

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

Project Title Extreme-scale Urban Mobility Data Analytics as a Service

Project Acronym EMERALDS

Grant Agreement No. 101093051

Start Date of Project 2023-01-01

Duration of Project 36 months

Project Website https://emeralds-horizon.eu/

D2.2 – Containerized EMERALDS Toolset v1

Work Package WP 2, Reference Architecture and Toolset Integration

Lead Author (Org) George Tsakiris (KONNECTA, KNT)

Contributing Author(s) (Org)
Antonis Mygiakis (KONNECTA, KNT), Foivos Galatoulas
(INLECOM), Argyrios Kyrgiazos (CARTO), Ignacio Elicegui (ATOS)

Due Date 30.06.2024

Date 28.06.2024

Version V1.0

Dissemination Level

X PU: Public

 SEN: Sensitive, only for members of the consortium (including the Commission)

Versioning and contribution history

Version Date Author Notes &/or Reason

0.1 06/02/2024 George Tsakiris & Antonis Mygiakis
(KONNECTA, KNT)

TOC and V0.1

0.2 20/03/2024 George Tsakiris (KONNECTA, KNT) Chapter 3 – CI/CD

0.3 19/04/2024 George Tsakiris (KONNECTA, KNT) Chapter 2 - Containerization

0.4 21/05/2024 George Tsakiris & Antonis Mygiakis
(KONNECTA, KNT), Foivos Galatoulas
(INLECOM), Argyrios Kyrgiazos
(CARTO), Ignacio Elicegui (ATOS)

Chapter 4, 5 & 6

0.5 18/06/2024 George Tsakiris (KONNECTA, KNT) Address Review Comments

Ref. Ares(2024)5000875 - 10/07/2024

https://emeralds-horizon.eu/

2 | Page

Quality Control (includes peer & quality reviewing)
Version Date Name (Organisation) Role & Scope

0.4 02/06/2024
Argyris Kyriazos (CARTO), Georgios
Theodoropoulos (UPRC), Foivos Galatoulas
(INLE)

First Round Internal Review
Comments

0.5 12/06/2024
Argyris Kyriazos (CARTO), Georgios
Theodoropoulos (UPRC), Foivos Galatoulas
(INLE)

Second Round Internal
Review Comments

0.6 20/06/2024 Yannis Theodoridis (UPRC)
Scientific and Technical
Manager Review

1.0 29/06/2024 Foivos Galatoulas (INLE) Final review by Coordinator

This project has received funding from the European Union’s Horizon Europe research and

innovation programme under Grant Agreement No 101093051

Disclaimer

EMERALDS - This project has received funding from the Horizon Europe R&I programme under the GA
No. 101093051. The information in this document reflects only the author’s views and the European
Community is not liable for any use that may be made of the information contained therein. The
information in this document is provided “as is” without guarantee or warranty of any kind, express
or implied, including but not limited to the fitness of the information for a particular purpose. The user
thereof uses the information at his/ her sole risk and liability.

Copyright message

©EMERALDS Consortium. This deliverable contains original unpublished work except where clearly
indicated otherwise. Acknowledgement of previously published material and of the work of others
has been made through appropriate citation, quotation, or both. Reproduction is authorized provided
the source is acknowledged.

3 | Page

Table of Contents

1 Introduction ... 9
1.1 Purpose and scope of the document .. 9
1.2 Relation to Work Packages, Deliverables and Activities ... 9
1.3 Contribution to WP2 and Project Objectives .. 10
1.4 Structure of the document ... 11

2 EMERALDS Toolset ... 12
2.1 Integration Plan... 14
2.1.1 Service Architecture and Communication .. 15

3 Containerization of EMERALDS Services ... 17
3.1 Container engines ... 18
3.2 Development Process ... 19
3.2.1 Dockerfile walkthrough ... 19

4 Continuous Integration/Continuous Deployment ... 21
4.1.1 State of the Art in CI/CD .. 21
4.1.2 CI/CD Platforms ... 22
4.1.3 GitHub Actions .. 23
4.2 Continuous Integration ... 23
4.2.1 GitHub Actions Management. ... 26
4.2.2 Container Registry ... 29
4.3 Continuous Deployment ... 31
4.3.1 CD Platform ... 31
4.3.2 Platform Deployment and Configuration .. 36
4.3.3 Deployment of Emerald Services on the CD Platform .. 39

