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SotA State-of-the-Art 

TRL Technology Readiness Level 

UC Use Case 

VA Visual Analytics 

WP  Work Package 

Table 1: Terminology 

GA Matrix of Alignment  
Table 2 outlines the outputs of D4.1 mapped to the GA commitments as stated in the Description of 
Action (DoA) Annex 1 and Annex 2. 

GA 
Components 
Title (and type) 

GA Component Outline Document 
Chapter(s) 

Justification 

Deliverable    

D4.1 Mobility Data 
Analytics and 
Learning Services 
v1 

Software library containing early versions 
of the extreme Mobility Data Analytics and 
Learning Services with embedded privacy-
preserving tools and ingesting 
heterogeneous data types from each tier of 
the computing continuum accompanied by 
report consolidating release notes and 
instructions on executing the developed 
methods. A report will document the 
advancement of AI models compared to 
state-of-the art models and methods. 

Chapter 1-5 This document describes 
the early versions of the 
extreme Mobility Data 
Analytics and Learning 
Services emeralds. 

Chapter 1 puts them into 
context of the project 
goals and architecture, 
whereas Chapter 5 
summarises and declares 
next steps towards v2 (to 
be documented in D4.2).  

Chapters 2-4 document 
the advancements over 
the state-of the art and 
reference the source code 
repositories which include 
readmes with release 
notes and instructions on 
executing the software.  

Tasks    

T4.1 Extreme Scale 
Mobility Data 
Analytics at the 
Edge/Fog/Cloud 
continuum 

The goal of this task is to facilitate the 
implementation of an analytics framework 
that will be deployed in-situ/at the edge. 
Since the main goal of the project is to 
create an urban data- oriented MAaaS 
toolset that can support real-time data-
driven decision making, the existence of a 
framework that can analyse data-streams 
and provide valuable insights fast, that is 
without the need for lengthy data transfers 
from the edge to the cloud and vice-versa, 
is of great importance. Data-privacy is also 
a topic that will be addressed, with the 
framework leveraging data locality to 
enable applications where no piece of 

Chapter 2 Chapter 2 presents the 
emeralds developed in 
T4.1. These Emeralds 
perform state-of-the-art 
analytics operations in the 
Edge/Fog/Cloud 
Computing Continuum. 



  
  

  | Page 
 

 

8  

sensitive data leaves the place from where 
it is harvested. However, the ample 
compute that is offered by the modern 
cloud infrastructure will also be taken 
advantage of, but only when and where 
that is achievable without the privacy-
preserving or the real-time capacity of the 
system. 

T4.2 Active & 
Federated 
Learning over 
Mobility Data 

The goal of this task is to develop ML & AI 
tools that improve mobility data mining 
and extraction of trustworthy information. 
Particularly, pattern & anomaly detection 
methods for distributed spatial timeseries 
and advanced visual analytics & active 
learning prototypes. Existing federated 
machine learning approaches will be 
adapted to deal with distributed 
spatiotemporal timeseries data. Existing 
explainable AI approaches will be 
extended to support spatiotemporal data 
analysis for mobility applications. 
Moreover, existing AML approaches will be 
extended to enable AML for mobility AI 
tasks, such as pattern and anomaly 
detection. To this end, suitable 
spatiotemporal visualization capabilities 
will be developed that enable users to 
determine correct labels for mobility 
applications. 

Chapter 3 Chapter 3 presents the 
emeralds developed in 
T4.2. These emeralds 
implement state-of-the-art 
timeseries modelling 
techniques for mobility 
prediction tasks, including 
explainable and active 
learning techniques. 

T4.3 Mobility AI-
as-a-Service 

This task bridges between the 
developments of WP4 and WP2’s by 
implementing an AI as a Service (AIaaS) 
platform tailored to the requirements of 
mobility use cases. It will follow the 
emerging MLOps paradigm to allow 
creating end-to-end pipelines and 
workflows for the automation and 
industrialisation of ML models, 
guaranteeing reproducibility, transparency 
and trustworthiness as required by the 
emerging “AI Act”. The platform will 
include a catalogue of ML models 
according to the needs of WP5 use cases 
that will be developed in collaboration with 
T4.2 and which will be interoperable with 
the European AI on-demand platform. 
Leveraging the functionalities of the AIaaS 
platform, ML models will be served “As a 
Service” and their performance will be 
continuously monitored to trigger periodic 
re-training (i.e., continual learning) when 
deviations are detected in terms of 
accuracy due to domain shift. Models will 
be also available to be downloaded and 
executed locally as part of T4.1 edge 
analytics framework. 

Chapter 4 Chapter 4 presents the 
Mobility AI as a Service 
(MAIaaS) platform 
developed in T4.3, 
including and breakdown 
per platform component. 
the T4.2 

Table 2 - Matrix of Alignment 
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Executive Summary 

The objective of this deliverable is to present the first version of the “Mobility Data Analytics and 
Learning Services” developed in EMERALDS. These analytics and learning tools and services are 
internally known as “emeralds”, as introduced in previous deliverables, such as D2.1. The emeralds 
releases are provided as software repositories with release notes and instructions on executing the 
developed methods. This report accompanies the emeralds releases, v1. The key aspects covered in 
this report include thorough descriptions of the emeralds and how they advance the state of the art, 
both with respect to the mobility data science field as well as the practical application in the use cases, 
reflected by the scientific and technical KPIs. 
EMERALDS’s vision is to design, develop and create an urban data-oriented Mobility Analytics as a 
Service (MAaaS) toolset, consisting of the proclaimed EMERALDS services, compiled in a proof-of-
concept prototype, capable of exploiting the untapped potential of extreme urban mobility data. The 
toolset will enable the stakeholders of the urban mobility ecosystem to collect and manage ubiquitous 
spatiotemporal data of high-volume, high-velocity and of high-variety, analyse them both in online 
and offline settings, import them to real-time responsive AI/ML algorithms and visualise results in 
interactive dashboards, whilst implementing privacy preservation techniques at all data modalities 
and at all levels of a data workflow architecture. The toolset will offer advanced capabilities in data 
mining of large amounts and varieties of urban mobility data. 
The emeralds developed in WP4 “Extreme Scale Mobility Data Analytics & Learning” include T4.1 
emeralds that perform state-of-the-art analytics jobs in the Computing Continuum (i.e., at the Edge, 
the Fog, and the Cloud), T4.2 emeralds that enable active and federated learning over mobility data, 
and the T4.3 Mobility AI-as-a-Service platform. In total, this deliverable covers eight (8) emeralds, 
three (3) of which are also already leveraging the MAIaaS platform.  
In the process of developing the WP4 emeralds presented in this deliverable, multiple iterations have 
been performed between technical and use case partners to ensure proper business and data 
understanding, as necessary for data science developments according to industry standards (CRISP-
DM). The key dataset insights are therefore included in the corresponding emeralds sections.  
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1 Introduction 

1.1 Purpose and Scope of the Document 

The purpose of D4.1 “Mobility Data Analytics and Learning Services 1st Version” is to introduce the 
software components (referred to as “emeralds”) that are being developed in WP4 “Extreme Scale 
Mobility Data Analytics & Learning”, as listed in Table 3. D4.1 provides a methodological overview, 
functional description of the developed software components, puts them in the context of the state 
of the art, and presents preliminary evaluation results, before laying out the next steps of 
development. The expected TRL of these first versions is around TRL3.  

 

Task / emerald Maturity  Repository Link 

Extreme Scale MDA at the CC (T4.1) 

Probabilistic Trip Chaining1 1st version  Project's Github 

Dropoff/Destination Prediction2 1st version Project's Github 

Monitoring and Forecasting Shared Mobility 
Demand3 

To be reported in D4.2 Under Construction 

Trajectory Data Analysis4 1st version  Project's Github 

Real-Time Extreme Scale Map Matching  1st version  Project's Github 

Active & Federated Learning over Mobility Data (T4.2) 
Traffic State / Flow Forecasting 1st version  Project's Github 

Parking Garage Occupancy Prediction5 1st version Project's Github 

Crowd Density Prediction6 1st version Project's Github 

Active Learning & XAI for Crowd Prediction7 1st version Project's Github 

Active Learning for Risk Category Classification  To be reported in D4.2 Under Construction 

Federated Learning Models for Mobility Data  To be reported in D4.2 Under Construction 

Mobility AI-as-a-Service (T4.3) 
Data Management8 1st version Project's Github 

ML Models Development Framework9 1st version Project's Github 

ML Models Deployment Framework10 1st version Project's Github 

Federated Learning Module 1st version Project's Github 

Table 3: Overview of emeralds and MAIaaS platform components developed in WP4 

The emeralds covered in this deliverable cover different mobility data analytics as a service aspects, 
as illustrated by Figure 1-1.  

• The analytics emeralds address key mobility analysis challenges and datasets typically 
encountered in smart cities, including public transport ticketing data and vehicle trajectory 
data, including floating car data (FCD) 

 
 
1 Previously referred to as “Probabilistic Approach for Trip Chaining” in D2.1 
2 Previously referred to as “Trajectory/Route Forecasting and Origin/Destination Estimation” in D2.1 
3 New emerald, not previously listed in D2.1 
4 Previously referred to as “Trajectory Data / Travel Time Analysis” in D2.1 
5 Previously referred to as “Parking garage occupancy forecasting” in D2.1 
6 Previously referred to as “Crowd density forecasting” in D2.1 
7 Previously referred to as “Active Learning & XAI for crowd/flow forecasting” in D2.1 
8 “Combining Data Ingestion Interfaces” presented in D2.1 and a new “Data Repository”. 
9 Previously referred to as “ML Experimentation Module” and “ML Training and Testing Module” in D2.1 
10 Previously referred to as “ML Models (and Tools) Repo” and “ML Monitoring Tools” in D2.1 

https://github.com/emeralds-horizon/UC3-TripChaining_CrowdDensity
https://github.com/emeralds-horizon/Dropoff-Prediction
https://github.com/emeralds-horizon/trajectools-qgis
https://github.com/emeralds-horizon/WP4_Extreme_Scale_Map_Matching
https://github.com/emeralds-horizon/WP4_Traffic_state_forecasting
https://github.com/emeralds-horizon/analytics-and-learning/tree/main/uc1-parking-model
https://github.com/emeralds-horizon/analytics-and-learning/tree/main/uc1-crowd-model
https://github.com/emeralds-horizon/analytics-and-learning
https://github.com/emeralds-horizon/mlops-platform-dvc-tutorial
https://github.com/emeralds-horizon/mlops-platform-kserve-template
https://github.com/emeralds-horizon/mlops-platform-Docker-images
https://github.com/emeralds-horizon/mlops-platform-tutorial
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• The learning emeralds address essential mobility AI challenges [1] of destination prediction, 
traffic forecasting, and occupancy/crowd prediction, including explainability of model 
predictions.  

• The Mobility AI-as-a-Service Platform (MAIaaS) provides essential infrastructure for the 
development of the analytics and learning emeralds, including interfaces and integrations 
with WP2 and WP3 components, as detailed in the following section. 

Additionally, Figure 1-1 shows the connections to the use cases (UC1-3) and Early Adopter 
Demonstrators (EAD1-2).  

  

Figure 1-1: D4.1 Software components / emeralds and their role in mobility data analytics as a service 

The development of the ML emeralds follows the data science process consisting of iterative steps of 
business and data understanding, followed by data preparation and modelling and evaluation before 
eventual deployment of models, as laid out in the Cross-industry standard process for data mining 
CRISP-DM (Figure 1-2). Therefore, the respective emeralds’ evaluation sections also include results of 
the business and data understanding stages.  

 

Figure 1-2: Process diagram showing the relationship between the different phases of CRISP-DM11 

 
 
11 Image by Kenneth Jensen, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=24930610 

https://commons.wikimedia.org/w/index.php?curid=24930610
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Important note on model selection and evaluation 

One challenge evaluating machine learning solutions for mobility is that the results are often very 

location- (city- or country-) specific [2]. This is the case, since mobility behaviour (and resulting 

mobility patterns) are influenced by many factors, including social and geographic factors that differ 

from region to region. Hence, while one can look at different modelling approaches and different 

results presented in the literature, the available data (its quantity and quality) will be an important 

factor influencing what kind of models can be trained and the complexity of the observed mobility 

behaviour will influence the achievable prediction accuracy. 

The KPIs of the emeralds presented here are a combination of scientific KPIs that aim to advance the 
scientific state of the art, as well as technical KPIs that aim to improve the analytical capabilities of the 
use case stakeholders. An earlier version of these KPIs has been presented in D2.1. In this deliverable, 
the KPIs have been further refined and synchronized with the use cases in WP5. Continued 
collaboration with WP5 will also be essential in the evaluation process of the upcoming 1st Assessment 
Cycle, which is described in the following section.  

1.2 Relation to Work Packages, Deliverables and Activities 

The emeralds presented in this deliverable focus on the Mobility Analytics step of the Mobility Data 
Science Pipeline [3], as shown in Figure 1-3, which aligns with the EMERALDS work package structure 
where WP3 provides Mobility Data Cleaning & Preprocessing, WP5 deals with Real World Applications 
and Data Collection, and WP2 provides the Data Management Infrastructures with Mobility Data 
Privacy being a key topic spanning all work packages.  

 

Figure 1-3: The Mobility Data Science Pipeline12 

The emeralds comply with the EMERALDS reference architecture introduced in D2.1 “Reference 
Architecture” (Figure 1-4) and are validated and demonstrated through real-world data from selected 
representative use cases whose main context is outlined D5.1 “Use Cases Scoping Document”. To 
ingest heterogeneous data types from each tier of the computing continuum, the emeralds reported 
in this deliverable link to WP3/T3.1 emerald “Privacy-Preserving Data Ingestion”. Furthermore, the 
emeralds are designed to support end-to-end pipelines to facilitate the validation and demonstration 
as well as re-usability beyond the project scope.  

 
 
12 Image source: Mokbel et al. (2024) https://arxiv.org/html/2307.05717v4  

https://arxiv.org/html/2307.05717v4
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Figure 1-4: EMERALDS services positioning across Data Pipelines as presented in D2.1 

The status of the emeralds reported in this deliverable is the result of the 1st implementation cycle, as 
shown in Figure 1-5 at M15. Therefore, the results of the 1st integration, 1st assessment cycle, and the 
2nd set of cycles will be presented in the next deliverable D4.2. Throughout all upcoming cycles, the 
collaboration framework established within the project (with technical meetings and workshops 
conducted between technical partners and use case leaders) will be further intensified to enable 
iterative development and targeted innovations. 

 

Figure 1-5: EMERALDS Toolset Implementation Plan as presented in D2.1 
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1.3 Contribution to WP4 and Project Objectives 

This document is the key output of all tasks in WP4 in the first development year (project month 4 to 
15). It contributes to the fulfilment of Project Objective 3 (O3) “Develop mobility data analytics and 
AI/ML tools and services – MAaaS” by developing location-aware analytics aimed at providing fast 
and accurate information along the CC.  

The results of WP4 are part of the EMERALDS toolset, thus directly contributing to the achievement 
of Project Objective 1 (O1) “Design a service-oriented reference architecture of a palette of services 
(‘emeralds’) for extreme scale urban mobility data analytics”. The emeralds selected for 
development within WP4 and presented in the following chapters cover essential mobility data 
analytics and prediction tasks, that are commonly encountered in smart cities, as represented by the 
use case partners.  Table 4 presents the key strengths of WP4 services in dealing with extreme data. 

 Volume Velocity Variety Veracity Visualization  

Extreme Scale MDA at the CC (T4.1) 

Dropoff / 
Destination 
Prediction 

Multiple large 
data streams 

Real-time 
analytics: 

applicable to 
streaming data 

Integration of 
various 

datasets: GPS 
tracks, 

weather, static 
data etc. 

Handling of 
missing data & 

uncertainty 

N/A 

Monitoring and 
Forecasting 
Shared Mobility 
Demand 

tba tba tba tba tba 

Probabilistic Trip 
Chaining  

Large historic 
data volumes 

N/A Integration of 
spatial 

timeseries 
from multiple 

sources 

Handling of 
missing data & 

uncertainty  

N/A 

Trajectory Data 
Analysis 

N/A N/A Support for a 
variety of 
different 

movement 
data formats 

Supports the 
data quality 
assessment 
processes 

Provides VA 
tools for 

movement 
data 

Extreme Scale 
Map Matching  

Large real-time 
streams and 
GBs of static 
street map 

data  

GPS real-time 
feed rate to be 
2k data points 

per second 

Support for 
different street 

map data 
sources 

Handling of 
interruptions / 

holes / and 
invalid data 

N/A 

Active & Federated Learning over Mobility Data (T4.2) 

Traffic State / 
Flow Forecasting 

Large volumes 
of training data 

Real-time 
analytics: 

applicable to 
streaming data 

Integration of 
spatial 

timeseries 
from multiple 

sources 

Handling of 
data quality 

issues 

N/A 

Parking Garage 
Occupancy 
Prediction 

N/A Real-time 
analytics: 

applicable to 
streaming data 

Integration of 
spatial 

timeseries 
from multiple 

sources 

Handling of 
missing data 

N/A 

Crowd Density 
Prediction 

N/A Real-time 
analytics: 

Integration of 
spatial 

timeseries 

Handling of 
missing data & 

uncertainty 

N/A 
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applicable to 
streaming data 

from multiple 
sources 

Active Learning & 
XAI for Crowd 
Prediction 

N/A N/A Integration of 
spatial 

timeseries 
from multiple 

sources 

Enables expert 
input to 
address 

potential data 
errors 

Provides 
visualizations 
for AL & XAI 

Active Learning 
for Risk Category 
Classification  

N/A N/A Integration of 
spatial 

timeseries 
from multiple 

sources 

Enables expert 
input to 
address 

potential data 
errors 

Provides 
visualizations 
for AL & XAI 

Federated 
Learning Models 
for Mobility Data  

N/A Real-time 
analytics: 

applicable to 
streaming data 

Integration of 
spatial 

timeseries 
from multiple 

sources 

Handling of 
missing data & 

uncertainty 

N/A 

Mobility AI-as-a-Service (T4.3) 

Data Management Large volumes Real-time 
analytics: 

applicable to 
streaming data 

N/A N/A N/A 

ML Models 
Development 
Framework 

Large volumes Real-time 
analytics: 

applicable to 
streaming data 

N/A N/A Provides 
development 
environment 

with 
visualization 

support 

ML Models 
Deployment 
(Production) 
Framework 

Large volumes Real-time 
analytics: 

applicable to 
streaming data 

N/A N/A N/A 

Federated 
Learning Module 

Large volumes Real-time 
analytics: 

applicable to 
streaming data 

N/A N/A N/A 

Table 4: Emeralds’ relation to extreme scale / big data Vs 

The results of WP4 also contribute to Project Objective 4 (O4) “Demonstrate and measure the 
efficiencies of the novel Extreme Scale Analytics services through three pilot use cases” by 
demonstrating the EMERALDS toolset’s capabilities in extreme data analytics workflows in urban 
mobility scenarios across Europe. 

1.4 Structure of the Deliverable 

This deliverable is of type OTHER and, therefore, focuses on source code and object code for the 
emeralds developed in WP4. The source code and object code are provided in code repositories (i.e., 
GitHub repositories with well-documented README files- Annex 1). This document accompanies the 
source code and object code as well as provides an overview and the context for the emeralds’ 
development in WP4. This deliverable is structured in three main chapters, each one corresponding 
to the WP4 tasks T4.1-T4.3. Inside each chapter, the developed emeralds are described and evaluated 
in dedicated sections. Finally, the document concludes with the conclusions and next steps, which are 
summarised in Section 5.  
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2 Extreme Scale  obility Data Analytics at the 

Edge/Fog/Cloud continuum 

This chapter presents the developed emeralds that perform state-of-the-art analytics operations at 
the Edge/Fog/Cloud Computing Continuum (CC) as part of the edge analytics framework. Pushing 
some of the computation that takes place when such operations are executed closer to where data is 
collected (in-situ) can significantly improve user experience and provide a more comprehensive value 
proposition overall, including concepts like enhanced user and data privacy (e.g., through data locality 
and data aggregation), improved response times etc. The emeralds reported in this chapter are the 
following: 

1. Probabilistic Trip Chaining: This emerald utilizes public transport data in the form of ticket 
validation records to develop a probabilistic approach for chaining multiple trips taken by 
passengers that have used multiple transport means (for example, multiple buses) in 
sequence. This kind of analytics is essential to turn ticket validation records into reliable public 
transport demand information.  

2. Dropoff / Destination Prediction: This emerald utilizes public transport data in the form of 
ticket validation records to forecast the drop-off stop for each individual passenger. The long-
term goal of this offering is to accurately model the behaviour of public transport users and 
later utilize the model forecasts to assess travel time wasted and evaluate the quality of the 
transport system. This model helps to further improve the public transport demand 
information by filling in gaps. 

3. Trajectory Data Analysis: This emerald offers essential data analytics capabilities for 
trajectory data to enable data understanding and modelling for analytics, as well as AI 
development. Examples of the analytics/processing jobs that are part of this emerald are, i) 
Outlier Detection, ii) Speed/Travel time computation, iii) Trajectory smoothing, iv) 
Visualization and much more. 

4. Real-Time Extreme Scale Map Matching: This emerald implements a map matching offering 
that utilizes floating-car-data (FCD) to effectively estimate speeds on street network 
segments, thus turning the privacy-sensitive data of individual vehicles into anonymized traffic 
speed information.  

The source code or object code of these emeralds can be found in the following repositories: 

Emerald Repositories Publications 

2.1 Probabilistic Trip 
Chaining 

• https://github.com/emeralds-horizon/UC3-
TripChaining_CrowdDensity/tree/main  

 

2.2 Dropoff / 
Destination 
Prediction 

• https://github.com/emeralds-horizon/Dropoff-
Prediction/tree/main  

 

https://github.com/emeralds-horizon/UC3-TripChaining_CrowdDensity/tree/main
https://github.com/emeralds-horizon/UC3-TripChaining_CrowdDensity/tree/main
https://github.com/emeralds-horizon/Dropoff-Prediction/tree/main
https://github.com/emeralds-horizon/Dropoff-Prediction/tree/main
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2.3 Trajectory Data 
Analysis  

• https://github.com/emeralds-horizon/trajectools-
qgis  

• https://github.com/emeralds-horizon/UC3-
traveltime-analytics  

• https://github.com/emeralds-horizon/Cartoblog  

• https://github.com/emeralds-horizon/analytics-
and-learning/tree/main/uc3-travel-time-analysis 

13, 14, 15, 16 

2.4 Real-Time 
Extreme Scale Map 
Matching 

• https://github.com/emeralds-
horizon/WP4_Extreme_Scale_Map_Matching  

 

2.1 Probabilistic  rip Chaining 

This emerald utilizes public transport data in the form of ticket validation records to develop a 
probabilistic approach for chaining multiple trips taken by a single user. This way, this emerald 
provides a more robust way of computing drop-off stops of users that have used multiple transport 
means (for example, multiple buses) in sequence. 

