved:

∂t

(∫
D

(
1

2
Uh

2 + ρ g z

)
dv

)
=0 (C.3)

under the following assumptions: no dissipation, no forcing (wind, buoyancy flux, atmospheric pressure varia-
tions), mass conservation, and closed domain.
This equation can be transformed to obtain several sub-equalities. The transformation for the advection term

depends on whether the vector invariant form or the flux form is used for the momentum equation. Using
equation C.2 and introducing equation A.20 in equation C.3 for the former form and using equation C.1 and
introducing equation A.21 in equation C.3 for the latter form leads to:
advection term (vector invariant form): ∫

D

ζ (k×Uh) ·Uh dv = 0

∫
D

Uh · ∇h
(

Uh
2

2

)
dv +

∫
D

Uh · ∇zUh dv −
∫
D

Uh
2

2

1

e3
∂te3 dv = 0

advection term (flux form): ∫
D

1

e1e2
(v ∂ie2 − u ∂je1) (k×Uh) ·Uh dv = 0

∫
D

Uh ·
(
∇ · (Uu)
∇ · (U v)

)
dv +

1

2

∫
D

Uh
2 1

e3
∂te3 dv = 0

coriolis term ∫
D

f (k×Uh) ·Uh dv = 0

pressure gradient:
−
∫
D

∇p|z ·Uh dv = −
∫
D

∇ · (ρU) g z dv +

∫
D

g ρ ∂tz dv

where ∇h = ∇|k is the gradient along the s-surfaces.
blah blah....
The prognostic ocean dynamics equation can be summarized as follows:

NXT =

(
VOR+KEG+ ZAD

COR+ADV

)
+HPG+ SPG+ LDF+ ZDF

Vector invariant form: ∫
D

Uh ·VOR dv = 0

∫
D

Uh ·KEG dv +

∫
D

Uh · ZAD dv −
∫
D

Uh
2

2

1

e3
∂te3 dv = 0

−
∫
D

Uh · (HPG+ SPG) dv = −
∫
D

∇ · (ρU) g z dv +

∫
D

g ρ ∂tz dv

Flux form: ∫
D

Uh · COR dv = 0

∫
D

Uh ·ADV dv +
1

2

∫
D

Uh
2 1

e3
∂te3 dv = 0
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−
∫
D

Uh · (HPG+ SPG) dv = −
∫
D

∇ · (ρU) g z dv +

∫
D

g ρ ∂tz dv (C.4a)

equation C.4a is the balance between the conversion KE to PE and PE to KE. Indeed the left hand side of
equation C.4a can be transformed as follows:

∂t

∫
D

ρ g z dv

 = +

∫
D

1

e3
∂t(e3 ρ) g z dv +

∫
D

g ρ ∂tz dv

= −
∫
D

∇ · (ρU) g z dv +

∫
D

g ρ ∂tz dv

= +

∫
D

ρ g

(
Uh · ∇hz + ω

1

e3
∂kz

)
dv +

∫
D

g ρ ∂tz dv

= +

∫
D

ρ g (ω + ∂tz + Uh · ∇hz) dv

= +

∫
D

g ρ w dv

where the last equality is obtained by noting that the brackets is exactly the expression of w, the vertical velocity
referenced to the fixe z-coordinate system (see equation A.10).
The left hand side of equation C.4a can be transformed as follows:

−
∫
D

∇p|z ·Uh dv = −
∫
D

(∇hp+ ρ g∇hz) ·Uh dv

= −
∫
D

∇hp ·Uh dv −
∫
D

ρ g∇hz ·Uh dv

= +

∫
D

p∇h ·Uh dv +

∫
D

ρ g (ω − w + ∂tz) dv

= −
∫
D

p

(
1

e3
∂te3 +

1

e3
∂kω

)
dv +

∫
D

ρ g (ω − w + ∂tz) dv

= −
∫
D

p

e3
∂te3 dv +

∫
D

1

e3
∂kp ω dv +

∫
D

ρ g (ω − w + ∂tz) dv

= −
∫
D

p

e3
∂te3 dv −

∫
D

ρ g ω dv +

∫
D

ρ g (ω − w + ∂tz) dv

= −
∫
D

p

e3
∂te3 dv −

∫
D

ρ g w dv +

∫
D

ρ g ∂tz dv

introducing the hydrostatic balance ∂kp = −ρ g e3 in the last term, it becomes:

= −
∫
D

p

e3
∂te3 dv −

∫
D

ρ g w dv −
∫
D

1

e3
∂kp ∂tz dv

= −
∫
D

p

e3
∂te3 dv −

∫
D

ρ g w dv +

∫
D

p

e3
∂t(∂kz)dv

= −
∫
D

ρ g w dv
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C.3. Discrete total energy conservation: vector invariant form
C.3.1. Total energy conservation
The discrete form of the total energy conservation, equation C.3, is given by:

∂t

∑
i,j,k

{
u2

2
bu +

v2

2
bv + ρ g zt bt

} = 0

which in vector invariant forms, it leads to:∑
i,j,k

{
u ∂tu bu + v ∂tv bv

}
+

1

2

∑
i,j,k

{
u2

e3u
∂te3u bu +

v2

e3v
∂te3v bv

}

= −
∑
i,j,k

{
1

e3t
∂t(e3tρ) g zt bt

}
−
∑
i,j,k

{
ρ g ∂t(zt) bt

} (C.5)

Substituting the discrete expression of the time derivative of the velocity either in vector invariant, leads to
the discrete equivalent of the four equations equation C.4.

C.3.2. Vorticity term (coriolis + vorticity part of the advection)
Let q, located at f -points, be either the relative (q = ζ/e3f ), or the planetary (q = f/e3f ), or the total potential
vorticity (q = (ζ + f)/e3f ). Two discretisation of the vorticity term (ENE and EEN) allows the conservation of
the kinetic energy.

Vorticity term with ENE scheme ( ln_dynvor_ene=.true. )

For the ENE scheme, the two components of the vorticity term are given by:

−e3 q k×Uh ≡

 + 1
e1u

q (e1v e3v v)
i+1/2

j

− 1
e2v

q (e2u e3u u)
j+1/2

i


This formulation does not conserve the enstrophy but it does conserve the total kinetic energy. Indeed, the

kinetic energy tendency associated to the vorticity term and averaged over the ocean domain can be transformed
as follows:∫
D

− (e3 q k×Uh) ·Uh dv

≡
∑
i,j,k

{
1
e1u

q V
i+1/2

j

u bu − 1
e2v

q U
j+1/2

i

v bv

}
≡
∑
i,j,k

{
q V

i+1/2
j

U − q U
j+1/2

i

V

}
≡
∑
i,j,k

q

{
V
i+1/2

U
j+1/2 − U j+1/2

V
i+1/2

}
≡ 0

In other words, the domain averaged kinetic energy does not change due to the vorticity term.

Vorticity term with EEN scheme ( ln_dynvor_een=.true. )

With the EEN scheme, the vorticity terms are represented as:
+q e3 v ≡ +

1

e1u

∑
ip, kp

i+1/2−ip
j Qipjp (e1ve3v v)

i+ip−1/2
j+jp

−q e3 u ≡ −
1

e2v

∑
ip, kp

i
j+1/2−jpQ

ip
jp
(e2ue3u u)

i+ip
j+jp−1/2

(C.6)

where the indices ip and jp take the following value: ip = −1/2 or 1/2 and jp = −1/2 or 1/2, and the vorticity
triads, ijQ

ip
jp
, defined at T -point, are given by:

j
iQ

ip
jp

=
1

12

(
q
i−ip
j+jp

+ q
i+jp
j+ip

+ q
i+ip
j−jp

)
(C.7)
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This formulation does conserve the total kinetic energy. Indeed,

∫
D

−Uh · (ζ k×Uh) dv

≡
∑
i,j,k

{∑
ip, kp

i+1/2−ip
j Qipjp V

i+1/2−ip
j+jp

U i+1/2
j −

∑
ip, kp

i
j+1/2−jpQ

ip
jp
U
i+ip
j+1/2−jp

V ij+1/2

}

≡
∑
i,j,k

∑
ip, kp

{
i+1/2−ip
j Qipjp V

i+1/2−ip
j+jp

U
i+1/2
j − i

j+1/2−jpQ
ip
jp
U
i+ip
j+1/2−jp V

i
j+1/2

}

Expending the summation on ip and kp, it becomes:

≡
∑
i,j,k

{
i+1
j Q−1/2

+1/2 V
i+1
j+1/2 U

i+1/2
j − i

j Q−1/2
+1/2 U

i−1/2
j V i

j+1/2

+ i+1
j Q−1/2

−1/2 V
i+1
j−1/2 U

i+1/2
j − i

j+1Q
−1/2
−1/2 U

i−1/2
j+1 V i

j+1/2

+ i
j Q+1/2

+1/2 V
i
j+1/2 U

i+1/2
j − i

j Q+1/2
+1/2 U

i+1/2
j V i

j+1/2

+ i
j Q+1/2

−1/2 V
i
j−1/2 U

i+1/2
j − i

j+1Q
+1/2
−1/2 U

i+1/2
j+1 V i

j+1/2

}

The summation is done over all i and j indices, it is therefore possible to introduce a shift of −1 either in i or
j direction in some of the term of the summation (first term of the first and second lines, second term of the
second and fourth lines). By doning so, we can regroup all the terms of the summation by triad at a (i,j) point.
In other words, we regroup all the terms in the neighbourhood that contain a triad at the same (i,j) indices. It
becomes:

≡
∑
i,j,k

{
i
jQ

−1/2
+1/2

[
V ij+1/2 U

i−1/2
j − U i−1/2

j V i
j+1/2

]
+ i
jQ

−1/2
−1/2

[
V ij−1/2 U

i−1/2
j − U i−1/2

j V i
j−1/2

]
+ i
jQ

+1/2
+1/2

[
V ij+1/2 U

i+1/2
j − U i+1/2

j V i
j+1/2

]
+ i
jQ

+1/2
−1/2

[
V ij−1/2 U

i+1/2
j − U i+1/2

j−1 V i
j−1/2

] }
≡ 0

Gradient of kinetic energy / Vertical advection

The change of Kinetic Energy (KE) due to the vertical advection is exactly balanced by the change of KE due
to the horizontal gradient of KE :

∫
D

Uh ·
1

e3
ω∂kUh dv = −

∫
D

Uh · ∇h
(
1

2
Uh

2

)
dv +

1

2

∫
D

Uh
2

e3
∂t(e3) dv

Indeed, using successively equation 3.4 (i.e. the skew symmetry property of the δ operator) and the continuity
equation, then equation 3.4 again, then the commutativity of operators · and δ, and finally equation 3.5 (i.e.
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the symmetry property of the · operator) applied in the horizontal and vertical directions, it becomes:

−
∫
D

Uh ·KEG dv = −
∫
D

Uh · ∇h
(
1

2
Uh

2

)
dv

≡−
∑
i,j,k

1

2

{
1

e1u
δi+1/2

[
u2

i
+ v2

j
]
u bu +

1

e2v
δj+1/2

[
u2

i
+ v2

j
]
v bv

}

≡+
∑
i,j,k

1

2

(
u2

i
+ v2

j
) {

δi [U ] + δj [V ]

}

≡−
∑
i,j,k

1

2

(
u2

i
+ v2

j
) { bt

e3t
∂t(e3t) + δk [W ]

}
≡+

∑
i,j,k

1

2
δk+1/2

[
u2

i
+ v2

j
]
W −

∑
i,j,k

1

2

(
u2

i
+ v2

j
)
∂tbt

≡+
∑
i,j,k

1

2

(
δk+1/2 [u2]

i
+ δk+1/2 [v2]

j
)
W −

∑
i,j,k

(
u2

2
∂tbt

i+1/2
+
v2

2
∂tbt

j+1/2
)

Assuming that bu = bt
i+1/2 and bv = bt

j+1/2, or at least that the time derivative of these two equations is
satisfied, it becomes:

≡
∑
i,j,k

1

2

{
W

i+1/2
δk+1/2

[
u2
]
+W

j+1/2
δk+1/2

[
v2
] }
−
∑
i,j,k

(
u2

2
∂tbu +

v2

2
∂tbv

)

≡
∑
i,j,k

{
W

i+1/2
u k+1/2 δk+1/2[u] +W

j+1/2
v k+1/2 δk+1/2[v]

}
−
∑
i,j,k

(
u2

2
∂tbu +

v2

2
∂tbv

)

≡
∑
i,j,k

{
1

bu
W

i+1/2
δk+1/2 [u]

k

u bu +
1

bv
W

j+1/2
δk+1/2 [v]

k

v bv

}
−
∑
i,j,k

(
u2

2
∂tbu +

v2

2
∂tbv

)
The first term provides the discrete expression for the vertical advection of momentum (ZAD), while the second
term corresponds exactly to equation C.5, therefore:

≡
∫
D

Uh · ZAD dv +
1

2

∫
D

Uh
2 1

e3
∂t(e3) dv

≡
∫
D

Uh · w∂kUh dv +
1

2

∫
D

Uh
2 1

e3
∂t(e3) dv

There is two main points here. First, the satisfaction of this property links the choice of the discrete for-
mulation of the vertical advection and of the horizontal gradient of KE. Choosing one imposes the other. For
example KE can also be discretized as 1/2 (u i

2
+ v j

2
). This leads to the following expression for the vertical

advection:

1

e3
ω ∂kUh ≡

 1
e1u e2u e3u

e1t e2t ω δk+1/2

[
u i+1/2

] i+1/2,k

1
e1v e2v e3v

e1t e2t ω δk+1/2

[
v j+1/2

] j+1/2,k


a formulation that requires an additional horizontal mean in contrast with the one used in NEMO. Nine velocity
points have to be used instead of 3. This is the reason why it has not been chosen.
Second, as soon as the chosen s-coordinate depends on time, an extra constraint arises on the time derivative

of the volume at u- and v-points:

e1u e2u ∂t(e3u) = e1t e2t ∂t(e3t)
i+1/2

e1v e2v ∂t(e3v) = e1t e2t ∂t(e3t)
j+1/2

which is (over-)satified by defining the vertical scale factor as follows:

e3u =
1

e1u e2u
e1t e2t e3t

i+1/2

e3v =
1

e1v e2v
e1t e2t e3t

j+1/2

NEMO Reference Manual Page 254 of 310



Apdx C Discrete Invariants of the Equations

Blah blah required on the the step representation of bottom topography.....

C.3.3. Pressure gradient term
When the equation of state is linear (i.e. when an advection-diffusion equation for density can be derived from
those of temperature and salinity) the change of KE due to the work of pressure forces is balanced by the change
of potential energy due to buoyancy forces:

−
∫
D

∇p|z ·Uh dv = −
∫
D

∇ · (ρU) g z dv +

∫
D

g ρ ∂t(z) dv

This property can be satisfied in a discrete sense for both z- and s-coordinates. Indeed, defining the depth of
a T -point, zt, as the sum of the vertical scale factors at w-points starting from the surface, the work of pressure
forces can be written as:

−
∫
D

∇p|z ·Uh dv ≡
∑
i,j,k

{
− 1

e1u

(
δi+1/2[pt]− g ρ i+1/2 δi+1/2[zt]

)
u bu

− 1

e2v

(
δj+1/2[pt]− g ρ j+1/2δj+1/2[zt]

)
v bv

}

Using successively equation 3.4, i.e. the skew symmetry property of the δ operator, equation 5.1, the continuity
equation, equation 5.13, the hydrostatic equation in the s-coordinate, and δk+1/2 [zt] ≡ e3w, which comes from
the definition of zt, it becomes:

≡+
∑
i,j,k

g

{
ρ i+1/2 U δi+1/2[zt] + ρ j+1/2 V δj+1/2[zt] +

(
δi[U ] + δj [V ]

) pt
g

}

≡+
∑
i,j,k

g

{
ρ i+1/2 U δi+1/2[zt] + ρ j+1/2 V δj+1/2[zt]−

(
bt
e3t

∂t(e3t) + δk [W ]

)
pt
g

}

≡+
∑
i,j,k

g

{
ρ i+1/2 U δi+1/2[zt] + ρ j+1/2 V δj+1/2[zt] +

W

g
δk+1/2[pt]−

pt
g
∂tbt

}

≡+
∑
i,j,k

g

{
ρ i+1/2 U δi+1/2[zt] + ρ j+1/2 V δj+1/2[zt]−W e3wρ

k+1/2 − pt
g
∂tbt

}

≡+
∑
i,j,k

g

{
ρ i+1/2 U δi+1/2[zt] + ρ j+1/2 V δj+1/2[zt] +W ρ k+1/2 δk+1/2[zt]−

pt
g
∂tbt

}

≡−
∑
i,j,k

g zt

{
δi

[
U ρ i+1/2

]
+ δj

[
V ρ j+1/2

]
+ δk

[
W ρ k+1/2

]}
−
∑
i,j,k

{
pt ∂tbt

}

≡+
∑
i,j,k

g zt

{
∂t(e3t ρ)

}
bt −

∑
i,j,k

{
pt ∂tbt

}

The first term is exactly the first term of the right-hand-side of equation C.5. It remains to demonstrate that
the last term, which is obviously a discrete analogue of

∫
D

p
e3
∂t(e3) dv is equal to the last term of equation C.5.

In other words, the following property must be satisfied:∑
i,j,k

{
pt ∂tbt

}
≡
∑
i,j,k

{
ρ g ∂t(zt) bt

}
Let introduce pw the pressure at w-point such that δk[pw] = −ρ g e3t. The right-hand-side of the above

equation can be transformed as follows:

∑
i,j,k

{
ρ g ∂t(zt) bt

}
≡ −

∑
i,j,k

{
δk[pw] ∂t(zt) e1t e2t

}

≡ +
∑
i,j,k

{
pw δk+1/2[∂t(zt)] e1t e2t

}
≡ +

∑
i,j,k

{
pw ∂t(e3w) e1t e2t

}

≡ +
∑
i,j,k

{
pw ∂t(bw)

}
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therefore, the balance to be satisfied is:

∑
i,j,k

{
pt ∂t(bt)

}
≡
∑
i,j,k

{
pw ∂t(bw)

}

which is a purely vertical balance:

∑
k

{
pt ∂t(e3t)

}
≡
∑
k

{
pw ∂t(e3w)

}

Defining pw = pt
k+1/2

Note that this property strongly constrains the discrete expression of both the depth of T−points and of the
term added to the pressure gradient in the s-coordinate. Nevertheless, it is almost never satisfied since a linear
equation of state is rarely used.