5 Integration with Analytics as a Service Platforms ... 41
5.1 ATOS Integration ... 41
5.2 CARTO Integration .. 42

6 Conclusions and next steps. .. 44

List of Figures
FIGURE 1-1 THE INTERTWINED DATAOPS, MLOPS AND DEVOPS EMERALDS METHODOLOGY ... 10
FIGURE 2-1 THE EMERALDS REFERENCE ARCHITECTURE .. 12
FIGURE 2-2-EMERALD SERVICE INTEGRATION ARCHITECTURE... 15
FIGURE 3-1 AN ECOSYSTEM FOR MANAGING DATA PIPELINES ON THE COMPUTING CONTINUUM I. ... 17
FIGURE 3-2 - DOCKERFILE WALKTHROUGH EXAMPLE .. 20
FIGURE 4-1 - CI/CD PROCESS .. 21
FIGURE 4-2 - CI PATH .. 24
FIGURE 4-3 - GITHUB ACTIONS MANAGEMENT PORTAL ... 26
FIGURE 4-4 - GITHUB SBOM PRESENTED ... 27
FIGURE 4-5 - DOCKER SCOUT VULNERABILITIES ANALYSIS. .. 28
FIGURE 4-6 - GITHUB ACTIONS LOGGING .. 29
FIGURE 4-7 - GITHUB PACKAGES ... 30
FIGURE 4-8 - MANAGE ACCESS LEVEL .. 31
FIGURE 4-9 - KUBEEDGE INSTALLATION SCHEMA .. 35
FIGURE 4-10 - CD PLATFORM RESOURCE DIAGRAM.. 37
FIGURE 4-11 - EMERALDS HOSTING SERVICE INSTALLATION FLOW ... 38
FIGURE 4-12 - ARGO CD DEPLOYMENT FLOW .. 40

4 | Page

List of Tables
TABLE 1-1 - TERMINOLOGY ... 5
TABLE 1-2 - MATRIX OF ALIGNMENT ... 7
TABLE 2-1 - EMERALD TOOLSET REPOSITORIES FOR CONTAINERIZATION AND CI/CD ... 12
TABLE 2-2 - EMERALDS-HOSTING-SERVICES ... 14
TABLE 4-1 - GITHUB PACKAGE MANAGER PERMISSION SCHEMA .. 30
TABLE 4-2 - KUBERNETES VARIANTS ... 36

5 | Page

Terminology

Terminology/Acronym Description

AI Artificial Intelligence

AIaaS AI as a Service

API Application Programming Interface

CC Compute Continuum

CI/CD Continuous Integration/Continuous Delivery

CNCF Cloud Native Computing Foundation

CPU Central Processing Unit

DoA Description of Action

EC European Commission

GPU Graphics Processing Unit

IaC Infrastructure As Code

IoT Internet of Things

LXC Linux Containers

MAaaS Mobility Analytics as a Service

ML Machine Learning

NAT Network Address Translation

OCI Open Container Initiative

QA Quality Assurance

REST Representational State Transfer

RIA Research and Innovation action

SBOM Software Billing of Materials

SotA State of the Art

TRL Technology Readiness Level

UX User Experience

VPN Virtual Private Network

YAML YAML - YAML Ain't Markup Language

Table 1-1 - Terminology

6 | Page

GA Matrix of alignment

GA Components Title
(and type)

GA Component Outline Document
Chapter(s)

Justification

Deliverable

Deliverable D2.2
– Containerized
EMERALDS
Toolset v1

Early integration of the developments
from WP3 and WP4 into a re-usable and
containerized toolset to be
demonstrated in applications foreseen in
WP5 and WP6 adhering to continuous
integration and deployment software
development principles. Introducing an
efficient, interoperable and easy-to-
deploy urban MAaaS toolset, containing
methods for executing extreme data
workflows.

Chapters
2,3,4,5

Chapter 2 introduces the EMERALDS
Toolset concept, a re-usable library of
software components and the main points
of integration on existing or new data
pipelines.

Chapter 3 provides the rationale and the
implementation details regarding the
containerization of the Emeralds Services
to facilitate the creation of the Emeralds
Toolset.

Chapter 4 presents a platform solution
based on the demo environment that can
be used in production as well and acts as
the infrastructure for the MAaaS toolset.

Chapter 5 provides a description of the
integration of the EMERALDS toolset with
two commercial MAaaS platforms.

Tasks

Task 2.1
Reference
Architecture
and
Containerization
of Services (M1-
M33)

KNT will setup a Continuous
Integration/Continuous Deployment
(CI/CD) stack to support the entire
software lifecycle processes, from
testing of workflows up to the release of
the fully tested and deployed solutions in
the use cases and proof-of-concept
environments.

