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ABSTRACT
In this paper we introduce a reliable, fully automated and fast algorithm to detect extended
extragalactic radio sources (cluster of galaxies, filaments) in existing and forthcoming surveys
(like LOFAR and SKA). The proposed solution is based on the adoption of a Deep Learning
approach, more specifically a Convolutional Neural Network, that proved to perform out-
standingly in the processing, recognition and classification of images. The challenge, in the
case of radio interferometric data, is the presence of noise and the lack of a sufficiently large
number of labeled images for the training. We have specifically addressed these problems and
the resulting software, COSMODEEP proved to be an accurate, efficient and effective solution
for detecting very faint sources in the simulated radio images. We present the comparison
with standard source finding techniques, and discuss advantages and limitations of our new
approach.

Key words: galaxy: clusters, general – methods: numerical – intergalactic medium – large-
scale structure of Universe

1 INTRODUCTION

The challenge facing astronomers in the upcoming decade is not
only scientific, but also technological. A flurry of complex data will
be delivered by new telescopes such as SKA, LSST or CTA, and
this will be difficult to manage with traditional approaches. Data
will have to be stored in dedicated facilities, providing the neces-
sary capacity at the highest performance. Corresponding data pro-
cessing will have to be performed local to the data, exploiting avail-
able high performance computing resources. Data reduction and
imaging software tools will have to be adapted, if not completely
re-designed, in order to efficiently run at scale. Fully automated
pipelines will be a compelling requirement for effective software
stacks as the richness and complexity of incoming data will inhibit
human interaction and supervision.

In this work, we focus on radio imaging of extended and
low surface brightness emission from the cosmic web (e.g. Brown
2011), which may become feasible thanks to the expected ten-fold
improvement in instrument sensitivity. Such large-scale diffuse and
faint emission is mostly associated with the extended distribution
of synchrotron emitting electrons in the largest structures of
the Universe, i.e. the gas structure around galaxy clusters and
filaments. This is expected to appear as an elongated low surface
brightness and flat spectrum radio emission ( i.e. α ∼ 1, with
α being the spectral index, linked to the source flux density S
according to S(ν) ∝ ν−α) tracing structure formation shocks
in cluster outskirts and around cosmic filaments (e.g. Vazza

et al. 2015). Detecting this diffuse emission will be particularly
important as it is expected to carry unique information on the
origin of extragalactic magnetic fields (e.g. Vazza et al. 2017).

However, identifying the faint radio signal from cosmic
filaments will be particularly challenging owing to the difficulty
in detecting their gas component in any other wavelength, as well
as due to the very large angular scale they typically probe (several
degrees), which makes them increasingly more elusive at high
radio frequencies. In addition, radio images obtained through
interferometric observations are affected by several instrumental
and environmental effects, which may increase the image noise
well above the expected thermal noise threshold (e.g. radio
interferometric interferences from the ground and from the sky,
unstable ionospheric conditions, deconvolution artifacts). As some
of these effects are direction-dependent and vary across the field
of view, the final noise in the image is often non uniform and of
similar level to the signal from the real sources.

Our goal here is to develop a source finder tool tailored to
detect faint and extended sources, with an accuracy comparable
to that of the most sophisticated software available, for instance
PyBDSF (see Section 5), a recent Python-based tool designed for
LOFAR, which is to our knowledge the most used in the field. We
also require our tool to be flexible and easily extensible enough
to handle different kinds of problems, for instance the analysis of
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multi-dimensional data, like radio data cubes. Furthermore, it has
to run efficiently on large supercomputing systems, exploiting,
in particular, parallelism and accelerators, managing problems
of “any” size at high performance. Finally, it has to be fully
automated, requiring no human intervention or control, and based
on portable components, in order to be usable on any computing
architecture.

In order to develop such data processing methodology, we
have explored the potential of Machine Learning, a branch of Ar-
tificial Intelligence already successfully used in astronomy (for a
review see M. Ball & J. Brunner (2009) and Kremer et al. (2017),
and for recent applications see Beck et al. (2018), Lucie-Smith
et al. (2018), Rodriguez et al. (2018), Sullivan et al. (2018), Barchi
et al. (2017)). Among the various Machine Learning approaches,
we have focused on Deep Learning, which provides outstanding
performance for tasks relating to computer vision, text analysis,
fragmentation, speech recognition (Lecun et al. (1998), Krizhevsky
et al. (2012), Simonyan & Zisserman (2014), Szegedy et al. (2015),
He et al. (2016), Garcia-Garcia A., Orts-Escolano S., Oprea S.O.,
Villena-Martinez V., and Garcia-Rodriguez J. (2017)), among oth-
ers. Deep Learning has become increasingly popular in the last
decade thanks to two concurrent factors: the availability of enough
computing power to cope with complex, multi-layered neural net-
works, and the availability of enough data to perform the training.
Recently, it has also been adopted in applications in astronomy and
cosmology (see for example Schmelzle et al. (2017), Herbel et al.
(2018), Connor & van Leeuwen (2018), Lukic et al. (2018), Abra-
ham et al. (2018), Mahabal et al. (2017), Nieto et al. (2017), Parks
et al. (2018), Gieseke et al. (2017), Aniyan & Thorat (2017), Has-
san et al. (2018)).

Out of the existing Deep Learning approaches, we have fo-
cused this work on Convolutional Neural Networks (CNN), which
have proved to be both efficient and accurate in classifying images.
The main advantages of CNNs are their high accuracy, their high
computational performance and their suitability for a broad spec-
trum of applications. Training, involving basic linear algebra local
operations, can be performed effectively on accelerated architec-
tures exploiting, for instance, GPUs. The network can be efficiently
decomposed to run on distributed, multi-processor systems (Shi &
Chu 2017). Once trained, classification is a simple and fast task,
and accuracy can range close to 100% depending on the model, the
task and the dataset. Furthermore, by changing a few parameters
and the input data, the same model can be trained for completely
different tasks. Drawbacks are represented by the lack of flexibility
of a trained model, a network being designed and trained on a spe-
cific kind of data input (e.g. 2000× 2000 pixel gray-scale images),
and the need for large, labeled training sets. The former obviously
represents a serious concern in Astronomy due to the heterogeneity
of the data products that can be delivered by different instruments,
as well as due to the highly specialized format and resolution of
output images from different telescopes.