C.4. Discrete total energy conservation: flux form
C.4.1. Total energy conservation
The discrete form of the total energy conservation, equation C.3, is given by:

∂t

∑
i,j,k

{
u2

2
bu +

v2

2
bv + ρ g zt bt

} = 0

which in flux form, it leads to:

∑
i,j,k

{
u

e3u

∂(e3uu)

∂t
bu +

v

e3v

∂(e3vv)

∂t
bv

}
− 1

2

∑
i,j,k

{
u2

e3u

∂e3u
∂t

bu +
v2

e3v

∂e3v
∂t

bv

}

= −
∑
i,j,k

{
1

e3t

∂e3tρ

∂t
g zt bt

}
−
∑
i,j,k

{
ρ g

∂zt
∂t

bt

}

Substituting the discrete expression of the time derivative of the velocity either in vector invariant or in flux
form, leads to the discrete equivalent of the ????

C.4.2. Coriolis and advection terms: flux form
Coriolis plus “metric” term

In flux from the vorticity term reduces to a Coriolis term in which the Coriolis parameter has been modified to
account for the “metric” term. This altered Coriolis parameter is discretised at an f-point. It is given by:

f +
1

e1e2

(
v
∂e2
∂i
− u∂e1

∂j

)
≡ f +

1

e1f e2f

(
v i+1/2δi+1/2 [e2u]− u j+1/2δj+1/2 [e1u]

)
Either the ENE or EEN scheme is then applied to obtain the vorticity term in flux form. It therefore conserves

the total KE. The derivation is the same as for the vorticity term in the vector invariant form (subsection C.3.2).

Flux form advection

The flux form operator of the momentum advection is evaluated using a centered second order finite difference
scheme. Because of the flux form, the discrete operator does not contribute to the global budget of linear
momentum. Because of the centered second order scheme, it conserves the horizontal kinetic energy, that is:

−
∫
D

Uh ·
(
∇ · (Uu)
∇ · (U v)

)
dv − 1

2

∫
D

Uh
2 1

e3

∂e3
∂t

dv = 0 (C.8)
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Let us first consider the first term of the scalar product (i.e. just the the terms associated with the i-component
of the advection):

−
∫
D

u · ∇ · (Uu) dv

≡−
∑
i,j,k

{
1

bu

(
δi+1/2

[
U
i
u i
]
+ δj

[
V
i+1/2

u j+1/2
]
+ δk

[
W

i+1/2
u k+1/2

]) }
bu u

≡−
∑
i,j,k

{
δi+1/2

[
U
i
u i
]
+ δj

[
V
i+1/2

u j+1/2
]
+ δk

[
W

i+12
u k+1/2

] }
u

≡+
∑
i,j,k

{
U
i
u iδi [u] + V

i+1/2
u j+1/2δj+1/2 [u] +W

i+1/2
u k+1/2δk+1/2 [u]

}

≡+
1

2

∑
i,j,k

{
U
i
δi
[
u2
]
+ V

i+1/2
δj+/2

[
u2
]
+W

i+1/2
δk+1/2

[
u2
]}

≡−
∑
i,j,k

1

2

{
U δi+1/2

[
u2

i
]
+ V δj+1/2

[
u2

i
]
+W δk+1/2

[
u2

i
]}

≡−
∑
i,j,k

1

2
u2

i
{
δi+1/2 [U ] + δj+1/2 [V ] + δk+1/2 [W ]

}

≡+
∑
i,j,k

1

2
u2

i
{(

1

e3t

∂e3t
∂t

)
bt

}

Applying similar manipulation applied to the second term of the scalar product leads to:

−
∫
D

Uh ·
(
∇ · (Uu)
∇ · (U v)

)
dv ≡ +

∑
i,j,k

1

2

(
u2

i
+ v2

j
){( 1

e3t

∂e3t
∂t

)
bt

}

which is the discrete form of 1
2

∫
D
u · ∇ · (Uu) dv. equation C.8 is thus satisfied.

When the UBS scheme is used to evaluate the flux form momentum advection, the discrete operator does not
contribute to the global budget of linear momentum (flux form). The horizontal kinetic energy is not conserved,
but forced to decay (i.e. the scheme is diffusive).

C.5. Discrete enstrophy conservation

Vorticity term with ENS scheme ( ln_dynvor_ens=.true. )

In the ENS scheme, the vorticity term is descretized as follows:


+

1

e1u
q i (e1v e3v v)

i,j+1/2

− 1

e2v
q j (e2u e3u u)

i+1/2,j
(C.9)

The scheme does not allow but the conservation of the total kinetic energy but the conservation of q2, the
potential enstrophy for a horizontally non-divergent flow (i.e. when χ=0). Indeed, using the symmetry or skew
symmetry properties of the operators ( equation 3.5 and equation 3.4), it can be shown that:

∫
D

q k · 1
e3
∇× (e3 q k×Uh) dv ≡ 0 (C.10)

where dv = e1 e2 e3 di dj dk is the volume element. Indeed, using equation 5.2, the discrete form of the right
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hand side of equation C.10 can be transformed as follow:∫
D

q k · 1
e3
∇× (e3 q k×Uh) dv

≡
∑
i,j,k

q

{
δi+1/2

[
− q i U

i,j+1/2
]
− δj+1/2

[
q j V

i+1/2,j
]}

≡
∑
i,j,k

{
δi[q] q

i U
i,j+1/2

+ δj [q] q
j V

i+1/2,j
}

≡ 1
2

∑
i,j,k

{
δi
[
q2
]
U
i,j+1/2

+ δj
[
q2
]
V
i+1/2,j

}
≡ − 1

2

∑
i,j,k

q2
{
δi+1/2

[
U
i,j+1/2

]
+ δj+1/2

[
V
i+1/2,j

]}
Since · and δ operators commute: δi+1/2

[
a i
]
= δi [a]

i+1/2, and introducing the horizontal divergence χ, it
becomes:

≡
∑
i,j,k

− 1
2q

2 e1t e2t e3t χ
i+1/2,j+1/2 ≡ 0

The later equality is obtain only when the flow is horizontally non-divergent, i.e. χ=0.

Vorticity Term with EEN scheme ( ln_dynvor_een=.true. )

With the EEN scheme, the vorticity terms are represented as:
+q e3 v ≡ +

1

e1u

∑
ip, kp

i+1/2−ip
j Qipjp (e1ve3v v)

i+ip−1/2
j+jp

−q e3 u ≡ −
1

e2v

∑
ip, kp

i
j+1/2−jpQ

ip
jp
(e2ue3u u)

i+ip
j+jp−1/2

(C.11)

where the indices ip and kp take the following values: ip = −1/2 or 1/2 and jp = −1/2 or 1/2, and the vorticity
triads, ijQ

ip
jp
, defined at T -point, are given by:

j
iQ

ip
jp

=
1

12

(
q
i−ip
j+jp

+ q
i+jp
j+ip

+ q
i+ip
j−jp

)
(C.7)

This formulation does conserve the potential enstrophy for a horizontally non-divergent flow (i.e. χ = 0).
Let consider one of the vorticity triad, for example ijQ

+1/2
+1/2, similar manipulation can be done for the 3 others.

The discrete form of the right hand side of equation C.10 applied to this triad only can be transformed as follow:

∫
D

q k · 1
e3
∇× (e3 q k×Uh) dv

≡
∑
i,j,k

q

{
δi+1/2

[
− i
jQ

+1/2
+1/2 U

i+1/2
j

]
− δj+1/2

[
i
jQ

+1/2
+1/2 V

i
j+1/2

] }

≡
∑
i,j,k

{
δi[q]

i
jQ

+1/2
+1/2 U

i+1/2
j + δj [q]

i
jQ

+1/2
+1/2 V

i
j+1/2

}
...

Demonstation to be done...

...

≡1

2

∑
i,j,k

{
δi

[(
i
jQ

+1/2
+1/2

)2]
U
i,j+1/2

+ δj

[(
i
jQ

+1/2
+1/2

)2]
V
i+1/2,j

}

≡− 1

2

∑
i,j,k

(
i
jQ

+1/2
+1/2

)2 {
δi+1/2

[
U
i,j+1/2

]
+ δj+1/2

[
V
i+1/2,j

]}
≡
∑
i,j,k

−1

2

(
i
jQ

+1/2
+1/2

)2
bt χ

i+1/2, j+1/2

≡ 0
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C.6. Conservation properties on tracers
All the numerical schemes used in NEMO are written such that the tracer content is conserved by the internal
dynamics and physics (equations in flux form). For advection, only the CEN2 scheme (i.e. 2nd order finite
different scheme) conserves the global variance of tracer. Nevertheless the other schemes ensure that the global
variance decreases (i.e. they are at least slightly diffusive). For diffusion, all the schemes ensure the decrease of
the total tracer variance, except the iso-neutral operator. There is generally no strict conservation of mass, as
the equation of state is non linear with respect to T and S. In practice, the mass is conserved to a very high
accuracy.

C.6.1. Advection term
conservation of a tracer, T :

∂

∂t

(∫
D

T dv

)
=

∫
D

1

e3

∂ (e3 T )

∂t
dv = 0

conservation of its variance:

∂

∂t

(∫
D

1

2
T 2 dv

)
=

∫
D

1

e3
Q
∂ (e3 T )

∂t
dv − 1

2

∫
D

T 2 1

e3

∂e3
∂t

dv

Whatever the advection scheme considered it conserves of the tracer content as all the scheme are written in
flux form. Indeed, let T be the tracer and its τu, τv, and τw interpolated values at velocity point (whatever the
interpolation is), the conservation of the tracer content due to the advection tendency is obtained as follows:∫
D

1

e3

∂ (e3 T )

∂t
dv = −

∫
D

∇ · (TU) dv

≡ −
∑
i,j,k

{
1

bt
(δi [U τu] + δj [V τv]) +

1

e3t
δk [w τw]

}
bt

≡ −
∑
i,j,k

{δi [U τu] + δj [V τv] + δk [W τw]}

≡ 0

The conservation of the variance of tracer due to the advection tendency can be achieved only with the CEN2
scheme, i.e. when τu = T

i+1/2, τv = T
j+1/2, and τw = T

k+1/2. It can be demonstarted as follows:∫
D

1

e3
Q
∂ (e3 T )

∂t
dv = −

∫
D

τ ∇ · (T U) dv

≡−
∑
i,j,k

T
{
δi

[
UT

i+1/2
]
+ δj

[
V T

j+1/2
]
+ δk

[
WT

k+1/2
]}

≡+
∑
i,j,k

{
UT

i+1/2
δi+1/2 [T ] + V T

j+1/2
δj+1/2 [T ] +WT

k+1/2
δk+1/2 [T ]

}
≡+

1

2

∑
i,j,k

{
U δi+1/2

[
T 2
]
+ V δj+1/2

[
T 2
]
+W δk+1/2

[
T 2
]}

≡− 1

2

∑
i,j,k

T 2
{
δi [U ] + δj [V ] + δk [W ]

}
≡+

1

2

∑
i,j,k

T 2
{ 1

e3t

∂e3t T

∂t

}

which is the discrete form of 1
2

∫
D
T 2 1

e3
∂e3
∂t dv.

C.7. Conservation properties on lateral momentum physics
The discrete formulation of the horizontal diffusion of momentum ensures the conservation of potential vorticity
and the horizontal divergence, and the dissipation of the square of these quantities (i.e. enstrophy and the
variance of the horizontal divergence) as well as the dissipation of the horizontal kinetic energy. In particular,
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when the eddy coefficients are horizontally uniform, it ensures a complete separation of vorticity and horizontal
divergence fields, so that diffusion (dissipation) of vorticity (enstrophy) does not generate horizontal divergence
(variance of the horizontal divergence) and vice versa.
These properties of the horizontal diffusion operator are a direct consequence of properties equation 3.2 and

equation 3.3. When the vertical curl of the horizontal diffusion of momentum (discrete sense) is taken, the term
associated with the horizontal gradient of the divergence is locally zero.

C.7.1. Conservation of potential vorticity

The lateral momentum diffusion term conserves the potential vorticity:

∫
D

1

e3
k · ∇ ×

[
∇h
(
A lm χ

)
−∇h ×

(
A lm ζ k

)]
dv

=

∫
D

− 1

e3
k · ∇ ×

[
∇h ×

(
A lm ζ k

)]
dv

≡
∑
i,j

{
δi+1/2

[
e2v

e1v e3v
δi
[
A lm
f e3fζ

]]
+ δj+1/2

[
e1u

e2u e3u
δj
[
A lm
f e3fζ

]]}

Using equation 3.4, it follows:

≡
∑
i,j,k

−
{

e2v
e1v e3v

δi
[
A lm
f e3fζ

]
δi [1] +

e1u
e2u e3u

δj
[
A lm
f e3fζ

]
δj [1]

}
≡ 0

C.7.2. Dissipation of horizontal kinetic energy

The lateral momentum diffusion term dissipates the horizontal kinetic energy:

∫
D

Uh · [∇h
(
A lm χ

)
−∇h ×

(
A lm ζ k

)]
dv

≡
∑
i,j,k

{
1

e1u
δi+1/2

[
A lm
T χ

]
− 1

e2u e3u
δj
[
A lm
f e3fζ

]}
e1u e2u e3u u

+

{
1

e2u
δj+1/2

[
A lm
T χ

]
+

1

e1v e3v
δi
[
A lm
f e3fζ

]}
e1v e2u e3v v

≡
∑
i,j,k

{
e2u e3u u δi+1/2

[
A lm
T χ

]
− e1u u δj

[
A lm
f e3fζ

] }
+
{
e1v e3v v δj+1/2

[
A lm
T χ

]
+ e2v v δi

[
A lm
f e3fζ

] }

≡
∑
i,j,k

−
(
δi [e2u e3u u] + δj [e1v e3v v]

)
A lm
T χ

−
(
δi+1/2 [e2v v]− δj+1/2 [e1u u]

)
A lm
f e3fζ

≡
∑
i,j,k

−A lm
T χ2 e1t e2t e3t −A lm

f ζ2 e1f e2f e3f ≤ 0
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C.7.3. Dissipation of enstrophy
The lateral momentum diffusion term dissipates the enstrophy when the eddy coefficients are horizontally
uniform:∫
D

ζ k · ∇ ×
[
∇h
(
A lm χ

)
−∇h ×

(
A lm ζ k

)]
dv

= A lm

∫
D

ζk · ∇ × [∇h × (ζ k)] dv

≡ A lm
∑
i,j,k

ζ e3f

{
δi+1/2

[
e2v

e1v e3v
δi [e3fζ]

]
+ δj+1/2

[
e1u

e2u e3u
δj [e3fζ]

]}

Using equation 3.4, it follows:

≡ −A lm
∑
i,j,k

{(
1

e1v e3v
δi [e3fζ]

)2

bv +

(
1

e2u e3u
δj [e3fζ]

)2

bu

}
≤ 0

C.7.4. Conservation of horizontal divergence
When the horizontal divergence of the horizontal diffusion of momentum (discrete sense) is taken, the term
associated with the vertical curl of the vorticity is zero locally, due to equation 3.3. The resulting term conserves
the χ and dissipates χ2 when the eddy coefficients are horizontally uniform.∫

D

∇h ·
[
∇h
(
A lm χ

)
−∇h ×

(
A lm ζ k

)]
dv =

∫
D

∇h · ∇h
(
A lm χ

)
dv

≡
∑
i,j,k

{
δi

[
A lm
u

e2u e3u
e1u

δi+1/2 [χ]

]
+ δj

[
A lm
v

e1v e3v
e2v

δj+1/2 [χ]

]}

Using equation 3.4, it follows:

≡
∑
i,j,k

−
{
e2u e3u
e1u

A lm
u δi+1/2 [χ] δi+1/2 [1] +

e1v e3v
e2v

A lm
v δj+1/2 [χ] δj+1/2 [1]

}
≡ 0

C.7.5. Dissipation of horizontal divergence variance

∫
D

χ ∇h ·
[
∇h
(
A lm χ

)
−∇h ×

(
A lm ζ k

)]
dv = A lm

∫
D

χ ∇h · ∇h (χ) dv

≡ A lm
∑
i,j,k

1

e1t e2t e3t
χ

{
δi

[
e2u e3u
e1u

δi+1/2 [χ]

]
+ δj

[
e1v e3v
e2v

δj+1/2 [χ]

]}
e1t e2t e3t

Using equation 3.4, it turns out to be:

≡ −A lm
∑
i,j,k

{(
1

e1u
δi+1/2 [χ]

)2

bu +

(
1

e2v
δj+1/2 [χ]

)2

bv

}
≤ 0

C.8. Conservation properties on vertical momentum physics
As for the lateral momentum physics, the continuous form of the vertical diffusion of momentum satisfies several
integral constraints. The first two are associated with the conservation of momentum and the dissipation of
horizontal kinetic energy: ∫

D

1

e3

∂

∂k

(
A vm

e3

∂Uh

∂k

)
dv = 0⃗
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and ∫
D

Uh ·
1

e3

∂

∂k

(
A vm

e3

∂Uh

∂k

)
dv ≤ 0

The first property is obvious. The second results from:∫
D

Uh ·
1

e3

∂

∂k

(
A vm

e3

∂Uh

∂k

)
dv

≡
∑
i,j,k

(
u δk

[
A vm
u

e3uw
δk+1/2 [u]

]
e1u e2u + v δk

[
A vm
v

e3vw
δk+1/2 [v]

]
e1v e2v

)
since the horizontal scale factor does not depend on k, it follows:

≡ −
∑
i,j,k

(
A vm
u

e3uw

(
δk+1/2 [u]

)2
e1u e2u +

A vm
v

e3vw

(
δk+1/2 [v]

)2
e1v e2v

)
≤ 0

The vorticity is also conserved. Indeed:∫
D

1

e3
k · ∇ ×

(
1

e3

∂

∂k

(
A vm

e3

∂Uh

∂k

))
dv

≡
∑
i,j,k

1

e3f

1

e1f e2f

{
δi+1/2

(
e2v
e3v

δk

[
1

e3vw
δk+1/2 [v]

])

−δj+1/2

(
e1u
e3u

δk

[
1

e3uw
δk+1/2 [u]

