
 

 

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051 

 

 

 
 
 
 

Project Title Extreme-scale Urban Mobility Data Analytics as a Service 

Project Acronym EMERALDS 

Grant Agreement No. 101093051 

Start Date of Project 2023-01-01 

Duration of Project 36 months 

Project Website https://emeralds-horizon.eu/ 

 
D3.1 – Mobility Data Processing at the Computing 
Continuum 
 

Work Package WP3, Mobility Data Processing at the Computing Continuum 

Lead Author (Org) George Theodoropoulos (UPRC) 

Contributing Author(s) (Org) 

Nikos Koutroumanis (UPRC), Christos Doulkeridis (UPRC), Ioannis 
Athanasopoulos (UPRC), Nikolas Doulos (UPRC), Yannis Kontoulis 
(UPRC), Yannis Theodoridis (UPRC), Mahmoud Sakr (ULB), 
Bahare Salehi (ULB), Daniel Calvo (ATOS), Ignacio Elicegui (ATOS), 
Yerhard Lalangui (ATOS), Melitta Dragaschnig (AIT) 

Due Date 31.03.2024 

Date 29.03.2024 

Version V1.0 

 

 

 

Dissemination Level 
 

X PU: Public 

 SEN: Sensitive, only for members of the consortium (including the Commission) 

 
 
 

Ref. Ares(2024)2360930 - 29/03/2024

https://emeralds-horizon.eu/


  
  

 

2 | Page 
 

 

Versioning and contribution history 

Version Date Author  Notes &/or Reason 

0.1 02/06/2023 George Theodoropoulos, Mahmoud 
Sakr, Christos Doulkeridis 

Initial Deliverable Structure -
TOC and adherence to D2.1 

0.2 26/02/2024 George Theodoropoulos, Nikos 
Koutroumanis, Christos Doulkeridis, 
Ioannis Athanasopoulos, Nikolas 
Doulos, Melitta Dragaschnig 

Chapters 2 and 3 

0.3 01/03/2024 Mahmoud Sakr, Bahare Salehi, George 
Theodoropoulos, Daniel Calvo, Ignacio 
Elicegui, Yerhard Lalangui 

Chapters 1, 4, 5 

0.4 12/03/2024 George Theodoropoulos, Bahare 
Salehi, Nikos Koutroumanis 

Addressed first round internal 
review comments 

0.5 22/03/2024 George Theodoropoulos, Ignacio 
Elicegui, Christos Doulkeridis, 
Mahmoud Sakr 

Addressed second round 
internal review comments 

0.6 27/03/2024 George Theodoropoulos, Yannis 
Kontoulis 

Addressed Scientific and 
Technical Manager comments 

 

Quality Control (includes peer & quality reviewing)  
Version  Date  Name (Organisation)  Role & Scope  

0.3 04/03/2024 Anita Graser (AIT), Mattia Pretti 
(Sistema) 

Internal review 1st round 

0.4 14/03/2024 Yannis Theodoridis (UPRC) Review by Scientific and 
Technical Manager 

0.4 21/03/2024 Anita Graser (AIT), Mattia Pretti 
(Sistema) 

Internal review 2nd round 

0.5 26/03/2024 Yannis Theodoridis (UPRC) Final Scientific and Technical 
Manager revisions 

1.0  29/03/2024 Foivos Galatoulas (INLE) Final review by Coordinator  

 

  
 This project has received funding from the European Union’s Horizon Europe research and 

innovation programme under Grant Agreement No 101093051  
 

Disclaimer  

EMERALDS - This project has received funding from the Horizon Europe R&I programme under the GA 
No. 101093051. The information in this document reflects only the author’s views and the European 
Community is not liable for any use that may be made of the information contained therein. The 
information in this document is provided “as is” without guarantee or warranty of any kind, express 
or implied, including but not limited to the fitness of the information for a particular purpose. The user 
thereof uses the information at his/ her sole risk and liability. 



  
  

 

3 | Page 
 

 

 
Copyright message  

©EMERALDS Consortium. This deliverable contains original unpublished work except where clearly 
indicated otherwise. Acknowledgement of previously published material and of the work of others 
has been made through appropriate citation, quotation, or both. Reproduction is authorized provided 
the source is acknowledged.  

Table of Contents 

1 Introduction ................................................................................................................................... 10 
1.1 Purpose and scope of the document .................................................................................. 10 
1.2 Relation to Work Packages, Deliverables and Activities ..................................................... 10 
1.3 Contribution to Project Objectives ..................................................................................... 11 
1.4 Structure of the Document ................................................................................................. 12 

2 Privacy-aware In Situ Data Harvesting........................................................................................... 13 
2.1 Privacy-Aware Data Ingestion ............................................................................................. 13 
2.1.1 Brief Survey of the State-of-the-Art ................................................................................ 13 
2.1.2 Overview and Description ............................................................................................... 14 
2.1.3 Preliminary Evaluation .................................................................................................... 18 
2.1.4 Next Steps ....................................................................................................................... 20 
2.2 Extreme-Scale Stream Processing Orchestrator ................................................................. 20 
2.2.1 Brief Survey of the State-of-the-Art ................................................................................ 21 
2.2.2 Architecture Overview .................................................................................................... 22 
2.2.3 Current Prototype - Deployer ......................................................................................... 23 
2.2.4 Current Prototype – Data Broker .................................................................................... 24 
2.2.5 Preliminary Evaluation/Demonstration .......................................................................... 26 
2.2.6 Next Steps ....................................................................................................................... 27 

3 Extreme-Scale Cloud/Fog Data Processing .................................................................................... 28 
3.1 Extreme Scale Map-matching ............................................................................................. 28 
3.1.1 Brief Survey of the State-of-the-Art ................................................................................ 28 
3.1.2 Overview and Description ............................................................................................... 29 
3.1.3 Preliminary Evaluation .................................................................................................... 32 
3.1.4 Next Steps ....................................................................................................................... 33 
3.2 Weather Enrichment ........................................................................................................... 34 
3.2.1 Brief Survey of the State-of-the-Art ................................................................................ 34 
3.2.2 Overview and Description ............................................................................................... 34 
3.2.3 Preliminary Evaluation .................................................................................................... 36 
3.2.4 Next Steps ....................................................................................................................... 38 
3.3 Spatial-Temporal Querying ................................................................................................. 38 
3.3.1 Brief Survey of the State-of-the-Art ................................................................................ 38 
3.3.2 Overview and Description ............................................................................................... 39 
3.3.3 Preliminary Evaluation .................................................................................................... 44 
3.3.4 Next Steps ....................................................................................................................... 47 

4 Mobility Data Fusion and Management ........................................................................................ 48 
4.1 Sensor Data Fusion ............................................................................................................. 48 
4.1.1 Brief Survey of the State-of-the-Art ................................................................................ 49 
4.1.2 Overview and Description ............................................................................................... 49 
4.1.3 Preliminary Evaluation .................................................................................................... 50 
4.1.4 Next Steps ....................................................................................................................... 54 



  
  

 

4 | Page 
 

 

4.2 Mobility/Trajectory Data Compression .............................................................................. 54 
4.2.1 Brief Survey of the State-of-the-Art ................................................................................ 54 
4.2.2 Overview and Description ............................................................................................... 55 
4.2.3 Preliminary Evaluation .................................................................................................... 56 
4.2.4 Next Steps ....................................................................................................................... 61 

5 Conclusions and next steps ........................................................................................................... 62 

Annex .................................................................................................................................................... 63 

References ............................................................................................................................................ 69 
 

 

 

List of Figures 
FIGURE 1-1 - EMERALDS SERVICES AS PART OF THE PROJECT'S REFERENCE ARCHITECTURE (D2.1) .................................. 11 
FIGURE 2-1- PRIVACY-AWARE PREPROCESSING COMPONENT. ......................................................................................................... 15 
FIGURE 2-2- HOME & WORK PRIVACY ATTACK.................................................................................................................................. 16 
FIGURE 2-3 - LOCATION PRIVACY ATTACK .......................................................................................................................................... 16 
FIGURE 2-4 - LOCATION TIME PRIVACY ATTACK ................................................................................................................................ 17 
FIGURE 2-5 - LOCATION SEQUENCE PRIVACY ATTACK ...................................................................................................................... 17 
FIGURE 2-6 - UNIQUE LOCATION PRIVACY ATTACK ........................................................................................................................... 18 
FIGURE 2-7 - COMPARISON OF THE EXECUTION TIME OF PRIVACY ATTACKS OF BOTH IMPLEMENTATIONS ............................. 19 
FIGURE 2-8 - HOME&WORK AND UNIQUE LOCATION PERFORMANCE EVALUATION .................................................................... 19 
FIGURE 2-9 - LOCATION, LOCATION TIME & LOCATION SEQUENCE PERFORMANCE EVALUATION ............................................ 20 
FIGURE 2-10 - ORCHESTRATOR ARCHITECTURE ................................................................................................................................. 23 
FIGURE 2-11 - DEPLOYER ARCHITECTURE........................................................................................................................................... 23 
FIGURE 2-12 - DATA BROKER ARCHITECTURE ................................................................................................................................... 25 
FIGURE 2-13 – ORCHESTRATOR EXAMPLES: “HELLO_WORLD” EXECUTION (LEFT) AND DATA BROKER WITH GET EXAMPLE 

(RIGHT) ............................................................................................................................................................................................ 26 
FIGURE 3-1 - MAP MATCHING USING VALHALLA ................................................................................................................................ 29 
FIGURE 3-2 - MAP MATCHING A LOW SAMPLING RATE TRAJECTORY ............................................................................................... 29 
FIGURE 3-3 - THE MAIN IDEAS OF TRAJECTORY REFINEMENT, CURVE INTERPOLATION AND TRAJECTORY COMBINATION 

ALGORITHMS. .................................................................................................................................................................................. 30 
FIGURE 3-4 - ENHANCING THE MAP MATCHED TRAJECTORY WITH THE CURVE INTERPOLATION AND TRAJECTORY 

REFINEMENT ALGORITHMS .......................................................................................................................................................... 32 
FIGURE 3-5 - ENHANCING THE MAP MATCHED TRAJECTORY WITH THE TRAJECTORY COMBINATION ALGORITHM. .............. 32 
FIGURE 3-6 - WEATHER ENRICHMENT ARCHITECTURE ..................................................................................................................... 35 
FIGURE 3-7 - PREVIOUS AND CURRENT APPROACH FOR DETERMINING THE VALUE OF A WEATHER ATTRIBUTE. .................... 36 
FIGURE 3-8 - INITIAL AND FINAL (ENRICHED) DATA OF RECORDS EXISTING IN CSV FORMAT. ................................................... 37 
FIGURE 3-9- EXAMPLE OF OUR MAPPING TO 2D. LEFT: ORIGINAL SPACE. RIGHT: TRANSFORMED SPACE ................................ 41 
FIGURE 3-10- VISUALIZATION OF 2D PARTITIONS GENERATED BY OUR ALGORITHM. ................................................................. 42 
FIGURE 3-11 – ALGORITHM FOR SCALABLE QUERY PROCESSING IN SPATIO-TEXTUAL DATASETS. ............................................. 42 
FIGURE 3-12 - AN EXAMPLE OF SIX (6) HYBRID CLUSTERS ............................................................................................................... 44 
FIGURE 3-13 - EFFECT OF VARYING THE DISTANCE THRESHOLD 𝑟 .................................................................................................. 45 
FIGURE 3-14- EFFECT OF VARYING THE TEXTUAL SIMILARITY THRESHOLD Τ ............................................................................... 45 
FIGURE 3-15   SCALABILITY WITH DATASET SIZE. ............................................................................................................................... 46 
FIGURE 4-1 - TRADITIONAL VS GRAPH CONVOLUTION ....................................................................................................................... 49 
FIGURE 4-2 - ARCHITECTURE OF THE BASELINE GCNN .................................................................................................................... 50 
FIGURE 4-3 - SENSOR MAP OF PEMS DATASET ................................................................................................................................... 51 
FIGURE 4-4 - THE BRUSSELS BUS NETWORK OPERATED BY STIB .................................................................................................. 51 
FIGURE 4-5 - GCNN RESULTS ON BRUSSELS BUS-LINE NETWORK. THE OBSERVED DATA IS INDICATED BY GREEN LABELS, 

WHILE THE ESTIMATED VALUES ARE DEPICTED WITH BLUE ................................................................................................... 53 
FIGURE 4-6 - AIS TRIPS AROUND COPENHAGEN AND MALMO .......................................................................................................... 56 
FIGURE 4-7 - BIRDS TRIPS ....................................................................................................................................................................... 57 
FIGURE 4-8 - HISTOGRAM OF THE QUANTITY OF POINTS IN DIFFERENT TIME-WINDOWS IN SAMPLES OBTAINED WITH TD-TR

 .......................................................................................................................................................................................................... 60 



  
  

 

5 | Page 
 

 

 

List of Tables 
TABLE 1 - TERMINOLOGY ............................................................................................................................................................................ 6 
TABLE 2 - MATRIX OF ALIGNMENT ........................................................................................................................................................... 8 
TABLE 3 - KPIS FOR PRIVACY EVALUATOR .......................................................................................................................................... 18 
TABLE 4 - PREPROCESSING EXECUTION TIMES ..................................................................................................................................... 19 
TABLE 5 - DATA BROKER REQUESTS EXAMPLE .................................................................................................................................... 25 
TABLE 6 - KPIS FOR EXTREME SCALE ORCHESTRATOR ..................................................................................................................... 27 
TABLE 7 - KPIS FOR MAP MATCHING ................................................................................................................................................... 33 
TABLE 8 - GRIB FILES SIZE AND PERFORMANCE ................................................................................................................................ 36 
TABLE 9 – STATISTICAL VALUE OF THE WEATHER ATTRIBUTES ..................................................................................................... 37 
TABLE 10 - KPIS FOR WEATHER ENRICHMENT .................................................................................................................................. 38 
TABLE 11 - KPIS FOR SPATIO-TEMPORAL QUERYING ....................................................................................................................... 47 
TABLE 12 – PERFORMANCE (MSE) OF GCNN WITH VARIOUS TEMPORAL AND SPATIAL CONFIGURATIONS............................ 52 
TABLE 13 - KPIS FOR SENSOR DATA FUSION ...................................................................................................................................... 53 
TABLE 14 - ACCURACY OF THE CLASSICAL ALGORITHMS ON THE DIFFERENT DATASETS ............................................................. 58 
TABLE 15 - ACCURACY OF THE DIFFERENT BWC ALGORITHMS WHEN OF THE AIS DATASET FOR DIFFERENT SIZES OF TIME 

WINDOWS ........................................................................................................................................................................................ 58 
TABLE 16 - ACCURACY OF THE DIFFERENT BWC ALGORITHMS WHEN OF THE AIS DATASET FOR DIFFERENT SIZES OF TIME 

WINDOWS ........................................................................................................................................................................................ 58 
TABLE 17 - ACCURACY OF THE DIFFERENT BWC ALGORITHMS WHEN SIMPLIFYING UNTIL 10% OF THE BIRDS DATASET FOR 

DIFFERENT SIZES OF TIME WINDOWS ......................................................................................................................................... 59 
TABLE 18 - ACCURACY OF THE DIFFERENT BWC ALGORITHMS WHEN SIMPLIFYING UNTIL 30% OF THE BIRDS DATASET FOR 

DIFFERENT SIZES OF TIME WINDOWS ......................................................................................................................................... 59 
TABLE 19 - KPIS FOR MOBILITY/TRAJECTORY DATA COMPRESSION ............................................................................................. 61 
TABLE 20 - SUMMARY OF EMERALDS PRESENTED IN D3.1 ............................................................................................................... 62 

 



  
  

 

6 | Page 
 

 

Terminology 
 

Acronym Description 

2D/3D  2 Dimensions / 3 Dimensions  

AI/ XAI  Artificial Intelligence/ Explainable AI  

CC  Computing Continuum  

GCNN Graph Convolutional Neural Networks 

GPS  Global Positioning System  

GPU  Graphics Processing Unit  

KPI  Key Performance Indicator  

MDA  Mobility Data Analytics  

ML/AL  Machine Learning/ Active Learning  

MLOps  Machine Learning Operations  

WP   Work Package  

(RR)MSE  (Relative Root) Mean Square Error  

NN/ GNN  Neural Networks/ Graph Neural Networks  

SotA  State-of-the-Art  

TRL  Technology Readiness Level  

UC  Use-case  

Table 1 – Terminology 

 

Matrix of Alignment 
 
Table 2 outlines the outputs of D3.1 mapped to the GA commitments as stated in the Description of 
Action (DoA) Annex 1 and Annex 2. 
 

GA 
Components 
Title (and 
type) 

GA Component Outline Document 
Chapter(s) 

Justification 

Deliverable    

D4.1 Mobility 
Data 
Processing 
Services v1 

Software library containing early prototypes of the 
extreme mobility data processing services, 
methods and tools which are scalable and support 
the ingestion of heterogeneous data types from 
each tier of the computing continuum. The 
deliverable will include a report and manual 
defining the data preparation activities, that 
include data modelling (ensuring standardisation 
thus interoperability), data semantics, annotation, 
multilingual processing aspects. 

Chapters 1-5 This document 
presents the early 
versions of the 
processing 
components that 
have been 
developed under 
WP3. These 
components 
perform mobility 
data analytics across 
the CC.  
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Chapter 1 presents 
the rationale of the 
WP, whereas 
Chapter 5 
summarises and 
declares next steps 
towards v2 (to be 
documented in 
D3.2).. Chapters 2, 3, 
and 4 present the 
technical work of the 
WP per task, 
including well 
documented source 
code repositories 
that are 
reproducible and 
interpretable.  

Tasks    

T3.1 Privacy-
aware In Situ 
Data 
Harvesting 

This task focuses on the ways data can be acquired 
and processed. With large amounts of connected 
devices communicating constantly and producing 
large volumes of data, novel approaches that can 
handle such extreme-scale data need to be 
proposed. Exploiting the processing power of 
multiple edge devices that can be deployed in-situ 
will allow the platform to scale vertically and 
dynamically, since such a system can be highly 
scalable by nature, with its overall computational 
capability tied to the number of available devices 
as well as the underlying software and its 
distributed capabilities. Additionally, evaluating 
the software with respect to the resources it needs 
can make the system adaptive, since each piece of 
software can be tied to a specific level of the 
computing continuum. This way, the system stands 
to make the most of its available resources. Greater 
exploitation of the large number of data streams 
that the system is able to produce can also be 
achieved by producing multiple data-streams per 
device with each one being processed differently 
and aimed towards different use-cases. This way, 
each use-case specific part of the system can 
receive meaningful data and focus on the 
accompanying data analytics and mining methods 
instead of re-processing the data that has already 
been processed. Furthermore, edge computing can 
be used to enforce privacy policies by enabling edge 
devices to assess and manage privacy risks, for 
example regarding location probability or home-
work attacks. Lastly, the nature of such a system 
makes it prone to errors related with network 
availability. Naturally, when large numbers of 
devices are part of a widespread network, failures 
can be common. Designing a network topology 

Chapter 2 Chapter 2 presents 
the work of Task 3.1, 
including the 
advancements that 
have been made 
with respect to the 
in-situ data 
harvesting 
approached that 
EMERALDS 
promises, focusing 
on ensuring privacy 
and making the 
deployment and 
communication 
between services 
simpler and more 
efficient.   
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that addresses these issues, thus making the 
system more resilient and safer is a priority. 