This emerald has different algorithmic components determining the entry stops, the intermediate exit 
stops and the final exit stops of each trip as each of these three case requires a different approach. 
The component determining the final exit stops performs engages from a similar principal as T4.1 
emerald “Dropoff / Destination Prediction” but it uses a probabilistic rather than an ML approach. The 
probabilistic approach enables the inference of public transport passenger behaviour using expert 
domain knowledge (for example, by mirroring trips, as explained below). The remaining gaps in the 
dataset can then be filled by the ML approach or with the use of WP3 data imputation tools.  

2.1.1 Brief Survey of the State-of-the-Art 
Trip chaining is tackled with a variety of approaches in previous studies, also providing loose 

definitions on the notion of trip chains. This can be identified in the cases of aggregated trip chains, 

individuals trip chains, multi-mode chains and more. Herein, we adopt the definition [4], which 

examines the consecutive trips individuals make within a defined time period across different means 

of transport. 

The works around trip chaining revolve around understanding individual travel patterns [5] in its 

different dimensions, for example how does trip chaining habits vary when considering different age 

groups or gender [6], different transportation modes or different periods (such as pre-pandemic vs 

post-pandemic) [7]. Many different modelling approaches have been used to tackle this problem. To 

name a few: optimization techniques [8], multivariate analysis [9], models from utility theory [10], k-

means, SVM, and other ML algorithms [11].  

One of the difficulties of trip chaining is that the results of each work are hard to generalize as they 

are often very country- (or even city-) specific. For instance, Schneider et al. [12] assess how much 

 
 
13 https://anitagraser.com/2024/01/12/trajectools-v2-in-the-works/  
14  raser & Dragaschnig (under review) “Towards Low and  o-Code Solutions for Movement Data Analytics” submitted to 
MDM2024. 
15 https://carto.com/blog/analyzing-mobility-hotspots-with-movingpandas  
16 https://anitagraser.com/2023/11/28/analyzing-mobility-hotspots-with-movingpandas-carto/  

https://github.com/emeralds-horizon/trajectools-qgis
https://github.com/emeralds-horizon/trajectools-qgis
https://github.com/emeralds-horizon/UC3-traveltime-analytics
https://github.com/emeralds-horizon/UC3-traveltime-analytics
https://github.com/emeralds-horizon/Cartoblog
https://github.com/emeralds-horizon/analytics-and-learning/tree/main/uc3-travel-time-analysis
https://github.com/emeralds-horizon/analytics-and-learning/tree/main/uc3-travel-time-analysis
https://github.com/emeralds-horizon/WP4_Extreme_Scale_Map_Matching
https://github.com/emeralds-horizon/WP4_Extreme_Scale_Map_Matching
https://anitagraser.com/2024/01/12/trajectools-v2-in-the-works/
https://carto.com/blog/analyzing-mobility-hotspots-with-movingpandas
https://anitagraser.com/2023/11/28/analyzing-mobility-hotspots-with-movingpandas-carto/


  
  

  | Page 
 

 

18  

detour on bicycles are people willing to do within a chained trip. While these results have a direct 

impact on improving the transport network, they can only be applied to the city the data came from, 

in this case Delft. And this is because, as also mentioned in Schneider et al.’s paper, the results strongly 

differ depending on parameters that are city-specific. Similar examples can be found in Hensher & 

Reyes [13], where it is assessed if trip chaining is a barrier to public transport use, but again, its result 

concern Australia, and Lunke & Oystein [14], where the study explores how various factors influence 

the choice between public transport and car on daily trip chains for Oslo. Hence, while one can look 

at different modelling approaches and different results presented in the literature, the available data 

will usually be the guide of what can be deduced and how. 

2.1.2 Overview and Description 
An inherent difficulty in the works mentioned in the state of art is whether they are able to link and 
process relevant data sources to create a complete dataset. This is precisely the goal of this emerald: 
starting with the ticket validation files, use a series of algorithms and probabilistic approaches to 
create a complete dataset of chained trips. 

This emerald introduces a new approach by estimating entry-exit combinations for a larger number of 

trips using a combination of probabilistic methods, new distance metrics calculations and algorithm 

optimization. The tool is validated with datasets originating from UC3 (T5.4, D1.4) and aligns with the 

objectives and functionalities described in D5.1.  

The emerald’s output will be used as an input by the “Crowd Density Prediction” emerald.  amely, 

the resulting dataset of chained trips will be used to predict the number of people by summing the 

number of validations per stop, per segment or per any other route-related variable. Crowd prediction 

will also take advantage of the data enrichment provided by emerald “Sensor Data Fusion”. It will start 

as soon ‘Sensor Data Fusion’ can be applied to UC3 data and the chained trip dataset can be enriched. 

To facilitate users in replicating the models’ results, this component is offered as a set of  upyter 

notebooks which can be used to create a validation file where missing entry and intermediate stops 

have been computed. More precisely: 

• _A_DataPrep is the data preparation file. It creates Validation, GTFS and Vehicle events files 

by connecting different datasets and calculating new needed variables (for example new 

codes or clarified information related to events, validations, vehicles, schedules, or routes). 

These files are the base of subsequent analysis. 

• _B_EntryInterStops_Euclidian uses the datasets created in step A and calculates the entry 

and intermediate stops for the validation data dated 25.09.2018 using Euclidian distance 

(done) 

• _B_EntryInterStops_Harvesine uses the datasets created in step A and calculates the entry 

and intermediate stops for the validation data dated 25.09.2019 using the Haversine distance 

which is more precise than Euclidian distance as it takes into account the curvature of Earth’s 

surfaces (done) 

• _B_EntryInterStops_Network uses the datasets created in step A and calculates the entry and 

intermediate stops for the validation data dated 25.09.2019 using Network distance (work in 

progress) 

The first step of the Trip Chaining algorithm is to determine the validation coordinates (col “val_coord” 
in blue) by finding the closest (in terms of time) “Door opens” event to the validation time (col “Time” 
in green) and extracting the corresponding coordinates of the event. Using the validation coordinates 
and the route information, the entry stop is then determined as the closest stop to the validation 
coordinates. The entry stop_id together with all entry-related information can be seen in blue.  
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Then, the second part of the algorithm determines the intermediate exit stop coordinates. It does so 
by looking at the route of the next entry stop and finding the stop with is closest to the entry stop. All 
intermediate exit-stop related information is shown in purple. 

The resulting file contains all the stops of the trip except for the last exit stop (see missing datapoints 
of the last row in purple). As already mentioned, the missing final exit stop of this chained trip will be 
determined either probabilistically or using emerald “Dropoff / Destination Prediction”. 

2.1.3 Preliminary Evaluation 
The incorporation of this emerald in the data workflow of an end-user bears the potential to improve 
trip chaining in identifying more entry, intermediate, and exit stops. Currently >50MB are used to 
validate the existing algorithms’ performance. Its evaluation will be further reported in D5.6, where 
the tool will be integrated in the process of deriving public transport insights with additional use case 
data resources.  

The following table summarizes all KPIs relevant to this emerald, including KPIs previously presented 
in D2.1 as well as two additional KPIs on percent point improvements for entry and exit stops. The 
achieved values will be determined in the 1st assessment cycle, after the ongoing validation of the 
model results has been completed, as detailed in the next steps section.  

Description Baseline 
Value 

Target 
Value 

Method of 
Measurement 

Achieved Value 

Successful identification of 
complete chained trips over 
current algorithm.17 

0 Over 
55% 

Comparison with result 
on ground truth dataset 

Tbd in the 1st 
assessment cycle 

Performance metrics, 
Ingestion throughput and 
input data size. 

- - To be defined Tbd in the 1st 
assessment cycle 

Percent point improvement 
over current algorithm’s entry 
stops estimation percentage 
rates. 

60 Over 

65% 

Comparison with result 
on ground truth dataset 

Tbd in the 1st 
assessment cycle 

Percent point improvement 
over current algorithm’s exit 
stops estimation percentage 
rates. 

40 Over 

45% 

Comparison with result 
on ground truth dataset 

Tbd in the 1st 
assessment cycle 

Table 5: Probabilistic Trip Chaining KPIs 

2.1.4 Next Steps 
In the ongoing 1st integration cycle, we will complete our validation with respect to entry and 
intermediate stops and crosscheck the results with existing algorithms from UC3 partners. These 
results will be used as training data for T4.1 emerald “Dropoff / Destination Prediction”. In the 
following 1st assessment cycle, we will assess the KPIs listed in Table 5.  

In the 2nd implementation cycle, the exit stops will be added (potentially using results of emerald 
“Dropoff / Destination Prediction”). The addition of exit stops will allow us to have the entire trip 
chaining information and produce a complete Validation file. This file will be enriched by the T3.3 
emerald “Sensor Data Fusion” and used as an input for the T4.2 emerald “Crowd Density Prediction”. 

 
 
17 Previously referred to as „Trip Chaining accuracy” in D2.1 
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2.2 Dropoff / Destination Prediction 

This emerald utilizes public transport data in the form of ticket validation records to forecast the 
drop-off stop for each individual passenger. The long-term goal of this offering is to accurately 
model the behaviour of public transport users and later utilize the model forecasts to assess travel 
time wasted and evaluate the quality of the transport system. 

Public transport (PT) is the cornerstone of any modern city. Large metropolitan areas with millions of 
inhabitants need to provide effective and ample public transport means to increase the living 
standards of the citizens and promote economic growth. Consequently, predicting the exit stops of 
public transport users is important for several reasons. To begin with, predicting the destination of 
passengers can help optimize the allocation of resources and improve the service quality of public 
transport systems, with the operators adjusting the supply of vehicles, seats, and staff to match the 
passenger flow and reduce waiting time, crowding, and operational cost. Moreover, it can help 
support the planning and management of urban transportation and land use, since planners and 
managers can analyse the travel patterns and preferences of users and design the transportation 
network accordingly. This can promote the integration of public transportation and urban 
development, and achieve the goals of sustainability, equity, and livability. As the literature shows, 
Machine Learning (ML) and Artificial Intelligence (AI) have proven to be the go-to concepts for 
forecasting tasks when historical data with correlated attributes can be used. Lastly, it is important to 
note that the usage of CC devices that are classified as Edge/Fog is an important part of this Emerald 
because such devices enable scalability, cost-effectiveness and easy integration. 

2.2.1 Brief Survey of the State-of-the-Art 
Costa et al. [15] work on predicting the destination of passengers in urban public transport systems 
using smart card data. The authors apply three different models (Top-K, NB, and J48) to different 
groups of travellers based on their age or economic conditions and compare their accuracy and 
performance. The paper uses data from Porto, Portugal, as a case study, and analyses more than 90 
million trips recorded from two main transport providers in the city. The paper concludes that it is 
possible to predict the journey’s destination based on the past with an average accuracy rate that 
varies from 20% to 65%, depending on the model and the group of travellers. 

Zuniga et al. [16] propose a new methodology to estimate, update, and forecast the origin-destination 
(OD) matrices of passengers on a public transport corridor. The authors use historical data and real-
time information from intelligent transportation systems, such as the fare system, to infer the exit 
stops of passengers. The methodology consists of two parts: an estimation algorithm based on a 
Bayesian approach and a prediction algorithm based on artificial neural networks. The authors test 
the methodology using data from the Metro of Valparaiso corridor in Chile and compare it with a static 
approach. The results show that the proposed methodology can improve the accuracy and 
performance of OD matrix estimation and prediction and support the optimization and control of 
public transport systems. 

Zhao et al. [17] proposes a novel framework to predict the destination of passengers on urban public 
transport systems using smart card data. The authors argue that the destination of a passenger is 
influenced by multiple factors, such as the user’s own travel preference, the crowd’s travel preference, 
and the region’s characteristics under certain spatiotemporal contexts. The framework, called MDLF, 
consists of two main components: a feature extraction component that extracts features from 
multiple and complementary views, and a prediction component that uses a recurrent neural network 
to calculate a moving trend score for each possible destination. The authors evaluate the framework 
using two real-world datasets (from Shenzhen & Shanghai) and compare it with existing Bayesian, 
Ensembling and Recurrent Neural Network based methods. The results show that MDLF can achieve 
higher accuracy and performance than the competitors, especially for occasional trips with strong 
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randomness and uncertainty. The paper contributes to the field of destination prediction by providing 
a data-driven and multi-view-based approach that can handle the complexity and diversity of urban 
public transport systems. 

Zhang et al. [18] present a novel framework for predicting an individual’s next trip in public 
transportation systems, given their historical trip sequences and the time when the prediction is 
made. The paper addresses a problem that has not been well studied in the literature and is important 
for applications such as proactive travel recommendations and mobility management. The paper 
introduces a deep learning model called DeepTrip, which uses a trip sequence-to-sequence structure 
with an attention mechanism to capture the complex spatiotemporal and historical dependencies of 
individual mobility. The paper also develops a new method for representing continuous travel 
attributes, such as trip time and duration, using an overlapped embedding model that preserves both 
the categorical and numerical features of the data. The paper evaluates the performance of DeepTrip 
using trip data in urban rails and shows that it outperforms existing models by a significant margin. 
The paper also analyses the impact of different factors, such as prediction time, travel status, and data 
representation, on the prediction accuracy. 

2.2.2 Overview and Description 
We tackle the problem of predicting the drop-off stop of a public transport passenger’s trip. In such a 
setting, a wide array of data points can be made available depending on the ticketing platform that is 
put in place. Smart cards are a prime example of such a platform, supplying us with valuable 
information regarding the entry stop of the passenger, the time of ticket validation, the route etc.  

This emerald utilizes ticket validation data from the city of Riga, supplied to us by Riga Traffic Company 
(Rigas Satiksme) assisted by our partner Grupa93 (G93) through EMERALDS use case #3 (UC3). The 
data studied in this reporting period (M4-M15) include validations from two individual days, the 7th 
and the 11th of September 2021. Table 6 presents a brief set of metrics regarding the dataset, with 
Figure 2-1 presenting the distribution of trips per time of day.  

Riga Traffic Company – Ticket Validation Data (7 & 11 Sept 21) 

Number of validations: 161097 Number of passengers (individual smart cards): 87835 

Number of routes: 73 Number of individual entry/exit stops: 719/712 

Table 6: Statistics of ticket validation datasets 

 

Figure 2-1: Distribution of Trips per hour of day (left) & Heatmap of entry stops (right) 

Figure 2-1 (left) illustrates a clear picture with respect to the temporal trend that is followed on a daily 
basis, with ticket validations spiking when most people commute to and from work (around 7am and 
4pm, respectively). Figure 2-1 (right) shows that the center of Riga is by far the most populated area 
where people validate tickets.  
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Based on the aforementioned analysis, we put in place a set of preprocessing steps that need to be 
executed for the dataset to be ready to be fed to to our ML methods. These steps are: 

1) Feature Encoding: Our dataset contains several useful features about each ticket validation. These 
features include the route ID, the validated ticket ID, the vehicle ID, etc. To enforce uniformity, we 
encode all these features with values between 0 and No. of classes-1. The following is an example of 
this transformation, where stops with ID “1”, “2” and “ ” as swapped with a new encoded uni ue ID  
(1,2,2,6) -> (0,0,1,2). 

2) Per Route Stop Encoding: In its initial state, the column named “exit_stop_id” contains the uni ue 
identifier of the exit stop of each validated ticket. That unique identifier is put in place to differentiate 
between all the available stops regardless of route. Essentially, if that column was left as is, the 
resulting model could predict that a passenger would exit at a stop that is not part of the route of the 
specified bus line, affecting the overall result. To avoid this, we swap to a per route unique identifier 
for each stop, essentially forcing the implemented model to only predict stops that are part of the 
specified route. To achieve this, we group all records based on the “route_id” column and then apply 
the same encoding routine as described in step 1. 

3) Temporal Features: In this step, we use the supplied timestamp of each validation to extract the 
following: i) hour of day (0-23), ii) minute of hour (0-59) and iii) second of minute (0-59). 

 

 

Figure 2-2: Distribution of Trips per Exit Stop ID 

4) Class Balancing: This is the final and one of the most important steps of our preprocessing pipeline. 

As illustrated in Figure 2-2, some exit stops appear much more frequently than others, with extreme 

examples being the most frequent exit stop that appears more than 12000 times while 59 other stops 

appear just once. This skewedness can create a lot of problems for our model and thus, needs to be 

addressed. Our solution is a commonly used one that entails removing all the trips/validations that 

correspond to exit stop IDs that appear very infrequently (based on a threshold). However, given that 

the data sample that is available is not large (161K trips in 2 days) we need to be conservative with 

the threshold value we select, otherwise we risk discarding a large percentage of the overall dataset 

and possibly compromising our proposed model. That is why we define this value as a percentage, 

discarding the exit stops that appear less than X% of the number of appearances of the most frequent 

stop.  

The full list of features is listed in Table 7. 
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Feature Name Description 

GarNr Unique ID of bus 

Route Unique ID of route 

minute Minute of hour (0-59) 

hour Hour of Day (0-23) 

second Second of Hour (0-59) 

ValidTolonaID Unique ID of ticket 

TrafficCompanyCode Unique ID of the traffic company of the bus/route 

Stop_id Unique ID of entry stop 

Stop_lon, Stop_lat Coordinates of entry stop 

Exit_stop_id Unique ID of exit stop 

Table 7: Features used in Dropoff Prediction 

The source code used in this emerald is hosted in the EMERALDS GitHub repository. Python3 is the 
programming language used, with packages like Pandas and Numpy providing all the needed 
functionality for the preprocessing.  

2.2.3 Preliminary Evaluation 
In our study, we evaluate 3 alternative ML methods/models, as follows: 

1. Random Forest classifier (RF), an ML algorithm that combines the output of multiple decision 
trees to reach a single result, using bagging and feature randomness to reduce overfitting and 

bias [19]. 

2. XGBoost classifier (XGB), an ML algorithm that uses gradient boosting to train an ensemble 

of decision trees that can classify data into different classes [20]. 

3. LightGBM classifier (GBM), an ML algorithm that uses gradient boosting to train an ensemble 
of decision trees that can classify data into different classes, using novel techniques such as 
Gradient-based One Side Sampling and Exclusive Feature Bundling to improve the efficiency 

and accuracy of the model [21]. 

These ML methods have been selected because they all employ ensembling, essentially training 
multiple classifiers (hundreds) and combining them to create a more robust and comprehensive 
overall model. Additionally, these models have been proven to be very resource-efficient and data-
efficient, meaning that they can be highly effective even if input data and computation resources are 
limited. This nicely fits our use case, since obtaining large amounts of historical ticket validation data 
is hard for most European cities while the available infrastructure in most use cases is rarely comprised 
by high-power GPU clusters that would be needed to efficiently train much larger Deep Learning 
models for example.  

It is also important to note that this emerald also contributes to the overall project KPI of performing 
processing and analytics in situ, as its main goal is to be efficient enough to be applicable to low-
resource environments. 

The models are implemented, optimized, and evaluated using Python3. For RF, the scikit-learn 
implementation is used whereas native packages that carry the respective name are used for XGBoost 
and LightGBM. Regarding hardware, 3 types of compute devices are used in this evaluation, 1) an 
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Apple M2 Max SoC with a max TDP of around 60 Watts, 2) an Intel i7 based NUC with a max TDP of 
around 40 Watts and 3) a Raspberry Pi 4 with 8GB of RAM and a max TDP of less than 10 Watts. All of 
these devices can are classified as Edge/Fog, because of their energy consumption being less than 100 
Watts, with the Raspberry Pi being am Edge-first device with minimal energy consumption and vert 
low cost. 

Table 8 presents a set of metrics for each Device-Model pair for a fixed Class Balancing Percentage 
(5%). Additionally, all models have been trained and evaluated under an 80/20 train/test protocol. 
The models have been tuned using exhaustive grid search, with their best combinations being the 
ones shown here. The following metrics have been selected because they directly address KPIs that 
were included in D2.1 and are essential for this Task/Work Package: 

1) Fit time: The time needed for each model to be trained. Since the size of the training dataset 
is greatly affected by both the class balancing factor and the train split percentage (80%), we 
note that the time presented here corresponds to a training dataset size of approximately 
75000 records.  

2) Inference time: The time needed for each model to provide a prediction for a single ticket 
validation record.  

3) Model Size: The approximate size of each model in memory. 

4) Accuracy: The average accuracy of each model (the percentage of exit stops that the model 
has accurately predicted over its test set). 

Device type Device Model Fit time [s] Inf. Time / 
Record [μs] 

Model Size 
[MB] 

Accuracy % 

Edge / fog M2 Max XGB 11.67 13.02 20.80 30.1 

GBM 35.10 18.88 18.28 30.3 

RF 6.73 29.96 4582.0 32.4 

i7 NUC XGB 15.12 17.41 20.78 29.4 

GBM 8.11 32.76 18.28 29.8 

RF 13.09 81.76 4575.5 32.5 

Edge RPi4 8GB XGB 158.98 114.43 20.83 29.8 

GBM 61.67 621.14 18.29 30.3 

RF Out of Memory 

Table 8: Dropoff / Destination prediction evaluation results 

The key takeaways (in order of importance) of Table 8 are: 

1) The Random Forest model is orders of magnitude larger than XGBoost and LightGBM in terms 
of size in memory. This introduces problems when the underlying infrastructure cannot 
support its size, which is what happened with Raspberry Pi 4. Even though the device we used 
includes 8 GB of RAM, with the inflated model and the respective data not fitting into its 
memory, it caused a crash. Hence, there are no performance figures for RF in RPi. 

2) In all cases, accuracy hovers around 30% which has to be interpreted in the context of multi-
label prediction, meaning that we successfully predict the exit stop 3 out of 10 times, keeping 
in mind that we have to pick the correct exit stop out of 10s of available stops per route (37 
in the worst case scenario). While RF is better at 32.5%, that <10% improvement comes at the 
cost of size, as previously mentioned. 
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3) While both M2 Max and i7 NUC provide excellent results in terms of performance in fitting 
and inference given their computational capabilities and cost, the very energy efficient and 
cheap Raspberry Pi 4 is also highly capable, being able to output approximately 9,000 
predictions per second using the XGB model. This means that even such a low spec device can 
support real-time forecasting for large-scale workloads. 

4) GBM is faster than XGB at fitting, while XGB is faster than GBM at inference, except for the 
M2 Max where the underlying codebase is not optimized for ARM.  

 

Figure 2-3: Accuracy of Models for different class balancing threshold values 

Figure 2-3 shows the effect that the two variables, M and N, regarding class balancing has to the 
accuracy of each model. For Larger values, all models produce higher quality results, something that 
is to be expected since the resulting dataset becomes more homogeneous as this value increases.  

The following table summarizes the KPIs relevant to this emerald. The “Real time forecasting”  PI 
previously described in D2.1 has been further refined to measure the performance with respect to fit 
and inference times. The achieved values will be determined in the 1st assessment cycle, after the 
baseline values have been established, as detailed in the next steps section. 