])}
e1f e2f e3f ≡ 0

If the vertical diffusion coefficient is uniform over the whole domain, the enstrophy is dissipated, i.e.∫
D

ζ k · ∇ ×
(

1

e3

∂

∂k

(
A vm

e3

∂Uh

∂k

))
dv = 0

This property is only satisfied in z-coordinates:∫
D

ζ k · ∇ ×
(

1

e3

∂

∂k

(
A vm

e3

∂Uh

∂k

))
dv

≡
∑
i,j,k

ζ e3f

{
δi+1/2

(
e2v
e3v

δk

[
A vm
v

e3vw
δk+1/2[v]

])

−δj+1/2

(
e1u
e3u

δk

[
A vm
u

e3uw
δk+1/2[u]

])}

≡
∑
i,j,k

ζ e3f

{
1

e3v
δk

[
A vm
v

e3vw
δk+1/2

[
δi+1/2 [e2v v]

]]

− 1

e3u
δk

[
A vm
u

e3uw
δk+1/2

[
δj+1/2 [e1u u]

]]}
Using the fact that the vertical diffusion coefficients are uniform, and that in z-coordinate, the vertical scale
factors do not depend on i and j so that: e3f = e3u = e3v = e3t and e3w = e3uw = e3vw, it follows:

≡ A vm
∑
i,j,k

ζ δk

[
1

e3w
δk+1/2

[
δi+1/2 [e2v v]− δj+1/2 [e1u u]

]]
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≡ −A vm
∑
i,j,k

1

e3w

(
δk+1/2 [ζ]

)2
e1f e2f ≤ 0

Similarly, the horizontal divergence is obviously conserved:

∫
D

∇ ·
(

1

e3

∂

∂k

(
A vm

e3

∂Uh

∂k

))
dv = 0

and the square of the horizontal divergence decreases (i.e. the horizontal divergence is dissipated) if the vertical
diffusion coefficient is uniform over the whole domain:

∫
D

χ ∇ ·
(

1

e3

∂

∂k

(
A vm

e3

∂Uh

∂k

))
dv = 0

This property is only satisfied in the z-coordinate:∫
D

χ ∇ ·
(

1

e3

∂

∂k

(
A vm

e3

∂Uh

∂k

))
dv

≡
∑
i,j,k

χ

e1t e2t

{
δi+1/2

(
e2u
e3u

δk

[
A vm
u

e3uw
δk+1/2[u]

])

+δj+1/2

(
e1v
e3v

δk

[
A vm
v

e3vw
δk+1/2[v]

])}
e1t e2t e3t

≡ A vm
∑
i,j,k

χ

{
δi+1/2

(
δk

[
1

e3uw
δk+1/2 [e2u u]

])

+δj+1/2

(
δk

[
1

e3vw
δk+1/2 [e1v v]

])}

≡ −A vm
∑
i,j,k

δk+1/2 [χ]

e3w

{
δk+1/2

[
δi+1/2 [e2u u] + δj+1/2 [e1v v]

]}

≡ −A vm
∑
i,j,k

1

e3w
δk+1/2 [χ] δk+1/2 [e1t e2t χ]

≡ −A vm
∑
i,j,k

e1t e2t
e3w

(
δk+1/2 [χ]

)2 ≡ 0

C.9. Conservation properties on tracer physics
The numerical schemes used for tracer subgridscale physics are written such that the heat and salt contents
are conserved (equations in flux form). Since a flux form is used to compute the temperature and salinity, the
quadratic form of these quantities (i.e. their variance) globally tends to diminish. As for the advection term,
there is conservation of mass only if the Equation Of Seawater is linear.

C.9.1. Conservation of tracers
constraint of conservation of tracers:∫
D

∇ · (A ∇T ) dv

≡
∑
i,j,k

{
δi

[
A lT
u

e2u e3u
e1u

δi+1/2 [T ]

]
+ δj

[
A lT
v

e1v e3v
e2v

δj+1/2 [T ]

]

+ δk

[
A vT
w

e1t e2t
e3t

δk+1/2 [T ]

]}
≡ 0
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In fact, this property simply results from the flux form of the operator.

C.9.2. Dissipation of tracer variance
constraint on the dissipation of tracer variance:∫
D

T ∇ · (A ∇T ) dv

≡
∑
i,j,k

T

{
δi

[
A lT
u

e2u e3u
e1u

δi+1/2 [T ]

]
+δj

[
A lT
v

e1v e3v
e2v

δj+1/2 [T ]

]

+δk

[
A vT
w

e1t e2t
e3t

δk+1/2 [T ]

]}

≡ −
∑
i,j,k

{
A lT
u

(
1

e1u
δi+1/2 [T ]

)2

e1u e2u e3u

+A lT
v

(
1

e2v
δj+1/2 [T ]

)2

e1v e2v e3v

+A vT
w

(
1

e3w
δk+1/2 [T ]

)2

e1w e2w e3w

}
≤ 0
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Sect. D.2 Choice of namtra_ldf namelist parameters

D.1. Choice of &namtra_ldf (namelist 6.2) namelist parameters
Two scheme are available to perform the iso-neutral diffusion. If the namelist logical ln_traldf_triad is
set true, NEMO updates both active and passive tracers using the Griffies triad representation of iso-neutral
diffusion and the eddy-induced advective skew (GM) fluxes. If the namelist logical ln_traldf_iso is set true,
the filtered version of Cox’s original scheme (the Standard scheme) is employed (section 10.2). In the present
implementation of the Griffies scheme, the advective skew fluxes are implemented even if ln_traldf_eiv is
false.
Values of iso-neutral diffusivity and GM coefficient are set as described in section 10.3. Note that when GM

fluxes are used, the eddy-advective (GM) velocities are output for diagnostic purposes using XIOS, even though
the eddy advection is accomplished by means of the skew fluxes.
The options specific to the Griffies scheme include:

ln_triad_iso See subsection D.2.10. If this is set false (the default), then ‘iso-neutral’ mixing is accomplished
within the surface mixed-layer along slopes linearly decreasing with depth from the value immediately
below the mixed-layer to zero (flat) at the surface (subsubsection D.2.10). This is the same treatment as
used in the default implementation subsection 10.2.2; figure 10.2. Where ln_triad_iso is set true, the
vertical skew flux is further reduced to ensure no vertical buoyancy flux, giving an almost pure horizontal
diffusive tracer flux within the mixed layer. This is similar to the tapering suggested by Gerdes et al.
(1991). See subsubsection D.2.10

ln_botmix_triad See subsection D.2.8. If this is set false (the default) then the lateral diffusive fluxes
associated with triads partly masked by topography are neglected. If it is set true, however, then these
lateral diffusive fluxes are applied, giving smoother bottom tracer fields at the cost of introducing diapycnal
mixing.

rn_sw_triad blah blah to be added....

The options shared with the Standard scheme include:

ln_traldf_msc blah blah to be added

rn_slpmax blah blah to be added

D.2. Triad formulation of iso-neutral diffusion
We have implemented into NEMO a scheme inspired by Griffies et al. (1998), but formulated within the NEMO
framework, using scale factors rather than grid-sizes.

D.2.1. Iso-neutral diffusion operator
The iso-neutral second order tracer diffusive operator for small angles between iso-neutral surfaces and geopo-
tentials is given by equation D.1:

DlT = −∇ · f lT ≡ − 1

e1e2e3

[
∂

∂i

(
f lT1 e2e3

)
+

∂

∂j

(
f lT2 e2e3

)
+

∂

∂k

(
f lT3 e1e2

)]
, (D.1a)

where the diffusive flux per unit area of physical space

f lT = −AlTℜ · ∇T, (D.1b)

with ℜ =


1 0 −r1
0 1 −r2
−r1 −r2 r21 + r22

 and ∇T =


1
e1
∂T
∂i

1
e2
∂T
∂j

1
e3
∂T
∂k

 . (D.1c)

Here equation 1.19

r1 = −e3
e1

(
∂ρ

∂i

)(
∂ρ

∂k

)−1

= −e3
e1

(
−α∂T

∂i
+ β

∂S

∂i

)(
−α∂T

∂k
+ β

∂S

∂k

)−1

NEMO Reference Manual Page 266 of 310



Apdx D Iso-Neutral Diffusion and Eddy Advection using Triads

is the i-component of the slope of the iso-neutral surface relative to the computational surface, and r2 is the
j-component.
We will find it useful to consider the fluxes per unit area in i, j, k space; we write

Fiso =
(
f lT1 e2e3, f

lT
2 e1e3, f

lT
3 e1e2

)
.

Additionally, we will sometimes write the contributions towards the fluxes f and Fiso from the component Rij
of ℜ as fij , Fiso ij , with fij = Rije

−1
i ∂T/∂xi (no summation) etc.

The off-diagonal terms of the small angle diffusion tensor equation D.1, equation D.1c produce skew-fluxes
along the i- and j-directions resulting from the vertical tracer gradient:

f13 =+AlT r1
1

e3

∂T

∂k
, f23 = +AlT r2

1

e3

∂T

∂k
(D.2)

and in the k-direction resulting from the lateral tracer gradients

f31 + f32 =AlT r1
1

e1

∂T

∂i
+AlT r2

1

e1

∂T

∂i
(D.3)

The vertical diffusive flux associated with the 33 component of the small angle diffusion tensor is

f33 = −AlT (r21 + r22)
1

e3

∂T

∂k
. (D.4)

Since there are no cross terms involving r1 and r2 in the above, we can consider the iso-neutral diffusive
fluxes separately in the i-k and j-k planes, just adding together the vertical components from each plane. The
following description will describe the fluxes on the i-k plane.
There is no natural discretization for the i-component of the skew-flux, equation D.2, as although it must be

evaluated at u-points, it involves vertical gradients (both for the tracer and the slope r1), defined at w-points.
Similarly, the vertical skew flux, equation D.3, is evaluated at w-points but involves horizontal gradients defined
at u-points.

D.2.2. Standard discretization
The straightforward approach to discretize the lateral skew flux equation D.2 from tracer cell i, k to i + 1, k,
introduced in 1995 into OPA, equation 6.8, is to calculate a mean vertical gradient at the u-point from the
average of the four surrounding vertical tracer gradients, and multiply this by a mean slope at the u-point,
calculated from the averaged surrounding vertical density gradients. The total area-integrated skew-flux (flux
per unit area in ijk space) from tracer cell i, k to i+1, k, noting that the e3k

i+1/2
in the area e3ki+1/2e2i+1/2i

k at
the u-point cancels out with the 1/e3

k
i+1/2 associated with the vertical tracer gradient, is then equation 6.8

(
F 13
u

)k
i+ 1

2

= Aki+ 1
2
e2
k
i+1/2r1

i,k
δkT

i,k
,

where

r1
i,k

= −
e3u

k
i+1/2

e1uki+1/2

δi+1/2[ρ]

δkρ
i,k

,

and here and in the following we drop the lT superscript from AlT for simplicity. Unfortunately the resulting
combination δk•

i,k
of a k average and a k difference of the tracer reduces to •k+1 − •k−1, so two-grid-point

oscillations are invisible to this discretization of the iso-neutral operator. These computational modes will not
be damped by this operator, and may even possibly be amplified by it. Consequently, applying this operator
to a tracer does not guarantee the decrease of its global-average variance. To correct this, we introduced a
smoothing of the slopes of the iso-neutral surfaces (see chapter 10). This technique works for T and S in so far
as they are active tracers (i.e. they enter the computation of density), but it does not work for a passive tracer.

D.2.3. Expression of the skew-flux in terms of triad slopes
(Griffies et al., 1998) introduce a different discretization of the off-diagonal terms that nicely solves the problem.
They get the skew flux from the products of the vertical gradients at each w-point surrounding the u-point with
the corresponding ‘triad’ slope calculated from the lateral density gradient across the u-point divided by the
vertical density gradient at the same w-point as the tracer gradient. See figure D.1a, where the thick lines denote
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Figure D.1.: (a) Arrangement of triads Si and tracer gradients to give lateral tracer flux from box i, k to i+ 1, k (b) Triads S′
i and

tracer gradients to give vertical tracer flux from box i, k to i, k + 1.

Figure D.2.: Triad notation for quarter cells. T -cells are inside boxes, while the i + 1
2
, k u-cell is shaded in green and the i, k + 1

2
w-cell is shaded in pink.

the tracer gradients, and the thin lines the corresponding triads, with slopes s1, . . . s4. The total area-integrated
skew-flux from tracer cell i, k to i+ 1, k

(
F 13
u

)k
i+ 1

2

= Aki+1a1s1δk+ 1
2

[
T i+1

]
/e
k+ 1

2
3wi+1

+Aki a2s2δk+ 1
2

[
T i
]
/e
k+ 1

2
3wi+1

+Aki+1a3s3δk− 1
2

[
T i+1

]
/e
k+ 1

2
3wi+1

+Aki a4s4δk− 1
2

[
T i
]
/e
k+ 1

2
3wi+1

, (D.5)

where the contributions of the triad fluxes are weighted by areas a1, . . . a4, and A is now defined at the tracer
points rather than the u-points. This discretization gives a much closer stencil, and disallows the two-point
computational modes.
The vertical skew flux equation D.3 from tracer cell i, k to i, k + 1 at the w-point i, k + 1

2 is constructed
similarly (figure D.1b) by multiplying lateral tracer gradients from each of the four surrounding u-points by the
appropriate triad slope:

(
F 31
w

)k+ 1
2

i
= Ak+1

i a′1s
′
1δi− 1

2

[
T k+1

]
/e3u

k+1
i− 1

2

+Ak+1
i a′2s

′
2δi+ 1

2

[
T k+1

]
/e3u

k+1
i+ 1

2

+Aki a
′
3s

′
3δi− 1

2

[
T k
]
/e3u

k
i− 1

2
+Aki a

′
4s

′
4δi+ 1

2

[
T k
]
/e3u

k
i+ 1

2
. (D.6)

We notate the triad slopes si and s′i in terms of the ‘anchor point’ i, k (appearing in both the vertical and
lateral gradient), and the u- and w-points (i+ ip, k), (i, k+kp) at the centres of the ‘arms’ of the triad as follows
(see also figure D.1):

k
iR

kp
ip

= −e3w
k+kp
i

e1u ki+ip

αki δi+ip [T
k]− βki δi+ip [Sk]

αki δk+kp [T
i]− βki δk+kp [Si]

. (D.7)

In calculating the slopes of the local neutral surfaces, the expansion coefficients α and β are evaluated at the
anchor points of the triad, while the metrics are calculated at the u- and w-points on the arms.

Each triad {ki
kp
ip
} is associated (figure D.2) with the quarter cell that is the intersection of the i, k T -cell, the

i + ip, k u-cell and the i, k + kp w-cell. Expressing the slopes si and s′i in equation D.5 and equation D.6 in
this notation, we have e.g. s1 = s′1 = k

iR
1/2
1/2. Each triad slope k

iR
kp
ip

is used once (as an s) to calculate the
lateral flux along its u-arm, at (i+ ip, k), and then again as an s′ to calculate the vertical flux along its w-arm
at (i, k + kp). Each vertical area ai used to calculate the lateral flux and horizontal area a′i used to calculate
the vertical flux can also be identified as the area across the u- and w-arms of a unique triad, and we notate
these areas, similarly to the triad slopes, as k

iAu
kp
ip
, kiAw

kp
ip
, where e.g. in equation D.5 a1 = k

iAu
1/2
1/2, and in

equation D.6 a′1 = k
iAw

1/2
1/2.
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D.2.4. Full triad fluxes
A key property of iso-neutral diffusion is that it should not affect the (locally referenced) density. In particular
there should be no lateral or vertical density flux. The lateral density flux disappears so long as the area-
integrated lateral diffusive flux from tracer cell i, k to i + 1, k coming from the 11 term of the diffusion tensor
takes the form (

F 11
u

)k
i+ 1

2

= −
(
Ak+1
i a1 +Ak+1

i a2 +Aki a3 +Aki a4
) δi+1/2

[
T k
]

e1u ki+1/2

, (D.8)

where the areas ai are as in equation D.5. In this case, separating the total lateral flux, the sum of equation D.5
and equation D.8, into triad components, a lateral tracer flux

k
i Fu

kp
ip
(T ) = −Aki kiAu

kp
ip

(
δi+ip [T

k]

e1u ki+ip
− k

iR
kp
ip

δk+kp [T
i]

e3w
k+kp
i

)
(D.9)

can be identified with each triad. Then, because the same metric factors e3w k+kpi and e1u ki+ip are employed for
both the density gradients in k

iR
kp
ip

and the tracer gradients, the lateral density flux associated with each triad
separately disappears.

Fu
kp
ip
(ρ) = −αki ki Fu

kp
ip
(T ) + βki

k
i Fu

kp
ip
(S) = 0 (D.10)

Thus the total flux
(
F 31
u

)i
i,k+ 1

2

+
(
F 11
u

)i
i,k+ 1

2

from tracer cell i, k to i+1, k must also vanish since it is a sum of
four such triad fluxes.
The squared slope r21 in the expression equation D.4 for the 33 component is also expressed in terms of area-

weighted squared triad slopes, so the area-integrated vertical flux from tracer cell i, k to i, k + 1 resulting from
the r21 term is (

F 33
w

)k+ 1
2

i
= −

(
Ak+1
i a′1s

′2
1 +Ak+1

i a′2s
′2
2 +Aki a

′
3s

′2
3 +Aki a

′
4s

′2
4

)
δk+ 1

2

[
T i+1

]
, (D.11)

where the areas a′ and slopes s′ are the same as in equation D.6. Then, separating the total vertical flux, the
sum of equation D.6 and equation D.11, into triad components, a vertical flux

k
i Fw

kp
ip
(T ) = Aki

k
iAw

kp
ip

(
k
iR

kp
ip

δi+ip [T
k]

e1u ki+ip
−
(
k
iR

kp
ip

)2 δk+kp [T
i]

e3w
k+kp
i

)
(D.12)

= −
(
k
iAw

kp
ip

/
k
iAu

kp
ip

)
k
iR

kp
ip

k
i Fu

kp
ip
(T ) (D.13)

may be associated with each triad. Each vertical density flux k
i Fw

kp
ip
(ρ) associated with a triad then sepa-

rately disappears (because the lateral flux k
i Fu

kp
ip
(ρ) disappears). Consequently the total vertical density flux(

F 31
w

)k+ 1
2

i
+
(
F 33
w

)k+ 1
2

i
from tracer cell i, k to i, k+1 must also vanish since it is a sum of four such triad fluxes.