T3.2 Extreme-
scale 
Cloud/Fog 
Data 
Processing 

This task is responsible for the design and 
implementation of processing algorithms for 
extreme-scale data, by capitalizing on scalable and 
data-parallel frameworks. The toolset will be 
tailored for urban mobility data, to support ultra-
scalable query processing algorithms over road 
networks, from similarity search of spatio-temporal 
data (range and k-nearest neighbour queries) to 
more complex processing tasks for trajectory joins, 
discovery of hot-spots, as well as for supporting 
mobility analytics. To cope with the extreme scale 
of data, adaptive and query-aware partitioning 
techniques will be proposed to ensure fair work 
allocation and load balancing, to fully exploit the 
available resources and minimize the processing 
time. Also, the toolset will provide a distributed 
indexing framework for urban mobility data along 
with an appropriate bounding scheme, aiming at 
the design of algorithms that drastically prune the 
search space, to facilitate the development of an 
efficient and scalable data processing solution.  

Chapter 3 Chapter 3 presents 
the work done by 
Task 3.2, introducing 
mobility data 
processing methods 
that focus on being 
highly scalable when 
the more 
computational 
power is available 
(at the Fog/Cloud). 
Highly efficient and 
scalable algorithms 
are implemented, 
allowing for 
extreme-scale 
analytics over data 
harvested by 
multiple sources and 
over large time 
spans.  

T3.3 Mobility 
Data Fusion 
and 
Management 

The focus of this task is to develop theory and 
prototypes for data summarization. In particular, it 
will investigate trajectory simplification/smoothing 
methods to reduce the data size, lossless data 
compression, depending on the sampling rate and 
the change in temporal properties. In Lossy 
compression in the form of task-aware 
simplification will also be explored. Task-
awareness is about providing correctness 
guarantees for the analysis which will be 
performed on the summarized trajectories. Since 
the scope of EMERALDS is urban mobility, we will 
exploit the fact that the trajectories are restricted 
to the road network to achieve even higher 
compression. MobilityDB, an open-source 
geospatial trajectory database system developed 
by ULB will be used as the implementation platform 
and testbed. 

Chapter 4 Chapter 4 presents 
the work of Task 3.3, 
a task that is 
responsible for 
managing diverse 
and heterogenous 
data sources while 
performing data 
summarization and 
compression to 
reduce the overall 
size and footprint of 
data.   

Table 2 - Matrix of Alignment 
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Executive Summary 

The goal of this deliverable is to present the 1st version of the Mobility Data Processing at the 
Computing Continuum services, hereafter called ‘emeralds’, that are being developed under Work 
Package 3. As its title suggests, the objective of this WP is to develop mobility processing modules that 
are built for the Computing continuum (CC). The CC spans a wide range of devices that can be deployed 
in various conditions, with some tailored for centralized compute and some for decentralized in-situ 
processing. The distinction between the two mostly revolves around energy usage (which directly 
correlates with compute capability, size etc.), because devices that are highly capable require much 
more energy and space, meaning that they are not easily deployable and horizontally scalable. 
However, compute nodes that tend to use less power are often cheaper and smaller, meaning that 
they are easily configurable to accommodate a wide range of scenarios through their multi location 
installation. This allows for in-situ data processing, greatly reducing latency and response times when 
the underlying computation can be effectively performed by such nodes meeting the advanced needs 
of modern mobility data analytics applications.  
 
This deliverable presents seven (7) emeralds that are developed under the three WP3 tasks. The work 
covered in this deliverable is organized according to the designated computing tier supported by each 
component, with emeralds from T3.1 focusing on Edge/Fog applications and emeralds from T3.2 and 
T3.3 primarily utilizing the Fog/Cloud. The emeralds code releases are provided as software 
repositories with release notes and instructions on executing the developed methods. This report 
accompanies the emeralds code releases. The key aspects covered in this report include thorough 
descriptions of the emeralds and how they advance the state of the art, both with respect to the 
mobility data science field as well as the achieved and targeted performance and overall 
improvements related to the state-of-the-art, reflected by the scientific/technical KPIs. Validation and 
demonstration of the WP3 tools will be performed and reported within the respective WP5 use cases. 
 
WP3 emeralds contribute to and align with the scope of the EMERALDS project, alas to design, develop 
and create an urban data-oriented Mobility Analytics as a Service (MAaaS) toolset, consisting of the 
reusable software modules (EMERALDS services), compiled in a proof-of- concept prototype, capable 
of exploiting the untapped potential of extreme urban mobility data. The developments presented 
herein are offered in combination with WP2, WP4 implementations as integral parts of the EMERALDS 
toolset, a one-stop solution that will enable the stakeholders of the urban mobility ecosystem to 
collect and manage ubiquitous spatio-temporal data of high-volume, high-velocity and of high-variety, 
analyse them both in online and offline settings, import them to real-time responsive AI/ML 
algorithms, and visualise results in interactive dashboards, whilst implementing privacy preservation 
techniques at all data modalities and at all levels of a data workflow architecture. The envisaged 
toolset will offer advanced capabilities in data mining (searching and processing) of large amounts and 
varieties of urban mobility data. 
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1 Introduction 

1.1 Purpose and scope of the document 

The purpose of D3.1 “Mobility Data Processing Services 1st Version” is to introduce the tools/emeralds 
that are being developed in WP3, as listed in Table 3. This table also shows where each emerald’s 
codebase is hosted. This deliverable provides a thorough description of the emeralds, puts them in 
the context of the state of the art, and presents preliminary evaluation results, before laying out the 
next steps of development.   
  

Task / emerald Maturity  Repository Link 

Privacy-aware in situ Data Harvesting (T3.1) 
 

Privacy aware data ingestion 1st version  Project’s GitHub 

Extreme-scale stream processing 
orchestrator 

1st version  Project’s GitHub 

Extreme-scale Cloud/Fog Data Processing (T3.2) 

Extreme-scale map-matching 1st version  Project’s GitHub 

Weather enrichment 1st version  Project’s GitHub 

Spatio-temporal querying 1st version  Project’s GitHub 

Hot-spot analysis Work in Progress (To be fully 
reported in D3.2) 

Under Construction 

Mobility Data Fusion and Management (T3.3)  
Mobility/trajectory data compression 1st version  Project’s GitHub 

Sensor (GPS, GTFS, radar, etc.) data fusion 1st version  Project’s GitHub 

Table 3: Overview of emeralds under development in WP3  

 
This document provides insights regarding the state of each proposed emerald, focusing on the 
technical challenges that each service has faced and addressed. All emeralds are accompanied by a 
code repository that includes the corresponding codebase, installation, usage and 
demonstration/evaluation instructions. 

1.2 Relation to Work Packages, Deliverables and Activities 

The emeralds that are presented in this deliverable adhere to the EMERALDS reference architecture 
introduced in D2.1 “Reference Architecture” (Figure 1-1-1) and are validated and demonstrated 
through real-world data from selected representative use cases whose main context is outlined in 
D5.1 “Use Cases Scoping Document”.   

To facilitate the validation and demonstration during the course of the project as well as re-usability 
beyond its scope, the emeralds are designed to support end-to-end pipelines as the ones reported in 
the WP5 use case deliverables (D5.2-D5.7).   
 

The emeralds reported in this deliverable link to those developed under WP2 and WP4 as they 
facilitate data ingestion and curation across the Computing continuum (Edge/Fog/Cloud).  

https://github.com/emeralds-horizon/privacy-evaluator
https://github.com/emeralds-horizon/orchestrator
https://github.com/emeralds-horizon/Extreme-scale-map-matching
https://github.com/emeralds-horizon/Weather-Integrator
https://github.com/emeralds-horizon/Spatio-temporal-querying
https://github.com/emeralds-horizon/WP3-Service-Task-3.3---Data-Compression-
https://github.com/emeralds-horizon/WP3-Service-Task-3.3---Data-Fusion---Traffic-State-Estimation
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Figure 1-1 - EMERALDS services as part of the project's Reference Architecture (D2.1) 

 

The status of the emeralds reported in this deliverable is the result of the 1st implementation cycle 
until M15. Therefore, the results of the 1st integration, 1st assessment cycle, and the 2nd set of cycles 
will be presented in forthcoming project deliverables, D5.2-D5.7, D2.2-D2.6 and D3.3. Throughout all 
upcoming cycles, the collaboration framework established within the project (with technical meetings 
and workshops conducted between technical partners and use case leaders) will be further intensified 
to enable iterative development and targeted innovations. 
 

1.3 Contribution to Project Objectives 

This document is the key output of all tasks in WP3 in project year 1. The objective tackled by WP3 is 
Project Objective 2 (O2) "Develop Extreme Scale acquisition and processing methods and tools for 
urban mobility data”. WP3 proposes emeralds that perform mobility data processing across the CC, 
including privacy-aware data ingestion at the Edge/Fog using low-powered IoT devices, Extreme-scale 
data processing at the Fog/Cloud utilizing more capable hardware and Data Fusion and Management 
across the whole CC. WP3 tasks also directly contribute the respective expected results of O3, 
minimizing latency and performance by offloading computation to the edge and developing data 
processing methods and summarization procedures for heterogeneous mobility data. 

D3.1 also contributes towards the attainment of Project Objective 1 (O1) Design a service-oriented 
reference architecture of a palette of services (‘emeralds’) for extreme scale urban mobility data 
analytics, underpinned by a distributed computing environment that includes edge/fog nodes and 
cloud nodes, that ensure that both edge and cloud processing contribute towards establishing a robust 
processing pipeline, by developing and delivering advancements in software services tailored to the 
needs of mobility data analytics and the execution of extreme scale data workflows across diverse 
computing environments. Components described within Chapters 2-4 are integral parts of the 
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EMERALDS toolset architecture and the underlying methods, algorithms and tools materialize 
respective layers depending on the intended deployment environment. Interoperability, 
multiplatform-awareness and modularity of the services presented in this document is achieved 
through containerization, further enhancing their overall reusability and facilitating their 
incorporation into the design, development and deployment of new systems capable of utilizing 
resources in a manner that consistently improves accuracy, processing times and easiness of use.   

Finally, D3.1 provides the means to achieve Project Objective 3 (O3) Develop mobility data analytics 
and AI/ML tools and services – MAaaS, appropriately designed to perform along the edge/fog/cloud 
continuum to achieve substantial speedups for analytics jobs. In this regard, services reported in D3.1 
seamlessly interconnect or/and function as processing steps feeding the services presented in D4.1 
and developed within the frame of WP4, forming pipelines generating fast and accurate information 
critical to urban mobility stakeholders and decision-making systems as showcased in the EMERALDS 
use cases. The latter highlights the importance of D3.1 for reaching Project Objective 4 (O4) to 
demonstrate, measure and validate the efficiencies of WP3 and WP4 services in extreme data 
workflows, as addressed in WP5.  

1.4 Structure of the Document 

This deliverable is of type OTHER, therefore, it focuses on source code for the emeralds developed in 
WP3. The source code is provided in code repositories (i.e. GitHub repositories with well-documented 
README files) that are grouped under the Project GitHub organization (link). This document 
accompanies the source code and provides an overview and the context for the emeralds 
development in WP3.  
 
This deliverable is structured according to the WP3 tasks T3.1-T3.3. Each task is described in a 
dedicated chapter. Task 3.1 results are described in Chapter 2, Task 3.2 results are described in 
Chapter 3, and Task 3.3 results are described in Chapter 4. The task chapters include the conclusions 
and next steps, which are summarized in the final section of each chapter. 
  

https://github.com/emeralds-horizon


  
  

  | Page 
 

 

13  

2 Privacy-aware In Situ Data Harvesting 

Task 3.1 includes the development of services (emeralds) that perform state-of-the-art privacy-aware 
data harvesting utilizing the ample compute that is deployed near the sources of data in the form of 
Edge/Fog IoT devices. By leveraging these compute nodes, the emeralds presented in this chapter aim 
to make data ingestion more secure and efficient, offloading computation that is either sensitive or 
optimised well enough to the Edge. This way, sensitive data is never compromised while making the 
job of the centralized data centre easier and more scalable. The emeralds that will be reported by this 
task are the following:  

1. Privacy-Aware Data Ingestion: This emerald experiments with methods that can identify 
privacy-compromising records of moving objects and provide ways of mitigating risk without 
undermining the quality of the underlying dataset. These methods are easily tailored to run 
in-situ, providing extra guarantees by keeping data away from prying eyes.  

2. Extreme-Scale Stream Processing Orchestrator: This emerald develops a 
deployment/orchestration toolset that can make the deployment of Computing continuum 
(CC) modules easier and more streamlined. By providing two components, a Deployer and a 
Data Broker, the services that utilise this tool are able to be remotely deployed to a wide array 
of compute nodes under different scenarios while being able to communicate and share data 
with other services, making possible the definition and execution of comprehensive end-to-
end pipelines.  

 

2.1 Privacy-Aware Data Ingestion 

In this section, we present the advancements of Task 3.1 during the reporting period in relation to the 
proposed emerald named “Privacy-Aware Data Ingestion”. Our goal is to design and implement a 
privacy-aware pipeline that would be responsible for the preprocessing of data and the execution of 
Mobility Privacy Attacks for real-time scenarios. This toolset will enable the effective evaluation of the 
privacy risk of a dataset’s records and furthermore allow a network of compute nodes to recognize 
and subsequently delete records which contain sensitive information and can possibly lead to the 
identification of an individual. 
 

2.1.1 Brief Survey of the State-of-the-Art 
Mobility Analytics: In a world that depends on data more than ever, the analysis and preprocessing 
of them and especially mobility data is more important than ever. In the past few years, there has 
been a gradual increase in applying spatial and spatio-temporal data analysis to mobility data1.For this 
purpose, of course, new structures and management systems are needed to better organize, 
aggregate and analyse mobility data, such as the MobilityDB tool 2, a moving object database for 
representing moving object data and the Dragoon3, a big trajectory management system for both 
offline and online analytics. Finally, concerning mobility analytics, there is a need for tools that cover 
the whole procedure of the analysis of data, an example being TransBigData4, a Python package used 
for processing, analysing and visualizing transportation spatio-temporal big data. 

 
Preprocessing: One of the most important stages of data analytics is the preprocessing stage, during 
which the dataset is cleansed by detecting and removing outliers and missing values, thus allowing a 
better-quality dataset and subsequently a better interpretation of results. Some examples on the 
preprocessing stage are: i) CloudTP5, a cloud-based flexible trajectory data preprocessing framework, 
which transforms raw GPS logs into organized trajectories, by following the stages of noise filtering, 
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trajectory segmentation, map matching and index building and ii) PTRAIL6, a Python package offering 
preprocessing steps such as filtering and feature extraction, while also giving the opportunity of 
parallel computations and trajectory data processing.  

 
Privacy: Most datasets often hide patterns and sensitive information, and mobility data is not an 
exception to that, proving the necessity of the privacy aspect of the procedure of data harvesting, 
processing, and identification risk evaluation. Existing privacy-preserving techniques and risk 
evaluation methods for urban mobility vary; examples being: i) generalization and k-anonymity7, ii) 
execution of privacy attacks on mobile individuals8 using the tool Scikit-mobility Privacy and iii) 
modelling of an adversarial behaviour as a mobility trajectory in order to discover the most impactful 
adversary path concerning the privacy risk posed to the individuals9. 

 
Scikit Mobility Privacy: With the increasing use of location-based services and the recent shift from 
spatio-temporal data to mobility data, tools that analyse human mobility become more and more 
relevant in multiple scenarios and environments. However, the privacy-aware mobility data analysis 
is also of high importance, which justifies the existence of tools and libraries such as the Scikit Mobility 
Privacy library8. With Scikit Mobility Privacy, the risk of identification of an individual can be calculated 
for a variety of attacks, showing how vulnerable a dataset is and if there is sensitive information that 
should be omitted. This existing library is implemented in Python, giving the opportunity for major 
runtime / performance improvements by switching to more performant languages. 

2.1.2 Overview and Description 
This section introduces the Privacy risk evaluation tool along with its initial demonstration. The 
primary objective is to comprehensively outline the implementation of the proposed tool. The tool is 
composed of two components commonly utilized with mobility/trajectory data. Each component 
encompasses multiple individual modules, ranging from straightforward tasks like data filtering to 
more intricate processes, such as privacy risk evaluation. This emerald provides the user with a rich 
set of processes that are needed for the assessment of the re-identification risk of an individual’s 
information within a dataset based on sensitive location information. 
More specifically, the current version of the pipeline consists of the following steps: 

1. Filtering, general preprocessing and clustering of the data. 
2. Evaluation of sensitive records. 

In the next versions, a third step will be added to the pipeline that will be responsible for the mitigation 
of the aforementioned dangerous records.  
 
In the current section (Section 2.1.2), a detailed exposition of each component and its constituent 
modules is presented, and the Section 2.1.3 is dedicated to athorough evaluation process for each 
scenario, emphasizing real-world metrics and infrastructure. 
The privacy risk evaluation tool consists of two components, the Preprocessing and the Risk 
Evaluation component. The aforementioned components are themselves composed of individual 
modules, each tasked with a very specific processing role. This pipeline prioritizes efficiency, 
specifically designed for deployment in resource-constrained settings, such as edge devices, where a 
substantial volume of trajectory data is expected. The tool's structure consists of two directories, each 
containing one of the two components. Both components should be treated as separate tasks since 
their executions are independent, and they do not share any files or communicate with one another. 
 
It is also important to note that both components communicate with the Orchestrator (to be 
presented in Section 3.2), in order to receive from and upload data to it. Thus, there is no need to 
create local datasets, as the two components communicate and share data through the Orchestrator. 
A brief description of how this works is the following: The preprocessing component receives data 
from the Orchestrator, processes it and uploads the resulting data to it. Subsequently, the privacy 
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evaluation component communicates with the Orchestrator, receives the data that the preprocessing 
component uploaded, calculates the risks based on that and then uploads the resulting privacy risk 
values to the Orchestrator, completing the whole process of the pipeline. Subsequently, the modules 
of each component are presented below in detail. 
 
Preprocessing component 
The first component of the pipeline is the preprocessing component, which cleans, transforms and 
prepares the data for the risk evaluation component that follows (Figure 2-1). More specifically, this 
component comprises three stages: 
 
1.  Data Filtering/Cleaning  
This particular module implements an outlier detection technique reliant on threshold parameters. 
Specifically, it assesses individual data records against a defined threshold, typically pertaining to 
features like speed, either retaining the record if it is within bounds, or removing it in case it is 
considered an outlier. 
 
2.  Stop Detection 
In the Stop Detection stage, the module classifies the observed object as moving or stationary, based 
on a speed threshold. This is crucial for the next module of the component, the clustering stage. 
 
3.  Clustering 
This module is responsible for the clustering of coordinates of stationary objects, as close proximity 
points should be considered the same for the purpose of privacy risk evaluation. The absence of this 
stage would result in unique coordinates for all records, leading to considerable challenges during the 
privacy risk assessment phase (will be explained thoroughly in the Privacy Risk Evaluation component 
presentation that will follow). Only the stationary objects’ coordinates are clustered, which are also 
the targets of the privacy attacks. 
 

 

Figure 2-1- Privacy-aware preprocessing component. 

 
Privacy Risk Evaluation component 
The second component of the pipeline is the risk evaluation component, which calculates the 
probability of a successful execution of a privacy attack for each individual. The five implemented 
attacks are the following: 
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Home and Work Privacy Attack: In this attack, we assume that the adversary knows the work and 
home locations of the individual that he/she wants to identify and also, we make the assumption that 
the two most frequently visited locations of the majority of individuals correspond to their home and 
work locations. By finding the two most frequently visited locations of an individual in the dataset and 
matching those two locations against known work and home locations, the adversary can identify the 
target among the other individuals. Evidently, if multiple individuals share the same home and work 
locations, the risk is inversely proportional to the number of those individuals (Figure 2-2Figure 2-1). 
 