The main challenge, however, is represented by the avail-
ability of sufficiently big datasets with pre-classified (labeled)
images that can be used for the training. Tens of thousands of
labeled images should be accessible in order to effectively train
the network. Currently, few surveys of extragalactic objects have
a large enough dataset of labeled images, which makes any
application of Deep Learning challenging. We have specifically
addressed this problem by creating “mock” observations, starting
from the results produced by cosmological numerical simulations
(see Section 3). This allows us to generate enough images to train

of the network. Having the full control of the training images, we
had the capability to develop a labeling algorithm able to classify
and label images without human supervision.

The CNN based algorithm we present in this paper, called
COSMODEEP, represents the first step towards a fully automated
software pipeline able to face the challenges posed by big, com-
plex radio data. COSMODEEP can not only train the CNN and clas-
sify images, but takes care of the preprocessing and labeling of the
images used for the training. Hence it provides all the tools to de-
velop an effective classification algorithm built on the top of a Deep
Learning model.

The paper is organized as follows. The details of the COS-
MODEEP CNN are presented in Section 2. Section 3 focuses on
the training data and how images are generated, labeled, and pro-
cessed, in order to feed the CNN. Section 4 describes the tuning
of the parameters of the CNN, the accuracy of the algorithm and
its performance. The main results are presented in Section 5, with
conclusions drawn in Section 6.

2 THE COSMODEEP CONVOLUTIONAL NEURAL
NETWORK

Deep Learning builds on the top of neural networks, trying to ex-
ploit the inherent structure of the data. Deep Learning algorithms
can take advantage of the spatial correlations of pixels in images,
as in the case of Convolutional Neural Networks (CNN), which are
among the most successful techniques for image classification. We
have adopted the CNN architecture for the implementation of COS-
MODEEP.

A CNN uses three basic ideas: local receptive fields, shared
weights, and pooling. These are combined in a multi-layer archi-
tecture whose complexity (“depth”) depends on the problem and
on the desired accuracy. The first and the last layers are called in-
put and output layers. All the others are called hidden layers. The
CNN network designed for COSMODEEP is shown in Figure 1.

Once input images are loaded in the input layer, each of them
is scanned using a local receptive field, which is a small window
(e.g. 3× 3 or 5× 5 pixels, in this paper the former is used) moving
across all pixels in the image and calculating the activation func-
tion. In the case of our algorithm, this is a ReLU (Rectified Linear
Units) function, which is one of the most successful choices of ac-
tivation functions for Deep Learning (although several others are
possible). It is defined as:

σi,j = max

(
0, bi,j +

M∑
l=1

M∑
m=1

wl,mai+l−h,j+m−h

)
(1)

where M is the size of the window, h = (M − 1)/2, ai,j are the
pixels, wl,m are the weights of the network and bi,j are the biases.
For every pixel in the image we have the same set of sharedM×M
weights plus one additional shared bias. Weights and biases are ran-
domly initialized. The resulting σi,j compose the so-called feature
map at the first hidden layer. Multiple feature maps can be calcu-
lated starting from different random initializations of the weights.
This leads to a so-called convolutional layer. Convolutional layers
are intended to identify the main features of objects contained in
the image, and are usually followed by pooling layers. Pooling lay-
ers take each feature map output from the convolutional layer and
calculate a new condensed feature map. It is common practice to
use max pooling or average pooling, returning the maximum or the
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average value in a 2×2 input region. The resulting map has half size
in each dimension. Pooling is separately applied to each single fea-
ture map. It is intended to get rid of the exact positional information
of the identified features, focusing on the feature itself, wherever it
is placed in the image.

Convolution and pooling are repeated taking the pooled fea-
ture maps at layer N-1 as an input, and producing a new lower
resolution set of feature maps at layer N. The information extracted
from the images is progressively refined until the final hidden layer.
This is usually a fully connected layer that combines and correlates
the information refined in the previous layers. At the end, the output
layer produces the final answer, which is compared to the correct
answer known a priori. Correct answers are part of an image set
classified through a labeling procedure performed independently
from the CNN (our labeling methodology is described in Section
3.3). The comparison allows estimating the error through a cost
function. This error is minimized through an optimization process
called training of the network. Optimization is achieved by calcu-
lating corrections to the weights moving along the gradient of the
cost function, down toward a minimum value. Such an approach
is called gradient descent. Once corrections have been calculated,
they are back-propagated to all the layers of the network, correct-
ing the weights up to the first hidden layer. Back propagation is not
performed after each single image, but after a randomly selected
sub-set of N training images has been processed and corresponding
corrections accumulated. This sub-set of N images is called a mini-
batch, and an optimal setting of N can accelerate the convergence
of the algorithm toward the minimization of the error.

Gradient descent is an iterative process encompassing all the
possible mini-batches in the dataset. At each iteration the estimated
corrections are weighted by the learning rate parameter. The learn-
ing rate controls how much the weights of the network are adjusted
for each mini-batch, influencing the convergence and the accuracy
of the algorithm. Small values of the learning rate tend to give more
accurate results but lead to slow convergence. Excessively large
values may lead to inaccurate results or even divergence.

In order to improve the training, the full training dataset can be
used many times. A single pass through the entire dataset is called
an epoch. Each single image is processed by the CNN a number
of times equal to the number of epochs during the training, as part
of different mini-batches. The optimal number of epochs has to be
sufficiently large to extract all the information from the training
set, but not too large to slow down the training process or to lead to
overfitting (i.e. the CNN starts “learning” even from the noise).

