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Abstract 

Urban Mobility is a complex phenomenon with many actors involved that has been changing due to the diffusion 

of Sharing Mobility. This shifting is affecting individual habits and cities dynamics, which need to be considered 

by policy makers and operators for better programming services and incentives. This paper aims at improving the 

way sharing mobility is analyzed and monitored. We propose and test a methodology, based on the theory of 

networks, aimed at studying sharing mobility dynamics among the districts of a city. The method uses data tracking 

people’s movements made with shared vehicles, developing a set of geo-localized measures with the potential to 

be suited to different purposes. Insights coming from this type of analysis, can be used as a support tool for 

decision-making processes in the  mobility field. The methodology is applied to the city of Milan with data coming 

from BikeMi -Milan’s bike sharing program- and Urbi, a platform that handles real-time data from car sharing 

providers such as Enjoy, Car2go and Share’nGo. 
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1. Introduction  

Access based consumption, better known as the less precise term sharing, is taking its momentum (Bardhi & 

Eckhardt, 2012). This concept has spread to several fields thanks to the facilitation of technological platforms that 

match demand and request in real time. New business models - most of them disruptive - based on sharing different 

type of goods have been successfully launched during the last years (e.g. Airbnb and Enjoy). This phenomenon 

has been addressed as the sharing economy revolution (Pilzare, 2012) and it is greatly affecting also mobility 

(Bardhi & Eckhardt, 2012).  Shared mobility sector is in fact one of the fastest growing segments of the shared 

economy. Car sharing for instance is expanding at annual rate of 30% (Freese & Schönberg, 2014) and it is present 

approximately in 18 nations and 4 continents  (S. A. Shaheen & Cohen, 2008). The consulting firm Roland Berger 

predicts that by 2020 the revenue of that market will be between 3.7 and 5.6 billion of euros (Berger, 2014). 

Similarly, bike sharing is getting more and more spread, currently there are over 7000 programmes in the world, 

involving over 800,000 bicycles in 855 cities (Fishman, 2016a).  

 

Those two relatively recent mobility modes have been studied, especially from a qualitative point of view by 

researchers with the aim to assess, among others, benefits, user preferences, behaviours or service improvements 

tactics (Fishman, 2016; Efthymiou, Antoniou, & Waddell, 2013). Studies instead linking sharing mobility 

displacements with the territory are fewer and in any case focused mostly on service coverage and tend to be 

circumscribed to just a single mode (Saibene & Manzi, 2015). Quantitative studies with the territory as the unit of 

analysis have not been exhaustively explored. The diffusion of this type of services, provides nowadays a 

significant amount of data that can be employed to asses which are the influences of car and bike sharing on the 

territory and how do they connect and reshape the urban scene. 

 

This paper proposes a methodology, rooted in the theory of networks, to analyse how the sharing mobility modes 

are linked to the urban territory. Modelling the phenomenon as a geographic network  gives, besides the synthetic 

representation,  a baseline to create a set of indicators suitable to specific needs. In the case of mobility those are 

the needs of the city stakeholders such as public administration, users and firms. The methodology  implements 

geo-localized data about displacements to build a network whose nodes are urban districts. In this way the focus 

of the study becomes the districts, their role and their interconnection within the network created by how the people 

move around the city. With the traditional mobility paths and connections between areas are established by the 

available infrastructure. With free-floating systems trips are more tailored on people needs thus the intensity of 

connection between zones is not obvious and probably depends also on the modes used for the displacements. 

Geographic distance and intensity of connection are always correlated? Does the role of a district in the network 

change overtime? Is the current infrastructure of each district able to handle its traffic peaks? 

 

A type of analysis like the one here proposed provides a tool able to answer those questions.  

The paper is structured as follows. Section 2 comprises a literature review about the sharing mobility modes object 

of the study: car sharing and bike sharing. A particular emphasis will be given to studies that used geo-localised 

data. The methodology used to build the model and all the phases of project can be found in section 3, along with 

a description of the data used. Section 4 is about the model application to the city of Milan. It describes the principal 

results and discusses the scalability of the model itself.  