Chapter 4 Chapter 4 presents the CI/CD pipeline that
has been developed to accommodate the
creation of the Emeralds Toolset based on
the individual Emeralds services. It provides
details about the static code analysis,
creation of the containerized images, the
storage of these image and the deployment
of them into the testing and production
environments. All steps have been
designed to be executed with minimum
human intervention.

 A solid continuous integration plan will
be developed, that will analyse all
software resources (e.g., mechanisms,
modules, components, services)
available, and identify, specify, and
document the integration points
amongst these resources. Both inter-
module and inter-component
integration will be included.

Chapter 2,
4, 5

Chapter 2 outlines the available integration
plan for the Emerald Toolset. It details the
strategy for formulating effective data
pipelines using the Emeralds Services
provided in D3.1 and D4.1 and explains how
external services or platforms can leverage
these integration points to enhance
existing or new use cases.

Chapter 4 introduces the Emeralds Hosting
Service as a derivative of the continuous

7 | Page

development platform, capable of hosting
and exposing the Emeralds Service
functionalities to interested parties.

Chapter 5 provides an example of the
integration methods with two external
commercial platforms, ATOS and CARTO,
with the Emeralds Toolset.

 An early containerization of tools from
D3.1, D4.1 will be performed on M18
(D2.2)

Chapter 3,
4

Chapters 3 and 4 describe the methods for
containerizing the Emerald Services
developed in D3.1 and D4.1. These
chapters also explain how to automate the
entire process to deliver the Emeralds
Toolset to end users more quickly and with
higher quality.

 The containerised Toolset will be
interoperable with two analytics as a
service platforms (one operated by ATOS
and the other established commercial
cloud platform run by CARTO), whilst
users will be able to call-out selected
methods matching the needs of their
extreme data workflow task in the form
of micro-services (EMERALDS).

Chapter 5 Chapter 5 outlines the primary interaction
points between the Emeralds Services and
the ATOS and CARTO platforms. The ATOS
platform is presented as a Mobility AIaaS
(Artificial Intelligence as a Service) platform
that offers the development infrastructure
for the training and inference of the
Emeralds. Integration with CARTO involves
various methods for ingesting the output
from the Emeralds Service into CARTO’s
analytics toolbox.

Table 1-2 - Matrix of Alignment

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

8

Executive Summary

EMERALDS’s vision is to design, develop and create an urban data-oriented Mobility Analytics as a
Service (MAaaS) toolset, consisting of the proclaimed ‘emeralds’ services, compiled in a proof-of-
concept prototype, capable of exploiting the untapped potential of extreme urban mobility data. The
toolset enables stakeholders of the urban mobility ecosystem to collect and manage ubiquitous
spatio-temporal data of high-volume, high-velocity and of high-variety, analyse them both in online
and offline settings, import them to real-time responsive AI/ML algorithms and visualise results in
interactive dashboards, whilst implementing privacy preservation techniques at all data modalities
and at all levels of a mobility data analytics workflow architecture. The toolset offers advanced
capabilities in data mining (searching and processing) of large amounts and varieties of urban mobility
data.

In the process of developing the EMERALDS toolset, a thorough analysis was conducted by reviewing
the needs captured in D5.1 – Use Cases Scoping Document and the outputs of the core research
streams of WP3 and WP4, as reported in D3.1 Mobility Data Processing Services v1 and D4.1 Mobility
Data Analytics and Learning Services v1 as monitored and recorded through T1.2 Scientific & Technical
Management. The combined study of these project research streams, the technical specification as
monitored and recorded through T1.2 Scientific & Technical Management and Toolset architecture
defined in D2.1 EMERALDS Reference Architecture, state D2.2 as a cornerstone in the trajectory
towards the achievement of Milestone 2, M18: Primary Implementation Cycle and Initial Integration.
The software released aims to support the diverse range of functional and non-functional end-user
requirements that have been collected in D2.1 as well as within the frame of WP5. In addition, this
analysis served as a foundation for the design of each ‘emerald’ service adhering to the overall
reference architecture and design specifications required for the release of the first version of the
EMERALDS toolset.