We can explicitly identify (figure D.2) the triads associated with the si, ai, and s′i, a′i used in the definition
of the u-fluxes and w-fluxes in equation D.6, equation D.5, equation D.8 equation D.11 and figure D.1 to write
out the iso-neutral fluxes at u- and w-points as sums of the triad fluxes that cross the u- and w-faces:

Fiso(T ) ≡
∑
ip, kp

 k
i+1/2−ipFu

kp
ip
(T )

k+1/2−kp
i Fw

kp
ip
(T )

 . (D.14)

D.2.5. Ensuring the scheme does not increase tracer variance
We now require that this operator should not increase the globally-integrated tracer variance. Each triad slope
k
iR

kp
ip

drives a lateral flux k
i Fu

kp
ip
(T ) across the u-point i+ ip, k and a vertical flux k

i Fw
kp
ip
(T ) across the w-point

i, k + kp. The lateral flux drives a net rate of change of variance, summed over the two T -points i + ip − 1
2 , k

and i+ ip +
1
2 , k, of

bT
k
i+ip−1/2

(
∂T

∂t
T

)k
i+ip−1/2

+ bT
k
i+ip+1/2

(
∂T

∂t
T

)k
i+ip+1/2

= −T ki+ip−1/2
k
i Fu

kp
ip
(T ) + T ki+ip+1/2

k
i Fu

kp
ip
(T )

= k
i Fu

kp
ip
(T ) δi+ip [T

k],
(D.15)
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while the vertical flux similarly drives a net rate of change of variance summed over the T -points i, k + kp − 1
2

(above) and i, k + kp +
1
2 (below) of

k
i Fw

kp
ip
(T ) δk+kp [T

i]. (D.16)

The total variance tendency driven by the triad is the sum of these two. Expanding k
i Fu

kp
ip
(T ) and k

i Fw
kp
ip
(T )

with equation D.9 and equation D.12, it is

−Aki

{
k
iAu

kp
ip

(
δi+ip [T

k]

e1u ki+ip
− k
iR

kp
ip

δk+kp [T
i]

e3w
k+kp
i

)
δi+ip [T

k]

− k
iAw

kp
ip

(
δi+ip [T

k]

e1u ki+ip
− k

iR
kp
ip

δk+kp [T
i]

e3w
k+kp
i

)
k
iR

kp
ip
δk+kp [T

i]

}
.

The key point is then that if we require kiAu
kp
ip

and k
iAw

kp
ip

to be related to a triad volume kiV
kp
ip

by

k
iV

kp
ip

= k
iAu

kp
ip
e1u

k
i+ip = k

iAw
kp
ip
e3w

k+kp
i , (D.17)

the variance tendency reduces to the perfect square

−Aki kiV
kp
ip

(
δi+ip [T

k]

e1u ki+ip
− k

iR
kp
ip

δk+kp [T
i]

e3w
k+kp
i

)2

≤ 0. (D.18)

Thus, the constraint equation D.17 ensures that the fluxes (equation D.9, equation D.12) associated with a
given slope triad k

iR
kp
ip

do not increase the net variance. Since the total fluxes are sums of such fluxes from the
various triads, this constraint, applied to all triads, is sufficient to ensure that the globally integrated variance
does not increase.
The expression equation D.17 can be interpreted as a discretization of the global integral

∂

∂t

∫
1
2T

2 dV =
∫

F · ∇T dV, (D.19)

where, within each triad volume kiV
kp
ip
, the lateral and vertical fluxes/unit area

F =
(
k
i Fu

kp
ip
(T )
/
k
iAu

kp
ip
, ki Fw

kp
ip
(T )
/
k
iAw

kp
ip

)
and the gradient

∇T =
(
δi+ip [T

k]
/
e1u

k
i+ip , δk+kp [T

i]
/
e3w

k+kp
i

)

D.2.6. Triad volumes in Griffes’s scheme and in NEMO
To complete the discretization we now need only specify the triad volumes kiV

kp
ip
. Griffies et al. (1998) identifies

these k
iV

kp
ip

as the volumes of the quarter cells, defined in terms of the distances between T , u,f and w-points.
This is the natural discretization of equation D.19. The NEMO model, however, operates with scale factors
instead of grid sizes, and scale factors for the quarter cells are not defined. Instead, therefore we simply choose

k
iV

kp
ip

= 1
4bu

k
i+ip , (D.20)

as a quarter of the volume of the u-cell inside which the triad quarter-cell lies. This has the nice property that
when the slopes R vanish, the lateral flux from tracer cell i, k to i+ 1, k reduces to the classical form

−Aki+1/2

bu
k
i+1/2

e1u ki+ip

δi+1/2[T
k]

e1u ki+ip
= −Aki+1/2

e1w
k
i+1/2 e1v

k
i+1/2 δi+1/2[T

k]

e1u ki+1/2

. (D.21)

In fact if the diffusive coefficient is defined at u-points, so that we employ Aki+ip instead of Aki in the definitions
of the triad fluxes equation D.9 and equation D.12, we can replace Aki+1/2 by Aki+1/2 in the above.
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D.2.7. Summary of the scheme
The iso-neutral fluxes at u- and w-points are the sums of the triad fluxes that cross the u- and w-faces equa-
tion D.14:

Fiso(T ) ≡
∑
ip, kp

 k
i+1/2−ipFu

kp
ip
(T )

k+1/2−kp
i Fw

kp
ip
(T )

 ,

where equation D.9:

k
i Fu

kp
ip
(T ) = −Aki

k
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ip
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(
δi+ip [T

k]

e1u ki+ip
− k

iR
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ip

δk+kp [T
i]

e3w
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i

)
, (D.22a)

and

k
i Fw

kp
ip
(T ) = Aki

k
iV

kp
ip

e3w
k+kp
i

(
k
iR

kp
ip

δi+ip [T
k]

e1u ki+ip
−
(
k
iR
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ip

)2 δk+kp [T
i]

e3w
k+kp
i

)
, (D.22b)

with equation D.20
k
iV

kp
ip

= 1
4bu

k
i+ip .

The divergence of the expression equation D.14 for the fluxes gives the iso-neutral diffusion tendency at each
tracer point:

DT
l =

1

bT

∑
ip, kp

{
δi

[
k
i+1/2−ipFu

kp
ip

]
+ δk

[
k+1/2−kp
i Fw

kp
ip

]}
where bT = e1T e2T e3T is the volume of T -cells. The diffusion scheme satisfies the following six properties:

Horizontal diffusion The discretization of the diffusion operator recovers the traditional five-point Laplacian
equation D.21 in the limit of flat iso-neutral direction:

DT
l =

1

bT
δi

[
e2u e3u
e1u

A
i
δi+1/2[T ]

]
when k

iR
kp
ip

= 0

Implicit treatment in the vertical Only tracer values associated with a single water column appear in the
expression equation D.11 for the 33 fluxes, vertical fluxes driven by vertical gradients. This is of paramount
importance since it means that a time-implicit algorithm can be used to solve the vertical diffusion
equation. This is necessary since the vertical eddy diffusivity associated with this term,

1

bw

∑
ip, kp

{
k
iV

kp
ip
Aki

(
k
iR

kp
ip

)2}
=

1

4bw

∑
ip, kp

{
bu
k
i+ip A

k
i

(
k
iR

kp
ip

)2}
,

(where bw = e1w e2w e3w is the volume of w-cells) can be quite large.

Pure iso-neutral operator The iso-neutral flux of locally referenced potential density is zero. See equation D.10
and equation D.13.

Conservation of tracer The iso-neutral diffusion conserves tracer content, i.e.∑
i,j,k

{
DT
l bT

}
= 0

This property is trivially satisfied since the iso-neutral diffusive operator is written in flux form.

No increase of tracer variance The iso-neutral diffusion does not increase the tracer variance, i.e.∑
i,j,k

{
T DT

l bT
}
≤ 0

The property is demonstrated in subsection D.2.5 above. It is a key property for a diffusion term. It
means that it is also a dissipation term, i.e. it dissipates the square of the quantity on which it is applied.
It therefore ensures that, when the diffusivity coefficient is large enough, the field on which it is applied
becomes free of grid-point noise.
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Self-adjoint operator The iso-neutral diffusion operator is self-adjoint, i.e.∑
i,j,k

{
S DT

l bT
}
=
∑
i,j,k

{
DS
l T bT

}
(D.23)

In other word, there is no need to develop a specific routine from the adjoint of this operator. We just have
to apply the same routine. This property can be demonstrated similarly to the proof of the ‘no increase of
tracer variance’ property. The contribution by a single triad towards the left hand side of equation D.23,
can be found by replacing δ[T ] by δ[S] in equation D.15 and equation D.16. This results in a term similar
to equation D.18,

−Aki kiV
kp
ip

(
δi+ip [T

k]

e1u ki+ip
− k

iR
kp
ip

δk+kp [T
i]

e3w
k+kp
i

)(
δi+ip [S

k]

e1u ki+ip
− k

iR
kp
ip

δk+kp [S
i]

e3w
k+kp
i

)
.

This is symmetrical in T and S, so exactly the same term arises from the discretization of this triad’s
contribution towards the RHS of equation D.23.

D.2.8. Treatment of the triads at the boundaries
The triad slope can only be defined where both the grid boxes centred at the end of the arms exist. Triads that
would poke up through the upper ocean surface into the atmosphere, or down into the ocean floor, must be
masked out. See figure D.3. Surface layer triads 1

iR
−1/2
1/2 (magenta) and 1

i+1R
−1/2
−1/2 (blue) that require density

to be specified above the ocean surface are masked (figure D.3a): this ensures that lateral tracer gradients
produce no flux through the ocean surface. However, to prevent surface noise, it is customary to retain the
11 contributions towards the lateral triad fluxes 1

iFu
−1/2
1/2 and 1

i+1Fu
−1/2
−1/2 ; this drives diapycnal tracer fluxes.

Similar comments apply to triads that would intersect the ocean floor (figure D.3b). Note that both near
bottom triad slopes kiR

1/2
1/2 and k

i+1R
1/2
−1/2 are masked when either of the i, k + 1 or i + 1, k + 1 tracer points is

masked, i.e. the i, k + 1 u-point is masked. The associated lateral fluxes (grey-black dashed line) are masked if
ln_botmix_triad=.false. , but left unmasked, giving bottom mixing, if ln_botmix_triad=.true. .
The default option ln_botmix_triad=.false. is suitable when the bbl mixing option is enabled ( ln_trabbl=.true.

, with nn_bbl_ldf=1 ), or for simple idealized problems. For setups with topography without bbl mixing,
ln_botmix_triad=.true. may be necessary.

D.2.9. Limiting of the slopes within the interior
As discussed in subsection 10.2.2, iso-neutral slopes relative to geopotentials must be bounded everywhere, both
for consistency with the small-slope approximation and for numerical stability (Cox, 1987; Griffies, 2004). The
bound chosen in NEMO is applied to each component of the slope separately and has a value of 1/100 in the
ocean interior. It is of course relevant to the iso-neutral slopes r̃i = ri+σi relative to geopotentials (here the σi
are the slopes of the coordinate surfaces relative to geopotentials) equation 1.20 rather than the slope ri relative
to coordinate surfaces, so we require

|r̃i| ≤ r̃max = 0.01.

and then recalculate the slopes ri relative to coordinates. Each individual triad slope

k
i R̃

kp
ip

= k
iR

kp
ip

+
δi+ip [z

k
T ]

e1u ki+ip
(D.24)

is limited like this and then the corresponding k
iR

kp
ip

are recalculated and combined to form the fluxes. Note
that where the slopes have been limited, there is now a non-zero iso-neutral density flux that drives dianeutral
mixing. In particular this iso-neutral density flux is always downwards, and so acts to reduce gravitational
potential energy.

D.2.10. Tapering within the surface mixed layer
Additional tapering of the iso-neutral fluxes is necessary within the surface mixed layer. When the Griffies
triads are used, we offer two options for this.
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Figure D.3.: (a) Uppermost model layer k = 1 with i, 1 and i+ 1, 1 tracer points (black dots), and i+ 1/2, 1 u-point (blue square).
Triad slopes 1

iR
−1/2
1/2

(magenta) and 1
i+1R

−1/2
−1/2

(blue) poking through the ocean surface are masked (faded in figure).

However, the lateral 11 contributions towards 1
i Fu

−1/2
1/2

and 1
i+1Fu

−1/2
−1/2

(yellow line) are still applied, giving diapycnal
diffusive fluxes.
(b) Both near bottom triad slopes k

i R
1/2
1/2

and k
i+1R

1/2
−1/2

are masked when either of the i, k + 1 or i + 1, k + 1 tracer
points is masked, i.e. the i, k+ 1 u-point is masked. The associated lateral fluxes (grey-black dashed line) are masked
if ln_botmix_triad=.false. , but left unmasked, giving bottom mixing, if ln_botmix_triad=.true.

Linear slope tapering within the surface mixed layer

This is the option activated by the default choice ln_triad_iso=.false. . Slopes r̃i relative to geopotentials
are tapered linearly from their value immediately below the mixed layer to zero at the surface, as described in
option (c) of figure 10.2, to values

r̃ML i = −
z

h
r̃i|z=−h for z > −h, (D.25)

and then the ri relative to vertical coordinate surfaces are appropriately adjusted to

ML i = r̃ML i − σi for z > −h.

Thus the diffusion operator within the mixed layer is given by:

DlT = ∇.
(
AlT ℜ ∇T

)
with ℜ =

 1 0 −ML 1

0 1 −ML 2

−ML 1 −ML 2
2
ML 1+

2
ML 2


This slope tapering gives a natural connection between tracer in the mixed-layer and in isopycnal layers

immediately below, in the thermocline. It is consistent with the way the r̃i are tapered within the mixed layer
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(see subsection D.3.5 below) so as to ensure a uniform GM eddy-induced velocity throughout the mixed layer.
However, it gives a downwards density flux and so acts so as to reduce potential energy in the same way as does
the slope limiting discussed above in subsection D.2.9.

As in subsection D.2.9 above, the tapering equation D.25 is applied separately to each triad k
i R̃

kp
ip
, and the

k
iR

kp
ip

adjusted. For clarity, we assume z-coordinates in the following; the conversion from R to R̃ and back to
R follows exactly as described above by equation D.24.

1. Mixed-layer depth is defined so as to avoid including regions of weak vertical stratification in the slope
definition. At each i, j (simplified to i in figure D.4), we define the mixed-layer by setting the vertical index
of the tracer point immediately below the mixed layer, kML, as the maximum k (shallowest tracer point)
such that the potential density ρ0i,k > ρ0i,k10 +∆ρc, where i, k10 is the tracer gridbox within which the
depth reaches 10 m. See the left side of figure D.4. We use the k10-gridbox instead of the surface gridbox
to avoid problems e.g. with thin daytime mixed-layers. Currently we use the same ∆ρc = 0.01 kg m−3 for
ML triad tapering as is used to output the diagnosed mixed-layer depth hML = |zW |kML+1/2, the depth
of the w-point above the i, kML tracer point.

2. We define ‘basal’ triad slopes iRbase
kp
ip

as the slopes of those triads whose vertical ‘arms’ go down from
the i, kML tracer point to the i, kML − 1 tracer point below. This is to ensure that the vertical density
gradients associated with these basal triad slopes iRbase

kp
ip

are representative of the thermocline. The four
basal triads defined in the bottom part of figure D.4 are then

iRbase
kp
ip

=
kML−kp−1/2
i Rbase

kp
ip
,

with e.g. the green triad

iRbase
−1/2
1/2 = kML

i Rbase
−1/2
1/2 .

The vertical flux associated with each of these triads passes through the w-point i, kML − 1/2 lying below
the i, kML tracer point, so it is this depth

zbase i = zwkML−1/2

one gridbox deeper than the diagnosed ML depth zML) that sets the h used to taper the slopes in
equation D.25.

3. Finally, we calculate the adjusted triads k
iRML

kp
ip

within the mixed layer, by multiplying the appropriate
iRbase

kp
ip

by the ratio of the depth of the w-point zwk+kp to zbase i. For instance the green triad centred
on i, k

k
iRML

−1/2
1/2 =

zwk−1/2

zbase i
iRbase

−1/2
1/2

and more generally

k
iRML

kp
ip

=
zwk+kp
zbase i

iRbase
kp
ip
.

Additional truncation of skew iso-neutral flux components

The alternative option is activated by setting ln_triad_iso = true. This retains the same tapered slope ML i
described above for the calculation of the 33 term of the iso-neutral diffusion tensor (the vertical tracer flux
driven by vertical tracer gradients), but replaces the ML i in the skew term by

∗
ML i= r̃2ML i

/
r̃i − σi, (D.26)

giving a ML diffusive operator

DlT = ∇.
(
AlT ℜ ∇T

)
with ℜ =

 1 0 −∗
ML 1

0 1 −∗
ML 2

−∗
ML 1 −∗

ML 2
2
ML 1+

2
ML 2

 .

This operator ∗ then has the property it gives no vertical density flux, and so does not change the potential
energy. This approach is similar to multiplying the iso-neutral diffusion coefficient by r̃−2

maxr̃
−2
i for steep slopes,

as suggested by Gerdes et al. (1991) (see also Griffies (2004)). Again it is applied separately to each triad k
iR

kp
ip

∗To ensure good behaviour where horizontal density gradients are weak, we in fact follow Gerdes et al. (1991) and set ∗
ML i =

sgn(r̃i)min(|r̃2ML i/r̃i|, |r̃i|)− σi.
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In practice, this approach gives weak vertical tracer fluxes through the mixed-layer, as well as vanishing
density fluxes. While it is theoretically advantageous that it does not change the potential energy, it may give
a discontinuity between the fluxes within the mixed-layer (purely horizontal) and just below (along iso-neutral
surfaces).