2. State of Art 

This section is divided into two parts. In the first one the main objectives of the researches performed on sharing 

mobility are presented. The second part instead focuses on the quantitative approaches used to study mobility and 

underlines the fact that most of them have been implemented just with the traditional mobility modes (e.g. public 

transportation). 

1.1. Sharing mobility modes 

Sharing mobility modes, advocates the idea behind the Product Service Systems (PPS), which are basically 

systems that provide solutions to customers by the integration of products and services, satisfying user needs while 

improving resource consumption (Quet al., 2016). In this particular scheme, service providers tend to hold the 

ownership of products and provide users with different forms of services. The idea is simple: users can enjoy the 

privacy of potentially any type of car (or bike) without the commitment of a purchase, maintenance and insurance 

costs but basically paying for the use. The costs for the user are typically an inscription fee, a monthly fee and a 

cost of use (Efthymiou, Antoniou, & Waddell, 2013). Car sharing researches in the literature can be divided in the 

following group according to their aim: (a) user characteristics and behaviour, (b) environmental impact of car 
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sharing, (c) demand analyses and forecast and (d) service optimization (Kang, Hwang, & Park, 2016). Similar 

objectives are also pursued by the studies concerning bike sharing as can be drawn from Fishman (Fishman, 

2014)adding to these, the ones related to how certain factors, such as weather or topography, can influence the 

level of activity (Faghih-Imani, Eluru, El-Geneidy, Rabbat, & Haq, 2014; Frade & Ribeiro, 2014; Jurdak, 2013; 

Rudloff & Lackner, 2013). 

1.2. New trends studying mobility 

A rich amount of information containing individual’s coordinates is routinely tracked each time a person travels 

using a public transport smart card, makes a call, sends an email or even uses a credit card. These data sources 

offer a unique opportunity to understand and characterize the patterns of human travel behaviour at a massive scale 

(Hasan et al., 2013). In the city of Harbin in China for example, GPS data were used to understand the travel taxi-

pattern (Cui et al., 2016) of about 7 million of users. Nevertheless, GPS data so far is constrained just to some 

transportation medias and have a restricted availability. Other import sources, with similar characteristics are the 

data collected from Automated Fare Collection Systems used by (Nunes, Dias, Zegras, & e Cunha, 2016) and 

(Zhong, Arisona, Huang, Batty, & Schmitt, 2014), or by the smart subway fare card transactions (Hasan et al., 

2013). In this last case information about the entire journeys of the users were completed by predicting visited 

locations using the popularity of places in the city as an interaction parameter between different individuals.  

 

As mentioned, some other type of data, not directly related with the transportation has also been used to infer 

journeys behaviours. These other types of data tend to have a lower resolution or granularity and a possible bias 

to tackle but can embrace different modes and perceived mobility in a larger scale. (Hawelka et al., 2014) uses 

social media data, particularly twitter data to estimate the volume of international travels. Another method employs 

the dataset of mobile phone traces collected by mobile network operators. This type of data is usually known as 

CDR (Call detail record) data, which documents mainly the details of a telephone call or other communications 

transaction that passes through a facility or a device (Horak, 2007). Occasionally, the spatial granularly of the data 

is a disadvantage if is not treated correctly, but, compared to travel survey data, CDR data have lower collection 

cost, larger sample size, higher update frequency, broader spatial and temporal coverage (Calabrese et al., 2013). 

CDR data are used to: predict traffic zone - commercial or residential - division of a city (Dong et al., 2015), 

compute regular mobility analysis in terms of congestion of a road, and travel times for road segments (Toole et 

al., 2015), or understand the intra-urban variation of mobility and the non-vehicular component of overall mobility 

(Calabrese et al., 2013). 

 

The potential of data driver studies has not been explored extensively with new transportation modes such as bike 

and car sharing. It remains a remarkable opportunity, especially since the introduction of new players, such as IT 

platforms that gather and match status information from different mobility providers in order to offer an integrated 

set of real-time alternatives to the user. 

3. Methodology 

For the propose of the study, three macro-phases have been individuated: Data gathering and aggregation; Network 

construction and analysis; and Key performance indicators (KPIs) design. Figure 1 shows graphically these phases. 

a. Data gathering and aggregation 

The input and base of the model are two type of data: a dynamic one and a georeferenced one. The first category 

comprises data about the displacement made with the mobility modes object of the analysis (e.g. car sharing). 