A successful Deep Learning network design results from an
appropriate combination of the various layers. COSMODEEP imple-
ments the CNN model shown in Figure 1, consisting of 5 hidden
layers, two convolutional layers with 32 and 64 features maps re-
spectively, two pooling layers adopting a max pool algorithm and a
fully connected 1024 neurons layer. This rather simple model, ac-
counting for about 700,000 parameters (weights plus biases, their
number being independent from the size of the input images) is
effective for our purpose. The software has been developed using
the TensorFlow toolkit (Abadi et al. 2015) (version currently used:
1.2.1), providing the basic CNN building blocks. TensorFlow de-
ploys a Python API, which have been used for fast and effective
prototyping, while the library functions are developed using the
C++ programming language for performance purposes. The library
efficiently exploits GPUs and provides a distributed interface sup-
porting multi-CPU architectures.

3 THE IMAGE SET

Data represents the “fuel” of any Deep Learning engine. The avail-
ability of a sufficiently large, labeled training dataset is one of the
most critical aspects in the adoption of a Deep Learning based ap-
proach. In the case of data coming from radio observation, suffi-
ciently big datasets are not available, hence we need to generate
training data from scratch exploiting the results of numerical sim-
ulations (usually training requires thousands or tens of thousands
of images). These results are processed in order to calculate emis-
sion at the wavelengths of interest. They are then projected in order
to get two-dimensional sky views and further combined with noise
and artifacts to mimic actual observations. Finally, the resulting im-
ages are automatically labeled. The full procedure is described in
the following sections.

3.1 Images Generation

The images created for training need to have size and complexity
similar to those expected from real radio observations. As a test
case we considered here the case of a survey made with the Aus-
tralian telescope ASKAP, the pathfinder of the Square Kilometer
Array1. ASKAP consists of 36 antennas, each 12m in diameter,
with a typical observing frequency of 1.4 GHz, wide field-of-view,
large spectral bandwidth, extremely fast survey speed, and excel-
lent u-v coverage (Johnston et al. 2008). First scientific results ob-
tained with the ”BETA” ASKAP configuration based on 6 anten-
nas have already been presented (Serra et al. 2015; Heywood et al.
2016).

We used as a reference a suite of large cosmological sim-
ulations of extragalactic magnetic fields, obtained using the
cosmological code Enzo (Bryan et al. 2014) as in Vazza et al.
(2014), Gheller et al. (2016) and Vazza et al. (2017). Our simu-
lations evolved a uniform primordial seed field of B0 = 1 nG
(comoving) from high redshift (zin > 40, the specific figure is
dependent on the simulation) in different physical volumes of
2003, 1003 and 503 Mpc3, in each case with a total number of cells
and dark matter particles of 24003. This model of extragalactic
magnetic fields is on the optimistic side, as the assumed initial
seed field is at the level of existing upper limits of primordial fields
derived from the analysis of the Cosmic Microwave Background
(Planck Collaboration et al. 2016), and based on our previous
studies on the subject it yields a non-negligible chance of detecting
the tip of the iceberg of the magnetic cosmic web (Vazza et al.
2015, 2017).

To compute the level of radio emission from cosmic shocks
at each redshift, we assume that shocks can accelerate relativistic
particles producing continuum and polarized radio emission (e.g.
Brown 2011). We rely on the synchrotron emission model by Hoeft
& Brüggen (2007), which requires the jump condition of each cell
undergoing shocks (computed from the simulation), the local value
of the magnetic field and the electron acceleration efficiency as a
function of Mach number (which is calibrated on shocks internal to
galaxy clusters, as in Vazza et al. (2015)).

The cosmological model adopted in our simulations has the
following parameters: ΩΛ = 0.692, ΩM = 0.308, Ωb = 0.0478,
H = 67.8 km/s and σ8 = 0.815. The volumes are resolved
with different cell sizes (83.3, 41.65 and 20.82 kpc, respectively),

1 https://www.atnf.csiro.au/projects/askap/index.html

c© 0000 RAS, MNRAS 000, 000–000



4 C.Gheller, F. Vazza, A. Bonafede

Figure 1. The COSMODEEP CNN architecture, accounting from one input, five hidden and one output layers

Figure 2. Progression of our sky model for a 16 × 16 degree area, as a function of the maximum redshift of integration: z = 0.04 (first panel), z = 0.2
(second) and z = 0.5 (third). The top row shows the projected gas density while the second row show the total radio emission, at the frequency of ASKAP.

which is motivated by the fact that our final mock observation
is obtained by stacking together the different volumes along the
line of sight (with the larger volumes/lower resolution runs being
placed at larger distance), which approximately yields a constant
angular resolution for all simulations at the corresponding redshifts
(∼ 25 − 35”). While this is the intrinsic angular resolution of our
simulation (given the starting redshift of the cone integration), we
further resampled our images down to a ≈ 10” angular resolution
for the full ASKAP array configuration.

A detailed description of the procedure adopted to generate
mock radio lightcones is given in Vazza et al. (2015). To briefly
summarise, we create long rectangular volumes covering 16◦×16◦

in the sky, i.e. of the order of 9 independent ASKAP fields of view.

Based on Vazza et al. (2015), we do not expect to detect a sig-
nificant amount of radio emission from the cosmic web beyond
z > 0.5, hence we limit our analysis to the the cosmic volume
in the range 0.04 6 z 6 0.5 2 (corresponding to a comoving ra-

2 We notice that our lower limit on the integration redshift 0.04 is moti-
vated because even if there surely are cosmic structures between us z =

0.04, at the frequency of ASKAP this part of the diffuse emission from the
shocked cosmic web gets mostly filtered because of the missing baselines.
Due to the vastly larger dataset we need to analyse here, in this work we do
not explicitly perform the removal of missing baselines from our mock ob-
servations, unlike in previous work (Vazza et al. 2015). Therefore, we limit
by construction our analysis to structures that are located at a large enough
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dial distance of ≈ 1.892 Gpc). This volume is assembled by stack-
ing many simulated boxes along the line of sight, starting with a
few replicas of our most resolved (50 Mpc)3 box, and then adding
several replicas of the (100 Mpc)3 and of the (200 Mpc)3 vol-
umes. We first compute the radio emission in the comoving refer-
ence frame of each box, and then apply redshift corrections (e.g.
cosmological dimming as a function of redshift), assuming the red-
shift corresponding to the box center for each box. Building the
redshift cone, the projected pixel size is adjusted with a cubic in-
terpolation, while the presence of artifacts due to the periodicity of
structures along the line of sight is minimised by applying random
rotations to each box. An example of our final result is shown in
Figure 2.