 

Figure 2-2- Home & Work Privacy Attack 

Location Privacy Attack: In this attack, we assume that the adversary knows a subset of the locations 
visited by an individual that he/she wants to identify (the temporal order of the visits is irrelevant, and 
each location can appear multiple times in the subset). Those locations are afterwards matched 
against the trajectories of all individuals, narrowing down the list of the possible matches. For the 
individuals to belong to the matches, they need to have at least N visits per location, where N is the 
number of appearances of the location in the subset of locations. Evidently, if more than one 
individuals belong to the list of possible matches, the risk is inversely proportional to the number of 
those individuals (Figure 2-3). 
 

 

Figure 2-3 - Location Privacy Attack 

Location Time Privacy Attack: This attack is a variation of the Location Privacy Attack, with the 
additional feature of time precision. We assume that the adversary knows a subset of locations visited 
by an individual that he/she wants to identify and the respective timestamps of those visits. For the 
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individuals to be considered as possible matches, they need to have visited the specified locations of 
the subset within a timeframe of the respective timestamp of the location (the resolution of the 
timeframe could be at a minute, hour, day, etc. scale, depending on the application). If more than one 
individuals belong to the list of possible matches, the risk is again inversely proportional to the number 
of those individuals (Figure 2-4). 
 

 

Figure 2-4 - Location Time Privacy Attack 

Location Sequence Privacy Attack: This attack is a variation of the Location Privacy Attack, where we 

assume that the adversary again knows a subset of the visited locations of the individual, he/she wants 

to identify, however now he/she also knows the temporal order of those visits. For the individuals to 

be considered as possible matches, they need to have visited the specified locations of the subset in 

the specified order. A location can appear multiple times in the subset. If more than one individual 

belongs to the list of possible matches, the risk is again inversely proportional to the number of those 

individuals (Figure 2-5). 

 

 

Figure 2-5 - Location Sequence Privacy Attack 

Unique Location Privacy Attack: This attack is a close variation of the Location Attack. The adversary 
knows a subset of the visited locations of the individual that they want to identify, however each 
location appears only once in the subset. For an individual to be considered a possible match, they 
need to have at least one visit per location of the subset of visited locations. If more than one individual 
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belongs to the list of possible matches, the risk is again inversely proportional to the number of those 
individuals (Figure 2-6). 
 

 

Figure 2-6 - Unique Location Privacy Attack 

 
It is important to note that if the location coordinates are not clustered and the coordinates are 
unique, only one individual will be considered a possible match for an attack. This is due to the 
uniqueness of coordinates, as even minor variations are crucial, and the matching is performed based 
on locations. In case no clustering is performed, two close-proximity locations that should be 
considered the same location will be distinct and thus each individual will be easily distinguishable 
among the others. This of course will lead to the immediate identification of the individual 
jeopardizing their privacy and security. 

2.1.3 Preliminary Evaluation 
The evaluation process consists of two parts. In the first part, we compare the implementation 
developed in this task with a SotA implementation (Scikit-mobility). Then, we execute all attacks and 
measure their execution time. 

 
More precisely, Table 3 summarizes the KPIs relevant to this emerald:  
 

Table 3 - KPIs for Privacy Evaluator 

Description  Baseline 
Value  

Target 
Value  

Method of 
Measurement  

Achieved 
Value  

Better 
performance 

Scikit Mobility8 2x speed up  # records processed  5.31x average 
speed up 

 
In our experimental study, we utilize the Geolife GPS Trajectory Dataset10 using either a subset of the 
first 10.000 unprocessed records or 1.000.000 records based on the timestamp of the record. The first 
(second) subset is used for the first (second, respectively) part of the process. All the attacks are 
executed using each respective dataset for both the implementations, producing the following results 
Figure 2-7. 
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Figure 2-7 - Comparison of the execution time of Privacy Attacks of both implementations 

On the other hand, for the evaluation part, we calculate benchmarks for both the preprocessing and 
privacy risk evaluation procedures. 
For the pipeline’s first component, which is the preprocessing component, the stages of filtering, stop 
detection and clustering produced the following results (Table 4). As we can see, clustering is far 
slower than filtering and stop detection, some that is to be expected since the first two components 
are simpler and thus faster. Clustering however, of 1M points into hundreds of clusters, is a far more 
computationally intensive process that takes up considerably more time. 

 

Preprocessing Stage Time (seconds) 

Filtering 0.338 

Stop Detection 0.161 

Clustering 1915 

Table 4 - Preprocessing execution time 

The output of the preprocessing stage is, in this example, a dataset of approximately 100,000 records 
of stopped points, 875,000 moving points and 25,000 outliers/noise points. For the second 
component, the privacy risk evaluation component, we execute the privacy attacks on the DBSCAN 
clusters grouping the stopped points of the output dataset of the previous stage (for the Clustering 
stage, we used the popular DBSCAN clustering algorithm11). 
 
The results for Home and Work and Unique Location privacy attacks are shown below (Figure 2-8). 
 

 

Figure 2-8 - Home&Work and Unique location performance evaluation. 

On the other hand, the Location, Location Time, and Location Sequence privacy attacks require much 
higher computational power and time to be executed on 100.000 records because they create very 
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large background knowledge memory structs related to the individual locations that each user visits. 
The background knowledge created is in the form of tables that store information about all the 
possible combinations of locations of the individuals, that are afterwards filtered to find possible 
matches of individuals. As such, a 1% sample (i.e., 1000 records) was used for the benchmarking of 
the computation of the three attacks. Figure 2-9 presents the performance results. 

 

Figure 2-9 - Location, Location Time & Location Sequence performance evaluation 

 

2.1.4 Next Steps 
The next steps for Task 3.1 belong to two categories, expediting the current slower implementations 
and implementing the real-time sensitive record detection and removal.  

First of all, algorithm optimization is necessary, in order for the privacy attacks to be able to be 
executed in real time. This could be done with various methods, such as skipping records of close-
proximity stoppage, grouping, etc.  

Secondly, the record flagging stage needs to be implemented, so that sensitive records can be 
removed from the final dataset, thus ensuring the safety of sensitive information of individuals. For 
the record flagging, we assume that the records of moving individuals are not considered sensitive, 
with the only exception being if they lead to a stoppage record that is considered to contain sensitive 
information. (Of course, this assumption will also be validated through extensive experimentation 
during the next steps.) We assume that the target is a recent subset of the whole dataset, containing 
a set history of records of stopped individuals. The privacy attacks that were described earlier are 
executed on this subset and the indexes of records that are considered dangerous are kept in a list. 
This continues for all the individuals, until all the records are either considered safe or unsafe. Lastly, 
the unsafe records and the previous records that lead to them in a set time span (e.g. five minutes) 
are removed from the dataset, in order to ensure that an adversary cannot find nor extrapolate 
sensitive information. 

 

2.2 Extreme-Scale Stream Processing Orchestrator 

Today’s world is more connected than ever, with millions of devices that harvest and process data 
being used everywhere, from mobile phones to smart cities and industrial/commercial sensors. The 
inflow of data from all these sources is tremendous, something that is to be expected when the sheer 
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number of devices is that large. The Computing Continuum (CC) that consists of Cloud, Fog and Edge 
layers, offers a wide range of possibilities for building and deploying novel user-centric services, but 
also introduces challenges that make harnessing its capabilities challenging. Different layers serve 
different needs, with the Cloud being in charge of large scale computation over extreme-scale data, 
the Fog – an intermediary between Cloud and Edge – that can support more intensive computational 
needs while being closer to the sources, more efficient and horizontally scalable, and the Edge that 
consists of smaller, cheaper and more energy efficient devices that can process data in-situ.  
 
Some of the main challenges that hyper-distributed systems like the CC face have to do with: 
1) Programmability: Unlike the cloud where users can deploy their offerings to a centralized server 
that is very similar in terms of architecture and configuration to their prototyping workstation, the 
Edge/Fog layers are filled with heterogenous platforms with runtimes that differ highly, making code 
deployment less straight-forward.  
2) Data Handling: A CC network can include hundreds/thousands of nodes, depending on its use-case, 
meaning that it should be capable of handling and curating large amounts of heterogenous data flows. 
Pairing that with the varying degree of processing/storing that needs to be applied to each individual 
node/use-case and the underlying architecture because a multivariate problem that also becomes 
increasingly difficult to solve. 
 
To tackle these challenges and effectively exploit its ample yet dispersed resources, designing an 
effective orchestration and communication protocol that is built for the CC is a top priority. This 
emerald, called “Extreme-Scale Stream Processing Orchestrator” aims to be just that, a tool that can 
effectively and seamlessly deploy and integrate various analytics and processing modules to any CC 
layer.  
 
The goals of this emerald are: 

1. Propose a quick and easy way to deploy modules on any type of hardware, given that a simple 
SSH connection is possible. 

2. Propose deployment protocols that are lightweight and can be consistently transferable even 
in low bandwidth networks (as it is often the case for Edge/Fog networks). 

3. Pair the aforementioned deployer with a lightweight data broker that can make data sharing 
between modules that are based on different toolsets seamless.  

4. Focus on the ease of use and implementation speed of both modules (deployer and broker) 
and make rapid prototyping of tools and services at the CC possible.  

 
Ultimately, this emerald will act as an accelerator for the adoption of CC horizontal deployments that 
will in turn allow for much of the computation that currently happens at the Cloud level to be moved 
to the Edge/Fog, a much more energy efficient CC that can also provide better response times and 
reduced latency due to its geographical proximity to the user.  

2.2.1 Brief Survey of the State-of-the-Art 
Regarding deployment at the Edge/Fog, the current state of the art is based on cloud-native methods 
like containers, microservices etc. These concepts can boost portability, scalability etc. making them 
great candidates for such use-cases. In recent years, many commercial platforms have been created 
to facilitate deployment at the Edge. IBMi has introduced its edge application manager, an 
autonomous management solution that enables enterprises to remotely deploy and manage 
containerized and AI-enabled applications on thousands of edge devices, using an open-source 
framework called Open Horizon. Microsoft introduced a similar service as part of its Azure ecosystem 

 
i https://www.ibm.com/products/edge-application-manager 
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called Azure IoT Edgeii with the goal of Azure cloud capabilities to edge devices, allowing developers 
to build and deploy modules using Azure services, tools, and languages, such as Visual Studio Code. 
Many of these platforms are based on well-established tools like Dockeriii that offer isolated 
environments called containers that are transferable and interoperable, paired with services like 
Kubernetesiv and some of its variants like KubeEdge, k3s and k0s that automate the deployment of 
such containers under different use-cases and deployment scenarios. 

Regarding data transfers and messaging, multiple technologies are currently being used based on the 
individual needs of each user/use-case. Apache Kafkav for example, is one of the most well-known 
platforms that is used by thousands of companies for high-performance data pipelines, streaming 
analytics, data integration, and mission-critical applications. Kafka consists of brokers that store and 
manage data in topics and partitions, producers that publish data to topics, and consumers that 
subscribe to topics and consume data. It also offers APIs and tools for data transformation, analysis, 
and integration. Kafka uses Zookeeper to coordinate and configure the cluster. It is scalable, fault-
tolerant while providing APIs and tools for data transformation, aggregation, analysis, and integration. 
Additionally, messaging protocols that are lightweight and thus suitable for CC/IoT related activities 
also exist, with some examples being MQTTvi, zeroMQvii and others. Those pub-sub protocols, 
however, are designed to transmit small messages between multiple nodes rather than transferring 
large amounts of streaming data using unstable connections like it is often the case for large CC 
deployments.  

2.2.2 Architecture Overview 
In this section, we present an overview of the “Extreme-Scale Stream Processing Orchestrator” 
emerald that will facilitate the deployment and communication of other emeralds at various CC levels.  
 
Figure 2-10 presents the architecture that the orchestrator will adopt in its finalized state, including 
both of its components, the CC Deployer that is responsible for the deployment of services at the CC, 
and the Data Broker that is in charge of connecting the inputs and outputs of various heterogenous 
deployed services. Starting from the bottom-right, the interaction begins with the user querying the 
orchestrator for metadata. This metadata will include information regarding inputs and emeralds. 
More specifically, the user will have access to data samples from all the nodes of the network, paired 
with information about the data location, size etc. Regarding processing/analytics modules, the user 
will also be supplied with information regarding the emeralds that are available to the system. This 
interaction will be backed by either built-in emeralds that will be shipped alongside the orchestrator, 
or by querying a centralized repository where many implemented emeralds are stored and 
maintained. Additional metadata will include the location of each CC node, its architecture (x86, ARM 
etc), the state of the connection etc. Based on the aforementioned information, the user will have a 
complete view of what is currently supported by the orchestrator. Then, the user will define a list of 
modules that need to be executed. These modules will all read and write data through the Data Broker, 
enabling interactions between different components and services and thus, the creation of job 
sequencies or pipelines. Finally, the consumer can pool the system in order to get results as soon as 
they are ready by specifying the emerald/pipeline that will be consumed.  
 

 
ii https://azure.microsoft.com/en-us/products/iot-edge 
iii https://www.docker.com 
iv https://kubernetes.io 
v https://kafka.apache.org 
vi https://mqtt.org 
vii https://zeromq.org 
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Figure 2-10 - Orchestrator Architecture 

2.2.3 Prototype - Deployer 
Based on our plans for the final state of this tool, we have implemented prototypes of both modules 
(CC Deployer and Data Broker) that include an initial set of features need for the overall prototype to 
be validated. 
 
The “Deployer” module is based on Python 3 and is part of the EMERALDS GitHub organisation. As 
shown in Figure 2-11, it consists of a Read, Evaluate, Print, and Loop (REPL) interface that manages 
the CC devices that are part of the prespecified network. SSH and SFTP connections are established 
between the host machine and all the network nodes in order to facilitate remote command execution 
and data transfers respectively. Through the REPL, the user can execute the following commands:  

 

• Checkall: Reads the contents of hosts.json file that includes the connection information for 
each of the specified hosts in the form of a dictionary. Each individual host needs to include 
information regarding SSH (hostname, ssh_key, port etc). This format has been chosen 
because it is expandable, allowing for the addition of fields that might be useful in the future 
(important paths, network info etc.).  

Figure 2-11 - Deployer Architecture 
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• Command <NodeID> <Command>: The user can execute this command if there is a need for 
some unix command to be executed at as specific remote client. This is useful during 
prototyping as it can support the quick execution of a debugging command for example 
without the need for a TTY (Teletypewriter) session.  

• TTY <NodeID>: This command creates a TTY session (terminal emulation) at the specified host. 
This is useful when multiple commands need to be executed as it allows the user to have direct 
access to the host without the need of creating a separate SSH connection.  

• Deploy/Execute <NodeID> <Module name>: These commands (deploy and execute) are the 
ones responsible for the initialization and execution of any of the available modules 
(emeralds). “Deploy” transfers the module’s payload to the dedicated host/node and 
“Execute” executes the execution scripts that the module developer has specified. More 
information regarding the parameters of these commands and the whole deployment scheme 
follows. 

 
Deployment: The following is an outline of the steps taken when a module is deployed at the CC using 
our “Deployer” module: 

1. The user specifies the module that will be deployed & executed as well as the target host using 
the “Deploy” command. The module name needs to be identical to the name of the respective 
modules folder under “modules”. Deployer already includes a simple “hello_world” module 
as standard, but other emeralds can also be copied to that folder or “cloned” using git. 

2. The Deployer transfers the contents of the module directory to the target host and stores 
them under a directory called “modules” at the host’s user’s home directory.  

3. The Deployer looks for a file named “init.sh” inside the remote module’s directory. This bash 
script is responsible for initializing the module. The script can include various commands, with 
examples being commands that download and install compilers or create Docker containers.  

4. The user can then execute the “Execute” command. This command looks for a file named 
“run.sh” inside the remote module’s directory. This script should include execution commands 
like code execution for example (python main.py for Python, cargo run for Rust etc.) or Docker 
execution commands. The output of the remote execution will be redirected to local stdout. 

2.2.4 Prototype – Data Broker 
The second module that is part of the Orchestrator emerald is the Data Broker that is also a part of 
the emeralds organisation. This module is also implemented on Python 3 and its goal is to facilitate 
seamless data exchanges between other emeralds. This way, the project will be able to develop and 
demonstrate insightful pipelines that transform the raw inputs into actionable and meaningful results.  

In more detail, the Data Broker utilizes an HTTP server that is capable of ingesting and hosting data. 
The server receives and transmits data through POST and GET requests respectively, allowing the user 
to utilize its capabilities through a simple client that only needs to implement those two types of 
requests. This simplicity and ease of development is at the core of emeralds Data Broker since its goal 
is to facilitate quick prototyping and testing of software across multiple devices and CC layers. This is 
a clear differentiating factor between our data broker and other commercial offerings that need 
substantially more effort to spin up and maintain, while often needing language specific 
drivers/packages that need to be implemented and maintained by third parties. Our data broker is 
based on a well-known and easy to implement protocol (HTTP), allowing every programming 
language/toolset to be able to communicate with it through simple requests that are almost always 
part of the standard library of all the widely used languages and toolsets.  

Figure 2-12 presents the flow of data between a user, the broker, two emeralds (X and Y) and an input 
data stream. As we can see, in this example, the broker receives DSX as input. emerald X requests this 
data stream as input and provides a new data stream called EMX as output. Then, emerald Y requests 
EMX as input and transmits EMY as output. As a result, the user can request data from any of the 
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aforementioned streams, including the raw DSX stream. Essentially, the broker links all these services 
by allowing each one to use the outputs of others as inputs, regardless of toolset, programming 
language etc., greatly increasing productivity while making integration between components much 
easier.  

In its current state, the broker includes the following set of features: 

• In-Memory Persistence: The current implementation supports both consuming and non-
consuming GET requests. In a CC environment where network availability is not always 
guaranteed, finding ways of safeguarding data is very important, so our broker will be 
expanded to include Disk persistence that considers both device capabilities and use-case 
characteristics.  

• Varying Size of Request: The user can specify the amount of data that will be transmitted by 
the broker by including the related headers to the GET request, allowing each service/emerald 
to consume data based on its needs and capabilities.  

• Multiple Formats: The broker primarily distributes text-based data, as that type is the one 
that is most often used in data related activities (since it is the one that is most easily parsed). 
However, changing the format of the input or output data stream is as easy as changing a 
single internal parameter.  

Table 5 presents examples of one GET and one POST request that read and write data to the broker 
respectively, alongside their individual parameters. 
 

Table 5 - Data Broker requests example 

Request DataStream 
Name 

Parameters Request text 

GET Example1 Records received=10, 
Persist data=False 

GET 
http://HOSTNAME:8080/name=Example1&l
imit=10&keep=0 

GET Example2 Records received=10, 
Persist data=True 

GET 
http://HOSTNAME:8080/name=Example2&l
imit=10&keep=1 

POST  Example2 N/A POST http://HOSTNAME:8080/Example2 
“test data” 

Figure 2-12 - Data Broker Architecture 
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It is important to note that, in a CC network, it is not obligatory for each node to host a data broker 
session. Some very-low powered Edge nodes, for example, can choose to not deploy a session to save 
resources and instead, instantly transmit data to a Fog node, for example, that can more easily host a 
broker session. However, if the node can execute multiple processing jobs, a broker session can make 
communication between modules easier than a manual data exchange approach.  
 

2.2.5 Preliminary Evaluation 
In this section, we present two execution examples of the Orchestrator module. The first one is a 
demonstration of the Deployer component only, by using the included “hello_world” module, and the 
second one is an example of the remote execution of the Data Broker module, again utilizing the 
Deployer module. Figure 2-13 includes screenshots of both examples.  