Description Baseline 
Value 

Target Value Method of 
Measurement 

Achieved Value 

Prediction 
accuracy/ 
Performance 

SotA 20% speed up with 
the same or better 

accuracy 

Error metrics / 
Fit & inference times 

N/A 

Number of 
object/s that 
forecasting 
has been 
applied to 

N/A 10,000 objects per 
run 

Automated tracking and 
logging of forecasting 

applications 

6,000 objects in 
single run 

Table 9: Dropoff / Destination prediction KPIs 

2.2.4 Next Steps 
During the ongoing 1st integration and the 1st assessment cycle that will follow it, we will focus on two 
different aspects: 

1. The first one is the comparison with State-of-the-Art. Due to our methodology being tailored 
for the Edge/CC, it is not as straightforward identifying competitors with a similar focus. 



  
  

  | Page 
 

 

26  

However, we plan to evaluate our offerings with respect to overall SotA in destination 
prediction and showcase the efficiency and quality of our approach while considering metrics 
like size of mode, inference times, etc.  

2. The second one is related to the experimentation with large datasets. To evaluate our 
approach more effectively, we need to incorporate larger datasets that span multiple days, 
months etc. This way, our methodology will be tested in a more extensive real-world scenario 
that allows for more detailed training that will in turn create more comprehensive and 
complete models.  

During the 2nd implementation, integration and assessment cycle, new features will be engineered 
and added when such datasets are available using external data sources like weather or event 
information etc. (exploiting the respective emeralds developed inWP3).  

2.3  rajectory Data Analysis 

This emerald offers essential data analytics capabilities for trajectory data to enable data 
understanding and modelling for analytics as well as AI development. Examples of the 
analytics/processing jobs that are part of this emerald are i) Outlier Detection, ii) Speed/Travel time 
computation, iii) Trajectory smoothing, iv) Visualization and much more. 

These emerald leverages and contributes to one of the leading open-source Python libraries for 
trajectory data analytics: MovingPandas18 which represents a background asset from partners’ 
previous works. MovingPandas focuses on rapid prototyping, data exploration, and extreme flexibility, 
providing flexible interoperability with a large variety of spatial data formats. 

2.3.1 Brief Survey of the State-of-the-Art 
In recent years, multiple research groups have been working on scientific software libraries for 
movement data analytics in Python [22,23,24], R [25], and other languages [26]. However, these 
libraries are still rather fragmented (no single library covers all use cases) and their usage requires 
significant programming skills. This makes them difficult to learn and limits their use, particularly in 
interdisciplinary settings. Furthermore, the visualization capabilities of these libraries are limited [27] 
which presents a further challenge since the mobility and “transportation domain is characterized by 
both complex data and complex problems, which calls for visual analytics approaches” [28]. 

Geographic information systems (GIS) provide strong capabilities for analysing and visualizing spatial 
data and are therefore often used to work with movement data and related geographic context data 
in the mobility and transport domain. GIS-based no-code solutions such as the ArcGIS Model Builder19, 
the CARTO Workflow design tool20 or the QGIS Model Designer21 are popular ways to create 
reproducible workflows for spatial data analysis, for example for street network quality evaluation 
[29], seismic microzonation analysis [30] or landslide prediction [31]. However, so far, these no-code 
solutions do not extend to spatiotemporal movement data. Other widely accessible visual analytics 
systems' capabilities are also very limited with respect to spatiotemporal data. Therefore, to achieve 
“wider and better understanding of the environmental, economic, and societal processes, their 
interrelations, and effects”, “researchers should not only strive for advancing the research but also 
take the responsibility for transferring the operational knowledge to practitioners and casual 
analysts.” [32] 

 
 
18 https://movingpandas.org  
19 https://pro.arcgis.com/en/pro-app/latest/help/analysis/geoprocessing/modelbuilder/what-is-modelbuilder-.htm  
20 https://carto.com/workflows  
21 https://docs.qgis.org/3.28/en/docs/user_manual/processing/modeler.html  

https://movingpandas.org/
https://pro.arcgis.com/en/pro-app/latest/help/analysis/geoprocessing/modelbuilder/what-is-modelbuilder-.htm
https://carto.com/workflows
https://docs.qgis.org/3.28/en/docs/user_manual/processing/modeler.html
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The integration of movement data analysis libraries into GIS-based no-code solutions is hindered by a 
mismatch between movement data models for trajectories and classic GIS data models following the 
OGC Simple Features standard [33]. Simple Features defines point, line, and polygon features that 
combine geometry and arbitrary attributes, but the temporal dimension is not standardized. Mobility 
data specific standards, such as OGC Moving Features [34], have not seen wide adoption yet [35]. 

2.3.2 Overview and Description 
The following steps have been taken to support the needs of the UCs and bring trajectory-specific 
analytics capabilities to the EADs: 

• Development of a novel rapid prototyping / no-code solution for trajectory data analysis to 
provide transport analysist with a no-code environment for prototyping and to facilitate co-
creation/co-production between data scientists and domain experts. This solution, called 
“ rajectools”, is being realized as a plugin for the open-source geographic information 
system QGIS (Figure 2-5) which brings MovingPandas functionality to the QGIS Processing 
Toolbox and Model Designer (as shown in Figure 2-5). The development of this plugin has 
been started with a focus on the algorithms needed for UC3 and further algorithms will be 
added throughout the project.  

• The Carto Platform (EAD2) provides a no-code workflow design tool similar to the QGIS Model 
designer. Preliminary investigations into integration opportunities with Carto have however 
revealed significant engineering challenges, including the fact that Python libraries (such as 
MovingPandas) cannot be used directly in the workflow design tool. However, a 
demonstration of trajectory analysis with MovingPandas and hotspot analysis and 
visualization in Carto has been developed in a Carto data science notebook22. 

• Development of a trajectory data analytics-ready environment for the MLOps platform. This 
novel trajectory analysis environment has already been used to develop trajectory analysis 
notebooks for data understanding and public transport travel time analysis in UC3 (Figure 2-4). 
This environment provides the following features and will continue to be refined throughout 
the project: 

o Trajectory analytics: travel time and speed calculation, trajectory generalization, 
outlier detection, stop detection, trajectory splitting, overlay operations (using the 
open-source MovingPandas library)  

o Public transport schedule analytics: routes, travel times and speeds (using the open-
source gtfs_functions23 library) 

o Static and interactive trajectory visualizations for notebook environments and data 
apps (as shown in Figure 2-4) 

2.3.3 Preliminary Evaluation 

Individual algorithms of the trajectory analysis toolbox (in MovingPandas and/or Trajectools) can be 
evaluated with regards to their performance in terms of execution time, as previously reported in 
D2.1. In this regard, we can report the following improvements: 

• Performance measurement of the trajectory cleaning: Where the previous code took 7.5 
minutes for 100 trajectories (of the Porto Taxi dataset from Kaggle), it now takes only 3.5 

 
 
22 https://docs.carto.com/data-and-analysis/carto-+-python  
23 https://github.com/Bondify/gtfs_functions  

https://docs.carto.com/data-and-analysis/carto-+-python
https://github.com/Bondify/gtfs_functions
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seconds. And 34k trajectories can be processed in 16 minutes. The new OutlierCleaner has 
been implemented in: https://github.com/movingpandas/movingpandas/issues/333. 

With regards to usability improvements and time from first analysis idea to first results, we can 
report the following improvements: 

• The trajectory / travel time analysis for public transport trajectories which used to require 
writing of custom Python code is now feasible in the novel no-code environment. For example, 
Figure 2-4 shows Interactive trajectory data visualization in a Jupyter notebook, consisting of 
a spatial / map view and a plot comparing observed public transport speeds (computed from 
trajectories) and scheduled speeds (based on the public transport schedule GTFS) while Figure 
2-5 shows the analysis workflow model implemented in the no-code platform.  

 

Figure 2-4: Trajectory data and travel time analysis results in a Jupyter notebook 

 

Figure 2-5: Screenshot of the analysis model under development for UC3 using Trajectools algorithms. 

https://github.com/movingpandas/movingpandas/issues/333
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The following table summarizes the KPIs relevant to this emerald. They have been revised from the 
KPIs presented in D2.1 to better represent the improvement in analytical capabilities and to 
synchronize with the use cases in WP5. The first KPI has already been successfully achieved. The 
achieved value for the second KPI will be determined in the 1st assessment cycle, as detailed in the 
next steps section. 

Description Baseline 
Value 

Target 
Value 

Method of 
Measurement 

Achieved Value 

Interoperable 
analytics tool 

0 >= 2 Integration in multiple 
frameworks 

2 (MLOps platform 
& QGIS plugin) 

Share of public 
transport network 
(segments) analysed 

0 20% Application of the tool to 
UC3 PT network 

Tbd in the 1st 
assessment cycle 

Table 10: Trajectory Data Analysis KPIs 

2.3.4 Next Steps 
The conceptual work for no-code solutions for mobility data analysis developed in this emerald as well 
as the Trajectools plugin implemented in QGIS Processing can serve as a prototype for how to add 
mobility support in other GIS-based no-code environments, such as Carto’s workflow designer.  

In the ongoing 1st integration and the 1st assessment cycle that will follow, we will apply the tool to 
analyse the UC3 PT network.  

In the 2nd implementation cycle, will focus on the following aspects: 

1. More integration work is ongoing to achieve feature parity between the no-code solution 
(Trajectools) and the underlying movement analysis library (MovingPandas) by adding 
trajectory cleaning, resampling, smoothing, and aggregation.  

2. Simultaneously, feedback from use case partners who use Trajectools may lead to the 
development of new algorithms for MovingPandas. 

2.4 Real- ime Extreme Scale  ap  atching 

This emerald implements a map matching offering that utilizes floating-car-data (FCD) to effectively 
estimate speeds on street network segments, thus turning the privacy-sensitive data of individual 
vehicles into anonymized traffic speed information.  

Research interest in traffic state estimation using Floating Car Data (FCD) has surged, driven by the 
growing availability of vehicle trajectory data. This surge can be attributed to the proliferation of GPS-
equipped vehicles and fleets across diverse sectors, such as taxi services and public transportation, 
rental companies. Through the process of map-matching, raw GPS data (Figure 2-6) from vehicle 
trajectories is linked to specific segments within the road network. This linkage facilitates the 
estimation of key traffic parameters such as speed, travel time, and congestion levels along designated 
road segments. 
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Figure 2-6: Raw FCD data 

2.4.1 Brief Survey of the State-of-the-Art 
Many academic studies focused on the topic of map matching, including Zhao et al. [36] and Altintasi 
et al. [37]. The most popular SotA approaches build on the concept of Hidden-Markov-Models, as 
discussed in detail in the SotA review of the WP3 “Extreme Scale Map Matching” emerald presented 
in D3.1. 

This emerald distinguishes itself from the WP3 “Extreme Scale Map Matching” emerald by its focus on 
effective real-time and extreme scale street network segment speed estimation rather than highly 
accurate path reconstruction for individual moving object trajectories. 

The most notable open-source map-matching tools are: 

1. Valhalla: A flexible routing engine with map matching capabilities 
o valhalla.github.io 

2. Open Source Routing Machine (OSRM): High-performance routing engine for shortest paths 
in road networks 

o Project OSRM on GitHub 
3. GraphHopper: Route planning library and server using OpenStreetMap data 

o graphhopper/map-matching at master · graphhopper/graphhopper · GitHub 
4. Barefoot: Java library for real-time map matching with OpenStreetMap 

o Barefoot GitHub 
5. pgMapMatch: Python library using PostgreSQL PostGIS extension 

o GitHub - amillb/pgMapMatch: map-matching of GPS traces 
 
The limits of the above tools are mainly related to: 

• Lack of capability to read generic street network data standards because they are based on 
OpenStreetMap. 

• Performance and scalability when dealing with big data (e.g., high number of single GPS 
points coming from connected vehicles). 

https://valhalla.github.io/
https://github.com/Project-OSRM/osrm-backend
https://github.com/graphhopper/graphhopper/tree/master/map-matching
https://github.com/bmwcarit/barefoot
https://github.com/amillb/pgMapMatch
https://github.com/amillb/pgMapMatch
https://github.com/amillb/pgMapMatch
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2.4.2 Overview and Description 
This emerald is capable of processing raw FCD data with the moving position of vehicles on public 
roads and providing as an output the speeds on the streets.  

The emerald has a real time, streaming, architecture, using queues to decouple data flows, so that it 

will be feasible to scale horizontally the processing in the final version. The stream takes as input the 

raw FCD data, partitioned based on the device ID, and for each device ID, a sanity check is performed.  

 

Figure 2-7: Example of a single Device ID raw FCD 

The FCD points are then matched onto the network with a custom-tailored algorithm, to then perform 

shortest paths on couple of consecutive candidate points.  

 

Figure 2-8: Example of one device candidate points paths 

The speed on these paths is calculated and attributed to the links composing the paths. The estimated 

link speeds are then harmonized into a single estimation for every link. This estimation is kept as an 

internal state that is updated in real time whenever the system receives a new FCD data point. 

The module needs as input:  
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• The map: a set of files representing the map on which to work.  

• FCD data: a set of files representing the raw FCD data to be read.  

The module emits as output:  

• Data exposed through an OpenAPI interface24. 

The executables are distributed as Docker images and require to be properly configured. A 
Kubernetes25 installation on a single node is enough to run it properly. The first version of the tool 
does not support horizontal scalability, next versions will. 

In the next versions, there will be the need for a stream processing system, the choice will probably 
fall on Kafka26 compatible.  

The system also needs to read local data, so some sort of persistent volume is needed. E.g., using an 
NFS server along with Kubernetes managed mounts could be a good solution.  

Summing up, for the current version of the tool there is the need for:  

• A Kubernetes installation, that could be contained in a single node.  

• The capability to reach a Docker registry where PTV can put its Docker images.  

• A Kubernetes Ingress service, e.g., a NGINX server installed on the k8s cluster.  

• A persistent storage area. 

The module requires inputs as static files. This must be made available to the running pod, either as a 
locally mounted folder, or as a shared folder. In either case the system will be able to use them.  

• The map: the map files will be provided as a collection of files. The folders must have the 
following structure:  

o got, containing a single folder  

▪ emeralds, containing a sequence of folders like:  

• <xyz>, i.e., a 3-letter named folder containing a single file 
like:  

• <filename>.pbf.gz  

• FCD data: the FCD data to be used to feed the tool must be provided as a collection of 
compressed CSV files in a folder called FCD.  

The file must be a CSV, the fields must be separated with “,”. Most fields are reserved for 
future versions usage, depending on the quality of the raw data that will be available.  

The current mandatory fields are:  

• Latitude: the latitude, expressed in decimal format with the ‘.’ as decimal separator. 
Minimum 5 digits after the decimal point  

• Longitude: the longitude, expressed in decimal format with the ‘.’ as decimal 
separator. Minimum 5 digits after the decimal point  

 
 
24 https://www.openapis.org/ 
25 https://kubernetes.io/ 
26 https://kafka.apache.org/ 

https://www.openapis.org/
https://kubernetes.io/
https://kafka.apache.org/
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• Time: the timestamp expressed as milliseconds since unix epoch (accuracy better than 
a second)  

• Provider_trace_id: a string unique to the trip of a vehicle. Preferably a fixed length 
base64 encoded hash 

The output is provided by the module as an OpenAPI compatible output. The specifications are 
provided in the OpenAPI format by properly accessing the URL of the service whenever installed. 

The module generally makes use of the OpenLR standard to refer to streets. Details on this 
methodology can be found on the website of the OpenLR association27, more than all from the 
whitepaper28. 

The Kubernetes Ingres must be properly configured to be able to reach the APIs.  

2.4.3 Preliminary Evaluation 
The current developments and testing activities rely on a benchmark network representing a portion 
of the Rome city centre with 5,612 nodes and 9,559 links, and a GPS dataset of 0.5 million datapoints 
for a single day. 

 

 

Figure 2-9: Benchmark network of the city of Rome 

• The data processing latency is given by the processing time plus a time window that there 
might be to allow for FCD data coming in not ordered in time, plus a polling interval (<1 min). 
At the current stage, this cannot be tested due to the use of pre-processed dataset only. The 
design goal for the data processing latency is to be less than 1 minute. 

• At this stage, the memory usage has been of ~12GB (Map ~100MB, every node; trajectories 
in progress ~10GB, total partitioned over all nodes; Estimator 0.5GB, every node). 

 
 
27 https://www.openlr-association.com/ 
28 https://www.openlr-association.com/fileadmin/user_upload/openlr-whitepaper_v1.5.pdf 

https://www.openlr-association.com/
https://www.openlr-association.com/fileadmin/user_upload/openlr-whitepaper_v1.5.pdf
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• The ingestion rate will be tested once the real time stream for the York showcase and the 
associated infrastructure are available. 

The following table summarizes the KPIs relevant to this emerald, as previously described in D2.1. The 
baseline values will be established using the open source tools listed in the SotA section above. 

Description Baseline 
Value 

Target 
Value 

Method of 
Measurement 

Achieved Value 

Data Processing Latency SotA < 1 minute Processing time + 
time window to 
allow FCD data 
coming in not 
ordered in time + 
polling interval  

Tbd in the 2nd 
assessment cycle 

Memory Usage SotA 64GB / 16 
CPU 

Utilization of the 
Random Access 
Memory 

12GB / 1 CPU29 

Ingestion rate SotA 2k 
datapoints 

/s30 

 Tbd in the 2nd 
assessment cycle 

Table 11: Extreme Scale Map Matching KPIs 

2.4.4 Next Steps 
In the 2nd implementation cycle, we will focus on the following aspects: 

1. To be able to ingest data from more than one publicly or commercially available FCD data 
provider, means of communication have to be properly understood. Some providers could 
send data in batches, some other in a streaming fashion, even more suited to this work’s 
needs. 

2. To extend the emerald to scale horizontally and make it "extreme-scale”, so that even if the 
amount and ratio of ingested data increase, or the size of the study area increase, the 
application can still work with the expected latency by installing more copies of it, working in 
parallel. 

  

 
 
29 benchmark network of 5.612 nodes and 9.559 links, and a GPS dataset of 0.5 M datapoints for a single day 
30 for the showcase and able to scale up to 1M datapoints/s 
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3 Active & Federated Learning over  obility Data 

This chapter presents the developed emeralds that employ state-of-the-art timeseries modelling 
techniques for traffic flow, parking occupancy and visitor data to provide a final crowd prediction 
system. Furthermore, XAI and active learning techniques are leveraged to enhance the performance 
and transparency of the model predictions to ensure better decision making in urban management 
systems. The emeralds presented in this deliverable include three ML models and one emerald 
developing XAI: 

1. Traffic State / Flow Forecasting: This emerald utilizes historic traffic flow data from various 
sensors to forecast traffic state and flow patterns in different regions. This kind of predictive 
model is essential to predict traffic conditions and thus enables the development of efficient traffic 
management strategies. 

2. Parking Garage Occupancy Prediction: This emerald utilizes historic parking occupancy 
timeseries, weather, and event information to predict the future availability of parking spaces in 
specific locations. This kind of predictive model is key to developing effective parking management 
systems and can provide input to downstream models, such as crowd density prediction.  

3. Crowd Density Prediction: This emerald utilizes crowd data and auxiliary data sources to forecast 
the crowdedness in specific areas. This kind of predictive model is essential to accurately predict 
crowd patterns and thus enables the development of efficient crowd management systems. 

4. Active Learning & XAI for Crowd Prediction: This emerald leverages explainable AI (XAI) and active 
learning (AL) techniques to create a transparent and interpretable ML pipeline. This empowers 
data experts to provide insights and improvements to the predictive models, facilitating better 
decision-making in urban planning and management systems. 

The source code or object code of these emeralds can be found in the following repositories: 

Emeralds Repositories Publications 

Traffic State / Flow 
Forecasting 

• https://github.com/emeralds-
horizon/WP4_Traffic_state_forecasting  

 

Parking Garage 
Occupancy Prediction 

• https://github.com/emeralds-horizon/analytics-and-
learning/tree/main/uc1-parking-model  

 

Crowd Density 
Prediction 

• https://github.com/emeralds-horizon/analytics-and-
learning/tree/main/uc1-crowd-model 

 

Active Learning & XAI 
for Crowd Prediction 

• https://github.com/emeralds-horizon/analytics-and-
learning/tree/main/uc1-crowd-model 

• https://github.com/emeralds-horizon/analytics-and-
learning/tree/main/uc1-parking-model 

31 

 

 
 
31 Jalali, Graser & Heistrachre (2023) Towards eXplainable AI for Mobility Data Science. https://arxiv.org/abs/2307.08461 

https://github.com/emeralds-horizon/WP4_Traffic_state_forecasting
https://github.com/emeralds-horizon/WP4_Traffic_state_forecasting
https://github.com/emeralds-horizon/analytics-and-learning/tree/main/uc1-parking-model
https://github.com/emeralds-horizon/analytics-and-learning/tree/main/uc1-parking-model
https://github.com/emeralds-horizon/analytics-and-learning/tree/main/uc1-crowd-model
https://github.com/emeralds-horizon/analytics-and-learning/tree/main/uc1-crowd-model
https://github.com/emeralds-horizon/analytics-and-learning/tree/main/uc1-crowd-model
https://github.com/emeralds-horizon/analytics-and-learning/tree/main/uc1-crowd-model
https://github.com/emeralds-horizon/analytics-and-learning/tree/main/uc1-crowd-model
https://github.com/emeralds-horizon/analytics-and-learning/tree/main/uc1-crowd-model
https://arxiv.org/abs/2307.08461
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3.1  raffic State / Flow Forecasting 

This emerald utilizes historic traffic flow data from various sensors to forecast traffic state and flow 
patterns in different regions. The goal of this emerald is to accurately predict traffic conditions and 
enable efficient traffic management strategies. 

The traffic forecasting problem represents a spatiotemporal timeseries prediction problem, where the 
input comprises a set of traffic conditions (e.g., flow, average speed etc.) represented in one or more 
timeseries, and the output is a forecast of future conditions.  

Problem studied: given a network of N detectors that observe C traffic conditions at T historical time 
steps, denoted as 𝑋 = {𝑋𝑡 ∈ 𝑅𝑁×𝐶|𝑡 = 𝑡0 − 𝑇 + 1, … , 𝑡0} ∈ 𝑅𝑇×𝑁×𝐶 , where t0 is the current 

timestep, we aim to predict the traffic conditions for all detectors in the next Q time steps, 𝑌 =
{𝑋𝑡 ∈ 𝑅𝑁×𝐶|𝑡 = 𝑡0 + 1, … , 𝑄} ∈ 𝑅𝑄×𝑁×𝐶.  
The purpose of this module is to provide accurate short-term forecasts of future traffic state 
conditions, based on historical observations, essential for the application of smart cities—particularly 
in traffic management and urban planning. In the upcoming section, we address the problem of 
forecasting average traffic speed without leveraging traffic flow information. This section provides: 

• A brief overview of state-of-the-art models for traffic state forecasting 

• Introduction of the implemented forecasting model 

• First results on models’ benchmarking and evaluation for various forecasting hori ons (i.e., 1 , 

30, 45, 60 minutes) 

3.1.1 Brief Survey of the State-of-the-Art 
Traffic forecasting models are generally classified into two main categories: univariate models, which 
utilize a single timeseries from an individual sensor, or multivariate models, which inherently assumes 
interdependencies among timeseries from multiple sensors across the network [38]. Today, the 
prevailing trend involves employing multivariate models to capture complex spatiotemporal 
relationships between traffic data. Data-driven traffic forecasting methodologies can be broadly 
categorized into three groups: (1) statistical methods, (2) traditional machine learning, and (3) deep 
learning. 