This deliverable (of type OTHER) presents a comprehensive version of ‘emeralds’ services, organized
into different groups based on a taxonomy serving the project’s research goals on the fields of extreme
scale data mining, filtering, aggregation and analytics, and releases an integrated version of
developments from WP3 and WP4 into a reusable and containerized toolset. The following emeralds
typologies have been identified: 1) Privacy-aware in situ Data Harvesting, 2) Data Fusion and
Management, 3) Extreme-Scale Cloud and Fog Data Processing, 4) Extreme Scale Mobility Data
Analytics at Computer Continuum, 5) Extreme Scale Mobility Data Analytics at Compute Continuum
and 6) Security and Data Governance. The containerized services constituting the EMERALDS toolset
will be demonstrated in applications foreseen within WP5 and exploited through the planned activities
of WP6. Continuous integration and deployment software development principles facilitate the
utilization of an efficient, interoperable and easy-to-deploy MAaaS toolset, including the necessary
tooling for substantiating extreme data workflows. The implementation of these principles is
demonstrated and explained through detailed code walkthroughs, and a full list of links to all Github
repositories is provided.

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

9

1 Introduction

1.1 Purpose and scope of the document

D2.2 presents an early integration of the developments from WP3 and WP4 into a re-usable and
containerized toolset to be demonstrated in applications foreseen in WP5 use cases and exploited via
the commercialization strategies devised under WP6. The offering presented in D2.2 has been
designed to adhere to continuous integration and deployment software development principles.

Catering for the deployment of services across the computing continuum, from edge to cloud, the
toolset ensures scalability and real-time responsiveness, reducing bandwidth requirements and
optimizing resource usage. Interoperability is a key focus, with the toolset designed to seamlessly
integrate with existing urban mobility systems and data sources. This is also achieved through
adherence to open standards and the development of robust APIs that facilitate easy integration and
data exchange. The EMERALDS toolset also prioritizes ease of deployment, providing containerized
versions of its services that can be quickly and efficiently deployed across various platforms.

Combining the above elements positions the EMERALDS toolset as a transformative solution for urban
mobility management, capable of executing extreme data workflows and delivering advanced
analytics and insights to support smarter, more sustainable urban transportation systems.

Moreover, D2.2 EMERALDS containerized toolset v1 is of type OTHER, therefore it is accompanied by
a report detailing the concept, design, development, testing and release of the integrated EMERALDS
toolset along with the relative links to the source code repositories on GitHub.

1.2 Relation to Work Packages, Deliverables and Activities

D2.2 serves as a direct continuation of the activities described in D2.1 and implements methods to
facilitate the deployment, versioning and service delivery of emeralds services, and reports the
progress of the work carried out under T2.1 directly feeding into the implementation process required
for the attainment of a combined emeralds services solution under one unique offering, namely the
EMERALDS toolset.

In this regard, D2.2 is positioned within WP2 which operates as the technical backbone of EMERALDS,
linking the scientific outputs and developments with cutting-edge technologies and resource
management tools functional across the computing continuum. This entails, introducing established
best practices from serverless computing, network function virtualization, microservices architectures
and edge-to-cloud communication protocols. Ultimately, the EMERALDS toolset possesses all the
foundations supporting the interstitching of the DataOps, MLOPs and DevOps paradigms (Figure 1-1)
and is organized in the layers described in D2.1 EMERALDS Reference architecture. Interactions with
other tasks in WP2 have informed aspects of the development process and the overall integration
points with execution environments envisioned as endpoints of the emeralds services’ functionalities.
As per the EMERALDS project toolset implementation plan (can be found in D2.1), D2.2 comprises a
significant milestone, which concludes the first software design, development, implementation, and
integration cycles emphasizing the iterative process of learning loops and software development.

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

10

Figure 1-1 The intertwined DataOps, MLOps and DevOps EMERALDS methodology

D2.2 releases a selection of methods catered to supporting the utilisation of the tools, algorithms and
solutions reported in D3.1 and D4.1. In this sense, D2.2 is driven by the combination of know-how
from the technical backgrounds of technical partners (software development SMEs, Industry software
houses, technology integrators), core research partners from WP3, WP4 and WP5 and the prospective
first users (use case partners and early adopters) of the EMERALDS toolset as envisioned in the Use
Cases Scoping Document D5.1. D2.2. is also pivotal for the EMERALDS implementation since the
integration of components to accommodate their wider use in multiple environments as in the case
of D5.2-D5.8 is achieved via the software integration and deployment tools presented herein. Finally,
D2.2 combines emeralds in an interoperable software stack which scales with different resource
options, infrastructures, and ingested data sources, enabling data fusion from heterogenous sources
as well as code execution in determined system nodes thereby inducing a holistic outlook over the
treatment of extreme scale urban mobility data. This output is key for the activities of WP6, and the
respective market valorisation and commercialization tasks aimed at assessing the exploitation
potential and effectiveness of the toolset.