What is needed are information, on a given period and for each mode, about the origin and destination coordinates 

of each trip, along with the starting and the ending time. These data can be gathered, according to the city of 

analysis, mostly in two ways: directly from the service provider – usually a private – or indirectly from a third 

part. In the case of Milan, data came both from direct and indirect sources. Clear Channel, unique bike sharing 

provider for the city during the period of analysis, provided data about bike trips while car sharing data were 
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provided by Urbi, a urban mobility aggregator. Urbi provides to users, through a mobile application, real-time 

information about the availability of sharing mobility vehicles  owned by the different providers in a specific area. 

 

Regarding the time slot to consider, in general, for statistical reason, a bigger sample is always better than a small 

one, but of course gathering and managing data represents a cost (not only economic). The span of time to select 

depends on the scope and limitations (e.g. availability). For instance if the purpose is to analyse seasonality, the 

period should be larger.   

The second category of data, that allows linking the dynamic layer to the territory, includes geo-spatial data 

describing the maps of the cities with their division in districts or neighbourhoods. Typically, those information 

are held by public administration and tend to be accessible online. Alternatively, other sources of geo-spatial data, 

such as Google Maps or OpenStreetMap can be used to gather those information. 

 

Matching the two categories allows to represent origin and destination of each trip on a map. In the case of a free-

floating car sharing system, reasonably several origins/destinations happen to be relatively close to each other to 

the point that, for the purpose of the analysis, they could be considered as just one location. In particular, when 

more than a mode is considered in the model a common unit of spatial aggregation is convenient. If one level of 

the administrative division of the city – zone, districts, neighbourhood – is detailed enough to not lose data 

consistency of the trips distribution, that one can be chose as level of aggregation. This way, other type of 

information – such as infrastructures, demographic and economic data - can be exploit. The level of aggregation 

used in the application of the model to Milan was represented by the 88 NIL – Nucleo di Identità Locale – of the 

city, that are the equivalent of districts. 

b. Network construction 

The second phase of the model is the network construction. The established level of aggregation identifies the 

nodes or vertexes of the network. Those nodes represent origins and destinations of the trips.  Any trip departing 

or arriving in a smaller geographical reference, needs to be aggregated to the chosen level. In this way trips star 

and end in zones and not in single geographical points.  

 Two nodes of the network, two areas, are connected with an edge if at least one trip between them occurred during 

the period of analysis. The intensity of the connection between two nodes is considered by adding a weight- 

equivalent to the number of trips in between - to the edge connecting them.  Additionally, information regarding 

the time and the distance travelled are considered as attributes of each edge. Since each mode connects the city in 

a different way, two networks, one for bike sharing and one for car, were considered.  The graph structure of a 

network and its properties allows to estimate the coverage of a mode, to identify the more demanding locations 

and to observed the possible isolated sections of the city given the trip distribution. All these geo-referenced 

measures are relevant for decisions related with mobility policies and infrastructure. 

Fig. 1 Phases of the methodology 
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c. Key performance indicators (KPIs) design 

For the third phase, a benchmark of the conventional transportation performance measures has been contemplated. 

The particular complexity of the transport field, where many goals need to be addressed such as traffic efficiency, 

traffic safety, pollution reduction and social inclusion, make performance based planning much more 

challenging(Kaparias et al., 2012). To limit the target and to show a possible development of the methodology 

here proposed, a geo-spatial indicator of traffic efficiency, which dives into the bottlenecks of the traffic systems, 

has been designed. 

 

The Congestion Factor (from here CF) measures the factor by which the number of in-coming and out-coming 

vehicles increases during the peak times. This is measured per NIL and the specific peak time for each NIL is 

considered in the computation thus it represents the maximum variation of in/out-coming trips for each NIL. 

Considering the in-coming and the out-coming flow as different, two CF can be actually measured: inCF and 

outCF. 