Massive halos (> 1012M·) can be identified by running a
spherical-overdensity based halo finder at each different redshift,
allowing to disentangle the fraction of the radio emission coming
from the cosmic web from that coming from galaxy clusters. More
details on the procedure to create the mock images can be found in
Vazza et al. (2015).

We generated a final set of 1000 independent sky model
images by applying random rotations to each of the different
redshift slices used to produce our lightcones. The maximum
spatial resolution achieved in our most resolved box (≈ 20 kpc)
corresponds to an angular resolution of ≈ 0.8 kpc at z = 0.04,
i.e. 25” per pixel. In order to match the ASKAP angular reso-
lution (10”), sky models have been re-sampled to a 2.5 higher
resolution. Furthermore, realistic noise has been added at the
scale of ∼ 3”, in order to adequately sample the FWHM
of the restoring beam, further re-sampling the sky model at
∼ 8.3 times higher resolution and then convolving it with a
Gaussian profile with a FWHM of 10” to emulate a cleaned
ASKAP observation. The assumed noise level is chosen so that
σrms = σASKAP ≈ 10 µJy/beam = 0.88 · 10−7 Jy/arcsec2.

In summary, the described procedure was used to generate
6000× 6000 pixel images, from which smaller 2000× 2000 pixel
subsets (corresponding to an ASKAP field of view) have been ex-
tracted. These images are indicated as Sky images and represent the
dataset used for the labeling procedure described in Section 3.3.
Adding the noise to the Sky images, the cleaned images are ob-
tained. This data is indicated as Noise images. The Noise dataset is
used for the training of the CNN and to test its performance.

3.2 Tiling

The 2000× 2000 pixel images comprise a wide field of view, with
tens or even hundreds of potentially interesting objects to detect. In
order to identify each single object and its position in the image we
have implemented a tiling based procedure that divides each image
in small square tiles. The tiles become the actual training dataset of
the CNN and each single tile is classified as containing some signal
or not. The mosaic of the tiles with signal defines the positions
in the sky to observe for radio emitting objects. In order to have a
precise localization of the objects, the tile size has to be the smallest
possible. However, tiles cannot be so small that objects can not be
identified along with their shape and geometric information (i.e.
objects should not fill the entire tile). After some experimentation,

redshift to be properly sampled by ASKAP. For simplicity, we also do not
consider the radio artifacts that typically arise as a result of the “cleaning”
procedure of real images (e.g. Grobler et al. 2014).

effective linear tile sizes resulted to be between 40 and 80 pixels.
The smallest size, 40 pixels, has been adopted in order to get the
highest spatial precision. The result of the tiling procedure is shown
in Figure 3, where the mesh composed by the tiles is overlaid on
one of the Sky images.

3.3 Labeling

Labeling is the process of classifying the content of an image so
that it can be used to train the Deep Learning model. The labels
are assumed to provide the correct values and are used to validate
results of the CNN analysis. In our case, images are divided into
tiles and each tile has to be defined as containing some radio sig-
nal or not. Labeling has, of course, to be performed independently
from the Deep Learning network we are training. It is common
practice to perform labeling by means of human classification, or
using so-called “bootstrap” procedures which are semi-automated
and still require human supervision. This can be an overwhelming
task (especially when hundreds of thousands of images have to be
classified), prone to errors and subjectivity, in particular when the
target is not a well defined object and noise can blur the content of
the image.

In order to properly label our radio catalog we exploited the
Sky images, which are free from noise contamination. A tile con-
taining meaningful signals is positively labeled if the number of
pixels emitting above a given flux threshold, Fth, is larger than
Npix. We set Fth = α 10−7 Jy/arcsec2. For α = 1, Fth is of the
order of the typical signal to noise ratio considering the (conserva-
tive) expected thermal noise level of continuum ASKAP observa-
tions for a 10” beam (see Section 3.1). Reducing the value of α be-
low 1, we include increasingly fainter sources in the analysis. The
parameter Npix sets the minimum size of an object to be labeled
as a source, this allows tuning the training of the CNN to identify
signals of that size or bigger and excluding point-like sources or
objects too small to have meaningful geometric information for the
CNN to work with.

The result of the labeling procedure with α = 1 and Npix=
40 is presented in Figure 4, where we show a zoom into one of the
2000×2000 Sky images. Tiles labeled as ”0” have no signal, while
those labeled as ”1” contain radio sources.

Once the parameters Fth and Npix are set, the labeling pro-
cess is completely automated. The labels are then used in the train-
ing and testing phases where tiles are extracted from the Noise
dataset, classified by the CNN, and the results compared to the cor-
responding labels.