Statistical methods, including history average (HA), vector auto-regression (VAR), and auto-regressive 
integrated moving average (ARIMA), are especially suitable for smaller datasets, benefiting from a 
clear and simplified computational structure compared to more advanced machine learning 
approaches. However, these methods often require satisfying the stationarity assumption for each 
timeseries. Compared to statistical methods, Machine Learning (ML) models can offer more robust 
generalization capabilities, learn complex non-linear correlations effectively, and process high-
dimensional data. ML approaches can be segmented into three categories: feature-based methods, 
Gaussian process models, and state-space models [39]. Deep Learning (DL) models have become 
increasingly popular in recent years, and research has demonstrated their strong applicability for 
timeseries forecasting. In the past decade, the rapid development of architectures has led to the 
emergence of hybrid networks based on Convolutional Neural Networks (CNN) [40], and Recurrent 
Neural Networks (RNN) [41]. For timeseries applications, LSTM is preferred over conventional RNNs 
due to its ability to selectively remember long-range dependencies, addressing the vanishing gradient 
problem. Hybrid networks like ConvLSTM [42] and PredRNN [43] have been increasingly applied to 
predictive learning of urban spatiotemporal data and have shown significant advantages.  

To address the limitation of conventional methods in learning directly from non-Euclidean data within 
urban systems, recent breakthroughs have emerged through deep learning techniques, notably Graph 
Neural Networks (GNN) [44]. Expanding upon this, Kipf and Welling [45] introduced the Graph 
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convolution network (GCN) as an evolution of the CNN model, designed to perform convolution on 
structured graphical input. Additionally, to jointly capture the spatiotemporal features without using 
an RNN cell, the seminal work of Yu, Yin and Zhu [46] proposed the Spatiotemporal Graph 
Convolutional Network (STGCN). 

Following the introduction of the Transformer [47,48], attention-based methods in traffic forecasting 
were designed to capture long-term dependencies. Wu et al. [49] proposed integrating an attention 
mechanism within a LSTM architecture for improving performance for short-term traffic speed 
forecasting. In an alternate approach, Guo et al. [50] proposed an Attention-based Spatial-Temporal 
Graph Convolutional Network (ASTGCN), employing both graph-based and standard convolution with 
attention mechanisms for capturing the spatiotemporal traffic trends. 

To improve the reliability of long-term multivariate forecasting, Zheng et al. [51] proposed the Graph 
Multi-Attention Network (GMAN). GMAN integrates attention mechanisms into an encoder-decoder 
architecture, using multiple spatiotemporal attention blocks. A key innovation of GMAN is the 
transform attention mechanism, which is an attention layer between the encoder and decoder. Other 
approaches address the highly dynamic spatial correlations by introducing adaptive graph learning 
methods. DGCRN Li et al. [52] proposed a hyper-network to adaptively generate a dynamic adjacency 
matrix. To better capture temporal correlations, D2STGNN (Decoupled Dynamic Spatial-Temporal 
Graph Neural Network) [53] incorporates a temporal residual decomposition method along with a 
dynamic graph learning module based on a self-attention mechanism.  

3.1.2 Overview and Description 
In this section we provide a brief overview of the implemented models. 

In Graph Multi-Attention Network (GMAN) approaches, the road network is interpreted as a weighted 
directed graph, 𝒢 = (𝒱, ℰ, 𝒜). 𝒱 is a set of N = |𝒱| vertices representing the traffic sensors on the 

road network; ℰ  is a set of edges representing the connectivity among vertices; and 𝒜 ∈  ℝ𝑁×𝑁
 is 

the weighted adjacency matrix, where 𝒜𝑣𝑖,𝑣𝑗
 represents the proximity (measured by the road network 

distance) between vertex 𝑣𝑖 and 𝑣𝑗. 

GMAN adapts an encoder-decoder architecture, where both the encoder and the decoder consist of 
multiple spatiotemporal attention blocks. The encoder encodes the input traffic features and the 
decoder predicts the output sequence. Between the encoder and the decoder, a transform attention 
layer is applied to convert the encoded traffic features to generate the sequence representations of 
future time steps as the input of the decoder. The transform attention mechanism models the direct 
relationships between historical and future time steps that helps to alleviate the error propagation 
problem among prediction time steps. 

Moreover, GMAN stacks multiple spatiotemporal attention blocks within the encoder and decoder, 
forming a deep network capable of extracting the traffic trends in large sensor networks. Within each 
spatiotemporal block, the spatial attention mechanism dynamically updates the pair-wise correlation 
between vertices with respect to the current time step, while the temporal attention mechanism 
dynamically weights the impact of previous and future time steps on the current step. Notably, the 
input data must be first transformed via a spatiotemporal embedding process to incorporate the time-
dependent graph data into the attention mechanisms. Figure 3-1 illustrates the architecture of GMAN. 

For benchmarking purposes, we employ a straightforward statistical model for univariate traffic 
forecasting, excluding cross-dependencies among the network's sensors. Various approaches address 
timeseries with multiple seasonal patterns, such as seasonality decomposition, the Trigonometric, 
Box-Cox, ARMA, Trend, Seasonal (T ATS) model, Meta’s Prophet model, or the incorporation of 
Fourier terms as exogenous variables [54].  
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Figure 3-1: The framework of Graph multi-attention network 

We opt for decomposing our series into trend, multiple seasonal components, and residuals using the 
Seasonal-Trend decomposition using Loess (MSTL) approach [55]. In this approach, each timeseries is 
decomposed into the following components: 

𝑋𝑡 = ∑ 𝑆𝑡
𝑘̂

𝑛

𝑘

+ 𝑇𝑡̂ + 𝑅𝑡̂ 

Here, 𝑋𝑡represents the observation at time t, and 𝑆𝑡
𝑘̂, 𝑇𝑡̂ , 𝑅𝑡̂ refer to the kth seasonal component, trend, 

and residual, respectively. n denotes the number of distinct seasonal components. 

Following this decomposition, we implement a simple ARIMA (1,0,1) model to the seasonally adjusted 
timeseries. 

Regarding the codebase, all the code that is used in this emerald is hosted at our project’s  it ub 
repository. 

3.1.3 Preliminary Evaluation 
We conduct experiments on two real-world large-scale datasets: 

• PEMS-BAY: A public average traffic speed dataset, collected by California Transportation 

Agencies (CalTrans), comprises data from 325 sensors in the Bay Area ranging from January 1, 

2017, to June 30, 2017, with measurements recorded every 5 minutes. Speed is measured in 

miles per hour and sensor locations, along with other metadata, are recorded in a separate 

metadata file. The road network's adjacency matrix is also provided. 

• NDW (UC2): A private average traffic speed/flow dataset, collected by National Road Traffic 

Data Portal, comprises data from 206 sensors in the Rotterdam area, Netherlands, ranging 

from April 25, 2022, to May 7, 2023, with measurements recorded every minute. Speed is 

measured in kilometres per hour, and traffic flow corresponds to the number of recorded cars 

per sensor. Sensor locations, along with other metadata, are documented in a separate 

metadata file. The road network's adjacency matrix is also provided. 
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To reduce computational load, we resample the NDW dataset to 5-minute intervals and retain a subset 
of the original data. Detailed statistics for the two datasets are presented in Table 12, while the 
distributions of sensors are visualized in Figure 3-2. 

Datasets Samples Sensors Dates Sample rate Flow 

PeMS-BAY 52116 325 1/1/2017-30/6/2017 5 Min No 
NDW 51841 206 1/11/2022-30/4/2023 5 Min No 

Table 12: Statistics of PeMS-BAY and NDW datasets 

 

Figure 3-2: Sensor distribution in NDW (left) and PeMS-BAY (right) datasets. 

 

 

Figure 3-3: Distribution of speed and inter-node correlations on PeMS-BAY and NDW datasets. 

Statistical analysis of the two datasets reveals distinct characteristics, as depicted in Figure 3-3. By 
calculating the Pearson correlation coefficients between all nodes, we can observe the explicit spatial 
correlations in NDW while those in PEMS-BAY are distinctly weaker. The velocity distribution of the 
PEMS-BAY dataset exhibits greater monotony, and it is more intensively close to the free-flow velocity, 
which means simpler traffic conditions and lower correlations between nodes. Velocity distributions 
in NDW tend to be polarized with more missing values marked as zero. Consequently, it is natural for 
methods to achieve significant performance on PEMS-BAY dataset. For the next steps, we apply linear 
interpolation techniques to estimate all missing values within timeseries.  
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Figure 3-4: Decomposition of random sensor’s measurements for both datasets. 

The timeseries decomposition results for a random sensor, as depicted in Figure 3-4, suggest that the 
NDW dataset exhibits weaker weekly behaviour compared to the PEMS-BAY dataset. However, both 
datasets display a relatively stable trend component and robust intra-day peak components. 

The applicability of the traffic state forecasting module is assessed based on performance and the 
computational cost for each model. As part of this process, we keep 70% of our datasets for training 
our models, 20% for validation and 10% for testing purposes. The experiments are run on an AMD 
EPYC 7742 processor (3.4 GHz), an NVIDIA A100 GPU and an Intel i7 NUC.  

For GMAN, we use the default settings from their original proposal. The performances of all methods 

are evaluated by three commonly used metrics in traffic prediction, namely (i) Mean Absolute Error 

(MAE), which is a basic metric to reflect the actual situation of the prediction accuracy, (ii) Root Mean 

Squared Error (RMSE), which is more sensitive to abnormal value, and (iii) Mean Absolute Percentage 

Error (MAPE), which can eliminate the influence of data unit to some extent, defined as follows: 

𝑀𝐴𝐸(𝑦, 𝑦̂)  =  
1

𝑀
 ∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑀

𝑖=0

 

𝑅𝑀𝑆𝐸(𝑦, 𝑦̂)  =  √
1

𝑀
 ∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑀

𝑖=0

 

𝑀𝐴𝑃𝐸(𝑦, 𝑦̂)  =  
1

𝑀
 ∑

|𝑦𝑖 −  𝑦̂𝑖|

𝑦𝑖

𝑀

𝑖=0

 

where 𝑦 denotes the ground truth, 𝑦̂ denotes the predicted values and M represents the number of 
observed samples. 

Table 13 shows the comparison of different methods for 15 minutes (3 steps), 30 minutes (6 steps), 
45 minutes (9 steps), and 1 hour (12 steps) ahead predictions on two datasets. 
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 15 min 30 min 45 min 60 min 
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 

P
e

M
S-

B
A

Y
 

MSTL-
ARIMA 

2.78   4.80   0.061 3.07     5.40 0.067 3.24   5.75   0.072 3.37   6.00   0.075 

GMAN 1.35 2.94 0.029 1.64 3.81 0.038 1.78 4.20 0.042 1.87 4.40 0.044 

N
D

W
 MSTL-

ARIMA 
5.51      9.37 0.084 6.19   10.70   0.096 6.51   11.33   0.101 6.56   11.37   0.100 

GMAN 3.60 8.05 0.059 4.05 9.22 0.068 4.39 10.00 0.075 4.65 10.55 0.080 

Table 13: Performance comparison of different approaches for traffic prediction on PEMS-BAY and NDW datasets 

Table 14 shows the comparison of the training/inference time for each model on the PEMS-BAY 
dataset. The GMAN training required 35 epochs, due to the early-stop mechanism. 

Model Training time [min] Inference time 
[min] 

Device 

MSTL-ARIMA 7 6.5 CPU 

GMAN 10/epoch 0.5 GPU 

Table 14: Computational summary on the PEMS-BAY dataset 

Despite its lower performance, the MSTL-ARIMA method demands notably fewer resources, including 
energy, processing capacity, and storage, rendering it better suited for decentralized approaches, 
where GPU enabled systems are not available or suitable. Conversely, the GMAN approach attains 
superior accuracy and offers better scalability for larger datasets. However, it relies on a centralized 
infrastructure with sufficient computing resources (GPU). 

To address extreme scale data, centralized approaches appear more prominent, given their ability to 
parallelize computations on GPUs. Due to the rapid data sampling rate (every 5 minutes), CPU-based 
applications struggle to scale without preprocessing techniques, such as resampling. The latency of 
this module comprises both the inference time and the data ingestion time. The design objective for 
forecasting latency is to remain below the time required for updating our forecasts (e.g., 5 minutes or 
10 minutes). The above conclusions underscore the absence of a one-size-fits-all solution that excels 
in every aspect. Selecting the appropriate method entails aligning it with our performance 
requirements and hardware capacity. It is also evident that focus needs to be put on evaluating and 
expanding on methods that can be comparable with respect to accuracy, instead of focusing on just 
reducing energy and computational needs.  

The following table summarizes the KPIs relevant to this emerald, expanding the prediction accuracy 
metrics described in D2.1 with additional performance metrics. 

Description Baseline 
Value 

Target Value Method of 
Measurement 

Achieved Value 

Prediction 
accuracy / 
Performance 

SotA 20% speed up with the 
same or better 

accuracy 

Error metrics / 
Fit & inference times 

No improvement 
yet 

Table 15: Traffic State / Flow Forecasting KPIs 

3.1.4 Next Steps 
In the ongoing 1st integration cycle, our primary objective is to integrate the functionality of the 
methods presented in this section with other EMERALDS components and pipelines. These 
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integrations can leverage the results for tasks such as traffic state estimation to fill in missing values, 
thereby contributing to the development of an adaptive and resilient cumulative platform.  

In the 2nd implementation and integration cycles, we will focus on further development of our models, 
involving the inclusion of additional traffic information, such as traffic flow, in the forecasting module 
to enhance forecasting performance. Efforts can also be directed towards reducing the computing 
resource demands of the implemented models. Additionally, we aim to explore more methods that 
may better align with urban traffic behaviour and the specific forecasting task. For instance, certain 
deep learning methods may excel in shorter forecasting horizons. 

3.2 Parking Garage Occupancy Prediction  

This emerald utilizes historic parking occupancy timeseries, weather, and event information to 
predict the future availability of parking spaces in specific garages. The goal is to precisely forecast 
high-occupancy parking demand patterns and thus provide input to increase the effectiveness of 
parking management systems. 

The parking garage occupancy prediction problem presents a spatiotemporal timeseries prediction 
problem, where the input comprises of a set of past occupancy observations and environmental 
factors (e.g., weather and events) represented in multiple timeseries, and the output is a prediction 
of future occupancy values.  

Problem studied: given a set of N parking garages that report C occupancy conditions at T historical 

time steps, denoted as 𝑋 = {𝑋𝑡 ∈ 𝑅𝑁×𝐶|𝑡 = 𝑡0 − 𝑇 + 1, … , 𝑡0} ∈ 𝑅𝑇×𝑁×𝐶, where t0 is the current 
timestep, we aim to predict the occupancy conditions for all parking garages in the next Q time steps, 

𝑌 = {𝑋𝑡 ∈ 𝑅𝑁×𝐶|𝑡 = 𝑡0 + 1, … , 𝑄} ∈ 𝑅𝑄×𝑁×𝐶.  

These predictions can be modelled as either regression or classification tasks. As part of the data 
science process iterations, we explored diverse modelling approaches. Based on use case domain 
expert feedback, the correct prediction of high-occupancy events has higher priority than the 
prediction of lower-occupancy situations. We have therefore implemented both regression and 
classification models. This section provides: 

• A brief overview of state-of-the-art models for parking garage occupancy prediction 

• Introduction of the implemented prediction models 

• First results on models’ benchmarking and evaluation 

Furthermore, these models serve as a basis for further advanced work as part of the T4.2 emerald 

“Active Learning & XAI for Crowd Prediction”.  

3.2.1 Brief Survey of the State-of-the-Art 
Parking occupancy prediction has emerged as a critical aspect of urban mobility management and 
planning, driven by the escalating challenges posed by growing motor vehicle numbers and limited 
parking resources. Recent research has focused on developing advanced predictive models to 
optimize parking resource utilization, enhance traffic conditions, and facilitate efficient coordination 
of multiple parking facilities at various scales. Several key trends and methodologies are evident from 
the reviewed literature. Firstly, the adoption of hybrid models combining different recurrent neural 
network (RNN) [56] architectures, such as gated recurrent unit (GRU) [57] and long short-term 
memory (LSTM) [58], has gained traction. These hybrid models leverage the strengths of both 
architectures to improve prediction accuracy and efficiency while considering multiple factors like 
occupancy, weather conditions, and holidays. Secondly, studies have explored the performance of 
various forecasting methods across different types and scales of parking lots. Support vector machine 
(SVM) [59] has emerged as a stable and accurate predictor for diverse parking scenarios, particularly 
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for commercial, mixed functional, and large-scale parking lots. Thirdly, there is a growing emphasis on 
spatial-temporal prediction models that consider the similarities between parking lots in terms of 
functionality and occupancy patterns. These models integrate graph convolution networks with LSTM 
and temporal pattern attention mechanisms to assign appropriate weights to spatial features, 
resulting in significant improvements in prediction accuracy [60]. 

Furthermore, researchers have proposed innovative approaches that integrate timeseries 
decomposition, meta-learning, and deep learning techniques to enhance feature engineering, model 
building, and generalizability [61]. These approaches have demonstrated superior performance in 
terms of prediction accuracy, model adaptation speed, and robustness across different forecasting 
intervals and parking lot types. Moreover, the convergence of the Internet of Things (IoT) and Artificial 
Intelligence (AI) has opened new avenues for predicting parking availability by leveraging sensory data 
from urban environments [62]. Machine learning models based on neural networks and random 
forests [63] have shown remarkable performance in predicting parking occupancy, outperforming 
traditional forecasting methods. Finally, the impact of external factors, such as anti-pandemic policies 
[63] on parking behaviour and occupancy prediction [64], has been investigated. Novel policy-aware 
temporal convolutional network (P-TCN) [63] models have been developed to accurately identify the 
effects of policy interventions and improve prediction reliability in dynamic urban environments. 

3.2.2 Overview and Description 
In this section we provide a brief overview of the implemented models. The following models were 
used: 

• Forecasting / regression: naïve seasonal baselines, XGBoost, Prophet, Ridge regression, 
Decision Tree, and univariate ARIMA 

• Classification: AdaBoost, GaussianProcess, RandomForest, K-nearest Neighbor with K=3, and 
a Fully Connected Dense Neural Network (DNN) classifier 

The focus of the modelling stage is on determining the optimal combination of variables, including 
historical occupancy data, weather conditions, events, and other relevant factors, to refine the 
predictive capability of the model. All models are trained using historical parking garage occupancy 
timeseries, as well as event and weather timeseries (including hourly and daily observations of 
temperature, precipitation rate, precipitation chance, wind speed and direction, and cloud cover).  

To address the geographic overflow-effect between parking garages (i.e., users first try to park in the 
most conveniently located garage and only once that one is filled, they search for spots in other 
garages) we enhanced the model by encoding the occupancy of adjacent parking garages as features. 

The experiments are implemented using Python and the Darts library, a specialized timeseries 
forecasting library. Figure 3-5 illustrates the workings of the Darts historical forecast function, which 
is used to evaluate the performance of the prediction models which are continuously re-trained to 
simulate how models would continue learning over time. 
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Figure 3-5: Visualization of the historical forecast and how the model re-training functions32 

3.2.3 Preliminary Evaluation 
We conduct experiments on real-world data from use case 1 (UC1) comprising parking data, daily and 
hourly weather data, and calendar data. Initially, the parking data consisted of approximately 99,000 
observations. In data cleansing step (based on feedback from UC1 data experts), we refined the 
dataset to 98,737 observations spanning from May 2022 to the end of October 2022. The weather 
dataset includes hourly and daily observations of temperature, precipitation rate, precipitation 
chance, wind speed and direction, and cloud cover. Additionally, the calendar dataset provides 
information on national holidays in the Netherlands. 

To facilitate analysis, we concatenated all three datasets for the period from May 2022 to the end of 
October 2022. Subsequently, we resampled the data based on hourly maximum values. We then 
calculated the occupancy percentage for each parking facility and performed min-max normalization 
on each parameter to prepare the data for modelling purposes (see Figure 3-6). 

 

Figure 3-6. Visualization of the pre-processed input data for parking occupancy prediction models 

Examining the distribution of the target variable, we observed characteristics of both bi-modality and 
skewness (see Figure 3-7). Furthermore, following min-max data normalization, a significant 
proportion of values cluster closely around zero, while occasional anomalous occurrences, such as 
rare instances of high occupancy rates, are evident in the data. To ensure robust assessment of model 
performance under these conditions, we opted for evaluation metrics such as R2, RMSE, precision, and 
recall.   

 
 
32 Image source: „Darts for Timeseries Forecasting“ by Julien Herzen & Francesco Lässig 
https://www.youtube.com/watch?v=Kf6b5falv0M  

https://www.youtube.com/watch?v=Kf6b5falv0M
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Figure 3-7: Illustration of the target variable distribution for all three parking garages. 

The initial models are trained on May to July 20th, 2022. The remaining time period until the end of 
October 2022 is used for evaluation (using Darts’ historical forecast, as shown in Figure 3-5). Employing 
the historical forecast function, we predict a 7-day horizon and subsequently retrained the model for 
continuous weekly predictions. 

To evaluate our models' performance, we established two naïve seasonal baselines:  

• Baseline 1 predicts that the current week's occupancy will mirror that of the previous week 
(Figure 3-8).  

• Baseline 2 assumes that the average occupancy from the prior month will be replicated in the 
current month (Figure 3-9).  

 

Figure 3-8: Naive baseline 1 for parking garage occupancy prediction. 

 

Figure 3-9: Naive Baseline 2 for parking garage occupancy prediction. 

Results of these baselines are included in Table 16 which lists the RMSE, R2, precision, and recall scores 
for the test dataset, covering the period from mid-July 2022 to the end of October 2022. Critical high-
occupancy events (used to determine precision and recall) are defined as hours with >= 90% 
occupancy. Since high-occupancy events are of particular priority, the recall values are the most 
important metrics for comparing models.  
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3.2.3.1 Forecast / Regression models 

Based on our preliminary analysis on the average prediction results, the XGBoost model exhibits 
promising performance in comparison to other regressors, including Facebook Prophet, Ridge 
regression, Decision Tree, and univariate ARIMA. The results of our best-performing models are 
summarized in Table 16. To account for instances where the parking garage reached full capacity, we 
incorporated penalties in the evaluation (by increasing the prediction error by 0.2 for cases where the 
model failed to correctly predict over 90% occupancy). In this table, we only consider the best 
performing penalized models.  

The average XGBoost recall is 73.52% while the average baselines 1 and 2 recall are 79.93% and 
55.49%, respectively. These results underline that naïve baselines (particularly baseline 1) are hard to 
beat through ML for these kinds of prediction tasks, particularly if the available training data is as 
limited as in UC1. Note that Prophet outperforms XGBoost on R² and RMSE but fails in precision and 
recall since it performs worse at detecting high-occupancy events.  