D.3. Eddy induced advection formulated as a skew flux
D.3.1. Continuous skew flux formulation
When Gent and McWilliams’s [1990] diffusion is used, an additional advection term is added. The associated
velocity is the so called eddy induced velocity, the formulation of which depends on the slopes of iso-neutral
surfaces. Contrary to the case of iso-neutral mixing, the slopes used here are referenced to the geopotential
surfaces, i.e. equation 10.1 is used in z-coordinate, and the sum equation 10.1 + equation 10.2 in z∗ or s-
coordinates.
The eddy induced velocity is given by:

u∗ = − 1

e3
∂iψ1,

v∗ = − 1

e3
∂jψ2,

w∗ =
1

e1e2
{∂i (e2 ψ1) + ∂j (e1 ψ2)} ,

(D.27a)

where the streamfunctions ψi are given by
ψ1 = Ae r̃1,

ψ2 = Ae r̃2,
(D.27b)

with Ae the eddy induced velocity coefficient, and r̃1 and r̃2 the slopes between the iso-neutral and the geopo-
tential surfaces.
The traditional way to implement this additional advection is to add it to the Eulerian velocity prior to

computing the tracer advection. This is implemented if traldf_eiv? is set in the default implementation,
where ln_traldf_triad is set false. This allows us to take advantage of all the advection schemes offered for
the tracers (see section 6.1) and not just a 2nd order advection scheme. This is particularly useful for passive
tracers where positivity of the advection scheme is of paramount importance.
However, when ln_traldf_triad is set true, NEMO instead implements eddy induced advection according

to the so-called skew form (Griffies, 1998). It is based on a transformation of the advective fluxes using the
non-divergent nature of the eddy induced velocity. For example in the (i,k) plane, the tracer advective fluxes
per unit area in ijk space can be transformed as follows:

FTeiv =

(
e2 e3 u

∗

e1 e2 w
∗

)
T =

(
−∂k (e2 ψ1) T
+∂i (e2 ψ1) T

)
=

(
−∂k (e2 ψ1 T )
+∂i (e2 ψ1 T )

)
+

(
+e2 ψ1 ∂kT
−e2 ψ1 ∂iT

)
and since the eddy induced velocity field is non-divergent, we end up with the skew form of the eddy induced
advective fluxes per unit area in ijk space:

FTeiv =

(
+e2 ψ1 ∂kT
−e2 ψ1 ∂iT

)
(D.28)

The total fluxes per unit physical area are then

f∗1 =
1

e3
ψ1∂kT

f∗2 =
1

e3
ψ2∂kT

f∗3 = − 1

e1e2
{e2ψ1∂iT + e1ψ2∂jT} .

(D.29)

Note that equation D.29 takes the same form whatever the vertical coordinate, though of course the slopes r̃i
which define the ψi in equation D.27b are relative to geopotentials. The tendency associated with eddy induced
velocity is then simply the convergence of the fluxes (equation D.28, equation D.29), so

∂T

∂t
= − 1

e1 e2 e3

[
∂

∂i
(e2ψ1∂kT ) +

∂

∂j
(e1 ψ2∂kT )−

∂

∂k
(e2ψ1∂iT + e1ψ2∂jT )

]
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It naturally conserves the tracer content, as it is expressed in flux form. Since it has the same divergence as the
advective form it also preserves the tracer variance.

D.3.2. Discrete skew flux formulation
The skew fluxes in (equation D.29, equation D.28), like the off-diagonal terms (equation D.2, equation D.3) of the
small angle diffusion tensor, are best expressed in terms of the triad slopes, as in figure D.1 and (equation D.5,
equation D.6); but now in terms of the triad slopes R̃ relative to geopotentials instead of the R relative to
coordinate surfaces. The discrete form of equation D.28 using the slopes equation D.7 and defining Ae at
T -points is then given by:

Feiv(T ) ≡
∑
ip, kp

 k
i+1/2−ipSu

kp
ip
(T )

k+1/2−kp
i Sw

kp
ip
(T )

 ,

where the skew flux in the i-direction associated with a given triad is (equation D.9, equation D.22a):

k
i Su

kp
ip
(T ) = + 1

4Ae
k
i

bu
k
i+ip

e1u k
i+ip

k
i R̃

kp
ip

δk+kp [T
i]

e3w
k+kp
i

, (D.30a)

and equation D.22b in the k-direction, changing the sign to be consistent with equation D.28:

k
i Sw

kp
ip
(T ) = − 1

4Ae
k
i

bu
k
i+ip

e3w
k+kp
i

k
i R̃

kp
ip

δi+ip [T
k]

e1u k
i+ip

. (D.30b)

Such a discretisation is consistent with the iso-neutral operator as it uses the same definition for the slopes.
It also ensures the following two key properties.

No change in tracer variance

The discretization conserves tracer variance, i.e. it does not include a diffusive component but is a ‘pure’
advection term. This can be seen by considering the fluxes associated with a given triad slope k

iR
kp
ip
(T ). For,

following subsection D.2.5 and equation D.15, the associated horizontal skew-flux k
i Su

kp
ip
(T ) drives a net rate of

change of variance, summed over the two T -points i+ ip − 1
2 , k and i+ ip +

1
2 , k, of

k
i Su

kp
ip
(T ) δi+ip [T

k], (D.31)

while the associated vertical skew-flux gives a variance change summed over the T -points i, k + kp − 1
2 (above)

and i, k + kp +
1
2 (below) of

k
i Sw

kp
ip
(T ) δk+kp [T

i]. (D.32)

Inspection of the definitions (equation D.30a, equation D.30b) shows that these two variance changes (equa-
tion D.31, equation D.32) sum to zero. Hence the two fluxes associated with each triad make no net contribution
to the variance budget.

Reduction in gravitational PE

The vertical density flux associated with the vertical skew-flux always has the same sign as the vertical density
gradient; thus, so long as the fluid is stable (the vertical density gradient is negative) the vertical density flux
is negative (downward) and hence reduces the gravitational PE.
For the change in gravitational PE driven by the k-flux is

ge3w
k+kp
i Sw

kp
ip
(ρ) = ge3w

k+kp
i

[
−αki ki Sw

kp
ip
(T ) + βki

k
i Sw

kp
ip
(S)
]
.

Substituting k
i Sw

kp
ip

from equation D.30b, gives

= − 1
4gAe

k
i bu

k
i+ip

k
i R̃

kp
ip

−αk
i δi+ip [T

k]+βk
i δi+ip [S

k]

e1u k
i+ip

= + 1
4gAe

k
i bu

k
i+ip

(
k
iR

kp
ip

+
δi+ip [z

k
T ]

e1u k
i+ip

)
k
iR

kp
ip

−αk
i δk+kp [T

i]+βk
i δk+kp [S

i]

e3w
k+kp
i

, (D.33)
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using the definition of the triad slope k
iR

kp
ip

, equation D.7 to express −αki δi+ip [T k] + βki δi+ip [S
k] in terms of

−αki δk+kp [T i] + βki δk+kp [S
i].

Where the coordinates slope, the i-flux gives a PE change

gδi+ip [z
k
T ]
[
−αki ki Su

kp
ip
(T ) + βki

k
i Su

kp
ip
(S)
]

= + 1
4gAe

k
i bu

k
i+ip

δi+ip [z
k
T ]

e1u k
i+ip

(
k
iR

kp
ip

+
δi+ip [z

k
T ]

e1u k
i+ip

)
−αk

i δk+kp [T
i]+βk

i δk+kp [S
i]

e3w
k+kp
i

, (D.34)

(using equation D.30a) and so the total PE change equation D.33 + equation D.34 associated with the triad
fluxes is

ge3w
k+kp
i Sw

kp
ip
(ρ) + gδi+ip [z

k
T ]

k
i Su

kp
ip
(ρ)

= + 1
4gAe

k
i bu

k
i+ip

(
k
iR

kp
ip

+
δi+ip [z

k
T ]

e1u k
i+ip

)2
−αk

i δk+kp [T
i]+βk

i δk+kp [S
i]

e3w
k+kp
i

.

Where the fluid is stable, with −αki δk+kp [T i] + βki δk+kp [S
i] < 0, this PE change is negative.

D.3.3. Treatment of the triads at the boundaries
Triad slopes k

i R̃
kp
ip

used for the calculation of the eddy-induced skew-fluxes are masked at the boundaries in
exactly the same way as are the triad slopes k

iR
kp
ip

used for the iso-neutral diffusive fluxes, as described in
subsection D.2.8 and figure D.3. Thus surface layer triads 1

i R̃
−1/2
1/2 and 1

i+1R̃
−1/2
−1/2 are masked, and both near

bottom triad slopes ki R̃
1/2
1/2 and k

i+1R̃
1/2
−1/2 are masked when either of the i, k + 1 or i + 1, k + 1 tracer points is

masked, i.e. the i, k + 1 u-point is masked. The namelist parameter ln_botmix_triad has no effect on the
eddy-induced skew-fluxes.

D.3.4. Limiting of the slopes within the interior
Presently, the iso-neutral slopes r̃i relative to geopotentials are limited to be less than 1/100, exactly as in
calculating the iso-neutral diffusion, §subsection D.2.9. Each individual triad k

i R̃
kp
ip

is so limited.

D.3.5. Tapering within the surface mixed layer

The slopes r̃i relative to geopotentials (and thus the individual triads ki R̃
kp
ip

) are always tapered linearly from
their value immediately below the mixed layer to zero at the surface equation D.25, as described in subsub-
section D.2.10. This is option (c) of figure 10.2. This linear tapering for the slopes used to calculate the
eddy-induced fluxes is unaffected by the value of ln_triad_iso .
The justification for this linear slope tapering is that, for Ae that is constant or varies only in the horizontal

(the most commonly used options in NEMO: see section 10.3), it is equivalent to a horizontal eiv (eddy-induced
velocity) that is uniform within the mixed layer equation D.27a. This ensures that the eiv velocities do not
restratify the mixed layer (Tréguier et al., 1997; Danabasoglu et al., 2008). Equivantly, in terms of the skew-flux
formulation we use here, the linear slope tapering within the mixed-layer gives a linearly varying vertical flux,
and so a tracer convergence uniform in depth (the horizontal flux convergence is relatively insignificant within
the mixed-layer).

D.3.6. Streamfunction diagnostics
Where the namelist parameter ln_traldf_gdia=.true. , diagnosed mean eddy-induced velocities are output.
Each time step, streamfunctions are calculated in the i-k and j-k planes at uw (integer +1/2 i, integer j, integer
+1/2 k) and vw (integer i, integer +1/2 j, integer +1/2 k) points (see Table table 3.1) respectively. We follow
(Griffies, 2004) and calculate the streamfunction at a given uw-point from the surrounding four triads according
to:

ψ1
k+1/2
i+1/2 = 1

4

∑
ip, kp

Ae
k+1/2−kp
i+1/2−ip

k+1/2−kp
i+1/2−ip R kp

ip
.
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The streamfunction ψ1 is calculated similarly at vw points. The eddy-induced velocities are then calculated
from the straightforward discretisation of equation D.27a:

u∗ki+1/2 = − 1

e3uki

(
ψ1

k+1/2
i+1/2 − ψ1

k+1/2
i+1/2

)
,

v∗kj+1/2 = − 1

e3vkj

(
ψ2

k+1/2
j+1/2 − ψ2

k+1/2
j+1/2

)
,

w∗k+1/2
i,j =

1

e1te2t

{
e2u

k+1/2
i+1/2 ψ1

k+1/2
i+1/2 − e2u

k+1/2
i−1/2 ψ1

k+1/2
i−1/2 +

e2v
k+1/2
j+1/2 ψ2

k+1/2
j+1/2 − e2v

k+1/2
j−1/2 ψ2

k+1/2
j−1/2

}
,
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Figure D.4.: Definition of mixed-layer depth and calculation of linearly tapered triads. The figure shows a water column at a given
i, j (simplified to i), with the ocean surface at the top. Tracer points are denoted by bullets, and black lines the edges
of the tracer cells; k increases upwards.
We define the mixed-layer by setting the vertical index of the tracer point immediately below the mixed layer, kML,
as the maximum k (shallowest tracer point) such that ρ0i,k > ρ0i,k10

+∆ρc, where i, k10 is the tracer gridbox within
which the depth reaches 10 m. We calculate the triad slopes within the mixed layer by linearly tapering them from
zero (at the surface) to the ‘basal’ slopes, the slopes of the four triads passing through the w-point i, kML − 1/2 (blue
square), iRbase

kp

ip
. Triads with different ip, kp, denoted by different colours, (e.g. the green triad ip = 1/2, kp = −1/2)

are tapered to the appropriate basal triad.
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E.1. North Pole Folding around a T-Point
When l_Iperio = .true., l_NFold = .true. and c_NFtype = 'T' the North Pole Folding is done around 2
T-points. This is the case in ORCA 2◦, 1/4◦, 1/12◦and 1/36◦.

Figure E.1.: North fold boundary for the T grid, with a T -point pivot and cyclic east-west boundary condition. Cells in the halos,
outside of the inner domain (thick black line), will be defined by using only the values in the inner domain when
calling the lbc_lnk routine (found in lbclnk.F90 module). Grey shading defines duplicated cells inside the inner
domain that will also be refined (overwritten) by othe inner domain values when calling the lbc_lnk . Cells with
the same color are at the same geographical location. Color shading shows the change in gradient on each side of the
pivot-points.

Page 281 of 310 NEMO Reference Manual



Sect. E.1 North Pole Folding around a T-Point

Figure E.2.: North fold boundary for the U grid, with a T -point pivot and cyclic east-west boundary condition. Cells in the halos,
outside of the inner domain (thick black line), will be defined by using only the values in the inner domain when calling
the lbc_lnk routine (found in lbclnk.F90 module). Grey shading defines duplicated cells inside the inner domain
that will also be refined (overwritten) by othe inner domain values when calling the lbc_lnk . Cells with the same
color are at the same geographical location. Signs + or - are illustrating the change of signe on each side of the pivotal
point.
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Figure E.3.: North fold boundary for the V grid, with a T -point pivot and cyclic east-west boundary condition. Cells in the halos,
outside of the inner domain (thick black line), will be defined by using only the values in the inner domain when calling
the lbc_lnk routine (found in lbclnk.F90 module). Grey shading defines duplicated cells inside the inner domain
that will also be refined (overwritten) by othe inner domain values when calling the lbc_lnk . Cells with the same
color are at the same geographical location. Signs + or - are illustrating the change of signe on each side of the pivotal
point.
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Figure E.4.: North fold boundary for the F grid, with a T -point pivot and cyclic east-west boundary condition. Cells in the halos,
outside of the inner domain (thick black line), will be defined by using only the values in the inner domain when calling
the lbc_lnk routine (found in lbclnk.F90 module). Grey shading defines duplicated cells inside the inner domain
that will also be refined (overwritten) by othe inner domain values when calling the lbc_lnk . Cells with the same
color are at the same geographical location.
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E.2. North Pole Folding around a F-Point
When l_Iperio = .true., l_NFold = .true. and c_NFtype = 'F' the North Pole Folding is done around 2
F-points. This is the case in ORCA 1◦and 1/2◦.

Figure E.5.: North fold boundary for the T grid, with a F -point pivot and cyclic east-west boundary condition. Cells in the halos,
outside of the inner domain (thick black line), will be defined by using only the values in the inner domain when
calling the lbc_lnk routine (found in lbclnk.F90 module). Grey shading defines duplicated cells inside the inner
domain that will also be refined (overwritten) by othe inner domain values when calling the lbc_lnk . Cells with
the same color are at the same geographical location. Color shading shows the change in gradient on each side of the
pivot-points.
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Figure E.6.: North fold boundary for the U grid, with a F -point pivot and cyclic east-west boundary condition. Cells in the halos,
outside of the inner domain (thick black line), will be defined by using only the values in the inner domain when calling
the lbc_lnk routine (found in lbclnk.F90 module). Cells with the same color are at the same geographical location.
Signs + or - are illustrating the change of signe on each side of the pivotal point.
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Figure E.7.: North fold boundary for the V grid, with a F -point pivot and cyclic east-west boundary condition. Cells in the halos,
outside of the inner domain (thick black line), will be defined by using only the values in the inner domain when calling
the lbc_lnk routine (found in lbclnk.F90 module). Grey shading defines duplicated cells inside the inner domain
that will also be refined (overwritten) by othe inner domain values when calling the lbc_lnk . Cells with the same
color are at the same geographical location. Signs + or - are illustrating the change of signe on each side of the pivotal
point.
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Figure E.8.: North fold boundary for the F grid, with a F -point pivot and cyclic east-west boundary condition. Cells in the halos,
outside of the inner domain (thick black line), will be defined by using only the values in the inner domain when calling
the lbc_lnk routine (found in lbclnk.F90 module). Grey shading defines duplicated cells inside the inner domain
that will also be refined (overwritten) by othe inner domain values when calling the lbc_lnk . Cells with the same
color are at the same geographical location.