The first example is a simple demonstration of the Deployer’s workflow using the built-in 
“hello_world” module. As we can see at the left screenshot of the figure, we start by calling the 
orchestrator module that, in turn, connects to the specified CC nodes; in both examples, we use a 
single Raspberry Pi 4 for testing. As we can see, the “pi” alias is green, meaning that the node is online 
and ready to be used. The first command that we execute is the “deploy” command, namely “deploy 
pi hello_world”. This command transfers the contents of the “hello_world” module to the Raspberry 
Pi and then executes the init.sh script (if there is one inside the module’s directory). In this case, the 
“hello_world” module includes an initialization script that uses PIP to install two python packages, 
namely Pandas and Numpy. We then run the “execute” command (“execute pi hello_world”). This 
command remotely executes the run.sh file that must be included in all modules of the 
orchestrator/deployer. In this case, this file includes a python execution command for the main.py file. 
As we can see, all steps appear to be executed correctly, as we get output from the host’s stdout (that 
is why the colour is green, if the colour was red the output would be redirected from the host’s stderr) 
showing the versions of the modules that were installed during the deployment phase. 

The second example is more detailed since it also includes the Data Broker component. As we can see 
at the top-right side of the figure, we again start with the deploy command (“deploy pi data_broker”). 
The Data Broker’s init.sh script includes a docker build command that utilized the Dockerfile that is 

Figure 2-13 – Orchestrator examples: “hello_world” execution (left) and data broker with GET example (right)  
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included inside the module. Then, we run the execute command and see that server has started and 
can be accessed through port 8080. In a separate tab (bottom-right), we SSH into the Raspberry Pi and 
execute a simple curl GET command that fetches 10 records from the example dataset. As we can see, 
we successfully obtain the records that we asked for, with the server also displaying the request it has 
received and the dictionary format of the request.  

Regarding KPIs, Table 6 summarizes the ones relevant to this emerald:  
 
 

Table 6 - KPIs for Extreme Scale Orchestrator 

Description  Baseline 
Value  

Target 
Value  

Method of 
Measurement  

Achieved 
Value  

Facilitate 
Deployment of 
Jobs @ the Edge 

N/A >5 No. of emeralds 
deployed  

To be 
evaluated 
after 1st 
integration 
cycle (D3.2) 

 

2.2.6 Next Steps 
As mentioned earlier, the Orchestrator emerald is a module that bridges other modules (i.e., 
emeralds) and makes integration easier and more streamlined. Our planned next steps for this service 
mainly revolve around challenging features of the CC. Specifically: 

1. Disk persistence: This feature will allow nodes with restricted memory capabilities to be able 
to support larger workloads that include multiple emeralds. It is also important that multiple 
storage formats are introduced in order for multiple scenarios to be supported (high/low 
throughout, high/low memory, etc.) 

2. Built-in compression: It is important for the Orchestrator to include compression methods 
that can reduce the size of both stored data and transmitted data streams, allowing for better 
management of scenarios where network bandwidth is restricted or unstable.  

3. Performance / parallelism: The main goal of the Orchestrator module is to be fast and 
lightweight. To achieve this, both the Deployer and the Data Broker submodules need to be 
studied and optimized, with parallelism being implemented both during deployment (multiple 
concurrent deployments) and during data transfers (multi-threaded HTTP etc.).  

4. Pipeline deployment: Supporting the formulation and deployment of pipelines based on text-
based deployment plans will allow for a streamlined, interoperable, and transferable 
deployment scheme to be used across the project. 

  



  
  

  | Page 
 

 

28  

3 Extreme-Scale Cloud/Fog Data Processing 

The work carried out under Task 3.2 includes the development of algorithms (emeralds) for various 

task related to data processing, always in relation with the project’s use-cases and datasets. In 

particular, our algorithms pertain to the following categories:  

1. Extreme Scale Map-Matching (Section 3.1), for handling urban GPS datasets of moving 

objects that need to be transformed into meaningful trajectories,  

2. Weather Enrichment (Section 3.2), for combining movement data with weather information 

in order to enable upstream AI/ML tasks to perform model training using rich datasets,  

3. Spatio-Temporal Querying (Section 3.3), for highly efficient and scalable query processing 

over spatial data that may also contain a temporal or a textual dimension, and  

4. Hot-spot Analysis, for analysing large urban datasets and discovering statistically significant 

hot spots.  

At the time of this writing (M15 of the project) we report our progress in three of the four categories, 

namely (1) - (3). In the next phase of the project, we will report on our progress on hot-spot analysis 

as well.  

3.1 Extreme Scale Map-matching  

Map-matching is essential in spatial data analysis for aligning GPS coordinates with road networks to 
reconstruct vehicle trajectories accurately, playing a vital role in applications ranging from traffic 
management to urban planning. This process utilizes probabilistic algorithms that integrate the 
vehicle’s GPS data, assessing potential paths by their proximity to GPS points, conformity to road 
topology, and vehicular dynamics. Map-matching aligns GPS points onto the road network, using 
advanced algorithms such as Valhalla, and then we enhance these results with our trajectory 
reconstruction algorithm, which uses these aligned points to generate a more accurate vehicle path 
representation. This reconstruction is particularly challenging with low sampling rate GPS data, 
requiring sophisticated methods to interpolate and deduce vehicular movements between recorded 
points, thus enhancing the understanding of vehicular trajectory. In our solution, we compute this 
exact two-step approach to generate the most accurate results. 
 

Low sampling rates in GPS data make it challenging to accurately reconstruct vehicular trajectories. 

Sparse datasets resulting from infrequent GPS recordings fail to capture the vehicle's path adequately, 

especially in critical points like intersections, leading to ambiguities and potential misalignments in the 

deduced routes. The sparseness of data points also limits the algorithms' ability to counteract GPS 

noise and multipath effects, common in areas with obstructions like urban canyons, further 

diminishing map-matching quality. Additionally, low sampling compromises the detection of transient 

behaviours such as lane changes, essential for applications demanding high-precision data. These 

limitations highlight the necessity for advanced map-matching algorithms that can effectively 

interpolate sparse data and counter environmental and noise-related inaccuracies, ensuring the 

reliability and precision of trajectory information for critical decision-making and analytical purposes.  

3.1.1 Brief Survey of the State-of-the-Art 
Map-matching is a challenge that appears for decades in urban trajectory analysis, thus there are 

different approaches that try to resolve this problem. Among the spectrum of strategies employed, 

the Geometric, Topological and Probabilistic algorithms stand out. Although all three of the strategies 
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are valid, recent trends indicate that most of the solutions apply Probabilistic algorithms to produce 

more accurate results.  

The most widely adopted Probabilistic algorithm used for Map-Matching is the Hidden Markov Model 

(HMM) and Viterbi Algorithm that Paul Newson and John Krumm proposed12. The most popular 

implementations leveraging this algorithm include Valhalla’s Meiliviii, Open-Source Routing Machine 

(OSRM)ix , Graphhopperx and more. This universal use of the HMM algorithm is due to its very high 

accuracy metrics, and typically modest computational resource requirements. Valhallaxi is an advanced 

open-source routing engine that utilizes OpenStreetMap. It is distinguished by its efficient use of a 

tiled hierarchical data structure that reduces memory usage and supports offline routing and 

incremental updates, addressing key spatial data processing challenges. A significant component of 

Valhalla is Meili, its map-matching engine that incorporates algorithms like the HMM and the Viterbi 

algorithm for accurate alignment of GPS trajectories with road networks, thereby improving the 

accuracy of spatial data analysis and routing. Figure 3-1 shows the application of Valhalla’s Meili map-

matching service to a trajectory of Riga’s dataset (UC #3). 

 

Other notable probabilistic algorithms are STMatch13 that is mostly used for map-matching low 

sampling rate data, and Fast Map-Matching (FMM)14 that is highly efficient. Both algorithms can be 

used via the Fast Map-matching (FMM) frameworkxii. 

Currently, the Hidden Markov Model (HMM) is used broadly in the most popular map-matching tools 

and provides very accurate results. Nevertheless, there is a recent trend towards employing Deep 

Learning (DL) and AI to do the map-matching, aiming to overcome the limitations associated with 

HMM, such as its inability to utilize the potential of enormous trajectory big data and its susceptibility 

to noise data. Despite their potential, DL solutions are still immature and still demand high resources 

and computing power, while facing scalability challenges. Instead, we focus on improving the 

limitations of HMM by means of post-processing. 

3.1.2 Overview and Description 
In Figure 3-2, an example of map-matching of a sparse trajectory and the actual trajectory is provided. 

It shows the application of Valhalla’s Meili map-matching service to a low sampling rate trajectory, and 

how that “matched” trajectory is far from the actual ground truth trajectory. The trajectory used in 

 
viii https://valhalla.github.io/valhalla/meili/overview/ 
ix https://github.com/Project-OSRM/osrm-backend 
x https://github.com/graphhopper/graphhopper#map-matching 
xi https://valhalla.github.io/valhalla/ 
xii https://github.com/cyang-kth/fmm 

Figure 3-1 - Map Matching using Valhalla 

Figure 3-2 - Map Matching a low sampling rate trajectory 

https://valhalla.github.io/valhalla/meili/overview/
https://github.com/Project-OSRM/osrm-backend
https://github.com/graphhopper/graphhopper#map-matching
https://valhalla.github.io/valhalla/
https://github.com/cyang-kth/fmm
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this figure origins from an open dataset (https://zenodo.org/records/57731) that also provides the 

ground truth. 

 

To address the accuracy challenges in map-matching due to low GPS sampling rates, we have been 
developing an emerald that contains sophisticated spatial analysis algorithms, such as Curve 
Interpolation, Trajectory Refinement, and Trajectory Combination that enhance the map matched 
trajectory that Valhalla’s Meili and other state of the art map-matching algorithms return. It should 
be noted that plain solutions, such as computing the shortest path between map-matched points, do 
not work well for sparse GPS data15. This is because merely computing the shortest path between 
map-matched points does not guarantee accurate trajectory representation, especially in complex 
urban road network, as moving vehicles do not always follow the shortest path. In this way, we obtain 
a much more precise and realistic trajectory that can be exploited by WP4 components for AI/ML 
model training. Each of the three algorithms mentioned above can be assigned to one of two distinct 
categories: (a) The first category encompasses algorithms that operate in an online fashion using the 
(streaming) feed of GPS data and the underlying road network, independent of supplementary data 
or specific information. Instead, (b) the second category uses historical data pertaining to analogous 
vehicle trajectories for operation and exploits this historical data for more accurate trajectory 
reconstruction. The Trajectory Refinement algorithm and the Curve Interpolation algorithm belong to 
the first category, whereas the Trajectory Combination algorithm belongs to the second category, i.e., 
it exploits information from historical trajectories for the same itinerary. In the current version (as of 
M15 of the Project), we have developed preliminary versions of these algorithms. In Figure 3-3 we can 
observe the main ideas and differences of these algorithms. 

 

Figure 3-3 - The Main Ideas of Trajectory Refinement, Curve Interpolation and Trajectory Combination algorithms. 

https://zenodo.org/records/57731
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The Trajectory Refinement algorithm significantly improves trajectory accuracy by integrating GPS 
data with road network information from OpenStreetMap. It precisely matches each GPS point to the 
road segment directly beneath it, utilizing the 'osmid' attribute to identify the segment. This matching 
occurs specifically when there is a change in the 'osmid' from one point to the next, signalling a 
transition between road segments. At such transitions, typically at the apex of turns or where roads 
change, the algorithm interpolates a point to the intersection of the two segments, thereby enhancing 
the trajectory's alignment with the physical road network. This process not only refines the trajectory's 
smoothness but also safeguards its spatio-temporal coherence. The initial step involves converting 
GPS coordinates into Shapely Point objects, preparing them for spatial operations. Following this, the 
algorithm retrieves a road network graph from OpenStreetMap, aligning the GPS trajectory with the 
actual road layout, represented as nodes and edges in the graph. By examining each GPS point and its 
associated road segment, the algorithm identifies transitions between segments and interpolates 
points at these junctures to smooth the trajectory, a critical step for correcting GPS inaccuracies, 
especially at corners or junctions. It also adjusts timestamps for new points to ensure temporal 
alignment with the spatial refinements. The algorithm culminates in compiling both the original and 
interpolated points, providing a more accurate representation of the path. Optional post-processing 
can further refine the trajectory, removing points that stray from the road network, based on a set 
tolerance, to ensure the trajectory's fidelity to the actual route. This algorithm performs efficiently on 
its own, delivering significant improvements in trajectory alignment with the road network, and serves 
as a foundational step for Curve Interpolation. 
 
The Curve Interpolation algorithm constructs an accurate path representation by calculating the 

bearing between consecutive points to identify significant directional shifts, using a variable threshold 

to detect curves. It also introduces 'granularity', a variable denoting the number of points to 

interpolate along each identified curve, enabling adjustable detail enhancement. This algorithm 

employs geodesic interpolation, considering the Earth's curvature for a truer geographical path 

depiction, over simple linear methods. It meticulously aligns interpolated points with corresponding 

temporal information, ensuring the trajectory's spatio-temporal coherence. Thus, by leveraging a 

bearing threshold and granularity, the algorithm effectively smooths trajectories and maintains their 

integrity, proving useful for accurate spatial analysis in paths with frequent directional changes. While 

capable of operating independently, Curve Interpolation is recommended to follow Trajectory 

Refinement, as it benefits from refining the trajectory with essential details on turns and road changes. 

 
Finally, the Trajectory Combination algorithm refines the accuracy of repeatable trajectories, such as 
bus routes, by a comprehensive process that initially merges multiple sets of trajectory data, thereby 
amalgamating diverse trip instances into a single dataset. This integration leverages latitude and 
longitude coordinates, which are subsequently extracted and structured for precise geodesic distance 
calculations using the WGS 84 ellipsoidal model, ensuring an accurate representation of distances on 
the Earth's surface. The algorithm then employs a sorting mechanism that iteratively identifies the 
nearest unvisited point from the current location based on geodesic proximity, thereby systematically 
organizing the trajectory points. This sorting process relies on a 'visited' set to track the inclusion of 
points, ensuring a unique and logical sequence. The culmination of this algorithm is the construction 
of a reordered dataset that presents a spatially coherent and logically sequenced trajectory, reflecting 
an optimized aggregation of the individual paths. This enhanced trajectory not only improves the 
fidelity of the representation of the route but also ensures the preservation of its spatial and temporal 
integrity, providing a reliable foundation for subsequent analyses and applications requiring accurate 
path data. 
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3.1.3 Preliminary Evaluation 
 
Our preliminary evaluation results are based on visual inspection of the map-matched trajectories in 

comparison with the reconstructed trajectories using our algorithms. We used a dataset from Use-

case #3 Public Transport Trip Characteristics Inference and Traffic Flow Data Analytics in Riga, filtering 

one specific day: August 30th, 2019. Also, the OpenStreetMap data for each trajectory is downloaded 

while the Trajectory Refinement component is executed via the osmnx python library. 

Figure 3-4 provides an illustrative depiction exemplifying the operational execution of two algorithms 

applied to augment a sparsely sampled map-matched vehicle trajectory. It shows how a map-matched 

trajectory from Use-case #3 dataset gets enhanced by using the Trajectory Refinement and Curve 

Interpolation algorithms. In this example, Trajectory Refinement has interpolated points at crucial 

junctures in the path, such as turns or road segment transitions, as seen in the lower section of the 

figure. Additionally, the Curve Interpolation has included many points to reflect the trajectory's 

curvature, as apparent in the figure’s upper right segment when the vehicle passes through a 

roundabout and generally in every curved segment of the given trajectory. 

 

Figure 3-4 - Enhancing the map matched trajectory with the Curve Interpolation and Trajectory Refinement algorithms 

Figure 3-5 is a visual representation of the Trajectory Combination algorithm in operation, which 

combines two sparsely sampled map matched trajectories to produce a detailed trajectory. It shows 

Figure 3-5 - Enhancing the Map Matched trajectory with the Trajectory Combination algorithm. 

https://pypi.org/project/osmnx/
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how two map-matched trajectories from Use-case 3 dataset get enhanced by using the Trajectory 

Combination algorithm. 

For a preliminary quantitative evaluation, we assessed the performance of the Key Performance 

Indicators (KPIs) for map-matching. The experiment was run in a system equipped with AMD Ryzen 7 

7800X3D CPU, Samsung 990 pro 1TB SSD, 32GB DDR5 of RAM. The metric used was the throughput, 

measured in number of processed records per second (records/sec). The throughput for the Trajectory 

Refinement (includes the time to look up the graph) was about 42 records/sec for trajectories of a 

small size (116 points), and 132 records/sec for larger trajectories (1169 points). This enhancement 

highlights the algorithm's capacity to effectively manage larger input data. On the other hand, when 

handling larger trajectories, the Curve Interpolation's processing performance decreased from 9,404 

records/sec to 7,395 records/sec for smaller inputs. On the other hand, the Trajectory Combination 

has an overall throughput of 17,253 records/sec. The average throughput of the Trajectory Refinement 

and Curve Interpolation when coupled was further calculated, producing 111 and 7,540 records/sec, 

respectively. These numbers are promising but we believe that they can be improved further in the 

next phase of the project. In particular, we aim to investigate improvements in the performance of the 

Trajectory Refinement by improving the access cost to the underlying graph representing the road 

network. 

More precisely, Table 7 summarizes the KPIs relevant to this emerald:  
 

Table 7 - KPIs for Map Matching 

Description  Baseline 
Value  

Target 
Value  

Method of 
Measurement  

Achieved 
Value  

Trajectory 
Combination 
Performance 
Improvement 

N/A Thousands of 
records/sec 

Throughput 
(records/sec)  

hundreds of 
records per sec 

for large 
trajectories 

Curve 
Interpolation 
Performance 
Improvement 

N/A Thousands of 
records/sec 

Throughput 
(records/sec)  

hundreds of 
records per sec 

for large 
trajectories 

Trajectory 
Refinement 
Performance 
Improvement 

N/A Thousands of 
records/sec 

Throughput 
(records/sec)  

hundreds of 
records per sec 

for large 
trajectories 

 

3.1.4 Next Steps 
In the next phase of the project, we plan to work on the following aspects: 

• Evaluate the algorithms for larger datasets and using quantifiable measures rather than only 

by visual inspection. 

• Refine the algorithms to increase result quality and accuracy. 

• Focus on performance and scalability aspects, including data-parallel processing. 

• Apply our results in more datasets; both public and from the use-cases of the project. 
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3.2 Weather Enrichment 

The weather enrichment subtask is a data integration task, aiming at enriching mobility data sets with 
weather-related information. Weather plays a vital role in the analysis of moving objects’ trajectories, 
affecting human mobility. To discover weather-related mobility patterns, it is necessary to perform 
exploratory data analysis. This requires the availability of weather conditions together with positional 
information for each moving object. Moreover, having together the weather information with mobility 
information, complex reasoning about trajectory data is enabled, with prominent examples trajectory 
prediction and clustering. The weather information is fetched from gridded-binary (GRIB) files. This 
kind of format is used for the storage and transport of gridded meteorological data. The format is 
maintained by the World Meteorological Organization, and data (numeric values) are stored on a 3D 
grid of points. The grid is formed by the splitting of the longitude and latitude axes per a specified 
value of degrees. The methods introduced are useful in establishing a robust framework for linking 
with Copernicus data, enabling the enrichment of mobility datasets with accurate and relevant 
weather information. Standardized data access protocols such as OGC web services, specifically the 
Web Coverage Service (WCS) for retrieving Copernicus data in geospatial formats are leveraged to 
access gridded meteorological data stored in Copernicus repositories and fetching weather-related 
information like temperature, humidity, wind speed, and precipitation. 