Parking Model R2 RMSE Precision  Recall 

Kurhaus Baseline 1  0.3258 0.2150 75.63% 77.66% 

Baseline 2  0.0633 0.2534 89.81% 64.02% 

XGBoost  0.1878 0.2530 78.28% 75.58% 

Prophet  0.5653 0.1925 89.50% 53.60% 

Parklaan Baseline 1  0.6108 0.1718 70.56% 71.21% 

Baseline 2  0.4041 0.2126 95.14% 52.46% 

XGBoost  0.7981 0.1212 76.17% 79.30% 

Prophet  0.6625 0.1569 89.50% 53.60% 

Strand Baseline 1  0.2008 0.1619 66.07% 63.93% 

Baseline 2  0.0642 0.1822 49.18% 50.00% 

XGBoost  0.7058 0.0739 74.74% 65.67% 

Prophet  0.3694 0.1021 49.60% 50.00% 

Table 16: Forecast model performance compared to the Naive Baselines on all three parking garages 

We conducted further analysis on the model residuals for all parking garages, including the 
problematic weeks where the car park reached full capacity, but the model failed to predict higher 
occupancy. The XGBoost model for Parklaan has a good performance compared to the baselines, as 
shown in Figure 3-10. Few hours were incorrectly predicted as full (low-cost misprediction), and a few 
hours were incorrectly predicted as low-occupancy (high-cost mispredictions).  

 

Figure 3-10: Residual Analysis of Parklaan XGBoost model. 
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The XGBoost model for Strand mistakenly predicts lower occupancy when the parking is indeed at its 
high occupancy rate, as shown in Figure 3-14. This is because this parking garage has mostly a low 
occupancy percentage since it has a large capacity but very few visitors and it only receives visitors 
when the other two adjacent garages are already at their full occupancy.  

 

Figure 3-11: Residual Analysis of Strand XGBoost model. 

We further inspected the problematic weeks, where the model could not correctly predict the 
occupancy rate of the car park. This is depicted in the following figures. Figure 3-12 shows a 
problematic high cost predicted week, regardless of the influential feature values such as higher 
number of the day of the week and temperature, the model failed to correctly predict the occupancy 
rate over 90% for Kurhaus.  

 

Figure 3-12: XGBoost failure example for Kurhaus 

Figure 3-13 shows a problematic high cost predicted week due to expecting fewer visitors on a 
Wednesday and Thursday. 
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Figure 3-13: XGBoost failure example for Parklaan. 

Figure 3-14 illustrates how a failure to predict high-occupancy in Kurhaus leads to underestimation of 
occupancy in Parklaan and consequently in Strand. 

 

Figure 3-14: Forecast model failure cascade example for all three parking garages 

3.2.3.2 Classification Models 

We expanded our experiments by transforming the regression task into a classification task, with the 
objective of predicting which hours the parking will be either full or not full for the following week. 
This change in modelling approaches to classification was motivated by the use case need to focus on 
high-occupancy events when the parking garages reach maximum capacity. Moreover, classification 
models are widely explored in XAI research, and therefore more techniques are available to justify 
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their outcomes. To achieve this, we set a threshold of over 90% occupancy to define full occupancy. 
This threshold was discussed with our data providers. 

Employing the same preprocessing steps as previously described, we trained a variety of classifiers, 
including AdaBoost, XGBoost, GaussianProcess, RandomForest, K-nearest Neighbor with looking only 
at three of the closest neighbours (K=3), and a Fully Connected Dense Neural Network (DNN) classifier. 
Across all three parking locations, the AdaBoost classifier demonstrated robust performance in 
capturing occupancy patterns, achieving an average recall of 89.86%. Specifically, it achieved a recall 
of 89.94% for Kurhaus, 85.07% for Parklaan, and 94.59% for Strand. Our findings underscore the 
importance of employing an ensemble of forecasting and classification models to improve prediction 
reliability and facilitate informed decision-making in resource planning and crowd management 
endeavours. The results are summarized in Table 17 and show that AdaBoost with highest recall 
proved to be the best model for capturing the occupancy behaviour. 

Parking 
garage 

Model F1 Precision Recall 

Kurhaus AdaBoostClassifier 87.14% 89.97% 89.94% 

XGBoostClassifier 82.83% 81.24% 84.80% 

GaussianProcessClassifier 86.32% 84.06% 89.33% 

RandomForestClassifier   .00%  0. 3%   .  % 

KNeighborsClassifier  0. 3%  0.  %  0. 1% 

DNN 4 .20% 41.2 %  0.00% 

Parklaan AdaBoostClassifier 83.92% 82.86% 85.07% 

XGBoostClassifier   .0 %  1.32%   .1 % 

GaussianProcessClassifier  2.  %  3.14%  2.02% 

RandomForestClassifier  0. 0%   .43%   . 0% 

KNeighborsClassifier  0.  %  3. 3%   .  % 

DNN 4 . 4% 4 .  %  0% 

Strand AdaBoostClassifier 89.44% 85.38% 94.59% 

XGBoostClassifier   .1 %   .  %  1. 2% 

GaussianProcessClassifier  0.  %   . 4%  2.02% 

RandomForestClassifier  4.2 %  2.1 %   .21% 

KNeighborsClassifier   .4 %   .  %  1.01% 

DNN 4 . 0% 4 . 2% 4 .  % 

Table 17: Classifier performance on all three parking garages 

We conducted a thorough examination of the reliability of AdaBoost by delving into the prediction 
results based on the confusion matrix generated by this classifier (see Table 18). Given the highly 
imbalanced nature of the data, with a prevalence of not-full observations over full observations, we 
observed that the model effectively distinguishes between the two cases. However, most of the False 
Negatives were observed with a one-hour delay, likely influenced by the previous hour's occupancy 
values of the parking itself and its adjacent parking. This is illustrated in Figure 3-15-Figure 3-17. 
Furthermore, we analysed the model confidence and observed that the confidence levels for many 
False Negative samples were notably low, indicating that these samples were situated close to the 
model's decision boundary and represented non-trivial cases. Leveraging Explainable AI (XAI), we can 
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delve deeper into the reasons behind these misclassifications (see T4.2 “Active Learning & XAI for 
Crowd Prediciton” emerald). 

 Kurhaus Predicted Parklaan Predicted Strand Predicted 

True Label < 90% >= 90% < 90% >= 90% < 90% >= 90% 

< 90% 1889 74 2185 73 2446 7 

>= 90% 61 448 57 157 2 17 

Table 18. Confusion matrices of the three parking models. 

 

Figure 3-15: Prediction vs Actual classification labels of Kurhaus (AdaBoostClassifier). 

 

Figure 3-16: Prediction vs Actual classification labels of Parklaan (AdaBoostClassifier). 

 

Figure 3-17: Prediction vs Actual classification labels of Strand (AdaBoostClassifier). 

3.2.3.3 Summary 

Since high-occupancy events are of priority for UC1, the recall values are the most important metrics 
for comparing models. The average baseline 1 recall is 79.93%. For regression, the average XGBoost 
recall is 73.52%. And for classification, the average AdaBoost recall is 89.86% (12.4% better than 
baseline and 22.2% better than XGBoost). We expect that X  oost’s performance will further improve 
with respect to the naïve baseline as more training data becomes available.  
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While the classification models provide better high-occupancy predictions, the regression models are 
still valuable to estimate occupancy in lower-occupancy scenarios. These lower-occupancy scenarios 
may provide valuable information for other prediction models, such as the following T4.2 “Crowd 
Density Prediction” emerald since, for example, increasing parking occupancy is expected to correlate 
with increasing crowd density.  

The following table summarizes the KPIs relevant to this emerald, as previously presented in D2.1. The 
KPI has already been successfully achieved.  

Description Baseline 
Value 

Target Value Method of 
Measurement 

Achieved 
Value 

Prediction 
accuracy 

Naïve 
seasonal 
baselines 

10% improvement with 
regards to high-occupancy 

events 

Precision & recall 12.4% 

Table 19: Parking Garage Occupancy Prediction KPIs. 

3.2.4 Next Steps 
In the ongoing 1st integration and the assessment cycle that follows, the outputs of this emerald will 
be used as input for the T4.2 emerald “Crowd Density Prediction”.  

In the 2nd implementation, integration, and assessment cycle, we aim to integrate Temporal 
Convolutional Networks (TCNs) and Long Short-Term Memory (LSTM) models, which have 
demonstrated robustness in capturing occupancy patterns based on our state-of-the-art analysis. 
However, it's worth noting that these models typically require a more extensive dataset to effectively 
capture fully occupied phenomena and the conditions under which they occur. Given that we currently 
only have data from one summer period, it may not suffice for training these complex models 
adequately. Therefore, our focus will be on acquiring additional data spanning multiple summer 
seasons or years to enhance the model's capability to capture and predict parking occupancy 
accurately under diverse conditions. This expansion of the dataset will enable us to leverage the full 
potential of TCNs and LSTMs for more accurate and reliable occupancy predictions. 

Further improvements are expected to be gained through the XAI & AL process in the T4.2 emerald 
“Active Learning & XAI for Crowd Prediction”. 

3.3 Crowd Density Prediction  

This emerald utilizes historical crowd data and auxiliary data sources to predict crowd levels in 
specific areas. The goal is to accurately forecast crowd density patterns and evaluate the 
effectiveness of crowd management systems. 

The crowd density prediction problem presents a spatiotemporal timeseries prediction problem, 
where the input comprises of a set of past crowd density observations and environmental factors (e.g., 
weather and events) represented in multiple timeseries, and the output is a prediction of future crowd 
density values.  

Problem studied: given a set of N areas with C crowd density values at T historical time steps, denoted 
as 𝑋 = {𝑋𝑡 ∈ 𝑅𝑁×𝐶|𝑡 = 𝑡0 − 𝑇 + 1, … , 𝑡0} ∈ 𝑅𝑇×𝑁×𝐶, where t0 is the current timestep, we aim to 

predict the crowd density for all areas in the next Q time steps, 𝑌 = {𝑋𝑡 ∈ 𝑅𝑁×𝐶|𝑡 = 𝑡0 + 1, … , 𝑄} ∈
𝑅𝑄×𝑁×𝐶.  

These predictions can be modelled as either regression or classification tasks. As part of the data 
science process iterations, we explored diverse modelling approaches. Based on use case domain 
expert feedback, the correct prediction of high-density events has higher priority than the prediction 
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of lower-density situations. We have therefore implemented both regression and classification 
models. This section provides: 

• A brief overview of state-of-the-art models for crowd density prediction 

• Introduction of the implemented prediction models 

• First results on models’ benchmarking and evaluation 

Furthermore, these models serve as a basis for further advanced work as part of the T4.2 emerald 
“Active Learning & XAI for Crowd Prediction”. 

3.3.1 Brief Survey of the State-of-the-Art 
Predicting crowd density is a vital task for urban planning, transportation management, and public 
safety. Accurate forecasts enable proactive resource allocation, traffic regulation, and crowd 
management strategies. They inform decision-making in emergencies, enhancing public health and 
safety measures. Thus, crowd density prediction optimizes urban infrastructure, resource utilization, 
and overall urban liveability. By anticipating crowded areas and potential congestion hotspots, 
authorities can proactively deploy resources, enhance public safety measures, and optimize urban 
infrastructure.  

A notable emphasis on leveraging advanced AI methodologies, particularly deep learning, for 
predicting crowd density and traffic patterns exists in the current studies and related work. Different 
temporal models and timeseries data types are used for this purpose, and this state-of-the-art 
research underscores the critical role of advanced AI techniques in crowd density and flow prediction 
for applications ranging from urban planning to public safety monitoring; For instance, Jiang et al. [65], 
introduces DeepCrowd, employing Convolutional LSTM and attention mechanisms to forecast crowd 
density and flow within urban settings using a comprehensive human mobility dataset. Using 
trajectory data, Fu et al. [66], proposes a spatial-temporal convolutional model for crowd density 
prediction utilizing mobile-phone signalling data, adaptable to irregularly shaped areas. Addressing 
surveillance videos, Minoura et al. [67], presents patch-based density forecasting networks for crowd 
density forecasting, showcasing superior performance compared to existing approaches.  

Some other works focuses on computer vision domain for crowd forecasting. For example, in the work 
of Zhao et al. [68], a model combining image processing and support vector regression is introduced 
to analyse crowd stability in public areas by predicting crowd density. Chen et al. [69], devise a time-
dependent visiting trip planning framework, integrating deep learning for crowd density prediction 
with efficient trip planning. Ding et al. [70], enhance crowd counting accuracy and density map 
generation through an encoder-decoder CNN, surpassing current methodologies. Tackling 
overcrowding in Mumbai Suburban Railways, Sundaram et al. [71], proposes a GPS-based system for 
crowd prediction and monitoring.  

Other work such as Wang et al. [72], introduce a simple crowd counting and localization network 
(SCALNet), demonstrating superior performance in crowd localization and counting tasks. Finally, 
Bhuiyan et al. [73], enhances crowd analysis for pilgrimages using a fully convolutional neural network, 
achieving high accuracy in crowd density classification.  

3.3.2 Overview and Description 
In this section we provide a brief overview of the implemented models. The following models were 
used: 

• Forecasting / regression: naïve seasonal baselines, XGBoost, Prophet, Ridge regression, 
Decision Tree, and univariate ARIMA 

• Classification: AdaBoost, GaussianProcess, RandomForest, K-nearest Neighbor with K=3, and 
a Fully Connected Dense Neural Network (DNN) classifier 
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The focus of the modelling stage is on determining the optimal combination of variables, including 
historical crowd density data, weather conditions, events, and other relevant factors, to refine the 
predictive capability of the model. All models are trained using historical crowd density timeseries, as 
well as event and weather timeseries (including hourly and daily observations of temperature, 
precipitation rate, precipitation chance, wind speed and direction, and cloud cover). 

This spatial timeseries prediction problem distinguishes itself from the previously introduced T4.2 
“Parking Occupancy Prediction” emerald, since the target value garage prediction has a hard 
maximum capacity limit while the crowd density doesn’t have such a natural limit. Furthermore, while 
garage models included the geographic overflow effect, the crowd density prediction models for 
individual areas do not include this effect since the relationship between the areas is less 
deterministic.  

The experiments are implemented using Python and the Darts library, a specialized timeseries 
forecasting library and the evaluation is carried out using Darts historical forecast function, as 
illustrated by Figure 3-5.  

3.3.3 Preliminary Evaluation 
We conduct experiments on real-world data from use case 1 (UC1) comprising visitor data (“Resono” 
data), daily and hourly weather data, and calendar data. Initially, the visitor data consisted of 

approximately 380,000 observations over 17 areas (1 area describing the whole area of interest 
“Scheveningen volledig” and 1  subareas) in the time span from May 2021 to the end of November 
2023. The weather dataset DT5 as recorded in D1.4 (the same as the one used for the parking data) 
includes hourly and daily observations of temperature, precipitation rate, precipitation chance, wind 
speed and direction, and cloud cover. Additionally, the calendar dataset provides information on 
national holidays in the Netherlands. Our goal is to predict the crowd density in the UC1 Scheveningen 
region over a 7-day horizon, providing hourly forecasts of expected visitor numbers.  

To prepare the data, we merged all three datasets covering the period from May 2021 to the end of 
November 2023. We prioritize determining the most effective combination of variables, such as 
historical density data, weather conditions, events, and other relevant factors, to refine the model's 
predictive performance. The data was pre-resampled on an hourly basis by the data providers, using 
the maximum visitor count as the reference. Subsequently, we computed the crowd density for each 
area by considering the surface area (m²) of the area and the hourly visitor count. Following this, we 
applied min-max normalization to each parameter to prepare the data for modelling purposes (see 
Figure 3-18), which only plots one month of this period for better readability. 

 

Figure 3-18: Visualization of the pre-processed crowd data. 

Like the distribution of parking data, the distribution of the target variable “hourly visitor density” 
exhibits skewness. Furthermore, after min-max normalization, a considerable portion of values 
converge near zero, with sporadic anomalies like rare spikes (when the density is above 1 person per 
m²) in occupancy rates.  

The initial models are trained on May 2021 to July 20th, 2022. The remaining time period until the end 
of October 2023 is used for evaluation (using Darts’ historical forecast, as shown in Figure 3-5). 
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Employing the historical forecast function, we predict a 7-day horizon and subsequently retrained the 
model for continuous weekly predictions. 

To evaluate model performance, we selected the same evaluation metrics as in the “Parking  arage 
Occupancy Prediction” emerald (R2, RMSE, precision, and recall). These metrics provide a holistic 
assessment of model efficacy, accommodating the varied data distribution and the presence of 
outliers. 

3.3.3.1 Forecast / Regression Models 

The outcomes of our top-performing model XGBoost are summarized in Table 20. To evaluate our 
models' performance, we established a naïve seasonal baseline that predicts that the current week's 
occupancy will mirror that of the previous week (see an example for “Scheveningen volledig” in Figure 
3-19). We see that our XGBoost model outperforms this baseline by an increase of 75.94% in 
“Scheveningen volledig” which is the most important area for the use case (UC1). However, the 

average performance of our model over all (sub)areas (𝑅2=0.0551 and 𝑅𝑀𝑆𝐸=0.0976) is 

underperforming the Baseline (𝑅2=0.0855 and 𝑅𝑀𝑆𝐸=0.0687) since XGBoost tends towards higher 
densities.  

Area XGBoost Baseline  

R2 RMSE R2 RMSE 

Scheveningen volledig 0.5588 0.0786 0.3176 0.0822 

Boulevard Midden 0.3821 0.0725 0.2513 0.0601 

Toegang Kurhaus 0.4381 0.0774 0.4855 0.0575 

OV - Strandweg -0.1967 0.0657 0.0329 0.0590 

Strand Centraal 0.2681 0.1172 0.2533 0.0744 

Boulevard Zuid 0.1666 0.0899 0.0833 0.0729 

Strand Zuid 0.1780 0.0870 0.1382 0.0753 

De Pier 0.1385 0.1025 0.1728 0.0575 

Toegang Scheveningseslag 0.3143 0.0880 0.3715 0.0931 

Toegang Zeekant 0.1586 0.1010 0.2620 0.0678 

OV - Kurhaus 0.5081 0.0848 0.5004 0.07425 

Strand Noord 0.1710 0.0921 0.1549 0.0614 

Toegang Zwarte Pad -0.7569 0.1462 -0.5402 0.0635 

Toegang Gevers Deynootweg -0.0159 0.1130 0.1113 0.0959 

Boulevard Noord 0.1488 0.1070 0.0711 0.0727 

OV - Zwarte Pad -0.6645 0.1148 -0.4213 0.0692 

Beach Stadium -0.8595 0.1219 -0.7898 0.0314 

Table 20: Crowd density forecast summary results. 

We conducted further analysis on the model residuals, as depicted in Figure 3-20, for the two areas 
Scheveningen volledig (best prediction performance) and Beach Stadium (worst prediction 
performance), including the problematic weeks where the density was much higher than what the 
model predicted. Analysing the errors for the whole areas, we also noticed that the model could 
predict the number of visitors in “Scheveningen volledig” area and areas close to “ urhaus” better 
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than other areas. This is mostly due to the model’s inability in predicting the peaks when the areas 
have a higher density.  

 

Figure 3-19. Crowd density baseline, which assumes that the expected crowd density for this week is the same as the 
previous week. 

 

Figure 3-20: Comparison of the best (Scheveningen volledig) and worst (Beach Stadium) Residual Analysis of XGBoost. 

We can compare the weekly prediction of the Scheveningen Volledig where the model successfully 
predicts the number of visitors close to the true values (See Figure 3-21). Only looking at the weekly 
prediction of the Beach Station we notice that the high prediction error is due to the model predicting 
higher visits when there were close to zero crowd available (See Figure 3-22). 
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Figure 3-21: Example of very low prediction error for “Scheveningen volledig” area, including input features. 

 

 

Figure 3-22: Example of high prediction error for “Beach Statium” area, including input features. 

3.3.3.2 Classification Models 
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Similar to the “Parking  arage Occupancy Prediction” emerald, we extended our experiments by 
transitioning the regression task into a classification task, aiming to predict which hours the crowd 
density would reach capacity or remain below capacity for the upcoming week. After receiving the 
input about critical density from our data providers, we only noticed that there are only two areas, 
where at some point in time the density of the crowd per surface 𝑚2 increases to more than 1 person 
per 𝑚2. This is when considering a critical crowd as population/density more than 2 people per 𝑚2.  
For the sake of detecting a higher dense crowd, we created a binary class from the calculated density 
in way that when the density is equal or larger than 1 person per 𝑚2 we consider a high dense 
population for that hour in the targeted area. Following the same preprocessing steps outlined 
previously, we trained multiple classifiers, including AdaBoost, XGBoost, GaussianProcess, 
RandomForest, K-nearest Neighbour with K=3, and a Fully Connected Dense Neural Network (DNN) 
classifier. Table 21 shows the results of this classification task for the crowd density data. For this 
classification task, unlike the parking occupancy prediction, the XGBoost model outperforms the other 
classifiers. 

Area Model F1 Precision Recall 

Toegang 
Kurhaus 

AdaBoosClassifier 82.46% 85.07% 80.28% 

XGBoostClassifier 81.10% 79.90% 82.43% 

GaussianProcessClassifier 82.98% 86.53% 80.18% 

RandomForestClassifier 82.89% 84.83% 81.20% 

KNeighborsClassifier 82.43% 86.63% 79.24% 

DNN 47.88% 45.93% 50% 

Toegang 
Zeekant 

AdaBoosClassifier 69.97% 87.93% 63.98% 

XGBoostClassifier 70.96% 74.28% 68.52% 

GaussianProcessClassifier 73.03% 88.57% 66.79% 

RandomForestClassifier 70.89% 82.53% 65.70% 

KNeighborsClassifier 68.38% 81.38% 63.37% 

DNN 48.92% 47.88% 50% 

Table 21: Crowd density prediction classification results summary 

We conducted a comprehensive analysis of the reliability of XGBoost by examining the prediction 
outcomes through the confusion matrix generated by this classifier (refer to Table 22). Similar to the 
previous subsection, given the imbalanced distribution of the data, where class “not critically dense” 
observations significantly outnumber the class “critically dense” observations, we observed X  oost's 
effectiveness in distinguishing between these cases. For both areas, Toagang Kurhaus and Zeekant, 
having Kurhaus a better modelled area.  

 

 Kurhaus Predicted Zeekant Predicted 

True Label < 1p / m2 >= 1p / m2 < 1p / m2 >= 1p / m2 

< 1p / m2 2210 88 2351 39 

>= 1p / m2 64 139 65 41 

Table 22: Confusion Matrices of two classifiers 
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Figure 3-23 and Figure 3-24 depict examples of False Negative predictions for Kurhaus and Zeekant, 
respectively. Using XAI we can investigate more about the reason behind these misclassifications. 
However, a quick examination of model confidence, we noticed that for half of the False Negatives 
(FNs), the model was very confident, and the other half the model was very unsure.  