 

For the computation of both of them, the day has been divided into 24 time slots of one hour each. For inCF of a 

NIL i, the  difference between the average number of incoming trips during a time slot t and the mean of incoming 

trips per time slot (hour) to the NIL i has been calculated. divided by the average number of incoming trips to that 

very NIL has been calculated. We refer to this value in the following way: 
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Where,  

i ∈ NIL 

t = time slot 
IN(t,i) =  average number of incoming trips for NIL i during time slot t  

µIN,i = average number of incoming trips per hour for NIL i  
For each NIL, the maximum value of ∆INi

(t) is selected .The In-congestion Factor is thus defined as follow: 
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Detecting where peaks in the demand have risen helps service providers to understand the criticalities of the system 

and to identify the geographic zones where congestion is more likely to occur. Besides the maximum variations, 

the information about the time slot when they occurred have been registered. This way the provider could find out 

in which period of the day a re-balance of the system has to be done to reduce the probability of vehicles stock 

out. For instance, if a NIL has a peak of outgoing travels from 11 to 12 a.m. is likely to happen that during or after 

that period none-or few vehicles would be found in that specific NIL.  Moreover, the time information gives the 

possibility to roughly classify NILs in business/school and residential districts. A NIL with a peak of incoming 

travels deviation in the morning and of out coming travels in the evening probably belongs to the first category 

while a NIL with opposite characteristics is likely to be a residential zone. Opportunities in knowing that are many. 

Forecast mobility patterns helps service providers to better organize its fleet within the city in and public 

administration to decide where to invest in better infrastructures. 
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4. Results 

In the following section the described methodology has been applied to the city of Milan. In this case, six weeks 

of data tracking users’ movements within the city, from the 25th of January of 2016 to the 7th of March, have been 

collected from BikeMi, Milan’s bike sharing program (BSP) and the user-centred digital platform Urbi that handles 

real-time information of car sharing companies such as Enjoy, Car2go and Share’nGo.  

In the BSP 350.093 trips connecting 263 stations of the city were performed and recorded in that period. 

Contemporaneously, 254.833 car-trips were performed and registered by Urbi: 108.067 trips coming from Car2go, 

104.772 from Enjoy and 41.994 from Share’nGo. In the case of car sharing program (CSP) data, the travelled 

distance was not explicit but only the departure and arrival coordinates and the travelled time were provided. Those 

data were also comprehensive of rebalance trips - trips performed by service operators to maintain a reasonable 

spatial distribution of the vehicles – that should not be considered in our analysis. To identify them, we used the 

variation of the fuel level, feature provided for each trip.  In particular, 0-delta-fuel trip lasting a considerably long 

period of time, was classified as a rebalance.  

Geographic data was accessible through the Comune di Milano platform: “dati.comune.milano.it”, that allowed us 

to extract the zone division of Milan by NILs and the location of most of the bike stations in a shapefile (SHP) 

format which stores information and geometry of spatial features. Departures and destination of the trips, originally 

given by a pair of geographic coordinates, were aggregated to the NILs. This means that from now on trips, in our 

analysis, do not start or end from single points but rather from districts. As mentioned this aggregation was needed 

to compare different modes. In fact bike sharing service works with fixed docking station while free-floating car 

sharing systems allow the user to pick-up and drop a vehicle everywhere.Sharing modes networks 

A NIL in Milan is connected on average with 32 others (out of 88) by bike and with 63 others by car, meaning that 

the coverage of the car sharing network is significantly larger than bike sharing’s one.  Despite this, bike sharing 

trips are more frequent considering the zones covered by the service, on average 8,9 trips by bike are made for 

every single car sharing trip of the free floating providers analysed. Consequently, the density of the bike network, 

reflecting the fraction of edges or links that are actually present, is of 85% while is only of 74% for car. These and 

other details are summarized in the table 1. 