3.2.1 Brief Survey of the State-of-the-Art 
 
Few works study the concept of weather data integration, focusing on real-time applications. Gooch 
and Chandrasekar16 present the concept of integrating weather radar data with ground sensor data 
which will respond to emergent weather phenomena such as tornadoes, hailstorms, etc. For the 
integration procedure a special technique is used to address the high dimensionality of weather radar 
data. Kolokoloc17 applies open-access weather-climate data integration on local urban areas. 
Specifically, by using open-access data by meteo-services, integration of weather data is applied on 
locations stored in MySQL database. The proposed mode of operation is record-by-record, accessing 
at the same time weather information in GRIB (binary) format files, used widely for storing 
meteorological data efficiently. Their work has been also extended for operating in parallel, extreme-
scale mode18. Weather data integration has also been studied to link mobility data to external data 
sources. This aims at producing semantic trajectories, and one external source that has been 
considered is weather. FAIMUSS19 is a system that generates links between mobility data and other 
geographical data sources, including static areas of interest, points of interest, and weather. However, 
this also poses an overhead to the application since it dictates the use of an ontology and the 
representation of domain concepts. 

3.2.2 Overview and Description 
 
The weather enrichment component5 is a service that integrates weather information to data that 
contain spatial and temporal information. The component's structure is composed of two parts, each 
one having a specific role concerning the enrichment process (Figure 3-6). The first part is the spatio-
temporal parser, which parses the given input data set. The parser supports local file reading of CSV, 
TXT and JSON formats. It also supports reading from streaming data (topics) on the Kafka streaming 
platform6 for extreme scale weather data enrichment. The parser forwards the spatial and temporal 
information to the weather data obtainer which constitutes the second part. The weather data 
obtainer does take the spatio-temporal information of the record and finds for it the respective 
weather information. The weather information is fetched as several attributes, each associated with a 
numeric value describing the prevailing weather conditions (e.g. temperature). 

  



  
  

  | Page 
 

 

35  

 

Figure 3-6 - Weather enrichment architecture 

  
In the context of the EMERALDS project, we utilize the GRIB files that are offered by the National 
Oceanic and Atmospheric Administration (NOAA). The weather information is stored in a grid, split 
into the two axes per 0.5o degree. This means that there exists a point per 0.5o degrees on each axe, 
that contains the values of weather attributes for the prevailing weather conditions for its location. 
The provided data are computer-generated, based on the Numerical Weather Prediction models. The 
utilized GRIB files contain dozens of attributes that cover the time span of 6 hours. One day is 
composed of 4 GRIB files.  The enrichment process includes the integration of rain, snow, ice, wind, 
humidity-related fields, which are the following ones: 

• Per_cent_frozen_precipitation_surface  

• Precipitable_water_entire_atmosphere_single_layer  

• Precipitation_rate_surface_3_Hour_Average 

• Storm_relative_helicity_height_above_ground_layer  

• Total_precipitation_surface_3_Hour_Accumulation  

• Categorical_Rain_surface_3_Hour_Average  

• Categorical_Freezing_Rain_surface_3_Hour_Average  

• Categorical_Ice_Pellets_surface_3_Hour_Average  

• Categorical_Snow_surface_3_Hour_Average  

• Convective_Precipitation_Rate_surface_3_Hour_Average  

• Convective_precipitation_surface_3_Hour_Accumulation  

• U-Component_Storm_Motion_height_above_ground_layer  

• V-Component_Storm_Motion_height_above_ground_layer  

• Geopotential_height_highest_tropospheric_freezing 

• Relative_humidity_highest_tropospheric_freezing 

• Ice_cover_surface 

• Snow_depth_surface 

• Water_equivalent_of_accumulated_snow_depth_surface 

• Wind_speed_gust_surface 

• u-component_of_wind_maximum_wind 

• u-component_of_wind_height_above_ground 

• v-component_of_wind_maximum_wind 

• v-component_of_wind_height_above_ground 

• Total_cloud_cover_low_cloud_3_Hour_Average 
  
Given a spatio-temporal position, the respective accessed GRIB file is the one whose timespan covers 
the position’s time. Then, based on its location, the values from the 4 nearest grid points are fetched 
for the weather attributes we want to integrate to the spatio-temporal data. The value for a specific 
weather attribute for the given spatio-temporal position, is calculated by interpolating the four values 
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of the nearest grid points considering their distance to the given position. For this purpose, the inverse 
distance weight formula is used: 

 
 
Previous implementation of the weather integrator mechanism considered for a weather attribute, 
the value of the nearest grid point to a given spatio-temporal point. By interpolating the four values of 
the nearest grid points we achieve the integration of more accurate values to spatio-temporal points. 
Figure 3-7 shows an instance of the previous (left) and the current (right) implementation for 
determining the value of a field to a spatio-temporal point (red dot). 

  

 

Figure 3-7 - Previous and current approach for determining the value of a weather attribute. 

As aforementioned, the weather enrichment component service can support extreme scale data 
enrichment via the Apache Kafka Streaming platform. Specifically, the component operates in multiple 
consumers, which consume the data (messages) from a topic. The messages are enriched with weather 
attributes and written to another topic that contains the enriched data. GRIB files can be accessed by 
storing them either in each node where the consumers run or in a distributed file storage system such 
as Hadoop distributed file system (HDFS). The former approach has disk space requirements as GRIB 
files are large, while the latter requires large bandwidth as the GRIB files will be transferred to the 
nodes when requested over the network. 

3.2.3 Preliminary Evaluation 
 
We evaluated the weather enrichment component in centralized environment by running the 
enrichment process on a sample of public transportation data (GPS data of buses) in the city of Riga 
(UC #3). The sample is in CSV file format (2 files) and covers the data of 1 day, composed of 1.2M 
spatio-temporal points. The initial data set consisted of 12 columns related to mobility and vehicle 
information, whose size was 96 MB. The enrichment process integrated 24 weather attributes to the 
data set, whose size was 479 MB. Table 8 shows information about the GRIB file size and performance, 
where the throughput is about 85 thousand records per second. This constitutes the 1st KPI 
“Performance measurement of the enrichment in terms of execution time”. Figure 3-8 shows a sample 
of the initial and the enriched records in CSV file. The red dashed rectangle indicates the values of the 
weather attributes. 
  

GRIB Files size (1 day) Throughput (rec/sec) Runtime (sec) 

378 MB 85,068  14 

Table 8 - GRIB Files Size and Performance 
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Figure 3-8 - Initial and Final (enriched) data of records existing in CSV format. 

We also proceeded to a qualitative evaluation regarding the values of the weather attributes that 
were integrated to the data set. This constitutes the 2nd KPI of the component “Measurement of the 
difference of the interpolated values with the non-interpolated”.Table 9 shows per weather attribute 
the range of values (min, max) that result from the interpolation. Along with that, the average from 
the differences of the interpolated and non-interpolated values has been calculated per weather 
attribute. In a few words, this measures the average deviation between the interpolated and non-
interpolated values, indicating the fixed error that is made by performing interpolation. Notice that 
for some values the average is zero. The reason behind that is because the values of the weather 
attributes are also zero as the covering weather conditions from these attributes were not in effect 
for the spatial and temporal bounds of the data set. 
 

Table 9 – Statistical Value of the Weather Attributes 

Attribute Min Max Avg of Diff 

Per_cent_frozen_precipitation_surface -18.91709 0.000006 5.15163 
Precipitable_water_entire_atmosphere_single_layer  20.68947 47.6 1.04257 
Precipitation_rate_surface_3_Hour_Average 0.0 0.0000009 0.000002 
Storm_relative_helicity_height_above_ground_layer  10.84061 82.77035 9.47422 
Total_precipitation_surface_3_Hour_Accumulation  0.0 0.61383 0.01733 
Categorical_Rain_surface_3_Hour_Average  0.0 1.0 0.10891 
Categorical_Freezing_Rain_surface_3_Hour_Average  0.0 0.0 0.0 
Categorical_Ice_Pellets_surface_3_Hour_Average  0.0 0.0 0.0 
Categorical_Snow_surface_3_Hour_Average  0.0 0.0 0.0 
Convective_Precipitation_Rate_surface_3_Hour_Aver
age  

0.0 0.0000009 0.000001 

Convective_precipitation_surface_3_Hour_Accumulati
on  

0.0 0.61383 0.01690 

U-
Component_Storm_Motion_height_above_ground_la
yer  

-0.00123 0.00099 0.41304 

V-
Component_Storm_Motion_height_above_ground_la
yer  

-1.86747 7.41703 0.38406 

Geopotential_height_highest_tropospheric_freezing 3644.90429 4968.32 106.76319 
Relative_humidity_highest_tropospheric_freezing 21.0 80.69102 1.72259 
Ice_cover_surface 0.0 0.0 0.0 
Snow_depth_surface 0.0 0.0 0.0 
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Water_equivalent_of_accumulated_snow_depth_surf
ace 

0.0 0.0 0.0 

Wind_speed_gust_surface 1.42879 8.90881 0.50519 
u-component_of_wind_maximum_wind -15.13828 9.29803 0.08730 
u-component_of_wind_height_above_ground -0.00100 0.00078 0.32974 
v-component_of_wind_maximum_wind -1.67917 7.14257 0.19295 
v-component_of_wind_height_above_ground -0.17080 8.27791 0.38252 
Total_cloud_cover_low_cloud_3_Hour_Average 0.0 91.0 5.04277 

 
More precisely, Table 10 summarizes the KPIs relevant to this emerald:  
 

Table 10 - KPIs for Weather Enrichment 

Description  Baseline 
Value  

Target 
Value  

Method of 
Measurement  

Achieved 
Value  

Accuracy of 
Interpolation 

Non 
Interpolated 

Values 

>0 
(Interpolation 

improved 
result) 

Difference between 
interpolated and non-

interpolated  

>0 in 18/24 
attributes 

Performance Thousands 
records per 

second 

Thousands 
records per 

second 

Throughput (recs/sec) ~85,000 

 

3.2.4 Next Steps 
In the next phase of the project, we are going to apply weather enrichment to datasets of the use-
cases, aiming at providing upstream AI/ML algorithms with enriched training datasets. Also, we will 
apply our solution for bigger input datasets that span larger geographical areas and longer timespans. 

3.3 Spatial-Temporal Querying 

Efficient and scalable querying of large collections of complex multidimensional data is challenging for 

database systems. This is the case for example for variants of spatial queries, including spatio-temporal 

and spatio-textual queries. Spatio-temporal queries are typically encountered in applications that 

concern moving objects, whereas spatio-textual queries are used over geotagged collections of social 

data (e.g., tweets, check-ins, etc.) as the ones suggested to be used in Use Case #1 Risk-assessment, 

prediction & forecasting during events in the Hague. Both types of queries are of interest in EMERALDS, 

as indicated in Deliverable D1.4 “EMERALDS Data Management Plan”. In this work, we focus on spatio-

textual query processing aiming at querying data collected from social networks and investigating how 

such external datasets can provide added value to the use-cases of the project. 

 

3.3.1 Brief Survey of the State-of-the-Art 
Spatio-textual data have a spatial and a textual dimension. The spatial dimension is the location of an 
object, whereas the textual dimension refers to some associated text, which is typically represented 
as a set of keywords. Examples of such data include geotagged tweets, geotagged photos, check-ins 
in social networks, etc. Efficient processing of spatial-keyword queries is a challenging topic that has 
been studied recently and several novel indexing and partitioning algorithms have been proposed20. 
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However, there still exist limitations of existing solutions in at least two cases: (a) scalable, data-
parallel processing a large collection of spatio-textual objects, and (b) semantic querying of spatio-
textual objects. 
Scalable processing: Existing approaches for scalable batch processing of spatio-textual data largely 
rely on MapReduce and exploit big data frameworks, such as Apache Spark or Apache Flink. Ballesteros 
et al.21 propose SpSJoin for parallel processing of spatio-textual joins. Given two datasets 𝑅 and 𝑆, the 
best match in 𝑆 for each object in 𝑅 is retrieved. Zhang et al.22 propose a data-parallel method for 
processing the spatio-textual similarity join (STSJ) in MapReduce. Given two collections of spatio-
textual objects with a spatial location and textual descriptions, STSJ finds out all similar object pairs 
that have similar textual descriptions and are spatially close to each other. For more details and 
relevant surveys on processing of spatial keyword queries23,24. 
Semantic query processing: Spatial keyword query processing still largely relies on exact matching of 
query keywords with object keywords. Only a handful of works use semantic representations of text 
(usually dense vector representations produced from GloVe, Word2Vec, etc.) that allow semantic 
matching. In this way, a keyword “king” has similarity with another keyword “queen”, even though 
they have no syntactic matching. S2R-tree25 is an extension of the R-tree built on top of spatial 
coordinates and very low-dimensional semantic vectors that represent the text. The semantic vectors 
are obtained by projecting the high-dimensional word embeddings to an 𝑚-dimensional space using a 
pivot-based technique. The NIQ-tree26 is a multi-level indexing structure where at the top level, a 
Quadtree is built on the spatial coordinates and then, at the second level, the objects of each leaf are 
indexed based on topic relevance. For this, Latent Dirichlet Allocation (LDA) is used to create a 
probabilistic topic model that captures semantics. Finally, at the last level, 𝑛-gram inverted lists are 
constructed. Later, the approach is extended by introducing another index, called LHQtree27. Both 
approaches belong to the “spatial-first” approach, meaning that they organize first the spatial 
information and then the textual. Instead, as will be discussed below, our work follows a hybrid 
approach where we jointly index the spatial and the textual domain, thus leading to improved pruning 
and higher efficiency. 
 

3.3.2 Overview and Description 
 
In the following, we describe two approaches related to spatio-textual processing. The first concerns 
scalable processing of spatial keyword range queries, whereas the second is about semantic spatio-
textual query processing.  
 
Scalable Processing of Spatial Keyword Range Queries 
Consider a data set 𝐷 of spatio-textual data objects, where each object 𝑝 is associated with a spatial 
location (𝑝.𝑥, 𝑝.𝑦) as well as a set of keywords (tags) denoted with 𝑃. We use capital letters (𝑃,𝑄) to 
denote the keyword sets associated with an object (𝑝, 𝑞). Given a query 𝑞 that consists of a location 
(𝑞.𝑥, 𝑞.𝑦) and a set of keywords 𝑄, the spatial-keyword range query retrieves all objects within distance 
𝑟 and having keyword set similarity above 𝜏. More formally: 
  
Definition (Spatial-keyword range query): Given a query point 𝑞, a set of query keywords 𝑄, a distance 
threshold 𝑟, and a textual similarity threshold 𝜏, the spatial-keyword range query retrieves all spatio-
textual objects 𝑝 ∈ 𝐷, such that: dist(𝑝, 𝑞) ≤ 𝑟 and sim(𝑃,𝑄) ≥ 𝜏. 
  
Notice that in this work, we use the Euclidean distance function:  
 

dist(𝑝, 𝑞) =√︁(𝑝.𝑥 − 𝑞.𝑥)2 + (𝑝.𝑦 − 𝑞.𝑦)2 
 

for the spatial domain, and we use the Jaccard similarity:  
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sim(𝑃,𝑄) = |𝑃∩𝑄| / |𝑃∪𝑄| 

 
for the textual set similarity that includes the complete textual message. In a big data setting, the data 
set 𝐷 is horizontally partitioned to a set of 𝑚 worker nodes. By horizontal partitioning, we refer to a 
setup where each worker 𝑊𝑖 contains a subset 𝐷𝑖 of the objects of the data set, where the union of 
𝐷𝑖 = 𝐷 and 𝐷𝑖 ∩ 𝐷𝑗 = ∅, for 𝑖 ≠ 𝑗. The worker nodes {𝑊1, 𝑊2, . . ., 𝑊𝑚} can be virtual machines (VMs) 
in a cloud infrastructure. The problem addressed here is how to efficiently process the spatial-keyword 
range query in parallel, given such a hardware infrastructure of 𝑚 workers, aiming at minimizing the 
query execution time.  
  
Our approach is based on mapping the spatio-textual objects in a 2D space, where one dimension is 
used to represent distance and the other textual similarity. For the distance, the basic idea is that 
instead of storing the spatial coordinates of spatio-textual objects, we can store the distance to specific 
locations. For this purpose, we cluster the locations of spatio-textual objects using a partitioning 
algorithm, such as K-means. Each cluster 𝐶𝑖 is represented by a reference object 𝐾𝑖 (its centroid) and 
a radius 𝑟𝑖 , which is the distance of the farthest point assigned to 𝐶𝑖 from 𝐾𝑖 . Then, for each spatio-
textual object 𝑝, we compute its distance dist(𝐾𝑖 , 𝑝) from the centroid 𝐾𝑖 of its cluster. Then, we use 
the iDistance technique, which produces for object 𝑝 the 1D value: 
 

iDist(𝑝) = 𝑖 * 𝑐 + dist(𝐾𝑖 , 𝑝) 
 

where 𝑐 is a constant used to separate the values produced from different clusters. By setting the value 
of 𝑐 large enough, all objects in cluster 𝐶𝑖 are mapped to the interval: 
 

[𝑖 * 𝑐, (𝑖 + 1) * 𝑐] 
 

Thus, each object 𝑝 is mapped to a 1D value iDist(𝑝). In addition, we maintain in memory the cluster 
centroid 𝐾𝑖 and the radius 𝑟𝑖 of each cluster. 
  
The next step is to map the textual information, i.e., the keywords of a spatio-textual object, to 1D 
values, in a way that supports efficient querying. Let 𝑉 denote the vocabulary of the data set, i.e., 𝑉 = 
{𝑡1, 𝑡2, . . . , 𝑡|𝑉|}, where 𝑡𝑖 represents a keyword of the vocabulary. Following a similar rationale as for 
the spatial dimension, our objective here is to partition 𝑉 in 𝑘 disjoint subsets of keywords. For this 
purpose, we build the keyword co-occurrence graph, an undirected weighted graph that contains as 
vertices the keywords from the vocabulary 𝑉. An edge between two keywords (vertices) is added if 
these keywords co-occur in at least one spatio-textual object. The weight of an edge is set equal to the 
number of objects in which the respective keywords co-occur. Then, we apply a graph partitioning 
algorithm to generate the desired subsets of keywords {𝑉1 ,𝑉2, . . . ,𝑉𝑘}. These can be considered as the 
textual partitions of the data set. 
  
A spatio-textual data object 𝑝 may contain keywords from different (say ℓ ≥ 1) subsets 𝑉𝑖. Thus, we 
need to assign such a spatio-textual object 𝑝 to ℓ partitions. Therefore, 𝑝 is replicated ℓ times in the 
transformed data set. For each partition 𝑉𝑖 we eventually compute a 1D value val(𝑃,𝑉𝑖 ) for object 𝑝 
with keyword set 𝑃. This is necessary in order to ensure the correctness of the computed result set for 
any spatial-keyword range query. For a given spatio-textual data object 𝑝 (with keyword set 𝑃) and a 
partition 𝑉𝑖 for which it holds that 𝑃 ∩ 𝑉𝑖 ≠ ∅, we define a 1D similarity value val(𝑃,𝑉𝑖 ) based on the 
following equation: 

val(𝑃,𝑉𝑖 ) = |𝑃 ∩𝑉𝑖 | / |𝑃 | 
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which practically “distributes” the size of the overlap between sets 𝑃 and the vocabulary 𝑉 to those 
partitions 𝑉𝑖 that have 𝑃 ∩𝑉𝑖 ≠ ∅. In fact, val(𝑃,𝑉𝑖 ) represents the size of the overlap normalized over 
the size of 𝑃. 
  