D2.2 serves as means for verification for MS2 Primary Implementation Cycle and Initial Integration
(M18) releasing a containerized early version of the EMERALDS toolset enabling the establishment of
data workflows and corresponding pipelines for use case demonstrators (in the frame of WP5) to
conclude the first agile development sprint and gather feedback for the overall toolset performance
during the 1st assessment cycle concluding in M24 (MS3 Use Cases 1st Assessment Cycle).

1.3 Contribution to WP2 and Project Objectives

The first version of the EMERALDS toolset is a central result of the EMERALDS project contributing to
the project wide objectives as well as the accomplishment of the WP2 objectives.

D2.2 is directly connected with Objective 1 (O1) Design a service-oriented reference architecture of a
palette of services (‘emeralds’) for extreme scale urban mobility data analytics, underpinned by a
distributed computing environment that includes edge/fog nodes and cloud nodes, that ensure that
both edge and cloud processing contribute towards establishing a robust processing pipeline.
Specifically, D2.2 fleshes out the common vision of unifying the novel tools and technologies delivered
within the frame of WP3 and WP4, along with provisions for the wrapping of D2.6 security tools, in an
interoperable software stack - the EMERALDS toolset. Furthermore, D2.2 delivers guidelines for the
iterative and continuous improvement of the emeralds’ performance and efficiency. It performs a
cutting-edge integration of tools into a plug-and-play easy to use proof-of-concept TRL 5 toolset. The
developed codebases and configurations ensure a streamlined, robust, efficient, and scalable

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

11

deployment process for a variety of urban mobility analytics services from edge to cloud also instilling
adoption and integration across urban mobility ecosystems.

Additionally, D2.2 contributes towards the fulfilment of O2 Develop extreme-scale acquisition and
processing methods and tools for urban mobility data, which will be scalable with the data at hand,
and at the same time facilitate accurate and low-latency data collection, pre-processing (including
cleansing, filtering, smoothing, etc.), mining, fusion, and management and O3 Develop mobility data
analytics and AI/ML tools and services – MAaaS, appropriately designed to perform along the
edge/fog/cloud continuum to achieve substantial speedups for analytics jobs. These include location-
aware analytics aimed at providing actionable information close to the data source, as well as AI/ML
algorithms providing fast and accurate predictions, respectively by housing the tools released under
WP3 and WP4 under a commonly accessible repository and container registry that includes
containerized versions suitable for deployment across a multitude of computational environments
(spanning the entirety of the computing continuum).

With respect to (O4) Demonstrate and measure the efficiencies of the novel Extreme Scale Analytics
services through three pilot use cases and validate the concepts and tools usefulness as well as
overall improvements in extreme data workflows through two early adoption applications, this
deliverable substantiates the integration of emeralds into use case environments, permitting the
validation and assessment of performances and extreme scale capabilities in various urban mobility
data analytics workflow scenarios across Europe.

Significant contribution is also evident in the attainment of the WP2 objectives as the software
accompanying this report concentrates novel methodologies that advance state-of-the-art
architectures mostly dealing with Big Data Processing and Analytics in cloud computing environments
introducing capabilities to handle heterogeneous structured and unstructured data streams from
multiple sources offering integration points and interoperability with the core WP3 and WP4 services.
To another extent, the solution addresses common challenges met in MAaaS data pipelines such as
seamless integration of data sources and processing components and the implementation of ready-
to-go integration connectors that allow the interoperability of internal and external data sources.

1.4 Structure of the document

The structure of the document is as follows:

• Chapter 2 provides information regarding the containerization of the Emerald services that
has been developed as part of WP3 and WP4 activities and delivered as part of the D3.1 and
D4.1. It also presents the benefits, the prerequisites, and the methodology to achieve the
containerization.

• Chapter 3 provides an overview of the Continuous Integration/Continuous Delivery
methodology, the tools, and best practices to facilitate the process within the context of
EMERALDS Project. This chapter is a continuation of Chapter 2 and present the entire
Development and Operational cycle.

• Chapter 4 refers to the Emeralds Services Integration plan. The chapter presents the service
architecture and communication patterns. The integration plan plays a significant role in the
reusability of the Emeralds services.

• Chapter 5 is focused on the integration of the Emerald Services with the Analytics as a Services
platforms of the project, CARTO’s Mobility Analytics Cloud platform and Mobility AI as a
Service platform of ATOS.