 

 

Figure 3-23: Example of misclassification for Toegang Kurhaus. 

 

Figure 3-24: Example of False Negatives for Toegang Zeekant. 

3.3.3.3 Summary 

The following table summarizes the KPIs relevant to this emerald, as previously presented in D2.1. It 
is worth noting that the precision and recall values presented in the classification section above are 
based on preliminary assumptions from our use case partners about potentially critical crowdedness 
values. Therefore, the definition of critical crowdedness needs to be further refined in collaboration 
with our data providers and use case partners to appropriately reflect the real-world situation. A key 
issue is the spatiotemporal resolution of the crowd data. The areas vary significantly in shape and size 
and the crowd values are only available as hourly visitor counts per area, which are insufficient to 
determine the crowd density at a specific point in time. The refined definition will then be used to 
determine the precision and recall in future deliverables.  

Description Baseline 
Value 

Target Value Method of 
Measurement 

Achieved Value 

Prediction 
accuracy 

Naïve 
seasonal 
baselines 

10% improvement with 
regards to high-density events 

Precision & 
recall 

Tbd in the 1st 
assessment cycle 

Table 23: Crowd Density Prediction KPIs 
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3.3.4 Next Steps 
In the ongoing 1st integration and the 1st assessment cycle that follows, we aim to integrate the outputs 
of the T4.2 emerald “Parking Garage Occupancy Prediction” as further input to this model.  

In the 2nd implementation cycle, we plan to incorporate Temporal Convolutional Networks (TCNs) and 
Long Short-Term Memory (LSTM) models into our framework, leveraging their proven effectiveness 
in capturing crowd density patterns, as indicated by our SotA analysis. However, the same challenge 
as the previous emerald, it is important to acknowledge that these models typically require extensive 
datasets to adequately capture fully occupied scenarios and the associated conditions. Despite the 
dataset covering 2.5 years, it may not suffice for such analyses, especially considering the impact of 
COVID-19 lockdowns in 2021, and partly in 2022, which influenced public event attendance patterns. 
Therefore, our primary focus will be on acquiring additional data spanning multiple summer seasons 
or years to augment the model's capacity to accurately predict crowd density under various 
conditions. This expansion of the dataset will empower us to fully harness the capabilities of TCNs and 
LSTMs, facilitating more precise and reliable crowd density predictions.  

Moreover, we will intensify our efforts on preprocessing tasks to assign weights to areas experiencing 
higher density, enhancing the model's sensitivity to critical density levels, and further improving 
prediction accuracy. 

Further improvements are expected to be gained through the XAI & AL process in the T4.2 emerald 
“Active Learning & XAI for Crowd Prediction”. 

3.4 Active Learning & XAI for Crowd Prediction 

This emerald harnesses explainable AI (XAI) and active learning (AL) techniques to establish a 
transparent and interpretable ML pipeline. This enables data experts to offer insights and 
enhancements to predictive models, thereby enhancing decision-making in urban planning and 
management systems. 

AL optimizes the learning process by selecting the most informative data points for labelling, 
enhancing model accuracy with minimal human intervention. Meanwhile, XAI methods provide 
insights into model predictions, fostering trust and understanding by revealing the reasoning behind 
model decisions. By integrating these techniques, timeseries models can achieve improved accuracy, 
efficiency, and interpretability, leading to more actionable insights from data.  

3.4.1 Brief Survey of the State-of-the-Art 
In the following, we divide the analysis of the state of the art into two subsections: active learning and 
explainable AI state of the arts. 

3.4.1.1 Explainable Artificial Intelligence State-of-the-Art 

The literature on interpreting black-box models for timeseries using XAI methods is limited compared 
to other data types like images and text. Existing surveys by Guidotti et al. [74], Adadi and Berrada 
[75], and Hohman et al. [76]., highlight this gap, which is particularly noticeable when compared to 
methods available for images, text, and tabular data. However, recent efforts have begun exploring 
interpretability approaches for deep learning models in timeseries classification and very few for 
timeseries forecasting. For instance, Wang et al. [77], utilized deconvolutional networks to visualize 
meaningful representations, while Gee et al. [78], proposed an autoencoder-based approach for 
learning class representative prototypes.  

Goodfellow et al. [79], employed class activation maps (CAMs) to highlight important aspects of 
timeseries data for decision-making. Additionally, Assaf and Schumann [80] utilized Grad-CAM for 
feature visualization in CNN-based regression tasks.  
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Wang et al. [81], introduced the multilevel Wavelet Decomposition Network (mWDN) along with an 
importance analysis method for timeseries interpretation. Furthermore, Hsu et al. [82], applied 
occlusion-based attention mechanisms for interpretable early classification of multivariate timeseries.  

Recent work by Arnout et al. [83], compared various interpretability methods, such as saliency maps, 
Layer-wise Relevance Propagation (LRP), DeepLIFT [84], LIME [85], and SHAP [86], on LSTMs, fully 
convolutional networks, and ResNets. Their evaluation revealed differences in the effectiveness of 
these methods across different architectures.  

Another XAI method for timeseries are counterfactuals. Hao et al. [87], for example, present a visual 
analytics framework that employs counterfactual explanations to clarify predictions within individual 
sliding windows. Their framework is equipped with interactive visualizations designed for large time 
series datasets and multiple variables. The framework functions through two stages: initially, 
transforming raw timeseries data into various representations during forecasting and explaining 
stages.  

3.4.1.2 Active Learning State-of-the-Art 

The examination of active learning (AL) in timeseries forecasting reveals a notable lack of emphasis on 
this domain, with most of the research centred around timeseries classification and anomaly 
detection. In regression tasks, the introduction of regression tree-based methods enhances model 

performance with limited labelled data, addressing the challenge of regression active learning [88].  

For timeseries classification, nearest neighbour-based sampling strategies effectively utilize local 

information to measure uncertainty and utility, enabling classification with sparse labelled data [89]. 
In short-term load forecasting, a deep ensemble learning model integrated with an active learning 
framework dynamically selects key load segments for training, improving forecasting accuracy and 

mitigating data imbalance issues [90].  

Anomaly detection benefits from reinforcement learning-based approaches, where models adaptively 

learn from real-world timeseries data, outperforming existing methods in detecting anomalies [91]. 
Multivariate timeseries anomaly detection sees advancements with active learning-based approaches 
that dynamically balance labelling costs and model performance, achieving superior results on public 

datasets [92]. These studies all highlight the versatility and effectiveness of active learning 
methodologies in improving model performance, adaptability, and scalability across diverse 
timeseries forecasting and anomaly detection applications. 

3.4.2 Overview and Description 
As shown in our SotA analysis, there is very little focus on XAI approaches for timeseries data and 
specifically for spatiotemporal data. The current XAI approaches are not able to explain the temporal 
changes in the data, neither in their outputs nor in a human understandable way. Moreover, these 
approaches are unable to incorporate the spatially specific explanations that are required for models 
trained on spatiotemporal data. 

This emerald proposes a novel integrated XAI and AL approach for spatiotemporal prediction models, 
particularly for samples where the model exhibits uncertainty. In such cases, expert consultation and 
correct labelling are essential in the AL process. To improve the explanation of model decisions, we 
suggest that counterfactuals may offer a solution for better comprehension of model behaviour, 
enhancing the explanations' clarity for end users of such systems. We aim to integrate this 
improvement into an active learning loop, with the overarching goal of enhancing both the quality of 
the data and the performance of the models, while simultaneously refining the output of the XAI 
techniques. Figure 3-25 illustrates the envisioned framework designed to achieve this objective.  
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Figure 3-25: eXplainable interactive AL framework concept. 
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To establish a baseline for our novel XAI method, we apply SHAP for regression tasks and LIME for 
classification tasks, as described in the following Section. 

3.4.3 Preliminary Evaluation 
In this section, we evaluate the suitability of XAI methods for the previously introduced spatial 
timeseries prediction models “Parking Garage Occupancy Prediction” and “Crowd Density Prediction”. 
We apply SHAP for regression tasks and LIME for classification tasks, to analyse the models' 
performance. The implemented KPIs to measure the accuracy and effectiveness of the explanations 
include: 

• Fidelity score measures the similarity or fidelity between the surrogate explanation model 
and the original black box model. A high-fidelity score indicates that the surrogate model 
accurately approximates the behaviour of the black box model.  

• Confidence level measures the level of confidence or certainty exhibited by the explanation 
model when making predictions or classifications. Higher confidence levels indicate greater 
reliability of the explanations provided.  

3.4.3.1 SHAP for Parking Occupancy Prediction 

Using the SHAP technique, we calculated importance of each feature value on the prediction. An 
example of S AP’s visuali ation for Parklaan model is shown in Figure 3-26. In particular, Figure 3-26 
displays that the lower the occupancy percentage of the previous hour 
(Occupancy_percentage_target_lag-1), the lower the calculated shapely value. Increasing value of 
the previous hour leads to increasing predicted value of the occupancy percentage for the next hour. 
Here we see also the effect of information given by Kurhaus occupancy (Kurhaus_op_futcov_lag0).  

We also notice that the higher the date time (darts_enc_pc_dta_hour_pastcov_lag-6), the lower the 
calculated shapely value. This is trivial because the large values here are any time after 16-17, to 24 
(in red). The very low values (blue) are for the 01 to early morning. The hours where the occupancy is 
higher are from range blue towards violate (7-8 to 15-16), hence it is expected to have more visitors 
at that time.  

Moreover, The higher the value of the occupancy in the past 2-4 hours, the lower the calculated 
shapely value. This is an approximation that the visitors are most likely to leave the parking after 2-4 
hours. Temperature and precipitation chance (Daily_max_Temperature_futcov_lag-6, 
Daily_Precipitationchance_futcov_lag-6) have lower feature importance compared to hour of the 
day and the parking occupancy lags. However, it makes sense that the higher temperature results in 
pushing the decision of the model towards predicting a higher occupancy percentage. This is vice versa 
for the precipitation chance. It seems that the days of the weeks 
(darts_enc_dc_pta_day_of_week_pastcov_lag-1) have almost  ero influence on the model’s 
decision. One solution might be weighting the days which could changes the influence of this feature 
on the prediction.  
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Figure 3-26: SHAP Visualization for Parking Occupancy Prediction of Parklaan. 

3.4.3.2 LIME for Parking Occupancy Prediction 

We proceed to elucidate the Parking prediction models for the classification task. Initially, we employ 
a global surrogate model, utilizing a decision tree, to gain insight into the overall estimation of the 
model's decision boundary. Focusing on the Parklaan model as a case study (depicted in Figure 3-27), 
we observe the remarkable fidelity of this surrogate model to the underlying black box model, 
boasting a Fidelity score of 99.67%. Notably, we identify the significance of previous occupancy values 
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and the Kurhaus occupancy percentage for the same hour in predicting the likelihood of Parklaan 
reaching full capacity. Conversely, other features in this context exhibit negligible influence. 

 

Figure 3-27: Illustration of the Global Surrogate decision Tree on Parklaan Adaboost Classifier. 

Figure 3-28 shows LIME’s output for a true positive example. On the left side of Figure 3-28, we see 
the approximated model’s confidence (probability per class). In the middle part, we see that 
approximated model’s local decision boundary for this sample, the colour orange indicates the factors 
(with their coefficients) that contributes towards the class full (or here encoded as 1). The colour blue 
indicates the factors that contributes to the calculated probability for class not-full (here encoded as 
0). We see only two significant contributors to the class full, previous occupancy percentage of 
Parklaan and the current occupancy percentage of Kurhaus (the adjacent parking that gets visited 
before Parklaan). This explanation also matches with the reality. The other factory is not contributing 
significantly. 
 

 

Figure 3-28. LIME's output on one true positive sample for Parklaan. 

Another example is depicted in Figure 3-29, where the model failed to predict a full parking at 20:00, 
having the lower temperature and the higher precipitation chance pushing the decision of the model 
towards the class “not-Full” for Parklaan.  
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Figure 3-29: LIME's output on one misclassified (FN) sample for Parklaan in later hours of the day. 

3.4.3.3 SHAP for Crowd Density Prediction 

Employing the SHAP technique, we assessed the importance of each feature value on the crowd 
density prediction. A visual representation of SHAP's analysis for the Scheveningen volledig model is 
presented in Figure 3-30. The visualization illustrates that the lower density of the previous hour 
(density_target_lag-1), the lower the calculated shapely value. Increasing value of the previous hour 
leads to increasing predicted value of the density for the next hour. Moreover, The higher the date 
time (darts_enc_pc_dta_hour_pastcov_lag-6), the lower the calculated shapely value. This is trivial 
because the large values here are any time after 16-17, to 24 (in red). The very low values (blue) are 
for the 01 to early morning. The hours where the crowd density is higher are from range blue towards 
violate (7-8 to 15-16), hence it is expected to have more visitors at that time. 

The higher the value of the crowd density in the past 2-4 hours, the lower the calculated shapely value. 
This is an approximation that the visitors are most likely to leave the area after 2-4 hours. Unlike the 
parking data, here the temperature (Temperature_futcov_lag-0) comes as the fourth most important, 
meaning that the higher the most likely the density will be predicted higher. Day of the week 
(darts_enc_pc_dta_day_of_week_pastcov_lag-6) also has a positive effect on the prediction (the 
weekends are most likely to be predicted with higher number of visitors). precipitation chance 
(Precipitatiochance_futcov_lag0) has lower feature importance compared to hour of the day and the 
density lags. 
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Figure 3-30: SHAP Visualization for Crowd Density Prediction of Scheveningen volledig. 

3.4.3.4 LIME for Crowd Density Prediction 

We now delve into the examination of critical crowd density classification models. Initially, we employ 
a decision tree-based global surrogate model to gain a comprehensive understanding of the model's 
decision boundary. Using the Toegang Kurhaus model as an illustrative example (referenced in Figure 
3-31), we observe a high fidelity between the surrogate and black box model, with a fidelity score of 
89.53%. In our findings we see the importance of previously observed density values, the 
Temperature, and whether it is on a weekend or not. Holiday feature and chance of precipitation also 
play a role on this classification task. 
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Figure 3-31: Illustration of the Global Surrogate Decision Tree on Toegang Kurhaus XGBoost Classifier. 

Moving forward, we employ the LIME explainability technique to elucidate the instances of False 
Negatives within this critical density classification model. As depicted in Figure 3-32, we observe an 
illustrative output generated by LIME. Notably, the model exhibits higher confidence for this correctly 
classified sample (true positive for when the number of visitors is above 1 person per square meter). 
We notice that the model primarily considers the higher value of the previous hour and the 
Temperature in its decision-making process. The remaining features have no significance in the 
model’s decision. 

 

Figure 3-32: LIME's output on one correctly classified (TP) sample for Toegang Kurhaus. 

3.4.3.5 Summary 

The results presented in this section show that explanations provided by LIME and SHAP may not offer 
complete understanding, particularly for samples where the model exhibits uncertainty. In such cases, 
expert consultation and correct labelling are essential tools to improve model performance and 
trustworthiness through an active learning (AL) process. We advocate for the improved explanation 
of model decisions, suggesting that counterfactuals may offer a solution for better comprehension of 
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model behaviour than LIME and SHAP can provide, thus enhancing the explanations' clarity for end 
users of such systems.  

The following table summarizes the KPIs relevant to this emerald, as previously presented in D2.1. 

Description Baseline Value Target 
Value 

Method of 
Measurement 

Achieved Value 

Explanation 
quality 

LIME: 89.53% >=95% Fidelity Score (XAI) Tbd in the 1st 
assessment cycle 

Prediction 
accuracy 

Performance of 
“Crowd Density 

Prediction” emerald 

Improveme
nt over 

baseline 

Comparison to the 
benchmark model 

without AL+XAI 

Tbd in the 2nd 
assessment cycle 

Table 24: Active Learning & XAI for Crowd Prediction KPIs 

3.4.4 Next Steps 
In the ongoing 1st integration cycle and the 1st assessment cycle that follows, we will follow and adapt 
to the ongoing developments of the spatial timeseries prediction models (Parking Garage Occupancy 
Prediction & Crowd Density Prediction). 

In the 2nd implementation cycle, our focus will be directed towards implementing counterfactuals for 
XAI and integrate this improvement into an active learning loop, with the overarching goal of 
enhancing both the quality of the training data as well as and the performance of the models, while 
simultaneously refining the output of the XAI techniques.  

In our further analysis, we will consider the similarity between the Feature importances using 
different XAI Techni ues. Furthermore, end user’s understanding of the feature importance provided 
by each XAI’s output should be also taken into account, as it helps interpret the model's behaviour 
and identify the most influential factors. In addition, consistency and robustness should be considered 
as well. Consistency measures the stability and coherence of the explanations provided by the model 
across different samples or instances. Consistent explanations ensure reliability and trustworthiness 
in the interpretability of the model. Robustness evaluates the resilience of the explanation model to 
variations or perturbations in the input data.  
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4  obility AI-as-a-Service 

The emeralds developed within WP3 and WP4 implement several ML models, specifically designed, 
and adapted to cater customized mobility data processing, analytics and intelligence services to the 
involved smart cities use case partners. EMERALDS Mobility AI-as-a-Service (MAIaaS) platform is 
intended to support these ML models’ development and refinement, including training and testing 
stages, plus their deployment, supporting cloud/edge inferencing and/or models offloading to be run 
in use cases infrastructures. This is achieved through an agile approach considering design 
specifications, technical and business requirements. The EMERALDS MAIaaS platform constitutes a 
cutting-edge integrated compilation and customization of the novel MLOps tools, based, in turn, in 
DevOps techniques. This customization includes specific mobility tools, libraries, and interfaces to 
cover project level targets. 

4.1 Brief Survey of the State-of-the-Art 

In the field of software engineering, DevOps stands as a transformative paradigm, combining software 
development and IT operations to improve the efficiency, reliability, and speed of software 
deployment. 

The core element of DevOps is the incorporation of CI/CD pipelines into software production 
processes. Continuous integration (CI) involves the automated integration of code changes from 
multiples contributors into a single software project, allowing developers to integrate code changes 
more frequently and reliably. This is often coupled with Continuous Deployment (CD), where after 
passing automated tests, changes are automatically applied and deployed to a production 
environment. Tools like Gitlab CI33 or Jenkins34 are important in this process, providing automation 
that ensures code quality, offering robust solutions for automating the build, test, and deployment 
phases. 

Containerization is another fundamental aspect of DevOps. This technology encapsulates an 
application and its dependencies into a container that can be executed on any computing 
environment. The goal of containerization is to achieve scalability, portability, and efficient resource 
utilization while facilitating the deployment and integration of developed applications within 
heterogeneous infrastructures, such as edge frameworks or client premises Docker35 has emerged as 
the leading containerization platform, providing an ecosystem for creating, deploying, and running 
containers. 

For managing containerized applications at scale, Kubernetes36 is used as the facto standard for 
container orchestration. It automates the deployment, scaling, and management of containerized 
applications, ensuring high availability and resource optimization. By managing clusters of hosts 
running containers, Kubernetes enables applications to run across multiple machines and 
environments, be they on-premises, in the cloud or hybrid setups. 

Effective monitoring and logging are essential for maintaining the health and performance of 
applications and infrastructure. Tools like Prometheus37 and Grafana38 are widely used for monitoring 

 
 
33 https://docs.gitlab.com/ee/ci/  
34 https://www.jenkins.io/  
35 https://www.Docker.com/  
36 https://kubernetes.io/docs/home/  
37 https://prometheus.io/  
38 https://grafana.com/  

https://docs.gitlab.com/ee/ci/
https://www.jenkins.io/
https://www.docker.com/
https://kubernetes.io/docs/home/
https://prometheus.io/
https://grafana.com/
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metrics and visualizing data. Elasticsearch, Logstash and Kibana (ELK Stack39) are commonly employed 
for logging and analysing large volumes of log data. 

The evolution of DevOps has seen a significant shift towards cloud platforms like AWS40, Azure41 and 
Google Cloud Platform42 (GCP). These platforms offer a range of services that support DevOps 
practices, including automated scaling, load balancing and managed Kubernetes services. This cloud 
integration has accelerated the implementation of IaC (Infrastructure as Code) as GitOps. IaC 
automates infrastructure management using code, easing automatic deployment, and reducing 
errors, with tools like Terraform43 or AWS CloudFormation44.  itOps extends  it’s version control to 
infrastructure, ensuring consistency and transparency. 

The emphasis on team collaboration is mandatory in DevOps culture. These methodologies break 
down traditional silos between different departments, creating a culture of shared responsibility, 
continuous learning, and mutual support. The integration of development and operations teams leads 
to the formation of cross-functional teams. These teams are responsible for the entire software, from 
writing and testing code to deploying and monitoring applications. This approach ensures faster 
issues’ fixing, more efficient implementation of updates and improved software quality. 

As machine learning (ML) has become a central key to software solutions, MLOps emerges as a 
specialized field that applies DevOps principles to the unique and special needs of ML projects, from 
data preparation and model training to deployment and monitoring (Figure 4-1). Apart from common 
DevOps practices previously mentioned, MLOps involves more than code: the dataset for model 
training, the model itself, metadata, and artifact. 

In MLOps, continuous training of ML models is as crucial as continuous integration and deployment in 
DevOps. Automated ML pipelines are used for training, validating, and deploying models when the 
performance of the model is below certain threshold. This way, the best performing model is always 
deployed and available. Tools like Kubeflow45 Pipelines facilitate these processes, integrating machine 
learning with CI/CD pipelines. 

 

Figure 4-1: MLOps combine machine learning, applications development, and IT operations. Source: Neal Analytics.46 

 
 
39 https://www.elastic.co/elastic-stack  
40 https://aws.amazon.com/  
41 https://azure.microsoft.com/en-us/  
42 https://cloud.google.com/?hl=en  
43 https://www.terraform.io/  
44 https://aws.amazon.com/cloudformation/  
45 https://www.kubeflow.org/  
46 https://blogs.nvidia.com/blog/what-is-mlops/  

https://www.elastic.co/elastic-stack
https://aws.amazon.com/
https://azure.microsoft.com/en-us/
https://cloud.google.com/?hl=en
https://www.terraform.io/
https://aws.amazon.com/cloudformation/
https://www.kubeflow.org/
https://blogs.nvidia.com/blog/what-is-mlops/
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MLOps emphasizes the need for tracking experiments and versioning of data and models. DVC47 (Data 
Version Control) is a great example that helps in versioning datasets and models, enabling 
reproducibility and easing collaboration among data scientists. MLFlow48 is another good example for 
tracking experiments and versioning models. This way data scientists can track their progress and 
reproduce their trainings. 

Scalability (increasing the number of nodes) and Elasticity (improving existing nodes) are significant 
challenges in MLOps, given the computationally intensive nature of ML tasks like Computer Vision, in 
which GPUs are needed to support this heavy workload. Kubernetes plays a key role in scaling and 
elasticity of ML workflows, while cloud-based solutions like Amazon SageMaker49 or Google AI50 
platform provide managed services for training and deploying ML models at scale.  