The next step is to assign similarity values of data points for different partitions 𝑉𝑖 ,𝑉𝑗 to disjoint 1D 
intervals of the textual dimension. Thus, the textual similarity values val(𝑃,𝑉𝑖 ) are mapped to 1D values 
in such a way that only data objects that have keywords that belong to the partition 𝑉𝑖 are mapped to 
the same interval. Expecting that 𝑐′ is large enough, all data objects 𝑝 with keywords belonging to the 
partition 𝑉𝑖 (𝑃 ∩ 𝑉𝑖 ≠ ∅) are mapped to the 1D values: 
 

iSim(𝑝,𝑉𝑖 ) = 𝑖 * 𝑐′ + val(𝑃,𝑉𝑖 ) 
 

 

 

Figure 3-9- Example of our mapping to 2D. Left: original space. Right: transformed space 

 
presents a graphical overview of the mapping approach. The data set 𝐷 depicted on the left, whereas 
the transformed 2D space is shown on the right. In summary, the location information is mapped in 
one dimension (horizontal axis), and the textual information in another dimension (vertical axis). 
Essentially, in the transformed 2D space, the objects form spatial partitions based on their pairwise 
distances, as well as textual partitions (in the example {𝑡1, 𝑡2} and {𝑡3, 𝑡4, 𝑡5}) based on grouping 
together subsets of frequently co-occurring keywords. While each object belongs to a single spatial 
partition, it may be assigned to multiple textual partitions. For example, objects 𝑝1, 𝑝2 and 𝑝3 are 
assigned to the same spatial partition because they form a spatial cluster in the original space. On the 
other hand, objects 𝑝3, 𝑝4 and 𝑝9 are duplicated to both textual partitions depicted in Figure 3-9, 
because they contain keywords from both textual partitions. 
 
At a pre-processing step, we generate data partitions in the 2D space that consist of the spatio-textual 
objects of the input data set 𝐷. Figure 3-10 provides a visual representation of the generated 2D 
partitions, where the x-axis corresponds to the spatial dimension and the y-axis is the textual 
dimension. In this example, 10 spatial clusters and 20 textual partitions are depicted. The visualization 
shows that distinct partitions are generated in the transformed 2D space, which intuitively explains 
how a query with a reasonably small distance threshold and relatively high textual similarity threshold 
will need to access very few partitions. 
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Figure 3-10- Visualization of 2D partitions generated by our algorithm. 

 
We organize the obtained data partitions using Hive partitions. A Hive partition corresponds to a 
physical directory on disk which contains data based on a specific attribute value. We use the spatial 
cluster ID for this purpose, so each Hive partition corresponds to a spatial cluster. Within each Hive 
partition, we organize data based on the textual cluster ID. Furthermore, we use Apache Parquet as 
data format for the actual data storage. Parquet is a column-oriented storage format, which provides 
compressed storage as well as efficient retrieval by means of data skipping. Essentially, given a query 
predicate, Parquet maintains metadata (e.g., min-max values) on columns that allow skipping (i.e., not 
accessing) entire data blocks, if the metadata can ascertain that certain blocks do not match the query.  
Finally, during pre-processing, we generate a metadata table, which is maintained in memory for 
efficient access. It contains for each spatial cluster, its identifier, its centroid and radius, and then for 
each textual cluster, its identifier and the keywords that define it. 
 
We designed and implemented an algorithm in Apache Spark for scalable query processing (Figure 
3-11).  As a first step, the algorithm uses the metadata table to find the spatial and textual partitions 
that contain candidate results for the query. The spatial partitions are those that overlap with the circle 
centered at (𝑞.𝑥, 𝑞.𝑦) and having radius 𝑟. These are the only spatial partitions that contain candidate 
results for the query. The identifiers of these spatial partitions are denoted with 𝑃𝑠𝑝𝑎𝑡𝑖𝑎𝑙 (line 4). We 
can show that only a limited set of textual partitions need to be accessed (for details we point to our 
published paper28). The identifiers of these textual partitions are denoted with 𝑃𝑡𝑒𝑥𝑡𝑢𝑎𝑙 (line 5). 

 

Figure 3-11 – Algorithm for scalable query processing in spatio-textual datasets. 

After having identified the partitions that contain candidate results, we use the read operation of Spark 
to load only the Hive partitions that contain the relevant candidate data objects in a Spark dataframe 
𝑑𝑓 (line 6). In this step, two optimizations are performed based on the data organization. First, the 
spatial cluster identifiers are used as PartitionFilters, effectively limiting the directories that need to 
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be accessed. Second, the textual cluster identifiers are used as PushedFilters, exploiting the Parquet 
data format and fetching in memory only the candidate data objects. As the algorithm adopts the filter-
and-refine methodology, in this step, the filtering is performed, which finds a set of candidate data 
objects very fast. Then, in line 7, the refinement step takes place. In this step, the dataframe 𝑑𝑓 is 
processed and only the subset of candidate objects 𝑝 that fulfil the distance constraint (dist(𝑝, 𝑞) ≤ 𝑟) 
and the textual constraint (sim(𝑃,𝑄) ≥ 𝜏) are kept and returned as result R (line 8). In the next section, 
we present evaluation results of this algorithm in comparison with state-of-the-art algorithms. 
 
Semantic Spatio-textual Query Processing 
Given a collection of spatio-textual objects {𝑜𝑖} ∈ O consisting of a location (𝑜𝑖.𝑥, 𝑜𝑖.𝑦) and a textual 
description 𝑜𝑖.𝑡𝑒𝑥𝑡 and a query 𝑞 with a location (𝑞.𝑥, 𝑞.𝑦) and a textual description 𝑞.𝑡𝑒𝑥𝑡 , retrieve 
the 𝑘 objects in O that minimize the distance function 𝑑 (𝑞, 𝑜) that takes into account both the semantic 
and the spatial distances of any object to the query. As such, the distance function 𝑑 (𝑞, 𝑜) includes 
two components. The first component is the spatial distance 𝑑𝑠(𝑞, 𝑜) of the query location (𝑞.𝑥, 𝑞.𝑦) 
to an object’s location (𝑜.𝑥, 𝑜.𝑦). We use a normalized variant of the Euclidean distance for 𝑑𝑠(𝑞, 𝑜), 
obtained by dividing with the maximum possible Euclidean distance of any two objects in the data set. 
  
The second component is the semantic distance 𝑑𝑡(𝑞, 𝑜) between 𝑞.𝑡𝑒𝑥𝑡 and 𝑜𝑖 .𝑡𝑒𝑥𝑡 . To define this 
distance, we use word embeddings to represent the textual description of a spatio-textual object 𝑜 as 
a dense 𝑛-dimensional vector: {𝑜[1], 𝑜[2], …, 𝑜[𝑛]}. This vector is called the semantic representation 
(or semantic vector) of the spatio-textual object. In principle, any method for word embeddings can 
be used, e.g., Word2Vec or Glove, as our algorithms do not make any assumption on the specific 
method. Then, the semantic distance 𝑑𝑡(𝑞, 𝑜) is defined as the normalized Euclidean distance applied 
on the semantic vectors of 𝑞 and 𝑜, divided by the maximum possible Euclidean distance. 
  
Having both constituent parts normalized in [0, 1], we consider the following equation for the distance 
function: 

𝑑 (𝑞, 𝑜) = 𝜆 * 𝑑𝑠 (𝑞, 𝑜) + (1 − 𝜆) * 𝑑𝑡 (𝑞, 𝑜) 
where 𝜆 ∈ [0, 1] is a user-dependent parameter that balances the contribution of the two parts to the 
final distance function. 
  
Definition (Semantic Spatio-textual Similarity Search). Given a collection of spatio-textual objects {𝑜𝑖 } 
∈ O and a query object 𝑞, retrieve the 𝑘 objects O𝑘 = {𝑜1, …, 𝑜𝑘}, such that: 𝑑(𝑞, 𝑜𝑖) ≤ 𝑑 (𝑞, 𝑜𝑗), ∀𝑜𝑖 ∈ O𝑘 
and ∀𝑜 𝑗 ∈ O − O𝑘. 
  
To design an efficient query processing algorithm, we follow a joint indexing approach that combines 
both domains into a single structure using the following steps. We perform two separate clustering 
algorithms to the spatio-textual dataset. First, regarding the spatial information, we group together 
objects based on their location by applying spatial clustering. Regarding the textual information, we 
make use of pre-trained models that produce high-quality word embeddings, obtaining high-
dimensional dense semantic vectors that represent the aforementioned object. These semantic 
vectors are 𝑛-dimensional, with 𝑛 in the order of hundreds. Unfortunately, grouping such high-
dimensional data by computing pairwise distances is known to be ineffective due to the curse of 
dimensionality. To tackle this problem, we apply Principal Component Analysis (PCA) in order to 
project the 𝑛-dimensional word embeddings to meaningful 𝑚-dimensional (𝑚 << 𝑛) vectors. The 
choice of PCA is due to its salient property of maximizing the total variance of the projection. Then, we 
apply K-Means on the projected vectors. Next, we initialize the set of hybrid clusters H by forming 
combinations of spatial with semantic clusters. Finally, each object 𝑜 is assigned to a single hybrid 
cluster, which is the one formed by 𝑜’s spatial and semantic clusters respectively.  
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Figure 3-12 - An example of six (6) hybrid clusters 

Figure 3-12 presents an illustrative example of how the hybrid clusters are formed. In the example, we 
have 𝐾𝑠 = 3 spatial clusters {(𝐶𝑠1, 𝑅𝑠1), (𝐶𝑠2, 𝑅𝑠2), (𝐶𝑠3, 𝑅𝑠3)} and 𝐾𝑡 = 2 semantic clusters {(𝐶𝑡1, 𝑅𝑡1), (𝐶𝑡2 
, 𝑅𝑡2)}. As a result, 𝐾𝑠 𝐾𝑡 = 6 hybrid clusters can be formed. We make two observations: (a) the hybrid 
cluster (𝐶𝑠2 , 𝑅𝑠2), (𝐶𝑡2, 𝑅𝑡2) is not actually formed, since there exists no data object that belongs to both 
clusters, and (b) each spatio-textual data object is eventually assigned to a single hybrid cluster. 
 
Based on this, we design and implement a query processing algorithm called Cluster-based Semantic 
Spatio-textual Indexing (CSSI) for 𝑘-nearest neighbor (𝑘-NN) search over spatio-textual data. Given a 
query q, the algorithm sorts the hybrid clusters based on distance so that the clusters most promising 
to contain the k-nearest neighbors are accessed first. As the objects of a cluster are accessed, the 
algorithm maintains a threshold which allows (a) pruning some objects of the cluster (intra-cluster 
pruning), and (b) pruning entire clusters (inter-cluster pruning). The theory that supports these pruning 
properties and lead to a provably correct algorithm are described in our paper29. Moreover, we present 
an approximate algorithm CSSIA that is more efficient while it yields results of high accuracy. 

3.3.3 Preliminary Evaluation 
Scalable Processing of Spatial Keyword Range Queries 
Our algorithm and the competitors have been implemented in Apache Spark using Python. For 
evaluating our algorithm, we used a small-sized cluster infrastructure provided by okeanos, a cloud 
service that offers virtual computing and storage services, supported by GRNET (https://grnet.gr) for 
research purposes. In total, the infrastructure consists of 20 cores, 32GB of RAM, and 80GB of 
secondary storage. 
  
We evaluate the performance of our algorithm, denoted SpatioTextual Index. To compare its 
performance, we use two Spark-based baselines that we developed, as well as two existing systems 
for big spatial data: 

• Spatial First: a Spark-based implementation that applies spatial constraint and then further 
filters the retrieved data based on the textual constraint. The input data is provided as a CSV 
file. 

• Textual First: also, a Spark-based implementation, but it applies the textual constraint and 
then filters the retrieved data based on the spatial constraint. The input data is provided as a 
CSV file. 

• Sedona: a spatial first algorithm implemented in Apache Sedona (formerly GeoSpark30), using 
the default spatial index (QuadTree). 

• Geomesa: a spatial first algorithm implemented in Geomesa (https://www.geomesa.org/), 
which uses the Z2 index, a two-dimensional Z-order curve to index latitude and longitude for 
point data. 

We used a real-life data set of 5M geotagged tweets that all contain the GPS location of the user and 
the text of the tweet, which has been pre-processed and represented as a set of keywords. After pre-
processing, each spatio-textual object (i.e., tweet) is represented with a unique identifier, two spatial 

https://grnet.gr/
https://www.geomesa.org/
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coordinates, and a set of keywords. Our main metric is the query execution time. Each query is 
repeated 20 times, and we report the average query execution time. Notice that the query execution 
time includes the time needed to read data from disk, i.e., we do not perform the queries on in-
memory data. 

 

Figure 3-13 - Effect of varying the distance threshold 𝑟 

In Figure 3-13 we vary the distance threshold (r) and measure the query execution time. Evidently, 
when we increase the distance threshold 𝑟 most algorithms need more time as more objects qualify 
as query results. Our algorithm (Spatio Textual Index) is faster than all competitors. This demonstrates 
the benefits of using spatio-textual partitions in our algorithm, as it can prune more objects based both 
on spatial and textual constraints, and thus improve the query execution time. One interesting 
observation is that our Spark-based baselines (spatial first and textual first) perform much worse than 
the other algorithms. 

  

Figure 3-14- Effect of varying the textual similarity threshold τ 

 
Figure 3-14 shows the effect of varying the textual similarity threshold 𝜏. It is expected that higher 
values of 𝜏 will produce fewer results, since it is harder to find spatio-textual objects with very high 
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textual similarity to the query keywords. In turn, this is expected to have an effect on the execution 
time. The textual first algorithm becomes faster than the spatial first for the high value of 𝜏. The main 
difference is that Sedona and Geomesa are much faster than textual first for all values of 𝜏. However, 
out spatio textual index is consistently better than all competitors. For more experiments, we point to 
our publication in BigSpatial@SIGSPATIAL’23. 
 
Semantic Spatio-textual Query Processing 
Our algorithms are memory-resident and implemented in C++ using g++ ver. 11.4.0, while data set 
preprocessing is implemented in Python3, whereas index creation in Rust. Our code is publicly 
available (https://github.com/noervaag/CSSI). We use a Twitter dataset that consists of geo-tagged 
tweets, written in English, that were collected using the public Twitter API. The location is given by 
metadata attached to the tweet, provided by the API. We examine the efficiency and quality of five 
indexing methods, including the two methods that we propose (CSSI and CSSIA). The first one is a linear 
scan algorithm (denoted Scan) that calculates the distances between the query and all the objects in 
the data set, included because in high dimensions linear scan often outperforms index-based 
algorithms. The second one is an index-based algorithm (denoted R-tree) that builds an R-tree on the 
spatial coordinates of each object, with semantic vectors located in the leaves, practically a spatial-
only index. It performs a best-first k-NN search, where mindist is calculated based on the assumption 
that in worst case semantic distance is zero, as there can always be a semantic vector with semantic 
distance equal to zero located in some non-visited leaf node. Moreover, we compare against the state-
of-the-art algorithm S2R-tree (denoted S2R).  

 

 

Figure 3-15   Scalability with dataset size. 

Figure 3-15 shows the results for increasing number of objects in the dataset from 5M to 35M objects. 
The query time is depicted in log scale on the left chart, whereas the number of visited (accessed) 
objects by each algorithm is shown on the right chart. Overall, CSSIA is shown to be significantly faster 
than CSSI, typically x2–x3 times faster, and this gain increases for larger data sets (notice the log scale). 
CSSIA owes its superior performance to the better pruning, as it needs to access the fewest data 
objects. Scan accesses all data objects, followed by the index-based algorithms: R-tree and S2R, which 
also access a large number of objects. However, R-tree is slower than Scan, because of the overhead 
for traversing the index structure and less efficient memory access (the tree-based index structures do 
not benefit from efficient prefetching from memory to the extent that linear scan can do). 
Interestingly, S2R also performs as bad as R-tree, as it accesses almost the same number of objects. 
Despite its enhancement of index nodes with semantic bounding boxes, S2R cannot prune large 
portions of the index. The reason is that it follows a spatial-first approach, organizing index nodes 
based on spatial coordinates and then adds to them semantic bounding boxes which may cover the 

https://github.com/noervaag/CSSI
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entire space, as there may exist no correlation of spatial location with semantic vectors. The difference 
between S2R and R-tree decreases with increasing cardinality, and for our significantly larger data sets, 
the difference in performance is only marginal. For more experiments, we point to our publication in 
EDBT’24. 
 
More precisely, Table 11 summarizes the KPIs relevant to this emerald:  
 

Table 11 - KPIs for Spatio-Temporal Querying 

Description  Baseline 
Value  

Target 
Value  

Method of 
Measurement  

Achieved 
Value  

Performance 
(Time)  

SotA (Apache 
Sedona) 

Improved 
performance 

Query execution time   Up to 50% 
speed up 

Performance 
(Query efficiency) 

SotA (S2Rtree) Reduced 
query time  

Query execution time  10x 
improvement 
in extreme-

scale 
scenarios 

 

3.3.4 Next Steps 
In the next period of the project, we intend to evaluate how our algorithms can be applied to external 
datasets (gathered from the Web or from social networks) that are aligned with the input datasets of 
UC #1. However, it should be noted that this is subject to the availability of such datasets, as the task 
of data acquisition of a big, geotagged dataset is not straightforward. Our intention is to demonstrate 
how our algorithms may be used to retrieve relevant data in an efficient and scalable way, thus 
supporting upstream AI/ML applications in the project by providing access to useful training data. 
  