• Chapter 6 provides the conclusions and next steps of the EMERALDS toolset development
process describing the foreseen improvements towards the release of the second and more
mature version of the toolset.

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

12

2 EMERALDS Toolset

The EMERALDS toolset provides an advanced solution for large-scale urban mobility analytics as a
service, offering exceptional value to city planners, transportation authorities, and mobility service
providers. It is specifically designed to manage high-volume, high-velocity, and diverse data, enabling
comprehensive and real-time analysis of urban mobility patterns. The analytics methods, referred to
as ‘emeralds,’ are implemented within specific tool categories (emeralds typology) and can be easily
configured and integrated into task sequences (service containerization in T2.1). The reference
architecture upon which the EMERALDS toolset design is based can be seen in Figure 2-1 as reported
in D2.1.

Figure 2-1 The EMERALDS Reference Architecture

The added value of the EMERALDS toolset lies in its ability to deliver precise, scalable, and privacy-
aware analytics. The toolset maximizes the use of edge and fog computing devices, ensuring efficient
data processing, and minimizing bandwidth requirements. The EMERALDS toolset is a dynamic and
evolving software repository (v1 released M18) housing several key software components from WP3
and WP4 as in Table 2-1 along with their Dockerfile links and Continuous integration and Continuous
Delivery (CI/CD) configuration files.

Table 2-1 - Emerald Toolset Repositories for Containerization and CI/CD

Task/Emerald Dockerfile CI configuration file CD configuration file

Privacy aware data
ingestion (T3.1)

privacy evaluation
Dockerfile link

preprocessing_Dockerfile

Work In Progress/ To
be reported in D2.3

Work In Progress/ To
be reported in D2.3

https://github.com/emeralds-horizon/privacy-evaluator/blob/main/privacy_evaluation_component/Dockerfile
https://github.com/emeralds-horizon/privacy-evaluator/blob/main/privacy_evaluation_component/Dockerfile
https://github.com/emeralds-horizon/privacy-evaluator/blob/main/preprocessing_component/Dockerfile

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

13

Extreme-scale
stream processing
orchestrator (T3.1)

Dockerfile github link Github workflow link Github Kubernetes
links

Extreme-scale map-
matching (T3.2)

Dockerfile github link Github workflow link Github Kubernetes
links

Weather
enrichment (T3.2)

Dockerfile Github link Github workflow link Github Kubernetes
links

Spatio-temporal
querying (T3.2)

Dockerfile Github link Github workflow link Github Kubernetes
links

Hot-spot analysis
(T3.2)

Emerald to be reported in
D3.2

Work In Progress/ To
be reported in D2.3

Work In Progress/ To
be reported in D2.3

Mobility/trajectory
data compression
(T3.3)

Dockerfile Github link Github workflow link Github Kubernetes
links

Sensor (GPS, GTFS,
radar, etc.) data
fusion (T3.3)

Dockerfile Github link Github workflow link Github Kubernetes
links

Probabilistic Trip
Chaining1 (T4.1)

Work In Progress/

To be reported in D4.2

Not Applicable Work In Progress/ To
be reported in D2.3

Dropoff/Destinatio
n Prediction2 (T4.1)

Dockerfile link Not Applicable Work In Progress/ To
be reported in D2.3

Monitoring and
Forecasting Shared
Mobility Demand3
(T4.1)

Emerald to be reported in
D4.2

Not Applicable Work In Progress/ To
be reported in D2.3

Trajectory Data
Analysis4 (T4.1)

Not Applicable/ QGIS
Processing Trajectools
plugin

Not Applicable/ QGIS
Processing Trajectools
plugin

Not Applicable/ QGIS
Processing Trajectools
plugin

Real-Time Extreme
Scale Map Matching
(T4.1)

Not Applicable/ Close-
Source Emerald from
SISTEMA

Not Applicable/ Close-
Source Emerald from
SISTEMA

Not Applicable/
Closed-Source
Emerald from PTV

Traffic State / Flow
Forecasting (T4.2)

GMAN Dockerfile link

MSTL-ARIMA Dockerfile

Not Applicable Work In Progress/ To
be reported in D2.3

Parking Garage
Occupancy
Prediction5 (T4.2)