 
Table 1 Networks properties 

Features Bike Sharing Car Sharing 

NIL coverage- Vertices 39 out of 88 86 out of 88 

Average degree 32 63 

Maximum number of edges* 1521 7396 

Number of connections / edges (directed) 1290 NIL connections 5443 NIL connections 

Density of the network 85% 74% 

Average trip volume inside a NIL (vertex strength) 12109 trips 2529 trips 

Average trip volume by connection (edges) 271 trips 20 trips 

 

The strength of a vertex, which refers to all the trips arriving and departing to and from the specific spot, highlights 

the concentration of the bike sharing mode in just a few city locations. In particular, by far, the larger number of 

trips are performed in the Duomo NIL (18% of the entire translations), and the rest 41% are allocated in just 7 

other areas (Buenos Aires – Venezia, Brera, Magenta - S. Vittore, Guastalla, Centrale, Sarpi and Pagano).  To 

reach the same relative amount of trip volumes of car sharing  (59%), 28 NILS are required and in this case, the 

NIL with the highest concentration of trips (Buenos Aires) accounts only for 5% of the entire volume. Thus the 

car sharing network has a smoother trip distribution compared to bike’s one even if the displacement are still more 

frequent in the central zones (Buenos Aires, Duomo, Brera and Centrale). 

 

Beside the strength by NIL, the figure 2 also displays that the farthest vertices  (in terms of number of edges to 

cross), called the network diameter, are not associated with an apparent geographical distance. The CSP exhibits 

frequent trips connecting the city centre to the suburbs, for this reason the two NIL with the yellow dot, 

                                                           
* The maximum number of edges has been calculated considering a directed graph with self-loops, using 𝑛2 where n is the 

number of nodes.   
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geographically close, represent the farthest vertices of the network.  The BSP instead are preferred for trips 

connecting close NILs, probably also due to the first-30-minutes free usage promoted by the service provider. 

 

d. Key Performance Indicator: Congestion Factor 

There are two peaks in the overall bike sharing traffic during the day. The first one is from 8 to 9 a.m. and the 

second from 18 to 19 p.m. This means that rush hours coincide with the time where the majority of the people uses 

to reach the place where he works or studies and with the time he comes back home.  

This link with people daily routine is less strong for car sharing usage. In fact, the traffic has just one peak from 7 

to 9 pm. This suggests that users do not use that mode to reach a work or a study location. This is evident in the 

a b 

Fig. 2 The figures show the strength distribution of the two modes in Milan. A score proportional to the number of trips has been assign  
to each NIL of the city. Blue is related to the lowest strength score and red to the highest, meaning that the activity of the mode in the 

red zones is more intense. The yellow dots represents the network diameters, which are the further vertices in terms of edges needed to 

be crossed. (a) Bike Sharing (b) Car sharing  
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morning when from 8 to 9 a.m. just the 4% of the total trips made with shared cars are perform against the 13% of 

bike sharing’s one. 49% of car sharing activity is heavily concentrated from 5 pm to 10 pm.  

 

Another feature that the previous plots illustrate, is the rebalancing activity required for the continuity of the 

system. In particular, for the car sharing system is notorious the gap from the out-coming and the in-coming trips 

for almost all the time slots -expanded especially during the rush hour-. The analysis of this delta of trips in detail 

for each location allows to individuate the most critical areas where rebalancing should take place and provide 

some suggestions about the most efficient way to do it (e.g. the closest area with the capacity of filling up the gap 

of a critical zone). Nevertheless, this can only be tested with the effective information of the rebalance trips.  

 

In general bike sharing’s traffic is more variable that car sharing’s one (see appendix A); on average the traffic of 

the bike sharing during its peak time increases by a factor of 2,32 against the 1,62 of the car sharing one. Again, 

this difference is probably related to the impact of external conditions such as weather on bike activity. Is important 

to highlight that CF is an absolute indicator that gives the maximum factor by which the traffic in a NIL increases, 

regardless the amount of traffic. Duomo, for instance, despite being very active in terms of in- and out-coming 

trips, in both tables  appears close to the bottom meaning that the traffic there is one quite constant during the day. 

Once individuated the critical zones, for the service provider, is fundamental to understand also the main directions 

of the travels during peaks to program rebalancing of the system.  This information can be drawn by INCF, t_in , 

OUTCF and t_out. For instance, if we analyse bike sharing in Biccoca we can see that from 9 to 10 a.m. the traffic 

is 3,29 times bigger than the average while from 6 pm to 7 pm the out flow increase by a factor of 3,05. This means 

that around 10 am Bicocca’s docking station will be full of bikes while around 7 pm the station will have a lack of 

bikes, incurring in the risk of stock-out. A rebalancing trip before the evening peak would reduce that risk. 