Moreover, we are designing and evaluating a generic algorithm for spatial joins that can be applied for 
massive data. The algorithm is being implemented in Apache Spark to support scalable processing of 
large datasets. Our intention is to compare its performance against the state-of-the-art algorithm to 
demonstrate its performance gains. 
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4 Mobility Data Fusion and Management 

This task includes the development of theoretical foundations and a framework for the transportation 
data fusion. Our efforts are concentrated on enhancing data collected from various sources, such as 
sensors, cameras, and GPS devices. A vital initial step is the preprocessing of raw data received from 
collectors, encompassing essential tasks like data compression and missing values estimation. The 
significance of this estimation task is underscored by the impact of the sparsity rate in transportation 
data on subsequent data analysis. The evaluation of this task is centred around the Rotterdam use-
case: Multi-modal Integrated Traffic Management, which aligns with the data fusion EMERALD. 
Additionally, other data sources, including Brussels Mobility Data, are taken into consideration. 
Exploring the transportation data reveals a significant challenge which is managing the extensive 
volume of data. This challenge is further complicated by the necessity to effectively reduce data size 
while preserving essential information. In response, this EMERALD addresses this challenge through 
two approaches: Firstly, we focus on applying summarization methods to trajectory data, recognizing 
its unique significance in the realm of transportation data. Secondly, efficient data compression 
methods are employed during storage within the database. This EMERALD aligns with all three use-
cases of the project. 
By accomplishing these subtasks, we aim to contribute toward the establishment of a robust data 
processing and management framework. This framework is designed to facilitate the effective analysis 
of transportation data. In the following sections, we will delve into the two emeralds considered in this 
task, named:  

1. Sensor Data Fusion 
2. Mobility/Trajectory Data Compression 

4.1 Sensor Data Fusion 

Data fusion in traffic management involves integrating information from diverse sources such as loop 
detectors, video sensors and GPS devices. However, these devices often encounter disruptions 
stemming from various factors, including hardware or software malfunctions, network 
communication issues, power supply fluctuations, maintenance activities, and adverse weather 
conditions. Consequently, some devices may intermittently fail to upload traffic data, resulting in what 
is commonly referred to as the "missing value problem." 
The presence of missing data not only deteriorates the quality of data provided from intelligent 
transportation systems but also threatens the intelligent decision-making ability of participants such 
that they could make false decisions owing to incomplete information. Therefore, addressing the 
missing value problem requires incorporating data imputation as a crucial component of the data 
fusion process. 
Most missing data imputation methods rely on neighbouring data, either spatially or temporally, to 
estimate the missing values. These methods are typically effective when dealing with random missing 
patterns, where missing values are distributed randomly in time and space. However, real-world 
disruptions to data collection devices often result from events such as power cuts, data losses, and 
adverse weather conditions. Consequently, more groups of missing values emerge in both spatial and 
temporal dimensions. 
In this case, conventional imputation methods are restricted in such scenarios. Therefore, there is an 
urgent need to develop novel and more powerful techniques capable of handling these complex 
missing patterns effectively. 
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4.1.1 Brief Survey of the State-of-the-Art 
The traffic flow estimation represents a significant challenge rooted in the spatial and temporal nature 
of traffic data. Observations gathered from neighbouring sensors and also time stamps, reveal 
intricate spatio-temporal correlations within the data. Therefore, the key to solve such problems is to 
effectively extract the nonlinear and complex spatial-temporal correlations of data. 
Great efforts have been devoted to tackle this issue31,32. Some studies apply traditional machine 
learning methods, such as auto regressive and moving average model (ARMA)33 and support vector 
regression (SVR)34 mostly considering temporal data. However, most of these methods are linear and 
not suitable for handling volatile traffic data, the accuracy of results is often low. 
In recent years, deep learning methods have gained attention for their potential in estimation tasks, 
including deep Recurrent Neural Networks (RNNs)35,36 and Convolutional Neural Networks (CNNs)37. 
Yet, these methods are not suitable to apply to the data points with irregular graph relationship. Given 
the natural of graph structures in transportation networks, Graph Convolutional Neural Networks 
(GCNNs) emerge as an appealing solution which have been very efficient in extracting traffic 
patterns38,39,40,41.  
GCNNs extend from CNNs with consideration of graph structures. They heavily depend on the 
adjacency or Laplacian matrix of graph, representing spatial dependencies between road segments. 
GCNNs can be categorized into two classes according to the convolutional operator. The first one, 
named spatial-based approach, directly apply convolution filters on a graph's nodes and their 
neighbours. The core of these methods is how to select the neighbourhood of nodes. The other class, 
named spectral-based approach, considers the locality of graph convolution through spectral analysis. 
Motivated by the studies mentioned above, plus considering the graph structure of the transportation 
network and the spatio-temporal patterns inherent in traffic data, we explore a range of GCNNs to 
address the missing value problem. 

4.1.2 Overview and Description 
GCNNs offer a promising approach for handling the spatio-temporal complexities inherent in traffic 
datasets. GCNNs utilize convolutional operations, akin to traditional CNNs, but adapted to process 
graph-structured data. A convolutional operation applies a set of learnable filters - called kernels- to 
the input data, enabling the network to extract relevant features. This input data represents spatial or 
temporal aspects of the traffic data. 
Traditional convolutional filters are designed based on the assumption that nearby elements in the 
input data share local features (Figure 4-1 left). Consider an image as a 2D input or a time series as a 
1D data where nearby elements are related to each other. However, the spatial input matrix may not 
always adhere to this assumption, where two adjacent rows in the matrix may represent two 
geometrically distant road segment. This renders classical 2D convolutional filters ineffective and calls 
instead for new filters that consider the topology of the road network utilizing matrices representing 
spatial relationships, such as the adjacency matrix (Figure 4-1 right). 

 

Figure 4-1 - Traditional vs Graph convolution 

The convolutional filters analyse the connectivity patterns encoded in these matrices, allowing the 

network to capture spatial features between different road segments. Hence, information from input 

road segments propagates to adjacent, correlated edges via the road network topology. The GCNNs 
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categorization as spatial-based or spectral- based depends on how kernels apply to the adjacency 

matrix. Spectral graph convolutions, defined in the spectral domain based on graph Fourier transform. 

Conversely, spatial-based graph convolutions aggregate node representations from the node’s 

neighbourhood in the spatial domain. 

Moving to the temporal aspect, traditional kernels are well-suited for capturing temporal 

dependencies in this type of data since time series representations inherently exhibit high dependence 

between recorded data in neighbouring time slots. Through this process, the network learns traffic 

evolution over time, identifying patterns and trends in the input data. By iteratively applying spatial 

and temporal layers described earlier, GCNNs can model the dynamics of traffic, ultimately providing 

an estimated results of missing values in the input. 

Bringing together insights from the state-of-the-art, we have crafted a flexible GCNN framework as 

depicted in Figure 4-2. Within this framework, different settings for temporal and spatial layers in 

spatio-temporal blocks are available, based on user preferences. These settings encompass options 

such as spatial-based methods and spectral-based approaches for the spatial layer, and traditional 

convolution, dilated convolution, and attention-based convolution for the temporal layer. 

The network requires two matrices as inputs: 

• The symmetric adjacency matrix A, with a size of n×n, where n represents the number of road 

segments. Each pair of segments are neighbours if it is feasible to traverse from one to the 

other one by passing through exactly a single intersection. 

• The historical matrix S, with a size of n×t, where t represents the number of time slots. Each 

row of this matrix records the historical information of a segment over time, potentially 

containing missing values. To enhance the exploration of temporal dependencies, three 

timeseries extract from matrix S in relation to the current time:  hourly Sh, daily Sd, and weekly 

dependencies Sw. 

The output of the network is a matrix S’ with the missing cells filled in by the estimated values. 

 

 

 

Figure 4-2 - Architecture of the Baseline GCNN 

 

4.1.3 Preliminary Evaluation 
In this section, we verify the performance of the GCNNs on two datasets, PeMSD8 from California and 

Brussels mobility twin. 
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PeMSD4xiii is an open-source dataset encompassing traffic data aggregated into 5-minute intervals, 

covering the San Francisco Bay Area (Figure 4-3). The dataset provides geographic information for 

sensor stations and includes three key traffic measurements: total flow, average occupancy, and 

average speed. For our experiments, we focus on average speed as the target feature. Spanning from 

January to February 2018, the version of the dataset we selected includes 307 detectors, with each 

detector representing a segment.  

 

 

Figure 4-3 - Sensor map of PeMS dataset 

 

Brussels bus-line network (BBN): For the second dataset, we leverage the bus transportation data 

provided by STIB-MIVB, the urban transit service in Brusselsxiv. STIB-MIVB, a publicly owned 

corporation, offers real-time operational data. We access this data via the Brussels Mobility Twin 

platform, which serves as a centralized hub for mobility-related information in Brussels. This platform 

collects, archives, enriches, and republishes open mobility data from various sources, including STIB. 

Specifically, we utilize bus trajectory data from STIB within this platform. Figure 4-4 illustrates the STIB 

bus network. By considering vehicle positions within given time intervals, we access traffic information 

such as average flow and speed per road segment. In line with the approach for the previous dataset, 

the average speed data selects as the target feature. This dataset covers 1146 road segments and 

spans the morning peak-hour period from September to November 2023, with data aggregated at 20-

minute intervals.  

 

Figure 4-4 - The Brussels Bus Network operated by STIB 

 
xiii https://github.com/Davidham3/ASTGCN-2019-mxnet/tree/master/data/PEMS04  
xiv https://mobilitytwin.brussels 

https://github.com/Davidham3/ASTGCN-2019-mxnet/tree/master/data/PEMS04
https://mobilitytwin.brussels/
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Experimental Setup 

The missing values of node v at time interval t initials using all observed values of v at t from other 

days in the training set. To extract temporal patterns, the size of preceding time intervals for each 

dataset is set to cover one hour, 7 days, and 4 weeks before the current time. For training our model, 

we utilize the Adam optimizer with an initial learning rate of 0.001 and batch size of 32. 

For each convolution layer, several approaches are considered, each requiring specific parameters: 

• Dilated temporal convolution: This method requires a dilation factor d, which represents the 

size of gaps between filter elements. Initially set to 1, the dilation factor exponentially 

increases by a rate of d2 as the layers deepen to extract daily and hourly temporal 

dependencies. For weekly dependencies, d remains constant at 1. 

• Spectral convolution: In spectral graph analysis, graph's properties are often inferred from its 

corresponding Laplacian matrix and eigenvalues. However, directly performing eigenvalue 

decomposition on the Laplacian matrix can be computationally expensive. To address this, 

Chebyshev polynomials are adopted as an efficient approximation method. Specifically, 

Chebyshev polynomial with 3 terms employ for both datasets. 

• Attention mechanism: Two different attention mechanisms for temporal and spatial layers 

have been designed and applied to both datasets. The goal of these mechanisms is to select 

information that is relatively critical to the current task from all neighbours. 

 
Evaluation of algorithm accuracy 

To assess the accuracy of convolutional approaches, the baseline network with different selections of 

approaches is applied to the datasets. The mean square error (MSE) between the estimator and the 

ground truth is then used as the loss function and minimized through backpropagation. 

Table 12 presents the MSE of applying GCNN with different selection of convolutional method over 

PEMSD4 and BBN respectively. In the table, the columns represent the GCN methods, while the rows 

depict the TCN methods used for temporal and spatial convolutional layers, respectively. For temporal 

convolution in TCN layer, dilated convolution and attention convolution are considered. For spatial 

consolation in the GCN layer, spatial-based and spectral-based approaches, both with and without 

attention mechanisms, have been examined. 
 

 Spectral 
GCN 

Spectral 
Attention GCN 

Spatial 
GCN 

Spatial 
Attention GCN 

Brussels Bus-
line 

Dilated TCN 33.03 30.82 28.18 26.14 

Attention TCN 31.73 27.32 26.56 23.47   

PeMSD4 Dilated TCN 29.14 24.30 24.04 21.99 

Attention TCN 25.29 23.21 22.89 20.11 

Table 12 – Performance (MSE) of GCNN with various temporal and spatial configurations 

The table illustrates that spatial-based methods outperform spectral-based convolution in capturing 

spatial features. Notably, incorporating attention mechanisms enhances the performance of both 

spatial-based and spectral-based methods, indicating the effectiveness of multi-level attention 

mechanisms in capturing dynamic changes in traffic data. 
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Similarly, attention mechanisms enhance performance within the temporal layer. While attention 

mechanisms positively impact convolutional layers, their effect is more pronounced in spatial layers. 

This is evident when comparing the error rates between scenarios where attention is applied just to 

the GCN layer and where it is applied only to the temporal layers. This may stem from the baseline 

design, which inherently incorporates three temporal attentions on hourly, daily, and weekly bases. 

Overall, the trends observed in both datasets align closely. However, the PeMSD4 dataset yields 

superior results compared to the Brussels Bus-line dataset, likely due to differences in networks’ 

complexity. As the traffic network's scale expands, incorporating more time series into the model, 

results in higher error rates. 

Figure 4-5 depicts the outcomes of applying GCNN with "Spatial Attention GCN" and "Attention TCN" 

layers to the Brussels Bus-line network in a snapshot. To facilitate readability, only 1% of road segments 

are labelled with average speed values in time t. The observed data is represented by green labels, 

while the estimated values are denoted by blue. 

 

 

Figure 4-5 - GCNN results on Brussels Bus-line network. The observed data is indicated by green labels, while the 
estimated values are depicted with blue. 

More precisely, Table 13 summarizes the KPIs relevant to this emerald:  
 

Table 13 - KPIs for Sensor Data Fusion 
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Description  Baseline 
Value  

Target 
Value  

Method of 
Measurement  

Achieved 
Value  

Estimation 
accuracy  

SotA38,39,40 Reducing 

estimation 

error   

Accuracy metrics (e.g. 
MSE) 

BRU 28.40 

PeMS 23.87  

 

4.1.4 Next Steps 
In the next step, we will prioritize exploring datasets from UC #2 Multi-modal integrated traffic 

management situated in Rotterdam, as it aligns with the overarching goals of the EMERALDS project. 

By leveraging the UC #2 dataset, we aim to deepen our understanding of transportation dynamics and 

develop robust methodologies capable of handling varying rates of missing data. We seek to ensure 

that our models are adaptable across a spectrum of scenarios, encompassing missing patterns such as 

random or clustered distributions in both time and space. 

Moving forward, our exploration will extend to encompass a diverse range of deep learning and 

statistical models tailored to analyse traffic data. Furthermore, we plan to explore the integration of 

external factors, such as weather conditions, into transportation network models to enhance its real-

world applicability. 

 

4.2 Mobility/Trajectory Data Compression 

4.2.1 Brief Survey of the State-of-the-Art 
Democratization of mobile devices, such as smartphones and wearable technologies, and the spread 

of Global Positioning System (GPS) equipped vehicles or Automatic Identification System (AIS) 

equipped vessels are some examples of reasons for this data explosion42. While the spatio-temporal 

data offers many exploitation opportunities (both commercial and research), its increase also causes 

some new challenges. One of these challenges are to process this large amount of data. Douglas and 

Peucker have shown that 100Mb would be necessary to store the localization of a set of 400 moving 

objects, with a frequency of 10 Hz (typical frequency of GPS devices)43. Bruxelles Mobilitexv the public 

administration overseeing mobility-related infrastructure in the Brussels Capital Region, collects 

positional data specifically for heavy-goods vehicles in Brussels. This information is primarily utilized 

to calculate toll charges, represents, on average, 19 Gigabytes of data accumulated daily. 

 

To overcome this difficulty, different compression or simplification algorithms have been proposed, 

with one of the most well-known simplification algorithms being the Douglas Peucker (DP) algorithm, 

an algorithm that was initially aimed at line simplification (without temporal feature). Later, Meratnia 

and de By44 introduced some variations of the DP algorithm (including the Top Down Time Ratio 

algorithm (TD-TR)), taking into account the temporal feature of the locations. Since then, multiple 

algorithms such as Squish (and its variations)45, STTrace46 or Dead Reckoning (DR)47 have been 

proposed. The main contribution of this emerald is to extend the Squish, STTrace and DR algorithms 

so that they could be used in contexts where bandwidth limitations apply. 

 
xv http://www.bruxellesmobilite.irisnet.be/ 
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4.2.2 Overview and Description 
Compression under bandwidth constraints motivation 

Existing techniques for simplification of trajectories have already largely been studied. These 

techniques are generally aimed at simplifying the trajectories to facilitate their exploitation by machine 

learning techniques. This is usually performed by trying to minimize the number of points (position of 

an object at a given timestamp) kept without deteriorating the trajectory significantly. In this emerald, 

a different approach is used. Instead of trying to minimize the number of points kept, the algorithms 

introduced in this work will consider some bandwidth constraints. These constraints are defined as 

follows.  

For each period, bandwidth constrained algorithm must respect a predefined limit on the quantity of 

points that can be kept. Therefore, algorithms presented in this work are aimed at minimizing the 

deterioration of the trajectories during compression without exceeding this limit on the quantity of 

points kept, and this, for all time periods. The size of these periods as well as the number of points that 

can be kept are parameters of the compression algorithms. While bandwidth limitations are 

mentioned for different contexts (vessels tracking, animal tracking), the problem of simplifying 

trajectories under bandwidth limitation has, not yet attracted the attention of the research 

community. Existing algorithms (such as the already mentioned Squish and STTrace) provide some 

solutions to compress trajectories under memory limitations (the final number of points is a parameter 

of the methods) but these are not adapted for bandwidth constrained contexts. 

 

Bandwidth constrained variants of existing trajectory compression algorithms 

This task consists in the extensions of Squish, STTrace and DR under bandwidth constrains. These 

algorithms are based on the implementation of a sliding windows as well as other modifications of the 

existing algorithms. 

The existing algorithms will be adapted to be iteratively applied on sequential time windows. During 

each time window, a defined maximal number of points of the uncompressed trajectories will be kept 

in the compressed trajectories. The bandwidth limitations will therefore be enforced by selecting 

appropriate values for the size of the time windows as well as the number of points kept in each of 

them. Indeed, after the processing of each individual time window, there is the guarantee that the 

points belonging to this time window which have not been simplified yet cannot be further simplified. 

These points can therefore be transferred from the edge device directly after the end of the concerned 

time window. It should therefore be noted that a delay of the size of the time window is introduced 

between the actual time associated to a position generated by a vessel and the transmission of this 

position to the coastal station. Therefore, in situations where time delays are a sensitive issue, it is 

recommended to use shorter time windows. 

Four extensions of Squish, STTrace and DR under bandwidth constrains have been developed, 

respectively BWC-Squish, BWC-STTrace, BWC-STTrace-Imp and BWC-DR. These extensions are also 

referred to as BandWidth Constrained (BWC) methods. All these variations work by assigning a priority 

to each processed point in each time window. While the number of processed points do not exceed 

the limit, every point is kept in a temporary priority queue (sorted according to the points priorities). 

Once the limit is reached, for each additional point processed, the priority of this point will be 

computed. If this priority is higher than the lowest priority of a point in the priority queue of 

temporarily kept points, then the point with the lowest priority will be dropped from the queue while 

the currently processed point will be added to the queue. 

The main difference between BWC-Squish, BWC-STTrace, BWC-STTrace-Imp and BWC-DRlies in the 

method employed to compute the priorities of the points which is inspired from the original Squish, 

STTrace and DR methods 
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4.2.3 Preliminary Evaluation 
 

This section analyses the performances of the BWC algorithms as well as their classical equivalents and 

the classical TD-TR algorithm. 

The comparison is performed on two datasets of different spatial and temporal ranges. These datasets 

mark the initial phase of our methodological testing. As we advance, our forthcoming objective is to 

extend these evaluations to urban mobility datasets. 

 

AIS: The main dataset motivating compression of trajectories under bandwidth constraints concerns 

the extension of AIS signal coverage for maritime monitoring. Since 2004, all cargo vessels over 500 GT 

and all passenger vessels are required to be equipped with AIS transceivers. These transceivers allow 

automatic exchange of information in between ships and coastal stations by broadcasting positional 

messages using the Self-Organizing Time Division Multiple Access (SOTDMA) protocol. Initiating the 

development with unconstrained data, we gain a broader understanding of movement patterns and 

behaviors, which can then be refined and specified for constrained movements, as those in urban 

streets. This approach enables us to capture the complexities of both unconstrained and network-

constrained movements, allowing for a more focused and specific analysis when dealing with urban 

mobility challenges. 

Our first dataset in this task consists of 24h of AIS data in the region between the cities of Copenhagen 

and Malmo on first January 202. It is composed of 103 trips totalling 96819 points. The trips can be 

seen in Figure 4-6. 

 

Figure 4-6 - AIS trips around Copenhagen and Malmo 

Birds: The second dataset consists of three months of GPS of black-backed gulls between the 9th of 

July and the 9th of October 202. It is composed of 45 trips totalling 165244 points. While most of these 

trips originate from Belgium and North of France, some are spreading as far as the north of Spain. Few 

other trips are also entirely taking place in Spain and one in Algeria. These trips can be seen in Figure 

4-7. 
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Figure 4-7 - Birds trips 

Evaluation of algorithm accuracy 

To assess the accuracy of the algorithms, each algorithm is applied to simplify all initial trajectories in 

both datasets. Once these simplifications are computed, the distance between synchronized 

projection on the initial and simplified trajectories are computed at a regular time interval. 

It is important to note that this accuracy evaluation is not aimed at stating that some compression 

algorithms are better than others. Indeed, when selecting a compression algorithm, different factors 

must be considered. While accuracy is generally an important factor, other factors such as time and 

space complexity should be considered. Furthermore, the BWC algorithms are designed to be able to 

be used in situations with additional bandwidth constraints. It is not surprising that the fulfilment of 

these additional constraints may lead to a deterioration of the algorithm's accuracy. 