4 PARAMETERS TUNING AND PERFORMANCE

The accuracy of our CNN model has to be properly estimated in
order to avoid misinterpretation of the results and incorrect con-
clusions. Accuracy, in the simplest case, can be defined as the ra-
tio between the number of images correctly classified and the total
number of images used in the test. In our case, such estimate is
misleading since the number of tiles with no signal can be one or
even two orders of magnitude bigger than that of tiles with signal
(see Figure 3 or 4). This definition of accuracy means that simply
classifying tiles with no signal would give a very high accuracy re-
gardless of how the tiles with signal are classified. Therefore, we
have defined the following accuracy metrics:

As = Nsc/(Ns+Nvw), Wv = Nvc/Nv, Ws = Nsc/Ns, (2)

c© 0000 RAS, MNRAS 000, 000–000



6 C.Gheller, F. Vazza, A. Bonafede

Figure 3. A full 2000x2000 pixel Sky image tiled and labeled: label 0 corresponds to a tile without signal (according to our criteria), while label 1 corresponds
to a tile with some signal.

where As gives the fraction of correctly classified signals (Nsc)
over the sum of the total number of tiles that have signal (Ns) plus
the number of tiles classified as signal but actually are noise (Nvw).
This gives the probability that a tile classified as signal is an actual
signal. In other words, it gives the probability that a real signal will
be detected by pointing the radio telescope to the region of sky
contained by a tile classified as signal. The parameters Wv and Ws

measure the relative accuracy for each of the two classes, i.e. the
ratio between the number of correctly classified tiles in a class and
the total number of tiles belonging to that class. The parameterNvc
is the number of tiles with no signal that are correctly classified.
Overall, the three parameters describe the accuracy of the CNN,
and ideally As = 1, Wv = 1, Ws = 1.

We have run a number of tests investigating the influence of
several parameters on the training of the model, namely the learn-
ing rate (η), the batch size (Nb) and the number epochs (Ne), all
defined in Section 2. For the labeling we have set the parameter α,
introduced in Section 3.3, equal to 1. This means that the minimum
signal we consider is at the same level of the noise. Furthermore,
two different values for Npix have been tested: Npix1 = 40, which
focuses on extended sources, and Npix2 = 9, which corresponds

to the size of the local receptive field of the CNN, setting the reso-
lution of the method.

All the tests have been performed on an Intel Xeon E5-
2690 “Haswell” CPU running at 2.60GHz (12 cores, 64GB RAM)
equipped with NVIDIA Tesla P100 with 16GB HBM2 memory,
which is effectively exploited by COSMODEEP through Tensor-
Flow. The computing environment is part of the Piz Daint super-
computer, available at the Swiss National Supercomputing Center
in Lugano (operated by ETH Zurich). The size of the input dataset
is about 6.5 GB, mostly used as training set and a small fraction
dedicated to testing and validation.

The following workflow is implemented for the training and
testing of the CNN:

(i) Sky and Noise images are read from files stored on disk;
(ii) negative pixels are set to a small floor value (typically 10−11

Jy/arcsec2), and the logarithm of each pixel is calculated in order to
reduce the dynamical range of the emissivity, which typically spans
10 orders of magnitude (10−11−10−2 Jy/arcsec2), avoiding issues
related to floating point precision;

(iii) the results are normalized so that each image has values
between 0 and 1;

(iv) images are divided into tiles;

c© 0000 RAS, MNRAS 000, 000–000



Deep Learning Based Detection of Cosmological Diffuse Radio Sources 7

Figure 4. A zoom into a 2000×2000 tiled and labeled Sky image. Label 0
corresponds to a tile without signal, while label 1 corresponds to a tile with
some signal.

(v) using the Sky tiles, each tile is labeled according to the pro-
cedure described in Section 3.3;

(vi) tiles are serialized to feed the CNN;
(vii) tiles are offloaded to the GPU (in chunks, in order to avoid

GPU memory overflows) and there processed by the CNN for the
training;

(viii) the trained network is finally tested and its accuracy cal-
culated.

The resulting accuracy for the case Npix1 is presented in Fig-
ure 5. The top panel shows As as obtained for the different combi-
nations of η, Nb and Ne. Colors highlight the dependence on the
learning rate. In a number of cases, the accuracy is above 0.9. The
highest values for As are obtained by setting the learning rate big-
ger than 10−5. However, for η > 5 × 10−4 accuracy drops and
convergence is not reached. For η < 10−6 the convergence is slow.
The mini-batch size progressively grows with the TestID, starting
from Nb = 15 for TestID < 20, up to Nb = 100 for 160 6
TestID < 180, stepping up every 20 TestIDs. Its influence can be
seen in the overall trend of the accuracy to slightly increase when
shifting toward higher TestIDs, from left to right (to higher mini-
batch sizes). Accuracy is also improved by increasing the number
of epochs. We have performed tests using four different numbers of
epochs (Ne = 15, 20, 50, 100). The accuracy of the method grows
at larger Ne, as can be seen from the tendency of the accuracy of
matching colored (i.e. η) point data to have higher As moving to-
ward larger values of TestID. This continues until the mini-batch
size is updated to a new value, when As drops. The same behav-
ior is shown in the bottom panel of the figure for the parameters
Ws and Wv , although most of data points are close to unity and
the trend is less recognizable. Tests with the highest values of η
(yellow and red points) have low accuracy and do not present any
trend varying both the number of epochs and the mini-batch size,
showing that their accuracy cannot be improved by tuning the two
parameters.
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Figure 5. Accuracy parameters As (top panel), Wv and Ws (diamonds
and triangles respectively, bottom panel) in tests with different combi-
nations of learning rate, batch size and number of epochs (η, Nb, Ne).
The three parameter can take the following values: η = [10−6, 5 ×
10−6, 10−5, 3×10−5, 5×10−5, 7×10−5, 10−4, 5×10−4, 10−3],
Nb = [15, 30, 50, 64, 100], Ne = [10, 20, 50, 100]. Each combination
(η, Nb, Ne) is characterized by a different TestID (an integer number be-
tween 1 and 180). Colors (in logarithmic scale) represent the parameter η.

The bottom panel of Figure 5, which shows the relative accu-
racy parameters Ws and Wv , confirms the results discussed above.
In most cases COSMODEEP is capable of successfully classifying
more than 99% of both regions with signals and empty regions.

When decreasing the pixel threshold to Npix2 pixels (not
shown), objects at the limit of the resolution of the method are
included, leading to a slightly lower accuracy. The overall trends,
however, are the same as in the Npix1 case.