In post-deployment, ML models require continuous monitoring to ensure their performance does not 
degrade over time. Tools like Evidently AI51 or TensorFlow Extended52 (TFX) offer capabilities for 
monitoring model performance and automating the retraining process by executing ML pipelines as 
was mentioned previously. 

The DevOps paradigm has revolutionized software development and operations, emphasizing 
automation, collaboration, and efficiency. This philosophy extends into MLOps, where the principles 
of DevOps are applied to meet the complexities of machine learning. It requires a deep understanding 
of ML workflows, data, and model lifecycle management. The collaboration between data scientists, 
ML Engineers and DevOps professionals is essential to address these challenges and get the full 
potential of MLOps. 

In line with the EMERALDS project requirements in the context of mobility, MLOps plays a key role in 
improving and facilitating transportation and mobility solutions. By applying the principles aspects 
previously mentioned of MLOps to mobility, the power of ML can be used, for example, to analyse 
great amounts of transportation data, optimize traffic flows, conduct condition-based monitoring on 
top of ITS assets and predict maintenance needs. These innovations bear the potential to improve 
efficiency and sustainability in urban mobility systems but also establish decentralized decision-
making processes entailed in smart city applications.  

4.2  AIaaS Platform Overview 

The EMERALDS Mobility AI as a Service (MAIaaS) offers a catalogue of specific mobility services, 
internally known as “emeralds”, which embed different AI technologies.  ehind this catalogue, there 
is an MLOps architecture intended to develop, train, deploy and serve these emeralds. The project 
analyses and combines current state of the art technologies and tools to implement and instantiate 
this architecture, thus creating the corresponding framework to support the full MAIaaS platform. 

In this sense, the MAIaaS whole platform is composed by a set of tools, prepared to support several 
ML frameworks running on a Kubernetes environment with specific enabling platforms for each 
specific feature. All these components are distributed under an open-source license as a project 
requirement. 

• In terms of tools, the platform implements instances of: 

 
 
47 https://dvc.org/  
48 https://mlflow.org/  
49 https://aws.amazon.com/es/sagemaker/  
50 https://cloud.google.com/ai-platform/docs/technical-overview  
51 https://www.evidentlyai.com/  
52 https://www.tensorflow.org/tfx  
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o Jupyter Notebooks for development,  

o min.io and MobilityDB for data storage,  

o DataHub and DVC for data management,  

o Prometheus, Grafana, and Evidently for performance monitoring. 

• For ML models development, testing and training, the platform is ready to work with most of 
the common ML frameworks, currently offering: 

o PyTorch, Scikit-learn, TensorFlow and XGBoost for classic ML and  

o Flower for FL use cases implementation. 

• To support these tools and frameworks instances, the EMERALDS MAIaaS platform runs in a 
Kubernetes cluster which also includes specific Kubernetes-based enabling platforms. These 
platforms, in turn, enable ML model development and deployment, supporting the full ML 
lifecycle:  

o MLFlow intended for experimentation,  

o Katib plus Kubeflow pipelines build and deploy ML models using Docker containers,  

o Kserve is used to manage models inferencing, and  

o KubeEdge deals with deployments in edge nodes and cloud synchronization.  

These components are, in turn, organized in functional blocks to create the ML development and the 
production / deployment frameworks according to the the MAIaaS platform architecture (Figure 4-2) 
already introduced in D2.1 and instantiated in this deliverable.  

Additionally, a Federated Learning (FL) module has been developed as a combination of development 
and production enabling platforms and frameworks that comply with specific requirements in terms 
of deploying and training environments.  

The platform development framework is integrated with the project’s  it ub repository, offering an 
easy way for project’s AI developers to link with  upyter Notebooks and enter their code into the 
MAIaaS platform to experiment with the selected ML framework.  

In terms of datasets for training and testing, the platform connects with use cases data sources using 
an array of data processing and ingestion tools (reported in D3.1) to gather and store this required 
information.  

Once the models have their first exploitable version, the distribution platform containerizes and 
deploys these models in the cloud inferencing (production) framework, in the FL module, if applicable, 
and leave a copy in the models’ repository to be exported to the use case proprietary infrastructure 
(or enrich other EU catalogues such as the EU AI on Demand platform). The production framework 
supports the execution of the exploitable version of the ML models running the corresponding use 
case processes that rely on the cloud infrastructure.  

A set of monitoring tools is provided, common to all frameworks, collecting and showing different 
metrics related to performance of networks, servers, and models.  

Additionally, a Federated Learning (FL) module has been developed as a combination of development 
and production enabling platforms and frameworks that comply with specific requirements in terms 
of deploying and training environments.  

Finally, results from model inference are extractable and can be integrated with external EMERALDS 
looking platforms, such as the CARTO Analytics as a Service environment, enabling further use case 
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implementation requirements and feeding tailored visualizations and dashboards. Details on the 
demonstration of integrated AI/ML services and cross-inference will be reported in D2.4. 

  

Figure 4-2: MAIaaS platform architecture – Logical view 

The EMERALDS MAIaaS platform core is hosted and managed by ATOS and deployed using Kubernetes 
technologies. In this first platform version (M15) two Kubernetes clusters have been configured on 
top of the same physical servers’ set, one to support the entire Kubeflow environment (Kserve, Jupyter 
Notebooks, Katib, etc) and the other one to host the rest of the tools (and frameworks) which are used 
and demanded by developers (MinIO, MobilityDB, Grafana, etc.) but both running the required 
enabling platforms to interconnect deployment and production environments, whilst supporting 
monitoring and FL modules. This configuration allows the experimentation with internal addressing 
and the evaluation of different integration approaches between frameworks. In addition, there exists 
a special machine implementing a Network File System (NFS) service devoted to support the data 
storage for both clusters. The resources assigned to each cluster are summarised in Table 25-Table 27. 

ID Cluster RAM Cores Storage GPU (Virtualized) O.S. 

103 Kubeflow 32 GB 30 0.5TB 
HDD 

NVIDIA A40 (6 GB) Ubuntu 22.04 

104 Kubeflow 30 GB 28 0.5TB 
HDD 

 Ubuntu 22.04 

Table 25: Kubeflow cluster resources 

ID Cluster RAM Cores Storage O.S. 

105 Apps 16 GB 10 0.2TB HDD Ubuntu 22.04 

106 Apps 16 GB 8 0.2TB HDD Ubuntu 22.04 

107 Apps 16 GB 8 0.2TB HDD Ubuntu 22.04 
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Table 26: Application and tools cluster resources 

ID Server RAM Cores Storage O.S. 

108 NFS 8 GB 8 6.5 TB HDD Ubuntu 22.04 

Table 27: NFS server resources 

To sum up, the EMERALDS MAIaaS is designed to implement the complete ML models lifecycle, from 
their creation and development to their deployment, offloading and inference in the use case 
scenarios. This has been realized catering to the use cases business needs and WP3/WP4 developers’ 
requirements, supporting the data and ML pipelines of each emerald. In the first version of the MAIaaS 
platform the set of selected tools, frameworks and enabling platforms as in Figure 4-3 is arranged so 
as to validate this lifecycle in parallel with the development of the first versions of the WP4 AI/ML 
tools.  

 

Figure 4-3: ML lifecycle implementation v1 

4.3  AIaaS Platform Components 

Task 4.3 designs and provides a common platform for supporting the complete lifecycle of the ML 
models within each emerald developed by the project (Figure 4-3). This platform starts with the 
cutting edge MLOps technologies, analysing those tools and frameworks that better fit the use cases 
and developers’ re uirement. The target is to implement and offer a first customi ed instantiation 
that supports the initial versions of the ML models and mobility analytics as a service offering, 
including the distribution and exploitation of these models. This first platform version is to be evolved 
during the second stage of the project, together with the emeralds needs and towards its updated 
release.  

The supported lifecycle covers the data gathering and preparation, jointly with WP3 tasks and use 
cases; the model development, including its planning, engineering, experimentation, and evaluation; 
their deployment and catering through the cloud and/or edge environment, using EMERALS project 
and EU repositories; and finally, their monitoring and maintenance, to guarantee their best 
performance according to the gathered data. In this regard, the current implementation supports 
classic ML development, as well as federated learning approaches. 

The following sections describe this first MLOps architecture version and the different technologies 
offered to support the emeralds on their different cycle stages, according to the specific use cases’ 
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needs. To facilitate the understanding and use of this platform, a series of tutorials are available on 
the project's GitHub repository:  

Component Repositories 

Overall MAIaaS platform 
walkthrough 

• https://github.com/emeralds-horizon/mlops-platform-
tutorial  

Description and usage of the 
DVC tool for datasets 
management 

• https://github.com/emeralds-horizon/mlops-platform-
dvc-tutorial  

Templates for  L models’ 
deployment 

• https://github.com/emeralds-horizon/mlops-platform-
kserve-template  

Set of available Docker images 
for mobility data analysis 

• https://github.com/emeralds-horizon/mlops-platform-
Docker-images  

 

New tutorials (and updates) will be included as the EMERALDS MAIaaS platform evolves to support 
new features. 

4.3.1 Data Management 
The data management components include data ingestion interfaces and the data repository. 
Although the MLOps platform is not directly related to data processing or modification, it is a key part 
in the data management process, especially in data storage. It allows data to be highly available and 
accessible after data processing for eventual model training phases. 

4.3.1.1 Data Ingestion Interfaces 

The interface the platform presents is used in an easy way by WP3, which releases a set of tools 
responsible for data processing that in turn port data to the platform. To support data storage 
requirements, two key tools have been deployed on the MLOps platform: 

1. The first tool is a MinIO53 instance (S3-compliant object storage solution), which supports 
datasets in file formats such as CSV, JSON, Excel, etc. It has an intuitive user interface (UI) that 
allows users to easily upload datasets via drag-and-drop for training purposes (Figure 4-4). 
While the UI54 is user-friendly, the usage of the pre-existing API55 is more powerful to enhance 
efficiency and enable automated post-processed data ingestion. Users are provided with 
individual credentials for both UI and API access, along with private storage buckets per user 
for their experiments. In addition, a shared public bucket is available to share datasets among 
all stakeholders of the MLOps platform. 

2. The second tool implemented is a MobilityDB56 instance, which is a PostgreSQL-based storage 
that offers mobility functionalities which can be applied to data. This way, both relational data 
storage and mobility-specific functionalities are covered. Like MinIO, MobilityDB (which is also 
used in T3.3) is integrated is integrated within the platform, providing each user with a private 
database and access credentials. A shared database is also available for sharing datasets 
among users, facilitating collaborative efforts. Users usually connect to MobilityDB without a 

 
 
53 https://min.io/  
54 https://minio-console.apps.emeralds.ari-aidata.eu/  
55 https://minio-api.apps.emeralds.ari-aidata.eu/  
56 https://mobilitydb.com/  

https://github.com/emeralds-horizon/mlops-platform-tutorial
https://github.com/emeralds-horizon/mlops-platform-tutorial
https://github.com/emeralds-horizon/mlops-platform-dvc-tutorial
https://github.com/emeralds-horizon/mlops-platform-dvc-tutorial
https://github.com/emeralds-horizon/mlops-platform-kserve-template
https://github.com/emeralds-horizon/mlops-platform-kserve-template
https://github.com/emeralds-horizon/mlops-platform-docker-images
https://github.com/emeralds-horizon/mlops-platform-docker-images
https://min.io/
https://minio-console.apps.emeralds.ari-aidata.eu/
https://minio-api.apps.emeralds.ari-aidata.eu/
https://mobilitydb.com/
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special interface57, just using their usual MobilityDB/PostgreSQL login details via CLI. If 
needed, developers can choose to use different tools with UI to connect. 

 

Figure 4-4: EMERALDS MAIaaS MinIO UI 

These tools create a connection between data processing tasks and model training activities, ensuring 
processed datasets are readily available for training in an efficient and user-friendly manner, as 
displayed in Figure 4-5. 

 

Figure 4-5: EMERALDS MAIaaS data management interfaces overview 

4.3.1.2 Data Repository 

The integration of MinIO and MobilityDB establishes a unified data repository for model training, 
creating a single access point for data retrieval. However, to ease the eventual steps and ensure access 
to datasets, it is important to document these datasets. Unfortunately, neither MinIO nor MobilityDB 
are focused on data discovery or documentation. To address this gap, DataHub58 (Figure 4-6) has been 

 
 
57 mobilitydb.apps.emeralds.ari-aidata.eu  
58 https://datahubproject.io/  

https://datahubproject.io/


  
  

  | Page 
 

 

77  

deployed on the platform to differentiate storage from documentation and discovery tasks. Users can 
access the tool’s web UI to see a list of all the datasets in the project59. 

DataHub automatically pulls metadata from both MinIO and MobilityDB by using their API (set up 
automatically without needing any action from developers), interpreting dataset characteristics such 
as data structure, size, and storage location. Users are recommended to add free text documentation 
related to datasets in DataHub, promoting the storage of only clean, high-quality, and training-ready 
data on the platform. This documentation includes important information such as dataset responsible, 
origin and any notes or considerations related to the data. 

Another valuable tool available for developers is DVC. As we have mentioned before, this tool makes 
it really easy for users to keep track of different versions of their datasets and manage them efficiently. 

 

Figure 4-6: EMERALDS MAIaaS datahub example with UC1 datasets 

4.3.2 ML Models Development Framework 
The MLOps platform facilitates the development, experimentation, and evaluation stages of AI model 
creation. The tools deployed on the platform for these goals are currently being used by developers 

 
 
59 https://datahub.apps.emeralds.ari-aidata.eu/  

https://datahub.apps.emeralds.ari-aidata.eu/
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and they are deployed in a Kubernetes environment. This architecture allows developers to leverage 
cloud resources and share knowledge, models, and data. 

4.3.2.1 ML Development Module 

Normally, AI model development is carried out by using Jupyter Notebooks60, a well know tool in the 
AI community. However, developers often face challenges when they train models on personal 
computers, such as limitations in computational resources and difficulties sharing models, data, or 
knowledge. To address these issues, the platform offers a Jupyter Notebook environment that is 
deployed on Kubernetes, enabling the creation of containers with the developments. Jupyter 
Notebook is a flexible web tool that facilitates the use of most relevant ML development frameworks, 
as well as their combination and integration with the rest of the MLOps modules. Current instance of 
the Jupyter environment is configured to support XGBoost, PyTorch, TensorFLow, and Scikit-Learn, as 
ML frameworks, plus many other libraries to connect developments with the rest of the MAIaaS tools, 
such as DVC, MinIO, MovingPandas, hvPlot61 or GeoViews62. 

Special mention should be made here of the Explainable AI (XAI) feature. As a requirement of the 
MAIaaS platform, and to support XAI for ML developers (specifically for the T4.2 emerald “Active 
Learning & XAI for Crowd Prediction”), the SHapley Additive exPlanations (SHAP)63 libraries set is 
added to the Jupyter development tool. This software provides a wide range of explainers that allow 
the ML programmer to easily create visual functions to explain the output of their ML models. 

The Jupyter deployments are carried out by Kubeflow, an MLOps framework that tackles some aspects 
of the MLOps lifecycle which include Jupyter Notebooks, automated hyperparameter tuning and 
model deployment. Kubeflow allows users to create their own containerized Jupyter Notebooks on 
demand with all necessary Python libraries pre-installed based on developer needs. This way, they 
enhance efficiency and scalability of AI model development. Development tools like Jupyter 
Notebooks or Katib can be accessed through a unified entry point by using  ubeflow. The project’s 
Kubeflow is also accessible to developers64, offering a user-friendly interface (Figure 4-7).  

 

Figure 4-7: EMERALDS MAIaaS Kubeflow UI 

 
 
60 https://jupyter.org/  
61 https://hvplot.holoviz.org/  
62 https://geoviews.org/  
63 https://shap.readthedocs.io/en/latest/  
64 https://kubeflow.emeralds.ari-aidata.eu/  

https://jupyter.org/
https://hvplot.holoviz.org/
https://geoviews.org/
https://shap.readthedocs.io/en/latest/
https://kubeflow.emeralds.ari-aidata.eu/
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4.3.2.2 ML Evaluation and Experimentation Module 

After defining the environment for model development, it is crucial to monitor developers’ 
experiments to ensure reproducibility. To solve this task, MLFlow tool has been integrated into the 
platform, so each user has its own MLFlow server65. It is a well-known tool within the MLOps 
community, which includes modules that speed up developer tasks such as experiment tracking and 
model registry and it has a user-friendly UI. This setup provides a centralized approach for 
documenting model experiments and managing models which will be deployed in a production 
environment. 

To enhance the efficiency of the experimentation phase (hyperparameter tuning), parallelization is 
key. Katib66 offers an optimal Kubernetes-based solution that automates hyperparameter tuning 
through containerization. Like this specific Jupyter Notebook approach, Katib is deployed along 
Kubeflow. This approach accelerates the experimentation process. 

Within the platform, the already mentioned tools for development, evaluation and experimentation 
are seamlessly integrated (Figure 4-8). From their Jupyter Notebooks they can send information to the 
MLFlow tracking server or take advantage of Katib for parallel hyperparameter tuning.  

 

Figure 4-8: Model development overview. 

4.3.3 ML Models Deployment (Production) Framework 
Once a model has been trained, versioned and registered, it becomes ready for deployment in a 
production environment. The platform supports these deployment stages, offering solutions from 

 
 
65 https://mlflow-<username>.apps.emeralds.ari-aidata.eu/ 
66 https://www.kubeflow.org/docs/components/katib/overview/  

https://www.kubeflow.org/docs/components/katib/overview/
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Kubernetes-based deployment to model monitoring, which (for example) could trigger model 
retraining actions if any decrease in model performance is detected (Figure 4-9). 

4.3.3.1 ML Models (and Tools) Repository 

The platform offers multiple methods for storing models prepared for deployment. Some developers 
opt to use the MLFlow Model Registry module, while others prefer a Docker registry, such as the 
private GitHub Docker registry67 of EMERALDS project, or even public repositories like AI4EU68. All 
these solutions are available within the platform. The most common method is via Docker registry. 
The EMERALDS project offers an internal Docker registry hosted on GitHub, which is integrated with 
the platform, so this enables push/pull Docker image actions from/to this private registry. For those 
who choose to use MLFlow or AI4EU the process is simple: They only need to provide their credentials. 
This way, models can be made available to be downloaded and executed locally, for example, as part 
of T4.1 edge analytics framework. 

4.3.3.2 ML Deployment and Inferencing tools 

To minimize human error, the model deployment within the platform is designed to be as automated 
as possible. This automation is related to both deploying and hosting models, supported by specific 
tools integrated into the platform. For deployment automation, Continuous Integration/Continuous 
Deployment (CI/CD) pipelines by using GitHub Actions69 are used. These pipelines simplify the 
deployment process: once a developer has developed and registered their model, deployment is 
initiated by simply pushing code to the designated repository. This action triggers a CI/CD pipeline that 
automatically pulls the trained model, containers the model and deploys it within a Kubernetes 
environment, removing any complexity of Kubernetes-based deployment from developers. 

For model hosting, Kserve70 was integrated into the platform. It is a tool that automates and simplifies 
model deployment in Kubernetes environments. Kserve, like Katib and Jupyter Notebooks, is deployed 
along Kubeflow. This way, models are ready for inferences and hosted in the MLOps platform, 
leveraging Kubernetes robustness and scalability. 

4.3.3.3 ML Monitoring Tools 

It is common to see a model performance decrease over time, being periodic retraining needed. 
EvidentlyAI71 is a tool used to identify such data drift issues, providing insights into whether a model 
is maintaining its expected performance levels. Normally, ground truth label may not be available, so 
this monitoring technique is useful in these scenarios, which relies on analyzing the probability 
distribution if the data used for making predictions. A “shift” between the real-world data and the 
data used to train the model means that a retraining is needed. 

In addition to tracking model performance, computational resources (such as CPU and RAM usage) 
that support the models are important as well. To monitor these resources, Grafana/Prometheus 
setup has been integrated on the cluster. This combination offers an overview of the platform’s 
performance, allowing for real-time monitoring of both model performance and computational 
resource usage. 

 
 
67 https://docs.github.com/en/packages/working-with-a-github-packages-registry/working-with-the-Docker-registry  
68 https://www.ai4europe.eu/  
69 https://docs.github.com/en/actions  
70 https://kserve.github.io/website/0.11/  
71 https://www.evidentlyai.com/  

https://docs.github.com/en/packages/working-with-a-github-packages-registry/working-with-the-docker-registry
https://www.ai4europe.eu/
https://docs.github.com/en/actions
https://kserve.github.io/website/0.11/
https://www.evidentlyai.com/
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Figure 4-9: Model deployment overview. 

4.3.4 Federated Learning Module 
The EMERALDS project includes the development and adaptation of specific mobility services to be 
deployed and run within a federated learning environment. These are intended to work with 
distributed and sensitive spatiotemporal timeseries data, directly on the edge layer and so fostering 
privacy-preserving ML models’ training and sharing. The project’s MAIaaS platform also provides a 
framework for its AI scientist to develop and run these FL scenarios, fully aligned (and integrated) with 
the MLOps approach described in previous sections. This section provides an overview of the 
proposed technologies within EMERALDS to support these initial implementations.  

According to recent studies and environments’ evaluations [93,94,95] driven by the open-source 
principle and aligned with the project’s MAIaaS cloud-kubernetes approach, it is proposed a FL 
baseline framework based on Flower72 for development, and KubeEdge73 for deployment and edge 
layer management. 

4.3.4.1 FL Development Framework 

The development stage of the federated ML models covers the creation and initialization of the classic 
model within the cloud server as well as the definition of two new components: 

• The aggregation server is located in the cloud side of the framework to collect the models’ 
trained parameters from the registered edge nodes and aggregate them using a selected 
algorithm. Then, this new set of parameters is sent to the edge nodes to update the local 
versions of the models and start a new iteration. 

• The edge client represents the code to be deployed in the edge node that updates the local 
version of the main model, trains it with the datasets in the edge source, and reports the new 
model’s parameters to the aggregation server.  

In this development context, Flower FL framework is intended to be used with most of the common 
ML frameworks (PyTorch, TensorFlow, scikit-learn, JAX, fastai, XGBoost, Pandas and more) to define 
the initial ML models and provide the tools to support the creation and synchronization of the 

 
 
72 https://flower.dev/  
73 https://kubeedge.io/  

https://flower.dev/
https://kubeedge.io/
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aggregation server and edge nodes, according to the use cases’ scenarios. Flower is open-source and 
integrates with EMERALDS MAIaaS by using its Jupyter Notebooks tool. 

4.3.4.2 FL Deployment Framework 

The EMERALDS FL module relies on the Kubernetes deployment framework provided by its MAIaaS 
platform based on Docker containers and assisted by MLFlow tool for the cloud components and pods. 
The edge layer is to be integrated using the KubeEdge74 system. This is an open-source extension for 
Kubernetes native frameworks that provides fundamental infrastructure support for network, 
application deployment and metadata synchronization between cloud and edge. By using KubeEdge, 
the MLOps platform can deploy and manage Docker containers on low-resource devices and low-
bandwidth environments, handling networking and data synchronization between edge nodes and 
the aggregation server. This system also extends the security layer supported by Kubernetes, 
supporting SPIFFE75 and SPIRE76 mechanisms to ensure that only verified edge nodes can participate 
in data transmission, and so, in federation. 