Work In Progress/ To be
reported in D4.2

Not Applicable Work In Progress/ To
be reported in D2.3

1 Previously referred to as “Probabilistic Approach for Trip Chaining” in D2.1
2 Previously referred to as “Trajectory/Route Forecasting and Origin/Destination Estimation” in D2.1
3 New emerald, not previously listed in D2.1
4 Previously referred to as “Trajectory Data / Travel Time Analysis” in D2.1
5 Previously referred to as “Parking garage occupancy forecasting” in D2.1

https://github.com/emeralds-horizon/data_broker/blob/main/Dockerfile
https://github.com/emeralds-horizon/data_broker/tree/main/.github/workflows
https://github.com/emeralds-horizon/data_broker/tree/development-fotis/manifests
https://github.com/emeralds-horizon/data_broker/tree/development-fotis/manifests
https://github.com/emeralds-horizon/Extreme-scale-map-matching/blob/main/Dockerfile
https://github.com/emeralds-horizon/Extreme-scale-map-matching/tree/main/.github/workflows
https://github.com/emeralds-horizon/Extreme-scale-map-matching/tree/main/kubernetes
https://github.com/emeralds-horizon/Extreme-scale-map-matching/tree/main/kubernetes
https://github.com/emeralds-horizon/Weather-Integrator/blob/main/Dockerfile
https://github.com/emeralds-horizon/Weather-Integrator/tree/main/.github/workflows
https://github.com/emeralds-horizon/Weather-Integrator/tree/main/kubernetes
https://github.com/emeralds-horizon/Weather-Integrator/tree/main/kubernetes
https://github.com/emeralds-horizon/Spatio-temporal-querying/blob/main/Dockerfile
https://github.com/emeralds-horizon/Spatio-temporal-querying/tree/main/.github/workflows
https://github.com/emeralds-horizon/Spatio-temporal-querying/tree/main/kubernetes
https://github.com/emeralds-horizon/Spatio-temporal-querying/tree/main/kubernetes
https://github.com/emeralds-horizon/WP3-Service-Task-3.3-Data-Compression/blob/main/Dockerfile
https://github.com/emeralds-horizon/WP3-Service-Task-3.3-Data-Compression/tree/main/.github/workflows
https://github.com/emeralds-horizon/WP3-Service-Task-3.3-Data-Compression/tree/main/kubernetes
https://github.com/emeralds-horizon/WP3-Service-Task-3.3-Data-Compression/tree/main/kubernetes
https://github.com/emeralds-horizon/WP3-Service-Task-3.3-Data-Fusion--Traffic-State-Estimation/blob/main/Dockerfile
https://github.com/emeralds-horizon/WP3-Service-Task-3.3-Data-Fusion--Traffic-State-Estimation/tree/main/.github/workflows
https://github.com/emeralds-horizon/WP3-Service-Task-3.3-Data-Fusion--Traffic-State-Estimation/tree/main/kubernetes
https://github.com/emeralds-horizon/WP3-Service-Task-3.3-Data-Fusion--Traffic-State-Estimation/tree/main/kubernetes
https://github.com/emeralds-horizon/Dropoff-Prediction/blob/main/Dockerfile
https://github.com/emeralds-horizon/WP4_Traffic_state_forecasting/blob/main/dev/MSTL-ARIMA/Dockerfile
https://github.com/emeralds-horizon/WP4_Traffic_state_forecasting/blob/main/dev/MSTL-ARIMA/Dockerfile

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

14

Crowd Density
Prediction6 (T4.2)

Work In Progress/ To be
reported in D4.2

Not Applicable Work In Progress/ To
be reported in D2.3

Active Learning &
XAI for Crowd
Prediction7 (T4.2)

Work In Progress/ To be
reported in D4.2

Not Applicable Work In Progress/ To
be reported in D2.3

Active Learning for
Risk Category
Classification (T4.2)

Emerald to be reported in
D4.2

Not Applicable Work In Progress/ To
be reported in D2.3

Federated Learning
Models for Mobility
Data (T4.2)

Emerald to be reported in
D4.2

Not Applicable Work In Progress/ To
be reported in D2.3

On top of the Emerald Services developed as part of the T3.1 and T4.1, a Continuous Delivery
environment has been developed to facilitate the Emeralds Development Process. This execution
environment is automatically configured and can be utilized as a hosting service for external users of
the EMERALDS toolset. End-users are having the option either to use their own platform and integrate
the emeralds Services or they may offer the hardware infrastructure – such physical or Virtual Servers
with Linux Operating System installed – and use the scripts to install and configure the required
software. Table 1-2 lists direct links on sub-folders of the emeralds-hosting-services repository. Each
sub-folder is responsible for specific provisioning task. Further details on the subject are provided on
Section 4.