Figure 6 shows the convergence of the training process as a
function of the epoch, for the case Npix1, with different settings
of η and Nb. The set-ups with 5 × 10−5 6 η 6 10−4 and
Nb > 30 (green and blue curves in the figure), have the fastest
convergence toward an accuracy close to 1. For this specific test
the accuracy is calculated as the ratio between the number of tiles
correctly classified and the total number of tiles used for the test.
For η < 5 × 10−5 the algorithm converges but very slowly, while
for η > 10−4 most of the tests do not converge, the accuracy fluc-
tuates around 0.5 which corresponds to random classification. Few
cases with η > 5 × 10−4 and Nb > 50 converge faster than in all
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Figure 6. Convergence of the training process as a function of the number
of epochs, measured by an Accuracy parameter defined as the fractional
difference between the tiles correctly classified and the total number of tiles
used for measure. A constant value of the Accuracy indicates that the train-
ing cannot improve more. The optimal value for the Accuracy is 1, which
indicates that all the images are correctly classified. Colors (in logarithmic
scale) show the dependency from the learning rate η.

the other cases. However, their As, Ws and Wv are low, proving
that the training is not actually effective, only tiles without signal
being correctly classified. Similar results are obtained for Npix2.

In terms of computational requirements, the training takes
around 1800-2500 seconds to complete, the time depending essen-
tially from the number of epochs. The trained network can be stored
in files and reloaded for later usage for image classification. The
CNN network load and setup time is independent from the number
of images to classify, depending only from the size of the network,
while the classification stage scales linearly with the image size.
For our 2000×2000 pixel images, the estimated classification per-
formance is 10.4± 0.2 images/sec.

5 RESULTS

The effectiveness of COSMODEEP in detecting faint, diffused radio
sources in noisy images has been analyzed on a subset of images,
the test dataset, never used for the training. The CNN has been
trained for the two different choices of Npix, indicated as Npix1

(40 pixels) and Npix2 (9 pixels). The parameters listed in Table 1
have been set in order to optimize the performance of the CNN
according to the analysis performed in Section 4. Figure 7 shows
one of the test images, with tiles labeled as follows: tiles classified
as “1C” are signals correctly detected by the CNN, “1F” indicates
tiles with signal but classified as pure noise (false negatives), tiles
with “0F” are pure noise tiles classified as signal (false positives).
The remaining tiles, labeled as ”0C”, are correctly classified as pure
noise and for clarity their label is not displayed in the image.

In the case Npix1, we get the following accuracy estimates:
As = 0.9088± 0.0090, Ws = 0.9827± 0.0003, Wv = 0.9974±
0.0003. On average our classifier misses around 1 to 2 tiles with
signal (40 × 40 pixels) per 2000 × 2000 pixel image (out of a to-
tal number of 2500 tiles), and it misclassifies around 6 pure noise
tiles per image. The CNN proves to be effective in detecting ex-
tended objects (at least bigger than 40 pixels) missing less than

Parameter Value

Image size (pixels) 2000×2000
Tile size (pixels) 40×40
Npix1 40
Npix1 9
Fth (Jy/arcsec2) 10−7

η 7× 10−5

Nb 100
Ne 50

Table 1. Set-up of the CNN models.

2% of them. The accuracy improves for regions without emission,
even if the absolute number of false positives is larger than that of
false negatives. The case Npix2 returns As = 0.8800 ± 0.0062,
Ws = 0.9710 ± 0.0062, Ws = 0.9957 ± 0.0003, with, on aver-
age, around 2 to 3 tiles misclassified as 1F and around 10 as 0F per
image. The total number of tiles with signal increases from around
600 in the Npix1 case, to around 800 in the Npix2, since smaller
objects are classified as sources by the labeling procedure. Such
smaller objects are also more challenging to recognize, being at the
limit of the resolution of the CNN. This explains the slight decrease
of accuracy in the Npix2 case.

Figure 8 zooms into three regions extracted from one test im-
age, in the Npix1 (upper row) and in the Npix2 (lower row) cases.
In the top-left panel, we see a region with a prominent cluster of
galaxies with a clear pattern of shock waves moving outwards from
the cluster center. In theNpix1 case most of the tiles with signal are
correctly classified (1C) and one false positive is present. The false
positive (tile labeled as 0F) identifies a tile that is actually part of
the cluster, but the number of pixels above Fth is less than Npix1.
Lowering the pixel threshold to Npix2, the same tile results to be
classified as 1C. Therefore, the false positive in the Npix1 case fol-
lows from the labeling procedure, and not from the CNN. In the
top-central panel, a small object is detected, split into three tiles.
In the Npix1 case one of the tiles is again misclassified due to the
labeling method, showing that the CNN can indeed correctly detect
and classify sources below the pixel threshold it has been trained
for. The right panels show the example of a filament connected to
a galaxy cluster, which appears in the bottom-left corner of the im-
age. The structure, albeit elongated and discontinuous, can be prop-
erly identified by the CNN. A false positive is present in the Npix2

case and is again a shortcoming of the labeling procedure (i.e. there
are not enough pixels above the flux threshold in the tile), and not
a error of the CNN.

In the top-left panel we can also see how in the Npix1 case,
several tiles contain sources which get labeled as noise, and are
not detected by the CNN. A couple of these tiles are classified as
false negative in the Npix2 case (bottom-left panel). The sources
contained in these tiles are larger than Npix1 pixels but too faint,
hence they are labeled as noise. Accordingly, the CNN is trained to
classify those kind of objects as noise. Reducing the pixel thresh-
old to Npix2, a sufficiently large number of pixels in both tiles are
brighter than Fth, hence they are labeled as sources. However, the
CNN is not able to detect them as most of the source still emitting
below the flux threshold the CNN has been trained for.