NEMO Reference Manual Page 288 of 310



F
A brief guide to the DOMAINcfg tool

Table of contents
F.1. Choice of horizontal grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
F.2. Vertical grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

F.2.1. Vertical reference coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
F.2.2. Model bathymetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
F.2.3. Choice of vertical grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

F.3. Ice shelf cavity definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
F.4. Closed sea mask definition (domclo.F90) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

Changes record

Release Author(s) Modifications
5.0 Katherine Hutchinson and Pierre Mathiot update to NEMO 5.0
4.2 Pierre Mathiot Add ice shelf and closed sea option description
4.0 Andrew Coward Creation from materials removed from chapter 3 that

are still relevant to the DOMAINcfg tool when setting
up new domains



Sect. F.1 Choice of horizontal grid

!-----------------------------------------------------------------------
&namdom ! space and time domain (bathymetry, mesh, timestep)
!-----------------------------------------------------------------------

ln_read_cfg = .false. ! Read from a domain_cfg file
nn_bathy = 1 ! = 0 compute analyticaly

! = 1 read the bathymetry file
! = 2 compute from external bathymetry
! = 3 compute from parent (if "key_agrif")

nn_interp = 1 ! type of interpolation (nn_bathy =2)
cn_domcfg = ' ' ! Name of the domain_cfg input file
cn_fcoord = 'coordinates.nc' ! external coordinates file (jphgr_msh = 0)
cn_topo = 'bathy_meter.nc ' ! external topo file (nn_bathy =1/2)
cn_topolvl = 'bathy_level.nc ' ! external topo file (nn_bathy =1)
cn_fisfd = 'isf_draft_meter.nc' ! external isf draft (nn_bathy =1 and ln_isfcav = .true.)
cn_bath = 'Bathymetry' ! topo name in file (nn_bathy =1/2)
cn_bathlvl = 'Bathy_level' ! lvl name in file (nn_bathy =1)
cn_visfd = 'isf_draft' ! isf draft variable (nn_bathy =1 and ln_isfcav = .true.)
cn_lon = 'nav_lon' ! lon name in file (nn_bathy =2)
cn_lat = 'nav_lat' ! lat name in file (nn_bathy =2)
rn_scale = 1. ! multiplicative factor to account for possibly negative input bathymetry (agrif only)
rn_bathy = 0. ! value of the bathymetry. if (=0) bottom flat at jpkm1
nn_msh = 0 ! create (=1) a mesh file or not (=0)
rn_hmin = -3. ! min depth of the ocean (>0) or min number of ocean level (<0)
rn_e3zps_min= 20. ! partial step thickness is set larger than the minimum of
rn_e3zps_rat= 0.1 ! rn_e3zps_min and rn_e3zps_rat*e3t, with 0<rn_e3zps_rat<1

!
rn_rdt = 5760. ! time step for the dynamics (and tracer if nn_acc=0)
rn_atfp = 0.1 ! asselin time filter parameter
ln_crs = .false. ! Logical switch for coarsening module
jphgr_msh = 0 ! type of horizontal mesh

! = 0 curvilinear coordinate on the sphere read in coordinate.nc
! = 1 geographical mesh on the sphere with regular grid-spacing
! = 2 f-plane with regular grid-spacing
! = 3 beta-plane with regular grid-spacing
! = 4 Mercator grid with T/U point at the equator

ppglam0 = 0.0 ! longitude of first raw and column T-point (jphgr_msh = 1)
ppgphi0 = -35.0 ! latitude of first raw and column T-point (jphgr_msh = 1)
ppe1_deg = 1.0 ! zonal grid-spacing (degrees)
ppe2_deg = 0.5 ! meridional grid-spacing (degrees)
ppe1_m = 5000.0 ! zonal grid-spacing (degrees)
ppe2_m = 5000.0 ! meridional grid-spacing (degrees)
ppsur = -4762.96143546300 ! ORCA r4, r2 and r05 coefficients
ppa0 = 255.58049070440 ! (default coefficients)
ppa1 = 245.58132232490 !
ppkth = 21.43336197938 !
ppacr = 3.0 !
ppdzmin = 10. ! Minimum vertical spacing
pphmax = 5000. ! Maximum depth
ldbletanh = .TRUE. ! Use/do not use double tanf function for vertical coordinates
ppa2 = 100.760928500000 ! Double tanh function parameters
ppkth2 = 48.029893720000 !
ppacr2 = 13.000000000000 !

/

namelist F.1.: &namdom_domcfg

This appendix briefly describes some of the options available in the DOMAINcfg tool mentioned in chapter 3.
Please note that there are plans to update and clean this tool and provide better step-by-step instructions.

In the interim, for practical guidelines on the use of the tool, please see the DOMAINcfg README.
The DOMAINcfg tool allows the user to define some horizontal and vertical grids through additional namelist

parameters. Explanations of these parameters are retained here for reference pending better documentation for
DOMAINcfg. Please note that the namelist blocks named in this appendix refer to those read by DOMAINcfg via
its own namelist_ref and namelist_cfg files. Although, due to their origins, these namelists share names with
those used by NEMO, they are not interchangeable and should be considered independent of those described
elsewhere in this manual.

F.1. Choice of horizontal grid
The user has three options available in defining a horizontal grid, which involve the namelist variable

jphgr_msh (namelist F.1).

jphgr_msh =0 The most general curvilinear orthogonal grids. The coordinates and their first derivatives with
respect to i and j are provided in a input file (coordinates.nc), read in hgr_read subroutine of the
domhgr module. This is now the only option available within NEMO itself from v4.0 onwards.

jphgr_msh =1 to 4 A few simple analytical grids are provided (see below). For other analytical grids, the
domhgr.F90 module (DOMAINcfg variant) must be modified by the user. In most cases, modifying the
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Figure F.1.: Default vertical mesh for ORCA2: 30 ocean levels (L30). Vertical level functions for (a) T-point depth and (b) the
associated scale factor for the z-coordinate case.

usrdef_hgr.F90 module of NEMO is a better alternative since this is designed to allow simple analytical
domains to be configured and used without the need for external data files.

There are two simple cases of geographical grids on the sphere. With jphgr_msh=1 , the grid (expressed in
degrees) is regular in space, with grid sizes specified by parameters ppe1_deg and ppe2_deg , respectively.
Such a geographical grid can be very anisotropic at high latitudes because of the convergence of meridians
(the zonal scale factors e1 become much smaller than the meridional scale factors e2). The Mercator grid (
jphgr_msh =4) avoids this anisotropy by refining the meridional scale factors in the same way as the zonal ones.
In this case, meridional scale factors and latitudes are calculated analytically using the formulae appropriate
for a Mercator projection, based on ppe1_deg which is a reference grid spacing at the equator (this applies
even when the geographical equator is situated outside the model domain).
In these two cases ( jphgr_msh =1 or 4), the grid position is defined by the longitude and latitude of the

south-westernmost point ( ppglam0 and ppgphi0 ). Note that for the Mercator grid the user needs only to
provide an approximate starting latitude: the real latitude will be recalculated analytically, in order to ensure
that the equator corresponds to line passing through t- and u-points.

Rectangular grids ignoring the spherical geometry are defined with jphgr_msh = 2 and 3. The domain
is either an f -plane ( jphgr_msh = 2, Coriolis factor is constant) or a beta-plane ( jphgr_msh = 3, the
Coriolis factor is linear in the j-direction). The grid size is uniform in meters in each direction, and given by
the parameters ppe1_m and ppe2_m respectively. The zonal grid coordinate (glam arrays) is in kilometers,
starting at zero with the first t-point. The meridional coordinate (gphi. arrays) is in kilometers, and the second
t-point corresponds to coordinate gphit = 0. The input variable ppglam0 is ignored. ppgphi0 is used to
set the reference latitude for computation of the Coriolis parameter. In the case of the beta plane, ppgphi0
corresponds to the center of the domain.

F.2. Vertical grid
F.2.1. Vertical reference coordinate
The reference coordinate transformation z0(k) defines the arrays gdept_0 and gdepw_0 for t- and w-points,
respectively. See subsubsection F.2.3 for the S-coordinate options. As indicated on figure 3.4 jpk is the number
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of w-levels. gdepw_0(1) is the ocean surface. There are at most jpk-1 t-points inside the ocean, the additional
t-point at jk = jpk is below the sea floor and is not used.
Since version 4.0, the default definition of cell depths for both w- and t-levels is done in a discrete sense where

e03T = dk(z
W
0 ) and e03W = dk(z

T
0 ), by setting ln_e3_dep=.true. in the (namelist F.1) (DOMAINcfg &namdom

variant). (namely zT0 (k) = 0.5(zW0 (k) + zW0 (k + 1)) and e03W = dk(z
T
0 )). For backward compatibility with

version 3.6, by setting ln_e3_dep=.false. the vertical location of w- and t-levels are defined using the former
analytic expression of the depth z0(k), whose analytical derivative with respect to k provides the vertical scale
factors. All the above operations are done through statement functions in the routine domzgr.F90 (DOMAINcfg
variant).
It is possible to define a simple regular vertical grid by giving zero stretching ( ppacr=0 ). In that case, the

parameters jpk (number of w-levels) and pphmax (maximum ocean depth in meters) fully define the grid.
For climate-related studies it is often desirable to concentrate the vertical resolution near the ocean surface.

The following function is proposed as a standard for a z-coordinate (with either full or partial steps):

z0(k) = hsur − h0 k − h1 hcr log
[
cosh((k − hth)/hcr)

]
(F.1)

e03(k) =
∣∣−h0 − h1 tanh

[
(k − hth)/hcr

]∣∣ (F.2)

where k = 1 to jpk for w-levels and k = 1 to jpk-1 for t−levels. Such an expression allows us to define
a nearly uniform vertical location of levels at the ocean top and bottom with a smooth hyperbolic tangent
transition in between (figure F.1).
A double hyperbolic tangent version ( ldbletanh=.true. ) is also available which permits finer control and

is used, typically, to obtain a well resolved upper ocean without compromising on resolution at depth using a
moderate number of levels.

z0(k) = hsur − h0 k − h1 hcr log
[
cosh((k − hth)/hcr)

]
− h21 hcr log

[
cosh((k − h2th)/h2cr)

] (F.3)

e03(k) =
∣∣− h0 − h1 tanh

[
(k − hth)/hcr

]
− h21 tanh

[
(k − h2th)/h2cr

]∣∣ (F.4)

If the ice shelf cavities are opened ( ln_isfcav=.true. ), the definition of z0 is the same. However, definition
of e03 at t- and w-points is respectively changed to:

eT3 (k) = zW (k + 1)− zW (k)

eW3 (k) = zT (k)− zT (k − 1)
(F.5)

This formulation decreases the self-generated circulation into the ice shelf cavity (which can, in extreme case,
leads to numerical instability). This is now the recommended formulation for all configurations using v4.0
onwards. The analytical derivation of thicknesses is maintained for backwards compatibility.

The most used vertical grid for ORCA2 has 10 m (500 m) resolution in the surface (bottom) layers and a
depth which varies from 0 at the sea surface to a minimum of −5000 m. This leads to the following conditions:

e3(1 + 1/2) = 10. z(1) = 0.
e3(jpk − 1/2) = 500. z(jpk) = −5000. (F.6)

With the choice of the stretching hcr = 3 and the number of levels jpk = 31, the four coefficients hsur, h0,
h1, and hth in equation F.5 have been determined such that equation F.6 is satisfied, through an optimisation
procedure using a bisection method. For the first standard ORCA2 vertical grid this led to the following values:
hsur = 4762.96, h0 = 255.58, h1 = 245.5813, and hth = 21.43336. The resulting depths and scale factors as a
function of the model levels are shown in figure F.1 and given in table F.1. Those values correspond to the
parameters ppsur , ppa0 , ppa1 , ppkth in the DOMAINcfg variant of &namdom (namelist F.1).

Rather than entering parameters hsur, h0, and h1 directly, it is possible to recalculate them. In that case the
user sets ppsur = ppa0 = ppa1 = 999999., in &namcfg (namelist 17.1) namelist, and specifies instead the
four following parameters:

• ppacr = hcr: stretching factor (nondimensional). The larger ppacr , the smaller the stretching. Values
from 3 to 10 are usual.

• ppkth = hth: is approximately the model level at which maximum stretching occurs (nondimensional,
usually of order 1/2 or 2/3 of jpk)
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LEVEL gdept_1d gdepw_1d e3t_1d e3w_1d
1 5.00 0.00 10.00 10.00
2 15.00 10.00 10.00 10.00
3 25.00 20.00 10.00 10.00
4 35.01 30.00 10.01 10.00
5 45.01 40.01 10.01 10.01
6 55.03 50.02 10.02 10.02
7 65.06 60.04 10.04 10.03
8 75.13 70.09 10.09 10.06
9 85.25 80.18 10.17 10.12
10 95.49 90.35 10.33 10.24
11 105.97 100.69 10.65 10.47
12 116.90 111.36 11.27 10.91
13 128.70 122.65 12.47 11.77
14 142.20 135.16 14.78 13.43
15 158.96 150.03 19.23 16.65
16 181.96 169.42 27.66 22.78
17 216.65 197.37 43.26 34.30
18 272.48 241.13 70.88 55.21
19 364.30 312.74 116.11 90.99
20 511.53 429.72 181.55 146.43
21 732.20 611.89 261.03 220.35
22 1033.22 872.87 339.39 301.42
23 1405.70 1211.59 402.26 373.31
24 1830.89 1612.98 444.87 426.00
25 2289.77 2057.13 470.55 459.47
26 2768.24 2527.22 484.95 478.83
27 3257.48 3011.90 492.70 489.44
28 3752.44 3504.46 496.78 495.07
29 4250.40 4001.16 498.90 498.02
30 4749.91 4500.02 500.00 499.54
31 5250.23 5000.00 500.56 500.33

Table F.1.: Default vertical mesh in z-coordinate for 30 layers ORCA2 configuration as computed from equation F.5 using the
coefficients given in equation F.6

• ppdzmin : minimum thickness for the top layer (in meters).

• pphmax : total depth of the ocean (meters).

As an example, for the 45 layers used in the DRAKKAR configuration those parameters are: jpk = 46,
ppacr = 9, ppkth = 23.563, ppdzmin = 6 m, pphmax = 5750 m.

F.2.2. Model bathymetry
The bathymetry can either be defined analytically by hand in DOMAIncfg variant of domzgr.F90 in the zgr_bat
subroutine ( nn_bathy <= 0 ) with some predefined bathymetry or from a netcdf file provided by the user (
nn_bathy > 0 ).
For the case nn_bathy <= 0 :

nn_bathy=0 : a flat-bottom domain is defined. The total depth zw(jpk) is given by the coordinate trans-
formation. The domain can either be a closed basin or a periodic channel depending on the parameter
jperio .

nn_bathy=-1 : There are two predefined bathymetry. One for the OVERFLOW, and one for the DOME test
cases (see user guide). If the configuration name ( cp_cfg is different from DOME or OVERFLOW, the
default is a flat bottom with a random noise. The user is strongly encourage to check zgr_bat to see if
it fits exactly its need (many parameter hard coded for each cases).

For the case nn_bathy > 0 :
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nn_bathy=1 : There is two cases. For z or σ coordinates ( ln_zps or ln_sco ), the user needs to provide a
bathymetry and ice shelf draft depth variables ( cn_bath and cn_visfd ) in netcdf files ( cn_topo and
cn_fisfd ). Ice shelf draft variable is optional as it depends if ln_isfcav is activated or not. Each files
need to provide data on each grid point of the 2D model grid. The depth convention for both variables is
positive, in meters and the continent are defined by a 0 or negative value.
The bathymetry is usually built by interpolating a standard bathymetry product (e.g. ETOPO or GEBCO)
onto the horizontal ocean mesh. For the case full cell ( ln_zco ), the user need to provide a bottom level
variables ( cn_bathlvl in a netcdf file ( cn_topolvl ). Representation of the ice shel cavities is not
implemented in this case.
In both cases, there is specific hand edits for the ORCA2 configuration ( cp_cfg='orca' and jp_cfg=2
) for Gibraltar and Bab el Mandeb straits.

nn_bathy>1 : ???

F.2.3. Choice of vertical grid
After reading the bathymetry, the algorithm for vertical grid definition differs between the different options:

ln_zco = .true. set a reference coordinate transformation z0(k), and set z(i, j, k, t) = z0(k) where z0(k) is
the closest match to the depth at (i, j).

ln_zps = .true. set a reference coordinate transformation z0(k), and calculate the thickness of the deepest
level (and shallowest level if ln_isfcav ) at each (i, j) point using the bathymetry (and ice shelf draftif
ln_isfcav ), to obtain the final three-dimensional depth and scale factor arrays.

ln_sco = .true. smooth the bathymetry to fulfill the hydrostatic consistency criteria and set the three-
dimensional transformation.

s-z and s-zps smooth the bathymetry to fulfill the hydrostatic consistency criteria and set the three-dimensional
transformation z(i, j, k), and possibly introduce masking of extra land points to better fit the original
bathymetry file.

Z-coordinate with uniform thickness levels ( ln_zco )

With this option the model topography can be fully described by the reference vertical coordinate and a 2D
integer field giving the number of wet levels at each location (bathy_level). The resulting match to the real
topography is likely to be poor though (especially with thick, deep levels) and slopes poorly represented. This
option is rarely used in modern simulations but it can be useful for testing purposes.

Z-coordinate with partial step ( ln_zps )

In z-coordinate partial step, the depths of the model levels are defined by the reference analytical function z0(k)
as described in subsection F.2.1, except in the bottom layer. The thickness of the bottom layer is allowed to
vary as a function of geographical location (λ, φ) to allow a better representation of the bathymetry, especially
in the case of small slopes (where the bathymetry varies by less than one level thickness from one grid point
to the next). The reference layer thicknesses e03t have been defined in the absence of bathymetry. With partial
steps, layers from 1 to jpk-2 can have a thickness smaller than e3t(jk).
The model deepest layer (jpk-1) is allowed to have either a smaller or larger thickness than e3t(jpk): the

maximum thickness allowed is 2 ∗ e3t(jpk − 1).
In case of ice shelf, partial step are allowed at the top interface using the same methodology.
This has to be kept in mind when specifying values in &namdom (DOMAIncfg variant ; namelist F.1), such as

the maximum depth pphmax in partial steps.
For example, with pphmax = 5750 m for the DRAKKAR 45 layer grid, the maximum ocean depth allowed

is actually 6000 m (the default thickness e3t(jpk − 1) being 250 m). Two variables in the namdom namelist
are used to define the partial step vertical grid. The mimimum water thickness (in meters) allowed for a cell
partially filled with bathymetry at level jk is the minimum of rn_e3zps_min (thickness in meters, usually
20 m) or e3t(jk)∗ rn_e3zps_rat (a fraction, usually 10%, of the default thickness e3t(jk)).