Moreover, opposite traffic patterns allow us to identify different natures of the NILs. In particular, studying the 

daily peak times regarding inflows and outflows of the trips, led us to classify areas into residential and working 

or scholastic. If a district has a peak of incoming trips in the morning and one of ‘out coming’ trips in the evening 

that is likely to be a working or a scholastic district. On the contrary, a district with an opposite behaviour will be 

probably a residential district. The information about the time when the peaks of incoming and out coming trips 

have been registered within the different NILs can be found in the Appendix A. 

Since the literature states that bike share in Milan is often used as commuting or end mode  (Saibene & Manzi, 

2015) we are not sure that the destinations of a displacements performed by bike is the final destination of the 

whole trip. For example, a worker that lives outside Milan could use the bike to reach the railway station where he 

will take the train to home. For that reason, we substituted the residential district label with the more general 

residential/bridge district. We labelled undefined those NILs with a behaviour not classifiable with one of the first 

two categories. The result is shown in the appendix B. Further studies could develop this idea and try to test the 

hypothesis behind that. 

5. Discussion and Conclusion 

This study developed a methodology that analyses how the sharing mobility modes are linked to the urban 

landscape. Modelling transportation modes as a network allows the implementation of different measures to study 

several dimension of mobility. This paper proposed a KPI measuring traffic efficiency – the congestion factor – 

but an entire dashboard of KPIs can be designed in order to cover other dimensions such as traffic safety, pollution 

reduction and social inclusion (Kaparias et al., 2012). The selection model for these measures depends on the focus 

and on the stakeholders the application concerns and can be developed in following studies. 

The proposed approach clarify the role and concentration of the sharing mobility modes at each district along with 

the coverage and the cohesion of the modes within the territory. In the traffic efficiency dimension, time and 

location of the peaks within the network lead to foresee the nature (residential or commercial) of the districts.  

Those insights assess the providers improving their rebalance systems, the management of the asymmetrical 

demand can assures a better transport flow, and advice the urban administration about the infrastructure 

requirements of the city.  

In the case evaluated, the city of Milan, the BSP is focus mainly in the in the city centre, the Duomo’s location 

(out of other 88) accounts for the 18% of the trips alone, while the combined CSP has a larger coverage and a 

tendency to spread its activity beyond the core.  In Milan, during the rush hours the congestion for bikes, on 

average in all the locations, increases by a factor of 2,23, reaching for some areas even 3 times its usual activity 

(the case of  Magenta - S. Vittore). The CSPs instead handle lower peaks and a larger coverage of the territory 

(almost the entire city) but its activity follows a different pattern. Its peak goes from 7 to 9 pm, with a minimal 

morning activity suggests that this mode does not follow the typical commuters behaviours and therefore is not 

use to reach a work or a study location.    
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For further research, it could be interesting to study the activity of the sharing mobility modes along with traditional 

transportation modes in the different areas. A larger time span may show seasonality insights about mobility and 

a potential traffic zone division coming from these data (identification of residential and work areas) which in 

mega-cities tends to be a challenge. Besides this, ad-hoc studies of mobility experiments could be performed: what 

is the impact of adding a station in a new area of the city? Can an extension of a bike lane or of the free cycle time 

span boost the peripheral zones activity? Further studies implementing the model here proposed may answered to 

questions like those ones. 

Acknowledgements. We kindly thank Clear Channel and Urbi for having provided the data used to perform the 

analysis.  

Appendix A: Congestion factor by NIL and mode & Traffic zone division given bike sharing activity 

Table 2 Car and Bike sharing Congestion Factor by NIL. 

T_IN: 

T_OUT: 
 W= working/scholastic district; R= residential/bridge district; U=unclassified 