In order to investigate the influence of Fth in detail, we
have repeated the whole training and testing procedure reduc-
ing the value of the flux threshold progressively to 0.75, 0.5 and
0.1 × 10−7(Jy/arcsec2), trying to detect signals with smaller and
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Figure 7. A full 2000×2000 pixel image classified by COSMODEEP. Label 1C refers to correctly classified signals, 1F indicates tiles with signal incorrectly
classified as noise (false negatives), 0F indicates tiles with no signal and wrongly classified (false positives). Unlabeled tiles indicates pure noise tiles correctly
classified.

smaller signal to noise (SN ) ratio. All the other parameters of the
CNN are unchanged (see Table 1)

The results, presented in Table 2, show that for the Npix1

model, down to Fth = 0.5 × 10−7(Jy/arcsec2), As is bigger
than 0.9 and both the parameters Wv and Ws are close to 1.
For Npix2, the accuracy parameter As is slightly lower, due to
the presence of smaller objects to be detected, but still of the or-
der of 0.9. The Wv parameter is very close to unity, while Ws

is around 0.97. In both cases the best accuracy is achieved for
Fth,opt = 0.75×10−7(Jy/arcsec2), so below the rms noise, with on

average around 0.5 and 3 false negatives and 6 and 7 false positives
per image for the Npix1 and Npix2 cases respectively. The higher
accuracy reached at Fth,opt is due to the inclusion in the training
set of faint sources that at higher flux thresholds are labeled as noise
but that are detectable by the CNN. The mismatch between label-
ing and classification leads to a slightly less efficient training with
some loss of accuracy at Fth = 10−7(Jy/arcsec2). Below Fth,opt
the accuracy decreases due to the presence of smaller and fainter
sources, blurred by the noise. At Fth = 0.1×10−7(Jy/arcsec2) ac-
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Figure 8. Mosaics of tiles extracted from the full images for Fth = 10−7 (Jy/arcsec2), with different kind of classification. Label 1C refers to correctly
classified signals, 1F indicates false negatives, 0F false positives. Unlabeled tiles indicates pure noise tiles correctly classified. Upper row refers to Npix1,
bottom row to Npix2

curacy drops, in particular for Npix2, with As slightly bigger than
0.8, and, on average, around 60 misclassified tiles per image.

Figure 9 shows the same regions of Figure 8 for the case
Npix2, but at Fth,opt (top row) and Fth = 0.1× 10−7(Jy/arcsec2).
At Fth,opt all the tiles are correctly classified. The false nega-
tives on the bottom-left panel of Figure 8 are now correctly clas-
sified, since the CNN is trained to recognize those faint sources.
At Fth = 0.1 × 10−7(Jy/arcsec2), more tiles are labeled as con-
taining signal and classified as 1C. As expected, a few incorrect
classifications appear due to the presence of extremely faint and
small objects the CNN is not able to detect or the labeling schema
neglects.

We compared the results of COSMODEEP with those obtained
using PyBDSF (the Python Blob Detector and Source Finder,
see http://www.astron.nl/citt/pybdsf), which is a python-based tool
to decompose radio interferometric images into sources. Since
PyBDSF is designed to work on real images, several parameters
can be set by the users to distinguish e.g. regions in the image with
different noise properties (for example, different noise due to imag-
ing artifacts around strong sources). For our purposes, we have run
the tool adopting standard input parameters, setting the noise level
to a constant value of σrms = 10 µJy/beam. We considered as is-
lands of signal, regions in the image that show at least 9 contiguous
pixels above the assumed flux threshold (to allow a close compar-
ison with COSMODEEP), and tested variations in rms noise level
from 0.75 to 3.0. Using the above parameters, we identified islands
with signals of contiguous emission as shown by the green contours
in Fig.10. In a second step, the algorithm fits a Gaussian profile to
each island, in order to further decompose them into shapelets. The
final result is a catalog of sources with positions, sizes, and flux
densities of each source. However, this second step is not required
for our purposes, as the islands already identify the regions in the
image where emission above threshold is detected by the algorithm.

We compare in Fig. 10 the results of COSMODEEP to those
of PyPDSF at different values of Fth, for two ∼ 2◦ × 1.5◦

fields, featuring several diffuse emission patches. Sources identi-
fied by PyBDSF for different choices of Fth are given in green
contours, while the rectangular tiles identified by COSMODEEP
are marked by the white contours. We find a tight correspon-
dence between the islands of signal identified by PyBDSF im-
posing a threshold of SN > 3.0 and the results of COSMODEEP
for Fth > 0.5 × 10−7Jy/arcsec2 with a lower bound of 9 pix-
els for the size of structures. Interestingly, lowering the threshold
to Fth > 0.1 × 10−7Jy/arcsec2 and using 40 pixels for the size
of structures allows COSMODEEP to correctly identify a few more
fainter low-surface brightness structures in the sky model, while
lowering the threshold in PyBDSF to SN > 1.5 causes the soft-
ware to detect a large number of spurious noise fluctuations, ran-
domly spread across the field (see right panels in Fig. 10).

While further ad-hoc improvement in PyBDSF is surely
possible, this test shows that the two algorithms can give consistent
results on the high signal-to-noise end of the distribution of
sources, while with very little tuning COSMODEEP can go signifi-
cantly below the “standard” 2 − 3 σrms level for the detection of
real diffuse emission from the cosmic web. On the other hand, the
spatial resolution of COSMODEEP is limited to the tile size, which
prevent us from exactly describing the shape of these emission
regions. Based on the above results, it seems possible to design
a combined approach in future work, where COSMODEEP and
PyBDSF may be applied to large datasets in two different steps,
to better trace the location of diffuse emission structures at a scale
comparable to the restoring beam of observations.