S-coordinate ( ln_sco )

Options are defined in &namzgr_sco (DOMAINcfg only). In s-coordinate ( ln_sco=.true. ), the depth and
thickness of the model levels are defined from the product of a depth field and either a stretching function or
its derivative, respectively:
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namelist F.2.: &namzgr_sco_domcfg

!-----------------------------------------------------------------------
&namzgr_sco ! s-coordinate or hybrid z-s-coordinate (default: OFF)
!-----------------------------------------------------------------------

ln_s_sh94 = .false. ! Song & Haidvogel 1994 hybrid S-sigma (T)|
ln_s_sf12 = .false. ! Siddorn & Furner 2012 hybrid S-z-sigma (T)| if both are false the NEMO tanh stretching is applied
ln_sigcrit = .false. ! use sigma coordinates below critical depth (T) or Z coordinates (F) for Siddorn & Furner stretch

! stretching coefficients for all functions
rn_sbot_min = 10.0 ! minimum depth of s-bottom surface (>0) (m)
rn_sbot_max = 7000.0 ! maximum depth of s-bottom surface (= ocean depth) (>0) (m)
rn_hc = 150.0 ! critical depth for transition to stretched coordinates

!!!!!!! Envelop bathymetry
rn_rmax = 0.3 ! maximum cut-off r-value allowed (0<r_max<1)

!!!!!!! SH94 stretching coefficients (ln_s_sh94 = .true.)
rn_theta = 6.0 ! surface control parameter (0<=theta<=20)
rn_bb = 0.8 ! stretching with SH94 s-sigma

!!!!!!! SF12 stretching coefficient (ln_s_sf12 = .true.)
rn_alpha = 4.4 ! stretching with SF12 s-sigma
rn_efold = 0.0 ! efold length scale for transition to stretched coord
rn_zs = 1.0 ! depth of surface grid box

! bottom cell depth (Zb) is a linear function of water depth Zb = H*a + b
rn_zb_a = 0.024 ! bathymetry scaling factor for calculating Zb
rn_zb_b = -0.2 ! offset for calculating Zb

!!!!!!!! Other stretching (not SH94 or SF12) [also uses rn_theta above]
rn_thetb = 1.0 ! bottom control parameter (0<=thetb<= 1)

/

z(k) = h(i, j) z0(k)

e3(k) = h(i, j) z′0(k)

where h is the depth of the last w-level (z0(k)) defined at the t-point location in the horizontal and z0(k) is
a function which varies from 0 at the sea surface to 1 at the ocean bottom. The depth field h is not necessary
the ocean depth, since a mixed step-like and bottom-following representation of the topography can be used
(figure 3.5) or an envelop bathymetry can be defined (figure 3.5). The namelist parameter rn_rmax determines
the slope at which the terrain-following coordinate intersects the sea bed and becomes a pseudo z-coordinate.
The coordinate can also be hybridised by specifying rn_sbot_min and rn_sbot_max as the minimum and
maximum depths at which the terrain-following vertical coordinate is calculated.
Options for stretching the coordinate are provided as examples, but care must be taken to ensure that the

vertical stretch used is appropriate for the application.
The original default NEMO s-coordinate stretching is available if neither of the other options are specified as

true ( ln_s_sh94=.false. and ln_s_SF12=.false. ). This uses a depth independent tanh function for the
stretching (Madec et al., 1996):

z = smin + C(s)(H − smin)

where smin is the depth at which the s-coordinate stretching starts and allows a z-coordinate to be placed
on top of the stretched coordinate, and z is the depth (negative down from the asea surface).

s = − k

n− 1
and 0 ≤ k ≤ n− 1

C(s) =
[tanh(θ (s+ b))− tanh(θ b)]

2 sinh(θ)

A stretching function, modified from the commonly used Song and Haidvogel (1994) stretching ( ln_s_sh94=.true.
), is also available and is more commonly used for shelf seas modelling:

C(s) = (1− b) sinh(θs)sinh(θ) + b
tanh

[
θ
(
s+ 1

2

)]
− tanh

(
θ
2

)
2 tanh

(
θ
2

)
where Hc is the critical depth ( rn_hc ) at which the coordinate transitions from pure σ to the stretched

coordinate, and θ ( rn_theta ) and b ( rn_bb ) are the surface and bottom control parameters such that
0 ⩽ θ ⩽ 20, and 0 ⩽ b ⩽ 1. b has been designed to allow surface and/or bottom increase of the vertical
resolution (figure F.2).
Another example has been provided at version 3.5 ( ln_s_sf12 ) that allows a fixed surface resolution in an

analytical terrain-following stretching Siddorn and Furner (2013). In this case the a stretching function γ is
defined such that:
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Sect. F.2 Vertical grid

Figure F.2.: Examples of the stretching function applied to a seamount; from left to right: surface, surface and bottom, and bottom
intensified resolutions

z = −γh with 0 ≤ γ ≤ 1 (F.7)
The function is defined with respect to σ, the unstretched terrain-following coordinate:

γ = A

(
σ − 1

2
(σ2 + f(σ))

)
+B

(
σ3 − f(σ)

)
+ f(σ)

Where:

f(σ) = (α+ 2)σα+1 − (α+ 1)σα+2 and σ =
k

n− 1

This gives an analytical stretching of σ that is solvable in A and B as a function of the user prescribed
stretching parameter α ( rn_alpha ) that stretches towards the surface (α > 1.0) or the bottom (α < 1.0)
and user prescribed surface ( rn_zs ) and bottom depths. The bottom cell depth in this example is given as a
function of water depth:

Zb = ha+ b

where the namelist parameters rn_zb_a and rn_zb_b are a and b respectively.

Figure F.3.: A comparison of the Song and Haidvogel (1994) S-coordinate (solid lines), a 50 level Z-coordinate (contoured surfaces)
and the Siddorn and Furner (2013) S-coordinate (dashed lines) in the surface 100 m for a idealised bathymetry that
goes from 50 m to 5500 m depth. For clarity every third coordinate surface is shown.

This gives a smooth analytical stretching in computational space that is constrained to given specified surface
and bottom grid cell thicknesses in real space. This is not to be confused with the hybrid schemes that
superimpose geopotential coordinates on terrain following coordinates thus creating a non-analytical vertical
coordinate that therefore may suffer from large gradients in the vertical resolutions. This stretching is less
straightforward to implement than the Song and Haidvogel (1994) stretching, but has the advantage of resolving
diurnal processes in deep water and has generally flatter slopes.
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namelist F.3.: &namzgr_isf

!-----------------------------------------------------------------------
&namzgr_isf ! isf cavity geometry definition (default: OFF)
!-----------------------------------------------------------------------

rn_isfdep_min = 10. ! minimum isf draft tickness (if lower, isf draft set to this value)
rn_glhw_min = 1.e-3 ! minimum water column thickness to define the grounding line
rn_isfhw_min = 10 ! minimum water column thickness in the cavity once the grounding line defined.
ln_isfchannel = .false. ! remove channel (based on 2d mask build from isfdraft-bathy)
ln_isfconnect = .false. ! force connection under the ice shelf (based on 2d mask build from isfdraft-bathy)

nn_kisfmax = 999 ! limiter in level on the previous condition. (if change larger than this number, get back
to value before we enforce the connection)↪→

rn_zisfmax = 7000. ! limiter in m on the previous condition. (if change larger than this number, get back
to value before we enforce the connection)↪→
ln_isfcheminey = .false. ! close cheminey
ln_isfsubgl = .false. ! remove subglacial lake created by the remapping process

rn_isfsubgllon = 0.0 ! longitude of the seed to determine the open ocean
rn_isfsubgllat = 0.0 ! latitude of the seed to determine the open ocean

/

As with the Song and Haidvogel (1994) stretching the stretch is only applied at depths greater than the
critical depth hc. In this example two options are available in depths shallower than hc, with pure sigma being
applied if the ln_sigcrit is true and pure z-coordinates if it is false (the z-coordinate being equal to the
depths of the stretched coordinate at hc).

Minimising the horizontal slope of the vertical coordinate is important in terrain-following systems as large
slopes lead to hydrostatic consistency. A hydrostatic consistency parameter diagnostic following Haney (1991)
has been implemented, and is output as part of the model mesh file at the start of the run.

z⋆- or s⋆-coordinate ( ln_linssh )

This option is described in the Report by Levier et al. (2007), available on the NEMO web site.

F.3. Ice shelf cavity definition
If the under ice shelf seas are opened ( ln_isfcav ), the depth of the ice shelf/ocean interface has to be

included in the isfdraft_meter file (Netcdf format). This file needs to include the isf_draft variable. A positive
value will mean ice shelf/ocean interface below the reference 0m ssh. The exact shape of the ice shelf cavity
(grounding line position and minimum thickness of the water column under an ice shelf, ...) can be specify
in &namzgr_isf (namelist F.3) (DOMAINcfg only, namelist F.3). The details of each of these parameters is
available in subsection 8.1.6 in the ISF section (section 8.1.

F.4. Closed sea mask definition ( domclo.F90 )
The options available to define the closed seas with DOMAINcfg are listed in &namclo, while the control on how

closed sea net fresh water input will be redistributed by NEMO is described in subsection 3.2.3 and section 16.2.
The individual definition of each closed sea is managed by sn_lake . In this fields the user needs to define:

• The name of the closed sea (print output purposes).

• The seed location to define the area of the closed sea (if seed on land because not present in this configuration,
this closed sea will be ignored).

• The seed location for the target area.

• The type of target area (’local’,’coast’ or ’global’). See point 6 for definition of these cases.

• The type of redistribution scheme for the net fresh water flux over the closed sea (as a runoff in a target
area, as emp in a target area, as emp globally). For the runoff case, if the net fwf is negative, it will be
redistributed globally.

• The radius of the target area (not used for the ’global’ case). The target defined by a ’local’ target area of a
radius of 100km, for example, correspond sto all the wet points within this radius. The coastal case will
return only the coastal point within the specified radius.

• The target id. This id is used to group multiple lakes into the same river ouflow (Great Lakes for example).
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namelist F.4.: &namclo

!-----------------------------------------------------------------------
&namclo ! (closed sea : need ln_domclo = .true. in namcfg)
!-----------------------------------------------------------------------

rn_lon_opnsea = -2.0 ! longitude seed of open ocean
rn_lat_opnsea = -2.0 ! latitude seed of open ocean
nn_closea = 8 ! number of closed seas ( = 0; only the open_sea mask will be computed)
! name ! lon_src ! lat_src ! lon_trg ! lat_trg ! river mouth area ! net evap/precip correction scheme !
radius tgt ! id trg↪→

! ! (degree)! (degree)! (degree)! (degree)! local/coast/global ! (glo/rnf/emp) !
(m) !↪→

! North American lakes
sn_lake(1) = 'superior' , -86.57 , 47.30 , -66.49 , 50.45 , 'local' , 'rnf' ,
550000.0 , 2↪→
sn_lake(2) = 'michigan' , -87.06 , 42.74 , -66.49 , 50.45 , 'local' , 'rnf' ,
550000.0 , 2↪→
sn_lake(3) = 'huron' , -82.51 , 44.74 , -66.49 , 50.45 , 'local' , 'rnf' ,
550000.0 , 2↪→
sn_lake(4) = 'erie' , -81.13 , 42.25 , -66.49 , 50.45 , 'local' , 'rnf' ,
550000.0 , 2↪→
sn_lake(5) = 'ontario' , -77.72 , 43.62 , -66.49 , 50.45 , 'local' , 'rnf' ,
550000.0 , 2↪→

! African Lake
sn_lake(6) = 'victoria' , 32.93 , -1.08 , 30.44 , 31.37 , 'coast' , 'emp' ,
100000.0 , 3↪→

! Asian Lakes
sn_lake(7) = 'caspian' , 50.0 , 44.0 , 0.0 , 0.0 , 'global' , 'glo' ,
0.0 , 1↪→
sn_lake(8) = 'aral' , 60.0 , 45.0 , 0.0 , 0.0 , 'global' , 'glo' ,
0.0 , 1↪→

/

The closed sea module defines a number of masks in the domain_cfg output:

mask_opensea: a mask of the main ocean without all the closed seas closed. This mask is defined by a flood
filling algorithm with an initial seed (localisation defined by rn_lon_opnsea and rn_lat_opnsea ).

mask_csglo, mask_csrnf, mask_csemp: a mask of all the closed seas defined in the namelist by sn_lake for
each redistribution scheme. The total number of defined closed seas has to be defined in nn_closea .

mask_csgrpglo, mask_csgrprnf, mask_csgrpemp: a mask of all the closed seas and targets grouped by target
id for each type of redistribution scheme.

mask_csundef : a mask of all the closed sea not defined in sn_lake . This allows NEMO to mask them if
needed or to inform the user of potential minor issues in its bathymetry.
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Sect. G.3 Introduction

A ”model life” is more than ten years. Its software, composed of a few hundred modules, is used by many
people who are scientists or students and do not necessarily know every aspect of computing very well. Moreover,
a well thought-out program is easier to read and understand, less difficult to modify, produces fewer bugs and
is easier to maintain. Therefore, it is essential that the model development follows some rules:

• well planned and designed

• well written

• well documented (both on- and off-line)

• maintainable

• easily portable

• flexible.

To satisfy part of these aims, NEMO is written with a coding standard which is close to the ECMWF rules,
named DOCTOR (Gibson, 1986). These rules present some advantages like:

• to provide a well presented program

• to use rules for variable names which allow recognition of their type (integer, real, parameter, local or
shared variables, etc. ).

This facilitates both the understanding and the debugging of an algorithm.

G.1. Introduction
This document describes conventions used in NEMO coding and suggested for its development. The objectives
are to offer a guide to all readers of the NEMO code, and to facilitate the work of all the developers, including the
validation of their developments, and eventually the implementation of these developments within the NEMO
platform.
A first approach of these rules can be found in the code in ./src/OCE/module_example where all the basics

coding conventions are illustrated. More details can be found below.
This work is based on the coding conventions in use for the Community Climate System Model ∗, the previous

version of this document (“FORTRAN coding standard in the OPA System”) and the expertise of the NEMO
System Team. After a general overview below, this document will describe:

• The style rules, i.e. the syntax, appearance and naming conventions chosen to improve readability of the
code;

• The content rules, i.e. the conventions to improve the reliability of the different parts of the code;

• The package rules to go a step further by improving the reliability of the whole and interfaces between
routines and modules.

G.2. Overview and general conventions
NEMO has 3 major components: ocean dynamics (./src/OCE), sea-ice (./src/ICE) and marine biogeochemistry
(./src/MBG). In each directory, one will find some FORTRAN files and/or subdirectories, one per functionality
of the code: ./src/OCE/BDY (boundaries), ./src/OCE/DIA (diagnostics), ./src/OCE/DOM (domain), ./src/
OCE/DYN (dynamics), ./src/OCE/LDF (lateral diffusion), etc...
All name are chosen to be as self-explanatory as possible, in English, all prefixes are 3 digits.
English is used for all variables names, comments, and documentation.
Physical units are MKS. The only exception to this is the temperature, which is expressed in degrees Celsius,
except in bulk formulae and part of SI3 sea-ice model where it is in Kelvin. See .src/OCE/DOM/phycst.F90
files for conversions.

∗UCAR conventions
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G.3. Architecture
Within each directory, organisation of files is driven by orthogonality, i.e. one functionality of the code is
intended to be in one and only one directory, and one module and all its related routines are in one file. The
functional modules are:

• SBC surface module

• IOM management of the I/O

• NST interface to AGRIF (nesting model) for dynamics and biogeochemistry

• BDY management of structured/unstructured open boundaries

• C1D 1D (vertical) configuration for dynamics, sea-ice and biogeochemistry

• OFF off-line module: passive tracer or biogeochemistry alone

• ...

For example, the file domain.F90 contains the module domain and all the subroutines related to this module
(dom_init, dom_nam, dom_ctl).

G.4. Style rules
G.4.1. Argument list format
Routine argument lists will contain a maximum 5 variables per line, whilst continuation lines can be used. This
applies both to the calling routine and the dummy argument list in the routine being called. The purpose is to
simplify matching up the arguments between caller and callee.

SUBROUTINE tra_adv_eiv( kt, pun, pvn, pwn )

CALL tra_adv_eiv( kt, zun, zvn, zwn )

G.4.2. Array syntax
Except for long loops (see below), array notation should be used if possible. To improve readability the array
shape must be shown in brackets, e.g.:

onedarraya(:) = onedarrayb(:) + onedarrayc(:)
twodarray (:,:) = scalar * anothertwodarray(:,:)

When accessing sections of arrays, for example in finite difference equations, do so by using the triplet notation
on the full array, e.g.:

twodarray(:,2:len2) = scalar &
& * ( twodarray2(:,1:len2-1 ) &
& - twodarray2(:,2:len2 ) )

For long, complicated loops, explicitly indexed loops should be preferred. In general when using this syntax,
the order of the loops indices should reflect the following scheme (for best usage of data locality):

DO jk = 1, jpk
DO jj = 1, jpj

DO ji = 1, jpi
threedarray(ji,jj,jk) = ...

END DO
END DO

END DO

G.4.3. Case
All FORTRAN keywords are in capital: DIMENSION, WRITE, DO, END DO, NAMELIST, ... All other parts of the
NEMO code will be written in lower case.
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G.4.4. Comments
Comments in the code are useful when reading the code and changing or developing it.
The full documentation and detailed explanations are to be added in the reference manual (TeX files, aside
from the code itself).
In the code, the comments should explain variable content and describe each computational step.
Comments in the header start with “!!”. For more details on the content of the headers, see Content rules/Headers
in this document.
Comments in the code start with “!”.
All comments are indented (3, 6, or 9 blank spaces).
Short comments may be included on the same line as executable code, and an additional line can be used with
proper alignment. For example:

zx = zx *zzy ! Describe what is going on and if it is
! ! too long use another ! for proper
! ! alignment with automatic indentation

More in-depth comments should be written in the form:

! Check of some namelist values

or

!
! !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
! ! Bottom boundary condition on tke
! !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
!

Key features of this style are

1. it starts with a ”!” in the column required for proper indentation,

2. the text is offset above and below by a blank line or a content line built for underlying.

G.4.5. Continuation lines
Continuation lines can be used with precise alignment for readability. For example:

avmu(ji,jj,jk) = avmu(ji,jj,jk) * ( un(ji,jj,jk-1) - un(ji,jj,jk) ) &
& * ( ub(ji,jj,jk-1) - ub(ji,jj,jk) ) &
& / ( fse3uw_n(ji,jj,jk) &
& * fse3uw_b(ji,jj,jk) )

Code lines, which are continuation lines of assignment statements, must begin to the right of the column of
the assignment operator. Due to the possibility of automatic indentation in some editor (emacs for example),
use a “&” as first character of the continuing lines to maintain the alignment.

G.4.6. Declaration of arguments and local variables
In a routine, input arguments and local variables are declared 1 per line, with a comment field on the same line
as the declaration. Multiple comment lines describing a single variable are acceptable if needed. For example:

INTEGER :: kstp ! ocean time-step index

G.4.7. F90 Standard
NEMO software adheres to the Fortran 90language standard (specifically, the Fortran 2003 standard) and
does not rely on any specific language or vendor extensions.

G.4.8. Free-Form Source
Free-form source will be used. The F90/95 standard allows lines of up to 132 characters, but a self-imposed
limit of 80 should enhance readability, or print source files with two columns per page. Multi-line comments
that extend to column 100 are unacceptable.
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G.4.9. Indentation
Code as well as comment lines within loops, if-blocks, continuation lines, MODULE or SUBROUTINE statements will
be indented 3 characters for readability (except for CONTAINS that remains at first column).