NIL 

Car Bike 

INCF OUTCF 
CF 

Car 
T_IN T_OUT INCF OUTCF 

CF 

Bike 
T_IN T_OUT Nature 

BICOCCA 1,79 1,44 2,48 19 18 3,29 3,05 2,61 9 18 W 

BOVISA 2,29 2,88 2,08 19 18 2,55 3,98 2,32 18 8 W 

BRERA 1,23 1,06 0,82 19 18 3,03 2,06 2,19 8 18 W 

BUENOS AIRES  

VENEZIA 
0,78 0,87 0,95 19 19 1,85 3,43 2,04 18 8 W 

CENTRALE 1,00 0,97 1,48 19 7 2,23 3,44 2,47 18 8 W 

CITTA' STUDI 1,64 1,55 1,49 19 19 1,81 2,62 1,98 18 8 W 

DE ANGELI  

MONTE ROSA 
1,08 1,04 0,96 19 18 1,65 2,00 1,82 8 8 R 

DERGANO 1,02 0,83 1,83 18 7 3,00 2,56 2,55 8 7 R 

DUOMO 2,05 2,09 0,86 22 21 3,97 2,38 2,11 8 18 R 

EX OM  

MORIVIONE 
0,94 0,74 1,33 18 21 2,52 3,12 2,14 9 18 R 

FARINI 1,03 0,92 1,62 19 18 2,46 1,61 2,02 8 8 R 

GALLARATESE 3,63 4,18 3,74 19 18 - - - - - -† 

GARIBALDI 

REPUBBLICA 
1,25 1,13 1,27 19 19 2,55 3,13 2,85 8 8 R 

GHISOLFA 2,18 2,84 1,54 22 21 2,11 4,08 2,4 18 8 R 

GIAMBELLINO 1,88 2,17 1,59 19 19 2,83 3,88 2,2 18 8 R 

GIARDINI 

PORTA 

VENEZIA 

1,62 1,41 2,14 19 18 3,76 2,22 2,22 8 17 R 

GRECO 1,52 1,24 2,29 19 18 2,20 4,08 2,17 19 8 R 

GUASTALLA 1,01 0,90 0,82 18 18 2,78 1,37 2,08 8 8 R 

ISOLA 2,63 3,03 1,09 19 18 2,27 2,88 2,58 8 8 R 

LODI  

CORVETTO 
1,09 1,17 2,03 20 18 3,01 4,69 2,24 18 8 R 

LORETO 1,68 1,78 1,72 19 18 1,95 2,47 2,14 18 8 R 

MACIACHINI  

MAGGIOLINA 
1,98 2,08 2,03 19 19 2,34 2,79 2,56 8 8 R 

MAGENTA  S. 

VITTORE 
1,45 1,81 0,76 18 18 3,08 5,12 2,94 18 8 R 

NAVIGLI 1,80 1,65 1,19 19 19 2,02 3,71 2,16 18 8 R 

                                                           
† Not enough bike trips were performed in the Gallaratese NIL  
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NIGUARDA  CA' 

GRANDA 
0,88 0,93 2,62 23 21 2,38 1,95 2,14 18 8 R 

PAGANO 1,21 1,38 0,81 19 18 1,97 2,85 2,18 18 8 R 

PARCO 

SEMPIONE 
1,73 1,94 2,00 19 19 1,32 2,36 1,73 9 8 R 

PORTA 

ROMANA 
1,48 1,74 0,90 19 18 1,97 3,43 2,13 19 8 R 

PORTELLO 2,15 2,52 1,31 19 18 2,03 3,78 2,75 18 8 R 

QT8 2,15 2,33 1,62 19 18 1,57 1,92 1,47 15 20 R 

SARPI 0,98 0,82 1,05 18 18 2,19 3,34 1,80 19 8 R 

SCALO 

ROMANA 
2,00 2,52 1,60 19 18 2,57 3,30 2,92 8 8 U 

TICINESE 1,25 1,42 1,17 18 18 1,94 3,03 1,74 19 8 U 

TORTONA 1,55 2,59 0,78 21 18 1,98 3,73 2,67 19 8 U 

TRE TORRI 1,38 1,78 1,76 19 18 2,04 2,46 1,90 18 8 U 

VIGENTINA 0,99 1,12 1,01 22 21 2,24 1,96 2,10 8 8 U 

VILLAPIZZONE 0,80 0,88 2,08 18 8 3,28 4,39 2,35 18 8 U 

WASHINGTON 1,62 2,01 0,91 19 18 2,10 3,07 2,48 19 8 U 

XXII MARZO 1,04 0,86 0,93 18 18 2,18 4,08 2,32 19 8 U 

Overall 1,53 1,66 1,5 19 18 2,51 3,13 2,32 8 8 
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