While the different algorithms require different parameters, these were determined to produce a 

similar total number of points in the simplified trajectories produced by the different algorithms. For 

each dataset, the algorithms will be assessed with parameters such that both around 10% and around 

30% of the original points are kept in the simplified trajectories. The exact value of the parameters for 

the classical algorithms are listed hereunder. 

• Squish Squish requires the maximal number or points kept for each individual trajectory. This 

maximal number of points has been set to 10% and 30% of the initial points of each trajectory. 

• STTrace STTrace requires the maximal number or points kept for all trajectories. This maximal 

number of points has been set to 10% and 30% of all initial points. 

• DR DR requires a distance threshold. This threshold has been set to 425 and 115 meters for 

the AIS dataset and has been set to 2500 and 950 meters for the Birds dataset. 
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• TD-TR The TD-TR time algorithm requires a tolerance threshold. This threshold has been set 

to 0.15 and 0.051 in the AIS dataset as well as 16.7 and 1.5 for the Birds dataset. 

For each of the classical algorithms, its accuracy (average distance in meters between the simplified 

and original trajectories) can be seen in Table 14. As can be seen, TD-TR is outperforming the other 

algorithms. This is because Squish, STTrace and DR are designed to be less computationally expensive. 

 AIS Birds 

10% 30% 10% 30% 

SQUISH 20.87 4.83 585.34 44.95 

STTrace 58.66 9.78 1823.10 431.65 

DR 42.68 13.12 697.14 46.48 

TD-TR 2.95 1.08 274.78 26.87 

Table 14 - Accuracy of the classical algorithms on the different datasets 

The performances of the BWC algorithms on the AIS dataset can be found in Table 15 and Table 16. 
 

Window size 

(min) 

120 60 15 5 0.5 

Points per 
window 

800 400 100 33 4 

BWC-SQUISH 10.97 10.65 7.35 7.90 130.59 

BWC-STTrace 17.23 12.49 6.25 5.09 81.54 

BWC-STTrace-IMP 1.49 1.53 1.72 4.62 108.39 

BWC-TR 13.77 15.82 14.91 13.07 11.16 
 

Table 15 - Accuracy of the different BWC algorithms when of the AIS dataset for different sizes of time windows 

Window size (min) 120 60 15 5 0.5 

Points per window 2400 1200 300 100 12 

BWC-SQUISH 1.82 1.67 1.51 1.32 21.57 

BWC-STTrace 8.87 4.42 2.12 2.34 7.13 

BWC-STTrace-IMP 0.55 0.55 0.56 0.57 24.55 

BWC-TR 19.60 19.48 12.15 10.36 9.60 

Table 16 - Accuracy of the different BWC algorithms when of the AIS dataset for different sizes of time windows 

Furthermore, we can notice from these tables that for large enough windows (between 15 and 120 

minutes), BWC-STTrace-Imp is outperforming the other BWC and classical algorithms. This is since the 

priority of the points is evaluated using the sample and the original trajectory. It can also be noticed 
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that for small time windows, the performances of BWC-Squish, BWC-STTrace and BWC-STTrace-Imp 

deteriorate. The deterioration is even drastic for 30 seconds time windows when keeping 10% of the 

points. This is since these three algorithms compute the priority of a point according to both the 

previous and the next point in the sample. Therefore, for small time windows, there will generally be 

less than 2 points per trajectory in the sample, making the removal of a point arbitrary and therefore 

leading to inaccurate simplifications. On the other hand, the performance of BWC-DR is more constant 

and even improves for smaller time windows. This is because BWC-DR only makes use of the previous 

one (or two) points to compute the priority of the currently processed point. Therefore, even with 

small time windows, it will be able to compute the priorities correctly using points kept during the 

previous time windows. 

As expected, it can also be noted that the average error of the improved version of BWC-STTrace-Imp 

is indeed smaller than the one of BWC-STTrace. Surprisingly however, even BWC-STTrace outperforms 

the classical STTrace algorithm. One hypothesis is that this is due to STTrace both assessing the priority 

of points using current simplified trajectory only and simultaneously comparing different trajectories 

of different natures. Therefore, trajectories with different sampling frequencies could be compressed 

simultaneously. Trajectories with lower frequencies might fill up the priority queue as the priority of a 

point which is far apart in time from its neighbours in the sample will intuitively be higher than the one 

of a point close to its neighbours. Restarting with an empty priority queue at frequent time interval 

might help mitigate this phenomenon. Squish on the other hand, does not seem to suffer from this 

drawback. This might be due to their heuristic which counterbalances this effect by adding the 

priorities of points deleted from the sample. 

The performances of the BWC algorithms on the Birds dataset can be found in Table 17 and Table 18. 
 

Window size (days) 31 7 1 1/4 1/24 

Points per window 5580 1260 180 45 8 

BWC-SQUISH 777 939 884 1061 3615 

BWC-STTrace 2780 2651 1144 1277 3096 

BWC-STTrace-IMP 273 382 497 749 3437 

BWC-TR 1997 1752 1677 1421 1314 

Table 17 - Accuracy of the different BWC algorithms when simplifying until 10% of the Birds dataset for different sizes of 
time windows 

Window size (days) 31 7 1 1/4 1/24 

Points per window 16740 3780 540 135 22 

BWC-SQUISH 77 104 108 126 4882 

BWC-STTrace 1245 707 245 247 6828 

BWC-STTrace-IMP 32 50 60 77 4706 

BWC-TR 570 605 623 465 554 

Table 18 - Accuracy of the different BWC algorithms when simplifying until 30% of the Birds dataset for different sizes of 
time windows. 
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Similar observations can be seen for the Birds dataset as for the AIS dataset. Surprisingly, increasing 

the bandwidth from 8 to 22 points for the 1-hour time window led to worse results for BWC-Squish, 

BWC-STTrace and BWC-STTrace-Imp. This confirms the arbitrary simplification performed by these 

algorithms if there are not enough points for each trip in each time window. 

 

Points distribution 

In this section, the time repartition of points conserved with classical compression algorithms is 

illustrated. This is done by compressing the AIS dataset to 10% of its original size and by analysing the 

time repartition of the points kept for each period of 15 minutes. It is shown that these classical 

algorithms do not produce a homogeneous time-partitioned results. In this configuration, 100 points 

should be kept in each period of 15 minutes to satisfy the bandwidth constrain. The time repartition 

of simplified points for the TD-TRis illustrated in Figure 4-8. Similar figures can be obtained for Squish, 

STTrace and DRbut will not be displayed here. The figure consists of a histogram representing the 

number of points remaining in all simplified trajectories during each period. 

 

 

Figure 4-8 - Histogram of the quantity of points in different time-windows in samples obtained with TD-TR 

The limit of 100 points is indicated with the blue dotted line. Figure 4-8 confirms the need of using 

different compression techniques in contexts with bandwidth constrains. 

 

More precisely, Table 19 summarizes the KPIs relevant to this emerald. It's important to note that in 
this table, we have focused on the results obtained with the smallest window size and the highest 
compression ratio. The evaluation of the data quality is based on the error between the original and 
compressed trajectories, determined by the average distance in meters between the simplified and 
original trajectories. 
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Table 19 - KPIs for Mobility/Trajectory Data Compression 

Description  Baseline 
Value  

Target 
Value  

Method of 
Measurement  

Achieved 
Value  

Data quality SotA48, 49 Reducing the 
error of the 
compressed 
trajectory, 

tend towards 
zero 

Distance between the 
original and the 

simplified trajectories 

~1300 for 
Birds 

and ~11 for 
AIS.  

Data size  SotA50, 51 

 

90% 
Compression 

for urban 
data 

Compression rate based 
on window 

points/window time. 

90% 
compression 

for non-urban 
data.  

 

4.2.4 Next Steps 
Our forthcoming step involves the application of the aforesaid compression algorithms to urban 

datasets. Following this application, several further improvements could still be considered to the 

algorithms. First, different algorithms might also be considered for such an extension. Furthermore, 

the presented algorithms could be further optimized. For instance, transition between time windows 

for the BWC-Squish as well as BWC-STTrace and BWC-STTrace-Imp could be improved. The DR 

algorithm could also be modified in a different manner to satisfy bandwidth constraints instead of 

using a time-windowed approach with a priority queue. For instance, the distance threshold could be 

modified in real time by the algorithm according to the number of points in the sample at a given time. 

Moreover, this emerald will be integrated with MobilityDB, a geospatial trajectory database system 

developed by ULB. Furthermore, we plan to extend this task by implementing data compression 

techniques during data storing process in database. This will involve several steps such as 

schematization and optimization of data types to streamline the storage process. 
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5 Conclusions and next steps 

In this deliverable, we presented the current status of the developed mobility data processing tools 
for the CC, known as “emeralds” accompanied by their source/object codes collected under the 
EMERALDS github organization repository. In summary, the following emeralds have been presented:  
 

  emeralds presented in D3.1  Project 
Target   

 Task  # of 
emeralds  

emerald name  # of 
emeralds  

Privacy-aware In situ 
Data Harvesting 

2 • Privacy-aware data Ingestion 

• Extreme-Scale stream processing 
orchestrator 

2  

Extreme-scale 
Cloud/Fog Data 
Processing 

3 • Extreme-Scale Map Matching 

• Weather Enrichment 

• Spatio-Temporal Querying  

4  

Mobility Data Fusion 
and Management 

2  • Sensor Data Fusion and Mobility/trajectory 
Data Management 

• Mobility/Trajectory Data Compression 

2  

Table 20 - Summary of emeralds presented in D3.1 

In line with the expected results and means of verification specified in the GA, the next steps are as 
follows:  
In the 1st integration cycle, we will: 

• Implement a containerization strategy using technologies like Docker and Kubernetes. Each 
service or component of the EMERALDS toolset will be encapsulated into containers, ensuring 
portability, scalability, and efficient deployment across different environments. 

• Set up communication channels, defining APIs, and orchestrating workflows for data 
processing and analysis, capitalizing on the advanced functionalities of D3.1 components such 
as the extreme-scale data stream processing orchestrator (Section 2.2). 

In the 1st assessment cycle, we will:  
• Assess the KPIs of the developed emeralds along the compute (edge/fog/cloud) continuum, 

focusing on performance and quality through the WP5 Use Cases. Validate the attained 
improvement in UC data workflows and verify the technological maturity of the services. 

In the 2nd implementation cycle, we will:  
• Implement the improvements outlined in the previous sections.  
• Implement the new emerald (T3.2) that has not been included in the 1st implementation 

cycle.   
In the 2nd integration cycle, we will:  

• Integrate the WP3 emeralds internally (utilizing and demonstrating the orchestrator as much 
as possible), as well as across WPs (particularly with WP4’s analytics and learning emeralds in 
order to match WP5’s business requirements).  

In the 2nd assessment cycle, we will:  
• Assess the final KPIs of the developed emeralds along the compute (edge/fog/cloud) 

continuum, focusing on performance and quality. 
• Assess the final status of integration of WP3’s processing and WP4’s analytics modules into 

the emeralds ecosystem.  
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Annex 

Annex 1: README Template 

# WPx Emerald: [Task] - [Service Name] 
 
## Description 
This repository contains the first version of the service [Service Name], developed 
as part of [Task] of WPx within EMERALDS project. [Service Name] is a service for 
[brief description, including info about input/output]. This README provides 
essential information for deploying, testing, and [+++]. 
 
## Table of Contents 
[Include a table of contents in order to allow other people to quickly navigate 
especially long or detailed READMEs.] 
 
## Requirements 
requirements.txt 
 
## Sample data input/output structures 
[Describe the structure of sample input and output data for the service.] 
 
## Input/Output interfaces & interactions 
[Describe the input and output interfaces and interactions; ensure compliance with 
the EMERALDS Ref.Arch.] 
 
## Deployment 
[Along with the source code, include in this repository a Dockerfile containing the 
requirements to build the docker image and a docker-compose.yaml file defining the 
required configuration to execute each component in terms of ports, networks, and 
volumes.] 
 
## Usage - Executing program 
[Provide instructions on how to use the project or run the code. Include examples 
and code snippets if applicable. Include references to sample data if applicable.] 
 
## Authors 
[List the authors or contributors involved in the project.] 
 
## +++ 
Feel free to customize this template further to suit your specific service 
requirements. 
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Annex 2: Ethics Checklist and Questionnaire 

 
 
Ethics Checklist and Questionnaire 

 

A. PERSONAL DATA  

1. Has personal data going to be processed for the completion of this deliverable? 

NO 

• If “yes”, do they refer only to individuals connected to project partners οr to third 
parties as well?  

2. Are “special categories of personal data” going to be processed for this deliverable? 
(whereby these include personal data revealing racial or ethnic origin, political opinions, 
religious or philosophical beliefs, and trade union membership, as well as, genetic data, 
biometric data, data concerning health or data concerning a natural person's sex life or 
sexual orientation)  

 
NO   

 
3. Has the consent of the individuals concerned been acquired prior to the processing of their 

personal data?  
 

N/A 
 

• If “yes”, is it based on the Project’s Informed Consent Form, either on the provided 
Template or on other attached herein Template?  

• If “no” is it based on a different legal basis?  

4. In the event of processing of personal data, is the processing:  
 

N/A 
 
• obviously “Fair and lawful”, meaning executed in a fair manner and following consent 

of the individuals concerned or based on another - acknowledged as adequate and 
proportionate as per above - legal basis?  

• Performed for a specific (project-related) cause only?  

• Executed on the basis of the principle of proportionality and data minimisation 
(meaning that only data that are necessary for the processing purposes are being 
processed and such deductive reasoning is documented)?  

• Based on high-quality, updated and precise personal data?  

5. Are there any provisions for a storage limitation period of the personal data-in case of 
storage- after which they must be erased? 

 
 N/A 
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6. Are all other lawful requirements for the processing of the data (for example, notification 

of the competent Data Protection Authority(s) or undergoing a DPIA procedure and 
consulting with the competent DPA, if and where applicable) adhered to and on what 
legislative basis are such notifications justified as necessary or dismissed as unnecessary?  

 
 N/A 
 
7. Have individuals been made aware of their rights on the processing of the personal data as 

per the GDPR and the relevant and executive national legislation (particularly the rights to 
access, rectify and delete the personal data and their right to lodge a complaint with the 
relevant Competent Authority)  and if yes, by what demonstrable means (e.g. the informed 
consent form as per above or as per other Templates, attached herein?) 

 
 N/A 
 
8. Even if anonymized or pseudonymized or aggregated data are referred to, does the dataset 

contain location data that could potentially (even via the combined use of other datasets) 
be traced back to individuals? If yes, what specific measures are taken to ensure this data 
(i) is anonymized or pseudonymized and (ii) cannot be used to track individuals without 
their consent? If no, what is the scientific methodology used to collect and gather said 
data? 

 
 N/A 
 
9. In the context of risk assessment, prediction and forecasting, as foreseen in the scope of the 

EMERALDS project, during traffic, population movement monitoring or weather events, is 
there any risk that personal data could be inadvertently revealed in the event of an 
emergency or unusual event, because of the dataset usage, either on its own or combined 
with other openly available datasets, triggering identification or unwanted disclosure of 
PII? What measures are in place to protect - still identifiable if the dataset allows such 
extraction - personal data in these circumstances?  

 
 NO 
 
10. For the use case of Trip Characteristics Inference as per the EMERALDS project scope, are 

there specific measures to ensure that inferences made about trip characteristics cannot 
be linked back to specific individuals or reveal sensitive information about their habits or 
routines i.e. by identifying specific individuals’ absence or presence routines whether in 
the home or in a professional environment or in other premises?  

 
 N/A 
 
11. Are there any potentially personal identifiable information (PII) in the datasets, disclosable 

by combination with other datasets, either open data or proprietary (e.g., E-tickets 
validation data)? If yes, how is PII adequately anonymized or pseudonymized or how other 
datasets that by combination may result in unwanted or illegal disclosures or identification 
before any processing takes place? 

 
 NO 

B. DATA SECURITY  
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1. Have proportionate security measures been undertaken for protection of the data, taking 
into account project requirements and the nature of the data?  
• If yes, brief description of such measures (including physical-world 

measures, if any)  

• If yes, is there a data breach notification policy in place within your 
organization (including an Incident Response Plan to such a breach)?  

N/A 
 

2. Given the large-scale nature of some datasets, are there specific measures in 
place to protect included personal data at scale at the data source or in the 
possession of data processors? 
 
N/A 
 
3. Regardless of personal data, in the case of Multi-modal integrated traffic 
management as defined under the EMERALDS scope, are there specific 
measures in place to ensure the availability and integrity of data spanning 
multiple modes of transport from being disclosed in other manners than the 
ones intended and covered under an open data scheme? 
 
N/A 
 
4. Are there specific measures in place to secure sensitive infrastructure data, if 
present? 
 
N/A 
 

 

C. DATA TRANSFERS  

1. Are personal data transfers beyond project partners going to take place for this 
deliverable?  
 
NO 

• If “yes”, do these include transfers to third (non-EU) countries and if what 
policies apply?  

2. Are personal data transfers to public authorities going to take place for this deliverable?  
 
NO 
 
3. Do any state authorities have direct or indirect access to personal data processed for this 

deliverable?  
 
NO 
 
3. Taking into account that the Project Coordinator is the “controller” of the processing and 

that all other project partners involved in this deliverable are “processors” within the same 
contexts, are there any other personal data processing roles further attributed to any third 
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parties for this deliverable? And if any, are they conformed to the GDPR provisions?  
 
NO 
 
4. Given the geographical diversity of the datasets, are there measures in place to ensure 

compliance with specific personal data protection regulations in different jurisdictions i.e. 
at the place of the data source establishment as well as at the place of the establishment 
of a Data processor? 

 
N/A 
 
5. Are there additional protocols for data transfers involving sensitive infrastructure data, if 

present? 
 
NO 

D. ETHICS AND RELATED ISSUES  

1. Are personal data of children going to be processed for this deliverable (ie. “underage” 
signified e-tickets)?  
 
NO 
 
2. Is profiling of identifiable individuals in any way enabled or facilitated for this deliverable?  
 
NO 
 
3. Are automated decisions for identifiable individuals made or enabled on the basis this 
deliverable?  
 
NO 
 
4. Have partners for this deliverable taken into consideration system architectures of privacy 

by design and/or privacy by default, as appropriate?  
 
YES 
 
5. Have partners for this deliverable taken into consideration gender equality policies or is 
there an explicit reasoning that dismisses such risk as unsubstantiated or such need as 
irrelevant as per the methodology of work and production of the deliverable?  
 
YES 
 
6. Have partners for this deliverable taken into consideration means of protecting the 
confidentiality of the dataset if it is not signified as open data? 
 
N/A 
 
7. Are there additional considerations around the collection and processing of location data 
and data that could potentially be used to infer patterns about individuals’ movements? 
 
NO 
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8. Have partners identified any additional ethical issues related to the processing of sensitive 
infrastructure data? 
 
NO 
 
9. Are shared economy (ie. “Uber” transfer services or “Lime” Scooters or other solution) or 
other shared mobility infrastructures used by the data sources? If yes, are there measures in 
place to ensure that the processing of shared mobility data respects privacy rights? 
 
NO 
 
10. In the context of Traffic Flow Data Analytics, are there specific considerations to ensure 
that the analysis of traffic flow data does not infringe on privacy rights or reveal sensitive 
information about individuals’ movements or routines? 
 
N/A 
 
11. Is the Project taking into account the need for an all people-inclusive policy in the future  
within its overall goals and not only the ‘’tech-savvy’’ (i.e. elderly people not familiar with some 
tech devices, poor people) and does it entail possible proposals for that? 
 
N/A 
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