Finally, we present in Figure 11 the statistical analysis of the
distribution of tiles identified by COSMODEEP, in relation to their
projected distance to galaxy clusters in the field, which we identify
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Model Fth (Jy/arcsec2) As Ws Wv

Npix1 10−7 0.9088± 0.0090 0.9827± 0.0003 0.9974± 0.0003

0.75× 10−7 0.9232± 0.0046 0.9947± 0.0002 0.9972± 0.0002

0.5× 10−7 0.9159± 0.0070 0.9958± 0.0005 0.9960± 0.0004
0.1× 10−7 0.8934± 0.0072 0.9521± 0.0005 0.9933± 0.0005

Npix2 10−7 0.8800± 0.0062 0.9710± 0.0062 0.9957± 0.0003
0.75× 10−7 0.9175± 0.0051 0.9754± 0.0037 0.9969± 0.0001

0.5× 10−7 0.9022± 0.0046 0.9797± 0.0044 0.9948± 0.0001

0.1× 10−7 0.8181± 0.0035 0.8848± 0.0023 0.9890± 0.0011

Table 2. Accuracy parameters of COSMODEEP for different values Fth, corresponding to models Npix1 and Npix2.

Figure 9. Mosaics of tiles extracted from the full images for the case Npix2 at different values of Fth. For the top row Fth = 0.75 × 10−7 (Jy/arcsec2),
while for the bottom row Fth = 10−8 (Jy/arcsec2)

in a separate step with a halo finder (working in 3 dimensions). We
tentatively consider tiles falling within a < R100 (i.e. the virial ra-
dius) from the center of a nearby halo as “cluster emission patches”,
and tiles at > R100 distance as “cosmic web emission patches”.
The tiles correctly classified by COSMODEEP as containing a struc-
ture have a distribution of pixel luminosities that peaks towards
higher values. A very significant fraction of the structures correctly
identified by COSMODEEP are related to shocked gas outside of the
virial volume of clusters, which confirms that our technique is in-
deed capable of locating low surface brightness emission regions
in the peripheral regions of galaxy clusters, which trace accretion
shocks and shocks around filaments.

6 CONCLUSIONS

The work presented in this paper shows that a Deep Learning based
methodology based on a CNN approach (COSMODEEP) offers an
effective solution for the fully automated processing pipeline of big
radio datasets, of the order of what is expected from next genera-
tions of surveys with radio telescopes (e.g. ASKAP, MEERKAT,

MWA, LOFAR and the SKA). We explored the case study of ex-
tended cosmological radio sources (such as emission from shocked
gas around galaxy clusters and filaments). COSMODEEP allows us
to detect diffuse radio sources and to localize their position within
large images thanks to a tiling based procedure. The overall accu-
racy of the method is comparable to that of more standard tools
used in radio astronomy, but it delivers better performance when
applied to the detection of faint objects, with emissivity below the
average rms noise of radio observations. The accuracy has been
defined as the probability that a tile classified as signal contains
an actual radio source. Depending on the specific set-up, accu-
racy is between 0.88 and 0.92, with only few tiles misclassified
per 2000×2000 pixel (2500 tiles) image. Such values have to be
taken as a conservative lower bound, having proved that part of the
observed inaccuracies are due to the tiling procedure and not to the
CNN classifier itself.

The performance of COSMODEEP is not only promising in
terms of accuracy and ability to identify faint diffuse objects, but its
computational performance is also encouraging: 2000×2000 pixel
images can be processed in less than 0.1 sec on a state-of-the-art
GPU, and their size does not represent an issue in terms of memory
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Figure 10. Close up view of 2 sample ∼ 2◦ × 1.5◦ simulated maps, showing our noise-added mock sky model (colors, in units of Jy/arcsec2). For the same
sky model, we show with cyan contours all tiles correctly identified by COSMODEEP using either Npix = 40 and Fth = 0.1× 10−7 Jy/arcsec2 (left) or
Npix = 9 and Fth = 0.5× 10−7 Jy/arcsec2 (right). In the same panels, we also show with yellow contours the ”islands of signal” identified by PyBDSF
assuming either threshold of 1.5 SN or 3.0 SN.

thanks to the effective implementation provided by the TensorFlow
framework. The training can be easily managed on the comput-
ing nodes used for testing, the full training on ∼ 30000 − 40000
tiles requires less than one hour to be completed. Larger datasets,
in terms of both image size and data volume, are potentially man-
ageable as well, since TensorFlow supports distributed training on
parallel high performance computing architectures.

An important “by-product” of our methodology is a set
of mock radio images generated from cosmological numerical
simulations. The image set is composed of Sky images used
for automatic labeling, and Noise images derived from the Sky
images by adding random noise in order to create realistic radio
observations. The resulting data set is unique and it can be publicly
accessed at http://cosmosimfrazza.myfreesites.net/cosmodeep-
training-datasets.

In summary, this work led to the following achievements:

• availability of a novel methodology, based on a Deep Learning
CNN approach, to detect diffuse and faint sources in radio obser-
vations, irrespectively of their specific size or shape;

• the methodology is competitive in terms of accuracy with
state-of-the-art software adopting more standard approaches;
• the methodology is flexible and extensible to encompass a

broad spectrum of applications and cases and it is scalable to
increasingly bigger configurations, supporting high performance
computing solutions;
• the methodology can classify 2000×2000 pixel images “real

time” (∼ 0.1 sec/image) on a state-of-the-art GPU;
• public availability of a datasets composed by hundreds of im-

ages generated from cosmological numerical simulations mimick-
ing real radio observations. The datasets will be progressively ex-
tended in order to include more and more sophisticated images.

The methodology will be further developed in order to be
ready for real observations, addressing in particular ASKAP data as
a test-bed for the even larger challenge posed by the Square Kilo-
meter Array. Development will progressively extend to increas-
ingly complex and realistic images, e.g. including image processing
artifacts like secondary radio lobes, remaining point-like sources
and confusion noise.
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Figure 11. Flux distribution in a sample 2000 × 2000 pixel image, con-
sidering a Fth = 0.75× 10−7Jy/arcsec2 threshold and Npix = 9. The
dashed lines give the distribution from pixels within the virial volume of
clusters, while the dotted lines are for pixels located outside the virial re-
gion of clusters. The solid line is the sum of the two. The dotted vertical
line give the predicted rms noise of ASKAP.
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Vazza F., Brüggen M., Gheller C., Wang P., 2014, MNRAS, 445,

3706
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