Combining the FL development and deployment frameworks within the FL module, the EMERALDS’ FL 
overall approach is summarized in Figure 4-10. Flower plus the preferred ML software libraries will be 
used to design and code the model, the aggregation server, and the edge client, as well as the model 
parameters’ flow, relying on  upyter  otebooks. These will be packed into Docker containers and 
deployed as  ubernetes pods among the cluster’s cloud and the edge nodes using  ubernetes   
KubeEdge. During each single iteration, edge nodes are updated with the initial (or aggregated) set of 
model’s parameters and triggered to train their model’ versions with their local datasets to get a new 
set of model’s parameters. These sets are updated in the aggregation server where the next common 
one is produced, and a new iteration can start. After a programmed number of iterations, the last 
version of the parameters can be implemented in the original ML model and can be distributed using 
the corresponding CI/CD pipeline in the MAIaaS platform.  

 

Figure 4-10: MAIaaS Federated Learning module – logical view. 

 
 
74 https://kubeedge.io/  
75 https://spiffe.io/  
76 https://spiffe.io/docs/latest/spire-about/spire-concepts/  

https://kubeedge.io/
https://spiffe.io/
https://spiffe.io/docs/latest/spire-about/spire-concepts/
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4.4 Preliminary Evaluation 

As already defined in D2.1, the MAIaaS platform is to be evaluated and validated from two different 
approaches: a) the platform performance, which measures e.g., the execution, processing and 
deployment times or the number of concurrent processes running; and b) the platform usage, 
considering the number of stored datasets, models trained and developed or platform users. 

Platform’s performance metrics are intended to validate the proper integration and execution of the 
different frameworks, tools and enablers deployed to cover the MAIaaS requirements. In this sense, 
a) Data Ingestion Speed is considered as the time taken for data to be ingested and available for ML 
usage within the internal repository (MinIO). The goal is to achieve speeds similar to platforms such 
as AWS or Azure, commonly used for DevOps platforms; b) the Number of Models in Training Phase 
has to do with the capability of the platform to support concurrent models’ training and so, parallel 
emeralds’ development. In this line, the number of training processes will be monitored (Number of 
concurrent models in training stage), considering those that do require a GPU and those that not, and 
compared with the whole models’ performance to check its impact; c) this is to be replicated for  the 
Number of models in production within the inferencing platform (Number of concurrent models in 
production - cloud) with and without GPU; d) for federated learning, it is interesting to provide the 
platform with the ability to integrate edge infrastructures and to know what are their limitations. To 
validate the platform’s scalability and capacity to handle distributed devices (and build a FL scenario), 
the Minimum number of connected edge devices (using KubeEdge) are to be checked; e) finally, the 
Anomaly Detection and Alert Resolution Time is defined as the time required to identify anomalies 
in the execution of the models and their correct resolution. This is to be tracked and measured using 
the deployed ML monitoring tools, to guarantee that the platform detects and addresses issues 
promptly. 

Platform Performance 

Description Baseline 
Value 

Target 
Value 

Method of 
Measurement 

Achieved Value 

Data Ingestion speed 1 MB/s Between 1 
and 10 
MB/s 

Time for data to be 
ingested and made 
available for 
processing or 
analysis after its 
arrival at the data 
ingestion interface 

Tbd in the 1st 
assessment cycle 

Number of concurrent 
models in TRAINING 
stage (with GPU) 

0 >=3 models Track the number of 
pods (models) 
running in training 
namespaces 

Tbd in the 2nd 
assessment cycle 

Number of concurrent 
models in TRAINING 
stage (without GPU) 

0 >=6 models Track the number of 
pods (models) 
running in training 
namespaces 

Tbd in the 2nd 
assessment cycle 

Number of concurrent 
models in PRODUCTION 
(cloud) with GPU 

0 >=3 models Track the number of 
pods (models) 
running in 
production 
namespaces 

Tbd in the 2nd 
assessment cycle 
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Number of concurrent 
models in PRODUCTION 
(cloud) without GPU 

0 >=6 models Track the number of 
pods (models) 
running in 
production 
namespaces 

Tbd in the 2nd 
assessment cycle 

Minimum number of 
connected edge devices 

0 >=3 devices Identify the devices 
connected in the 
edge layer using 
KubeEdge 

Tbd in the 2nd 
assessment cycle 

Anomaly detection and 
alert resolution time 

n/a <=5min 
(Grafana 

alert time) 
 

Time to identify 
anomalies in model 
behaviour and 
resolve associated 
alerts using the ML 
Monitoring tools 

Tbd in the 2nd 
assessment cycle 

Table 28: Mobility AI-as-a-Service Platform Performance KPIs 

Platform usability KPIs assess the acceptance and adoption of the MAIaaS platform by the EMERALDS 
developer community. This is to be done by monitoring: a) the User engagement or adoption rate, 
considering the number or registered users accessing the development and the deployment 
frameworks; b) the number of Available Datasets for Training and/or Testing stored in the MLOps 
repository; and c) the Model repository utilization, by counting the number of models offered and 
shared to be downloaded and deployed on proprietary frameworks. These numbers are directly 
related to the number of development partners and the number of EMERALDS to be deployed. 

Platform Usage 

Description Baseline 
Value 

Target 
Value 

Method of 
Measurement 

Achieved Value 

User engagement or 
adoption rate 

0 >=5 users Number of active 
users & frequency of 
usage 

Tbd in the 1st 
assessment cycle 

Available datasets for 
training / testing 

0 >=6 dataset tbc Tbd in the 2nd 
assessment cycle 

Model repository 
utilization 

0 >=6 models tbc Tbd in the 2nd 
assessment cycle 

Table 29: Mobility AI-as-a-Service Platform Usage KPIs 

This evaluation will be carried out on the basis of the tools in place for the monitoring of the ML 
models’ development, with a specific user interface designed to capture and track the  PIs. In detail: 

• Prometheus monitoring system will be programmed to include two different sets of metrics: 
a) a first set will capture the status of the physical servers that support the MAIaaS platforms’ 
cluster, so the efficiency usage of the dedicated resources (RAM, CPUs, GPU, storage, etc.) 
and the overall status of the cluster can be tracked. This will allow the detection and 
identification of whole performance bottlenecks and redistribute resources to improve 
general performance KPIs. The b) second set of metrics will be devoted to the Kubernetes 
cluster’s distribution and the set of deployed tools and pods. This way, the different dedicated 
namespaces and running pods can be individually tracked, identifying so the resources, 
timings, network traffic etc. that each of them are consuming. This will provide a customized 
picture of what’s currently happening within each clusters’ area (development, 
experimentation, cloud/edge deployment, etc.) and its evolution in time. This contributes to 
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granular platform performance and platform utilization KPIs monitoring. All these metrics 
results will be used within Grafana to create the specific visualization and reporting 
dashboards for the selected KPIs. An example of what is currently being configured is shown 
in Figure 4-11.  

• The EvindentlyAI monitoring tool is, in principle, intended for ML models’ validation, helping 
the ML developers to evaluate, test, and monitor their models. The overall MAIaaS platform 
evaluation will consider this component to contribute to the measurement and show (Figure 
4-12) the platform’s usage  PIs, in terms of models’ running and datasets consumed. 

In the ongoing 1st integration cycle, the first EMERALDS models will be deployed in the MAIaaS 
platform. In the 1st assessment cycle that follows, the evaluation of these deployed models will be 
carried out, thus going beyond the integration and deployment testing of tools and frameworks 
presented here. The design and implementation of the dashboards to track and show platform’s  PIs 
will be done in parallel to the first (preliminary) set of EMERALDS’ deployments.  

 

Figure 4-11: Example of a Kubernetes’ cluster monitoring dashboard created with Grafana for E ERALDS  AIaaS KPIs. 
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Figure 4-12: EvidentlyAI monitoring dashboard example (from evidentlyai.com). 

4.5 Next Steps 

The MAIaaS evolution is linked to the use cases and ML developers progress and needs, so several 
versions of this platform are planned to adapt its supported features. 

The full cloud servers set with a first basic set of tools and frameworks was released by ATOS in August 
2023 (M8), intended to present the MAIaaS approach with its main features ready for ML 
development stages. This first version of the EMERALDS MAIaaS platform integrated (and offered) 
three main tools: 

• Dockerized Jupyter Notebooks with Kubeflow, which provides the development 
environment. 

• MinIO instance for storing and organizing datasets, as the core of the data management layer. 

• MLFlow to support and track ML experiments. 

Other additional tools and resources were also set up to prepare the MAIaaS environment. These 
include Keycloak77 Identity Manager for access control management; the option to use GPUs for 
training when needed; and all the necessary credentials to directly connect the platform with the code 
and Docker repositories. 

A new functional version, including some new features requested by the ML developers (WP3/WP4), 
was released in January 2024 (M13) to support the primary implementation cycle and the initial 
integration tests (Milestone 2). This update was improved to better assist developers with their daily 
model development tasks and covered: new tools for handling data, including MobilityDB for 
managing mobility-related data in a relational database and DVC for keeping track of different versions 
of data; DataHub was also added to make it easier to share, discover and document datasets to be 
further used in ML models’ development; finally, some specific tools to model development and 
mobility were integrated as well, such as basic tools for data visualization (Hvplot78 & Panel79). During 
this stage, some KPIs related to the dataset management and data ingestion can be preliminarily 
assessed. 

 
 
77 https://www.keycloak.org/  
78 https://hvplot.holoviz.org/  
79 https://panel.holoviz.org/  

https://www.keycloak.org/
https://hvplot.holoviz.org/
https://panel.holoviz.org/
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Next steps related to the evolution of the EMERALDS MAIaaS platform are along the line of supporting 
the different pipelines that will make up the set of EMERALDS development and deployment. This task 
will mainly focus on data collection and orchestration support, assisting cities and WP3 data providers 
to collect and reuse datasets for training and testing ML models; and the deployment of the final ML 
models in both, cloud and edge layers, covering also the Federated Learning scenario.   

These steps will culminate in the creation of the final version of the platform, which is internally 
planned for mid-2024. This version will tackle the EMERALDS deployment and production stage, 
making it easier to put models in a real-world setting. It will include:  

• Full implementation of the CI/CD pipelines using GitHub Actions to automate the setup as 
much as possible.  

• Two specific tools designed for the Kubeflow environment will be added as well:  i) Kserve, to 
simplify the process of model deployment on a Kubernetes cluster for developers; and ii) 
Kubeflow pipelines, to automate and organize steps of training and deploying models 
automatically in production. 

• In addition to traditional model deployment, the platform will support Federated Learning 
using the Flower framework and KubeEdge for managing devices at the edge. 

• Monitoring tools like Grafana, Prometheus and EvidentlyAI will be deployed and configured 
for monitoring clusters and models’ performance. 

• Demonstration of the use cases’ pipelines implementation is also considered to be carried 
out, as long as these are defined, and AI models are developed. 

With this final version, the actual KPI validation will be performed, using the monitoring tools available 
in the cloud MAIaaS platform instance.   
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5 Conclusions and Next Steps  

In this deliverable, we presented the current state of the developed mobility data analytics and 
learning tools and services (known as “emeralds”), as well as the Mobility AI-as-a-Service (MAIaaS) 
platform, as implemented and integrated within the 1st respective cycles and the planned next steps. 
In total, this deliverable covers: 

 Emeralds presented in D4.1 Project target  

 Number of 
emeralds 

Emerald names Number of 
emeralds 

Analytics emeralds  3 • Probabilistic Trip Chaining 
• Trajectory Data Analysis 
• Extreme Scale Map Matching 

3 

Learning emeralds 5 • Dropoff/Destination Prediction 

• Traffic State / Flow Forecasting 

• Parking Garage Occupancy Prediction 

• Crowd Density Prediction 

• Active Learning & XAI for Crowd Prediction 

8 

MAIaaS Platform 4 • Data Management 

• ML Models Development Framework 

• ML Models Deployment Framework 

• Federated Learning Module 

4 

 Emeralds integrated in the MAIaaS Platform: 

 3 • Parking Garage Occupancy Prediction 

• Crowd Density Prediction 

• Active Learning & XAI for Crowd Prediction 

>= 5 

Table 30: Summary of emeralds presented in D4.1. 

In line with the objectives, expected results, and means of verification specified in the GA, the WP-
level next steps are: 

In the 1st integration and assessment cycle, we will: 

• Ensure and demonstrate interoperability of the developed WP4 emeralds through the 
design of cross-WP pipelines, including ingestion of data from WP3 emeralds and 
presentation of results in the EAD platforms. (O1 & O3) 

• Link with use case testing, measurement, and validation. (O4) 

In the 2nd iteration, we will: 

• Demonstrate the containerized EMERALDS toolset and service advancements in three 
selected use cases in the context of urban mobility deployed/showcased in the EAD platforms 
(ATOS & CARTO) addressing different niche user bases. (O1) 

• Demonstrate the applicability and accuracy of the developed tools along the compute 
(edge/fog/cloud) continuum. (O3) 

• Evaluate the privacy-awareness effect in the developed tools and services. (O3) 

• Demonstrate the integration of data analytics and AI/ML tools in a Mobility AIaaS platform. 
(O3) 

• Validate the Mobility AIaaS platform through real-world data (from use cases). (O3) 
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Annex 

Annex 1: README Template 

# WPx Emerald: [Task] - [Service Name] 
 
## Description 
This repository contains the first version of the service [Service Name], developed 
as part of [Task] of WPx within EMERALDS project. [Service Name] is a service for 
[brief description, including info about input/output]. This README provides 
essential information for deploying, testing, and [+++]. 
 
## Table of Contents 
[Include a table of contents in order to allow other people to quickly navigate 
especially long or detailed READMEs.] 
 
## Requirements 
requirements.txt 
 
## Sample data input/output structures 
[Describe the structure of sample input and output data for the service.] 
 
## Input/Output interfaces & interactions 
[Describe the input and output interfaces and interactions; ensure compliance with 
the EMERALDS Ref.Arch.] 
 
## Deployment 
[Along with the source code, include in this repository a Dockerfile containing the 
requirements to build the docker image and a docker-compose.yaml file defining the 
required configuration to execute each component in terms of ports, networks, and 
volumes.] 
 
## Usage - Executing program 
[Provide instructions on how to use the project or run the code. Include examples 
and code snippets if applicable. Include references to sample data if applicable.] 
 
## Authors 
[List the authors or contributors involved in the project.] 
 
## +++ 
Feel free to customize this template further to suit your specific service 
requirements. 
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Annex 2: Ethics Checklist and Questionnaire 

 
 
Ethics Checklist and Questionnaire 

 

A. PERSONAL DATA  

1. Are personal data going to be processed for the completion of this deliverable? 

NO 

• If “yes”, do they refer only to individuals connected to project partners οr to third 
parties as well?  

2. Are “special categories of personal data” going to be processed for this deliverable? 
(whereby these include personal data revealing racial or ethnic origin, political opinions, 
religious or philosophical beliefs, and trade union membership, as well as, genetic data, 
biometric data, data concerning health or data concerning a natural person's sex life or 
sexual orientation)  

 
NO 

 
3. Has the consent of the individuals concerned been acquired prior to the processing of their 

personal data?  
 

N/A 
 

• If “yes”, is it based on the Project’s Informed Consent Form, either on the provided 
Template or on other attached herein Template?  

• If “no” is it based on a different legal basis?  

4. In the event of processing of personal data, is the processing:  
 

N/A 
 
• obviously “Fair and lawful”, meaning executed in a fair manner and following consent 

of the individuals concerned or based on another - acknowledged as adequate and 
proportionate as per above - legal basis?  

• Performed for a specific (project-related) cause only?  

• Executed on the basis of the principle of proportionality and data minimisation 
(meaning that only data that are necessary for the processing purposes are being 
processed and such deductive reasoning is documented)?  

• Based on high-quality, updated and precise personal data?  

5. Are there any provisions for a storage limitation period of the personal data-in case of 
storage- after which they must be erased? 

 
 N/A 
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6. Are all other lawful requirements for the processing of the data (for example, notification 

of the competent Data Protection Authority(s) or undergoing a DPIA procedure and 
consulting with the competent DPA, if and where applicable) adhered to and on what 
legislative basis are such notifications justified as necessary or dismissed as unnecessary?  

 
 N/A 
 
7. Have individuals been made aware of their rights on the processing of the personal data as 

per the GDPR and the relevant and executive national legislation (particularly the rights to 
access, rectify and delete the personal data and their right to lodge a complaint with the 
relevant Competent Authority)  and if yes, by what demonstrable means (e.g. the informed 
consent form as per above or as per other Templates, attached herein?) 

 
 N/A 
 
8. Even if anonymized or pseudonymized or aggregated data are referred to, does the dataset 

contain location data that could potentially (even via the combined use of other datasets) 
be traced back to individuals? If yes, what specific measures are taken to ensure this data 
(i) is anonymized or pseudonymized and (ii) cannot be used to track individuals without 
their consent? If no, what is the scientific methodology used to collect and gather said 
data? 

 
 We do not facilitate any deanonymization through the tools we develop. We alleviate 

the need to store data on this granularity. 
 
9. In the context of risk assessment, prediction and forecasting, as foreseen in the scope of the 

EMERALDS project, during traffic, population movement monitoring or weather events, is 
there any risk that personal data could be inadvertently revealed in the event of an 
emergency or unusual event, because of the dataset usage, either on its own or combined 
with other openly available datasets, triggering identification or unwanted disclosure of 
PII? What measures are in place to protect - still identifiable if the dataset allows such 
extraction - personal data in these circumstances?  

 
 NO 
 
10. For the use case of Trip Characteristics Inference as per the EMERALDS project scope, are 

there specific measures to ensure that inferences made about trip characteristics cannot 
be linked back to specific individuals or reveal sensitive information about their habits or 
routines i.e. by identifying specific individuals’ absence or presence routines whether in 
the home or in a professional environment or in other premises?  

 
 We do not facilitate any deanonymization through the tools we develop. We alleviate 

the need to store data on this granularity. 
 
11. Are there any potentially personal identifiable information (PII) in the datasets, disclosable 

by combination with other datasets, either open data or proprietary (e.g., E-tickets 
validation data)? If yes, how is PII adequately anonymized or pseudonymized or how other 
datasets that by combination may result in unwanted or illegal disclosures or identification 
before any processing takes place? 

 
 NO 
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B. DATA SECURITY  

1. Have proportionate security measures been undertaken for protection of the data, taking 
into account project requirements and the nature of the data?  
• If yes, brief description of such measures (including physical-world 

measures, if any)  

• If yes, is there a data breach notification policy in place within your 
organization (including an Incident Response Plan to such a breach)?  

YES. ATOS (as MAIaaS providers) store the datasets, supporting the platform to share the 
data among the AI developers. ATOS implement mechanisms to control the access to the 
platform and thus the stored data, identifying the users and keeping records of who is 
accessing, when and what. Each data provider (uploader) is responsible for their datasets, 
also deciding who can access and who cannot.  

 
2. Given the large-scale nature of some datasets, are there specific measures in place to 
protect included personal data at scale at the data source or in the possession of data 
processors? 
 
YES. The AI/Services developers (Data Processors) are responsible to process the personal 
data only according to the Use Cases data providers’ instructions. Also, the Use Cases data 
providers (and those AI developers that produce datasets that might contain personal data) 
should indicate the MAIaaS provider (ATOS) of any special indication about how to proceed 
with their datasets (e.g., specific deletion and access rules). 
 
3. Regardless of personal data, in the case of Multi-modal integrated traffic management as 
defined under the EMERALDS scope, are there specific measures in place to ensure the 
availability and integrity of data spanning multiple modes of transport from being disclosed 
in other manners than the ones intended and covered under an open data scheme? 
 
N/A 
 
4. Are there specific measures in place to secure sensitive infrastructure data, if present? 
 
N/A 
 

 

C. DATA TRANSFERS  

1. Are personal data transfers beyond project partners going to take place for this deliverable?  
 
NO 

• If “yes”, do these include transfers to third (non-EU) countries and if what policies 
apply?  

2. Are personal data transfers to public authorities going to take place for this deliverable?  
 
NO 
 
3. Do any state authorities have direct or indirect access to personal data processed for this 

deliverable?  
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NO 
 
3. Taking into account that the Project Coordinator is the “controller” of the processing and 

that all other project partners involved in this deliverable are “processors” within the same 
contexts, are there any other personal data processing roles further attributed to any third 
parties for this deliverable? And if any, are they conformed to the GDPR provisions?  

 
NO 
 
4. Given the geographical diversity of the datasets, are there measures in place to ensure 

compliance with specific personal data protection regulations in different jurisdictions i.e. 
at the place of the data source establishment as well as at the place of the establishment 
of a Data processor? 

 
N/A 
 
5. Are there additional protocols for data transfers involving sensitive infrastructure data, if 

present? 
 
N/A 

D. ETHICS AND RELATED ISSUES  

1. Are personal data of children going to be processed for this deliverable (ie. “underage” 
signified e-tickets)?  
 
NO 
 
2. Is profiling of identifiable individuals in any way enabled or facilitated for this deliverable?  
 
NO 
 
3. Are automated decisions for identifiable individuals made or enabled on the basis this 
deliverable?  
 
NO 
 
4. Have partners for this deliverable taken into consideration system architectures of privacy 

by design and/or privacy by default, as appropriate?  
 
YES 
 
5. Have partners for this deliverable taken into consideration gender equality policies or is 
there an explicit reasoning that dismisses such risk as unsubstantiated or such need as 
irrelevant as per the methodology of work and production of the deliverable?  
 
YES, if this question refers to the composition of the team. x out of y members working D4.1 
are female.  
 
6. Have partners for this deliverable taken into consideration means of protecting the 
confidentiality of the dataset if it is not signified as open data? 
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YES, all non-open datasets provided by WP5 use case partners are used only in compliance 
with the usage rules set by the use case partners.  
 
7. Are there additional considerations around the collection and processing of location data 
and data that could potentially be used to infer patterns about individuals’ movements? 
 
NO 
 
8. Have partners identified any additional ethical issues related to the processing of sensitive 
infrastructure data? 
 
NO 
 
 . Are shared economy (ie. “Uber” transfer services or “Lime” Scooters or other solution) or 
other shared mobility infrastructures used by the data sources? If yes, are there measures in 
place to ensure that the processing of shared mobility data respects privacy rights? 
 
NO 
 
10. In the context of Traffic Flow Data Analytics, are there specific considerations to ensure 
that the analysis of traffic flow data does not infringe on privacy rights or reveal sensitive 
information about individuals’ movements or routines? 
 
NO specific considerations necessary, since traffic flow data is already aggregated.  
 
11. Is the Project taking into account the need for an all people-inclusive policy in the future  
within its overall goals and not only the ‘’tech-savvy’’ (i.e. elderly people not familiar with some 
tech devices, poor people) and does it entail possible proposals for that? 
 
YES 
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