MODULE mod1
REAL(wp) xx

CONTAINS
SUBROUTINE sub76( px, py, pz, pw, pa, &

& pb, pc, pd, pe )
<instruction>

END SUBROUTINE sub76
END MODULE mod1

G.4.10. Loops
Loops, if explicit, should be structured with the do-end do construct as opposed to numbered loops. Nevertheless
non-numeric labels can be used for a big iterative loop of a recursive algorithm. In the case of a long loop, a
self-descriptive label can be used (i.e. not just a number).

G.4.11. Naming Conventions: files
A file containing a module will have the same name as the module it contains (because dependency rules used
by ”make” programs are based on file names). †

G.4.12. Naming Conventions: modules
Use a meaningful English name and the “3 letters” naming convention: first 3 letters for the code section, and
last 3 to describe the module. For example, zdftke, where “zdf” stands for vertical diffusion, and “tke” for
turbulent kinetic energy.
Note that by implication multiple modules are not allowed in a single file. The use of common blocks is
deprecated in Fortran90 and their use in NEMO is strongly discouraged. Modules are a better way to declare
static data. Among the advantages of modules is the ability to freely mix data of various types, and to limit
access to contained variables through the use of the ONLY and PRIVATE attributes.

G.4.13. Naming Conventions: variables
All variable should be named as explicitly as possible in English. The naming convention concerns prefix letters
of these name, in order to identify the variable type and status.
Never use a Fortrankeyword as a routine or variable name.
The table below lists the starting letter(s) to be used for variable naming, depending on their type and status:

G.4.14. Operators
Use of the operators <, >, <=, >=, ==, /= is strongly recommended instead of their deprecated counterparts
(.lt., .gt., .le., .ge., .eq., .ne.). The motivation is readability. In general use the notation:
< Blank >< Operator >< Blank >

G.4.15. Pre processor
Where the use of a language pre-processor is required, it will be the C pre-processor (cpp).
The cpp key is the main feature used, allowing to ignore some useless parts of the code at compilation step.
The advantage is to reduce the memory use; the drawback is that compilation of this part of the code isn’t
checked.
The cpp key feature should only be used for a few limited options, if it reduces the memory usage. In all
cases, a logical variable and a FORTRAN IF should be preferred. When using a cpp key key_optionname, a
corresponding logical variable lk_optionname should be declared to allow FORTRAN IF tests in the code and
a FORTRAN module with the same name (i.e. optionname.F90) should be defined. This module is the only
place where a ‘̀#if defined” command appears, selecting either the whole FORTRAN code or a dummy module.

†For example, if routine A ”USE”s module B, then ”make” must be told of the dependency relation which requires B to be compiled
before A. If one can assume that module B resides in file B.o, building a tool to generate this dependency rule (e.g. A.o: B.o)
is quite simple. Put another way, it is difficult (to say nothing of CPU-intensive) to search an entire source tree to find the file
in which module B resides for each routine or module which ”USE”s B.
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Type
/ Status

integer real logical character double
precision

complex

public
or
module
variable

m n
but not
nn_

a b e f g h
o q to x
but not
fs rn_

l
but not
lp ld ll
ln_

c
but not
cp cd cl
cn_

d
but not
dp dd dl
dn_

y
but not
yp yd yl

dummy
argument

k
but not
kf

p
but not
pp pf

ld cd dd yd

local
variable

i z ll cl cd yl

loop
control

j
but not
jp

parameter jp pp lp cp dp yp
namelist nn_ rn_ ln_ cn_ dn_
CPP
macro

kf sf

For example, the assimilation increments module name is asminc.F90, the CPP key is key_asminc and the
associated logical is lk_asminc.
The following syntax:

#if defined key_optionname
!! Part of code conditionally compiled if cpp key key_optionname is active
#endif

Is to be used rather than the #ifdef abbreviate form since it may have conflicts with some Unix scripts.
Tests on cpp keys included in NEMO at compilation step:

• The CPP keys used are compared to the previous list of cpp keys (the compilation will stop if trying to
specify a non-existing key)

• If a change occurs in the CPP keys used for a given experiment, the whole compilation phase is done
again.

G.5. DO LOOP macros
Another aspect of the preprocessor is the use of macros to substitute code elements. In some cases these are
used to reduce unnecessary array dimensions. A good example are the substitutions introduced by the key_qco
key:

#if defined key_qco
# define e3t(i,j,k,t) (e3t_0(i,j,k)*(1._wp+r3t(i,j,t)*tmask(i,j,k)))
...
#elif defined key_linssh
# define e3t(i,j,k,t) e3t_0(i,j,k)
...
#endif

which are used to reduce 4-d arrays to a 3-d functional form or an invariant, 3-d array depending on
other options. Such macros should be located in files with _substitute.h90 endings to their names (e.g.
domzgr_substitute.h90).
From 4.2, a more pervasive use of macros has been introduced in the form of DO LOOP macros. These

macros have replaced standard nested, loops over the spatial dimensions. In particular:

DO jk = ....
DO jj = .... DO jj = ...

DO ji = .... DO ji = ...
. OR .
. .

END DO END DO
END DO END DO

END DO
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and white-space variants thereof.
The macro naming convention takes the form: DO_2D( L, R, B, T) where:

• L is the Left offset from the PE’s inner domain

• R is the Right offset from the PE’s inner domain

• B is the Bottom offset from the PE’s inner domain

• T is the Top offset from the PE’s inner domain

So, given an inner domain of 2,jpim1 and 2,jpjm1, a typical example would replace:

DO jj = 2, jpj
DO ji = 1, jpim1

.

.
END DO

END DO

with:

DO_2D( 1, 0, 0, 1 )
.
.

END_2D

similar conventions apply to the 3D loops macros. jk loop limits are retained through macro arguments and
are not restricted. This includes the possibility of strides for which an extra set of DO_3DS macros are defined.
The purpose of these macros is to enable support for extra-width halos. The width of the halo is determined

by the value of the namelist parameter:nn_hls. Version 4.2 will work with either nn_hls=1 or nn_hls=2 but
there is currently a performance penalty to using nn_hls=2 since more development is needed before any benefits
are realised. Code developers should consider whether or not loops need to be over:

• The inner domain only (e.g. DO_2D( 0, 0, 0, 0 ))

• The entire domain (e.g. DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ))

• All but the outer halo (e.g. DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ))

• A mixture on different boundaries (e.g. DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls-1 ))

The correct use of these macros will eventually lead to performance gains through the removal of unnecessary
computation and a reduction in communications.

G.6. Content rules
G.6.1. Configurations
The configuration defines the domain and the grid on which NEMO is running. From 4.2 onwards, all
configuration-specific settings should be read from variables in, or attributes of, the domain configuration
file (or set in usrdef supplied subroutines). See section ”Spatial domain configuration” of the NEMO Manual
for more details.

G.6.2. Constants
Physical constants (e.g. π, gas constants) must never be hard-wired into the executable portion of a code.
Instead, a mnemonically named variable or parameter should be set to the appropriate value, in the setup
routine for the package. We realize than many parameterizations rely on empirically derived constants or fudge
factors, which are not easy to name. In these cases it is not forbidden to leave such factors coded as ”magic
numbers” buried in executable code, but comments should be included referring to the source of the empirical
formula. Hard-coded numbers should never be passed through argument lists.
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G.6.3. Declaration for variables and constants
Rules

Variables used as constants should be declared with attribute PARAMETER and used always without copying to
local variables, in order to prevent from using different values for the same constant or changing it accidentally.

• Usage of the DIMENSION statement or attribute is required in declaration statements

• The “::” notation is quite useful to show that this program unit declaration part is written in standard
FORTRAN syntax, even if there are no attributes to clarify the declaration section. Always use the
notation <blank>::<three blanks> to improve readability.

• Declare the length of a character variable using the CHARACTER (len=xxx) syntax ‡

• For all global data (in contrast to module data, that is all data that can be access by other module) must
be accompanied with a comment field on the same line §. For example:

REAL(wp), DIMENSION(jpi,jpj,jpk) :: ua ! i-horizontal velocity (m/s)

Implicit None

All subroutines and functions will include an IMPLICIT NONE statement. Thus all variables must be explicitly
typed. It also allows the compiler to detect typographical errors in variable names. For modules, one IMPLICIT
NONE statement in the modules definition section is needed. This also removes the need to have IMPLICIT NONE
statements in any routines that are CONTAINS’ed in the module. Improper data initialisation is another common
source of errors ¶. To avoid problems, initialise variables as close as possible to where they are first used.

Attributes

PRIVATE / PUBLIC: All resources of a module are PUBLIC by default. A reason to store multiple routines and
their data in a single module is that the scope of the data defined in the module can be limited to the routines
which are in the same module. This is accomplished with the PRIVATE attribute.
INTENT: All dummy arguments of a routine must include the INTENT clause in their declaration in order to
improve control of variables in routine calls.

G.6.4. Headers
Prologues are not used in NEMO for now, although it may become an interesting tool in combination with
ProTeX auto documentation script in the future. Rules to code the headers and layout of a module or a routine
are illustrated in the example module available with the code: ./src/OCE/module_example

G.6.5. Interface blocks
Explicit interface blocks are required between routines if optional or keyword arguments are to be used. They
also allow the compiler to check that the type, shape and number of arguments specified in the CALL are the
same as those specified in the subprogram itself. FORTRAN 95 compilers can automatically provide explicit
interface blocks for routines contained in a module.

G.6.6. I/O Error Conditions
I/O statements which need to check an error condition will use the iostat=<integer variable> construct
instead of the outmoded end= and err=.
Note that a 0 value means success, a positive value means an error has occurred, and a negative value means
the end of record or end of file was encountered.

‡The len specifier is important because it is possible to have several kinds for characters (e.g. Unicode using two bytes per character,
or there might be a different kind for Japanese e.g. NEC).

§This allows a easy research of where and how a variable is declared using the unix command: “grep var *90 | grep !:”.
¶A variable could contain an initial value you did not expect. This can happen for several reasons, e.g. the variable has never been

assigned a value, its value is outdated, memory has been allocated for a pointer but you have forgotten to initialise the variable
pointed to.
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G.6.7. PRINT - ASCII output files
Output listing and errors are directed to numout logical unit =6 and produces a file called ocean.output. Usually,
this is produced by only the first ranked process in an MPP environment. This process will have the lwp logical
variable set and this can be used to restrict output. For example: to output an error from a routine, one can
use the following template:

IF( nstop /= 0 .AND. lwp ) THEN ! error print
WRITE(numout,cform_err)
WRITE(numout,*) nstop, ' error have been found'

ENDIF

At run-time, the user can use sn_cfctl options to have output from more processes in MPP.

G.6.8. Precision
Parameterizations should not rely on vendor-supplied flags to supply a default floating point precision or integer
size. The F95 KIND feature should be used instead. In order to improve portability between 32 and 64 bit
platforms, it is necessary to make use of kinds by using a specific module ./src/OCE/par_kind.F90 declaring
the ”kind definitions” to obtain the required numerical precision and range as well as the size of INTEGER. It
should be noted that numerical constants need to have a suffix of _kindvalue to have the corresponding size.
Thus wp being the ”working precision” as declared in ./src/OCE/par_kind.F90, declaring real array zpc will
take the form:

REAL(wp), DIMENSION(jpi,jpj,jpk) :: zpc ! power consumption

Use Mixed-Precision ( key_single )

The code working precision for REAL variables is declared in the ./src/OCE/par_kind.F90 module as follows:

# if defined key_single
INTEGER, PUBLIC, PARAMETER :: wp = sp !: working precision
# else
INTEGER, PUBLIC, PARAMETER :: wp = dp !: working precision
# endif

The default is dp, so that all the real variables declared wp are assigned to be double precision.
In version 4.2, the key_single is available to switch the precision of the wp parameter to single precision.

This does not mean that the code will be fully single precision, which can lead to instabilities in the model. In
facts, the declaration of a set of variables has been hardcoded to dp and the key key_single enables to run
in mixed-precision. Variables that need to stay double precision, no matter the value of the working precision
are declared as:

REAL(dp), DIMENSION(jpi,jpj,jpk) :: arr_name

This set of variables has been highlighted using the methodology described in Tintó Prims et al. (2019) and
this mixed-precision version of NEMOis tested for the official configuration ORCA2 compiled without the ICE
module. Apart from changing the value of the wp parameter another macro will be activated by the usage of
the key_single . Inside the ./src/OCE/single_precision_substitute.h90 two macros are defined:

#if defined key_single
# define CASTSP(x) REAL(x,sp)
# define CASTDP(x) REAL(x,dp)
#else
# define CASTSP(x) x
# define CASTDP(x) x
#endif

When the key_single is used at compilation time all the variable to which this macro is applied will be put
inside a cast, to double or single precision depending on the macro used. This is done to ensure coherence at
compilation time between variables and dummy arguments in some function and subroutine calls. When the
key_single is omitted the cast is no longer needed and the macro evaluates to the variable itself.
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G.6.9. Structures
The TYPE structure allowing to declare some variables is more often used in NEMO, especially in the modules
dealing with reading fields, or interfaces. For example:

! Definition of a tracer as a structure
TYPE PTRACER

CHARACTER(len = 20) :: sname ! short name
CHARACTER(len = 80 ) :: lname ! long name
CHARACTER(len = 20 ) :: unit ! unit
LOGICAL :: lini ! read in a file or not
LOGICAL :: lsav ! ouput the tracer or not

END TYPE PTRACER

TYPE(PTRACER) , DIMENSION(jptra) :: tracer

Missing rule on structure name??

G.7. Packages coding rules
G.7.1. Bounds checking
NEMO is able to run when an array bounds checking option is enabled.
Thus, constructs of the following form are disallowed:

REAL(wp) :: arr(1)

where ”arr” is an input argument into which the user wishes to index beyond 1. Use of the (*) construct in
array dimensioning is forbidden also because it effectively disables array bounds checking.

G.7.2. Communication
A package should refer only to its own modules and subprograms and to those intrinsic functions included in
the Fortran standard.
All communication with the package will be through the argument list or namelist input. ‖

G.7.3. Error conditions
When an error condition occurs inside a package, a message describing what went wrong will be printed (see
PRINT - ASCII output files). The name of the routine in which the error occurred must be included. It is
acceptable to terminate execution within a package, but the developer may instead wish to return an error flag
through the argument list, see stpctl.F90.

G.7.4. Memory management
The main action is to identify and declare which arrays are PUBLIC and which are PRIVATE.
As of version 3.3.1 of NEMO, the use of static arrays (size fixed at compile time) has been deprecated.
All module arrays are now declared ALLOCATABLE and allocated in either the <module_name>_alloc() or
<module_name>_init() routines. The success or otherwise of each ALLOCATE must be checked using the
stat=<integer variable> optional argument.

In addition to arrays contained within modules, many routines in NEMO require local, “workspace” arrays
to hold the intermediate results of calculations. These arrays are mostly declared in such a way as to be
automatically allocated on the stack when the routine is called. Examples of an automatic arrays are:

SUBROUTINE sub(n)
REAL(wp) :: za(n)
REAL(wp), DIMENSION(jpi,jpj) :: zhdiv ! 2D workspace
...

END SUBROUTINE sub

Sometimes these local arrays are only required for specific options selected at run-time. Allocatable arrays
should be used to avoid unnecessary use of stack storage in these cases. For example:

‖The point behind this rule is that packages should not have to know details of the surrounding model data structures, or the
names of variables outside of the package. A notable exception to this rule is model resolution parameters. The reason for the
exception is to allow compile-time array sizing inside the package. This is often important for efficiency.
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SUBROUTINE wzv(...)
...
REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: zhdiv ! 3D workspace
...
IF( ln_vvl_ztilde .OR. ln_vvl_layer ) THEN

ALLOCATE( zhdiv(jpi,jpj,jpk) )
...
DEALLOCATE( zhdiv )

ELSEIF
...

END SUBROUTINE sub

G.7.5. Optimisation
Considering the new computer architecture, optimisation cannot be considered independently from the computer
type. In NEMO, portability is a priority, before any too specific optimisation.

G.7.6. Package attribute: PRIVATE, PUBLIC, USE, ONLY
Module variables and routines should be encapsulated by using the PRIVATE attribute. What shall be used
outside the module can be declared PUBLIC instead. Use USE with the ONLY attribute to specify which of the
variables, type definitions etc... defined in a module are to be made available to the using routine.

G.7.7. Parallelism using MPI
NEMO is written in order to be able to run on one processor, or on one or more using MPI. From 4.2, this is
the default assumption but a non-MPI, single processor executable can be compiled by activating the cpp key:
key_mpi_off .

The domain decomposition divides the global domain in cubes (see NEMO reference manual). Whilst coding
a new development, the MPI compatibility has to be taken in account (see ./src/LBC/lib_mpp.F90) and should
be tested. By default, the x-z part of the decomposition is chosen to be as square as possible. However, this
may be overriden by specifying the number of sub-domains in latitude and longitude in the nammpp section of
the namelist file.

G.8. Features to be avoided
The code must follow the current standards of FORTRAN and ANSI C. In particular, the code should not
produce any WARNING at compiling phase, so that users can be easily alerted of potential bugs when some
appear in their new developments. Below is a list of features to avoid:

• COMMON block (use the declaration part of MODULE instead)

• EQUIVALENCE (use POINTER or derived data type instead to form data structure)

• Assigned and computed GOTO (use the CASE construct instead)

• Arithmetic IF statement (use the block IF, ELSE, ELSEIF, ENDIF or SELECT CASE construct instead)

• Labelled DO construct (use unlabelled END DO instead)

• FORMAT statement (use character parameters or explicit format- specifiers inside the READ or WRITE state-
ment instead)

• GOTO and CONTINUE statements (use IF, CASE, DO WHILE, EXIT or CYCLE statements or a contained ?)

• PAUSE

• ENTRY statement: a sub-program must only have one entry point.

• RETURN is obsolete and so not necessary at the end of program units

• FUNCTION statement

• Avoid functions with side effects. ∗∗

∗∗First, the code is easier to understand, if you can rely on the rule that functions don’t change their arguments. Second, some
compilers generate more efficient code for PURE functions (in FORTRAN 95 there are the attributes PURE and ELEMENTAL),
because they can store the arguments in different places. This is especially important on massive parallel and as well on vector
machines.
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• DATA and BLOCK DATA (use initialisers)
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