Table 2-2 - Emeralds-hosting-services

Github link Description Status

Configuration Scripts Scripts that should be used to configure the
servers with the required software

Completed

cloud-infrastructure Configuration files to create cloud resources,
such as Virtual Machines, Networks, etc.

Work in
progress. To
be reported in
D2.3

Kubernetes Configuration files Manifest files used by the CI/CD Platform to
configure system resources.

Work in
progress. To
be reported in
D2.3

2.1 Integration Plan

This subsection outlines the integration strategy for the diverse services and applications under
development, focusing on how these components will interact, integrate, and eventually deliver an
interconnected urban mobility toolset.

6 Previously referred to as “Crowd density forecasting” in D2.1
7 Previously referred to as “Active Learning & XAI for crowd/flow forecasting” in D2.1

https://github.com/emeralds-horizon/emeralds-hosting-services/tree/main/ansible
https://github.com/emeralds-horizon/emeralds-hosting-services/tree/main/cloud
https://github.com/emeralds-horizon/emeralds-hosting-services/tree/main/kubernetes

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

15

2.1.1 Service Architecture and Communication
The service architecture and communication are based on some basic rules that will be analysed

in this sub-section. Due to the diversity of the Emerald services, the rules shall not apply uniformly to
all of them, and the exceptions shall be provided as needed. Furthermore, regarding the WP4
Emeralds, the rules mainly apply for the inference of the generated models and not for the training.
This is due to fact that the model training requires large datasets that cannot easily be fed through API
interfaces. In such cases, the data are stored on databases and the related Emeralds are interacting
with them directly.

API Development and RESTful Services

 Each Emerald Service is already offering or will offer its own set of APIs, ensuring robust and
flexible communication capabilities not only between other Emeralds, but also with external services.
These APIs will support RESTful interactions, allowing for efficient and standardised communication
patterns. This approach will enable the Emeralds services to easily being adapted from both existing
and new Urban MaaS solutions, facilitating the creation of new and enhanced data pipelines. Where
applicable Emerald Service will not only function as REST Servers but also as REST Clients, making
remote calls to external services.
To facilitate the usage of different data sources and output destinations a modular approach for the
Emeralds services have been followed. Each service is broken into three components, as it is depicted
on Figure 2-2. The most important component is the “Emerald-Core”, the software component that
performs the implements the algorithm. The core component will have a strictly defined interface,
both for data input as well as data output. The two other components are responsible with the data
ingestion and a data output to external services. These components are interchangeable and different
implementation may offer access to various data sources, such as APIs, databases, and shared folders.
An instantiation of this architecture will be provided by Atos as part of their Mobility AIaaS platform,
which is offering an API Wrapper for the ML/AI bases Emeralds. More information for this initiative
will be available on D4.2 Mobility Data Analytics and Learning Services v2.

Figure 2-2-Emerald Service Integration Architecture

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

16

Based on the deliverables D3.1 and D4.1 two exceptions have been identified.

• “Trajectory Data Analysis”, which is a QGIS8 Processing Trajectools plugin, and therefore it can
only be used under the strictly defined rules of QGIS Processing toolbox.

• “Mobility/trajectory data compression” Emerald, which is an extension of the MobilityDB 9. As
such the specific Emeral adheres to the programming interface offered by the MobilityDB.

Event-Driven Architecture and Message Brokering

To facilitate real-time data processing and adhere to modern data processing architecture
practices, an even-driven architecture is also supported. The Emerald service “Extreme-scale stream
processing orchestrator” of Task 3.1, has been designed as a lightweight message broker, among other
functionalities that offers, and it shall be the core component of such approach. Emerald services shall
utilize it to produce or consume data in the form of events. This approach will allow to streamline the
creation of effective data pipelines by decoupling the services, while providing the means to achieve
the required scalability for extreme scale data processing. The “Extreme-scale stream processing
orchestrator” can be used either by other emeralds services, or from external services as well. The
only prerequisite is that each message broker user should adhere to the interface defined by the
““Extreme-scale stream processing orchestrator”.

Containerization

The main goal of the EMERALDS Project is the creation of Urban mobility toolset of services. To
this end, all Emerald Services shall be containerized, as described in Section 3, and will be available to
all interested parties through the EMERALDS-Horizon Github Container Registry. The landing page of
the repository shall provide an extended list of all available services, along with links to detailed
instructions and examples regarding the usage of the services. Moreover, the latest versions of the
services shall be available as containers.

The use of containerization packages the execution requirements of the EMERALDS services,

decoupling them from the operating system. This ensures error-free deployment and facilitates the
scaling of services based on demand.

8 https://qgis.org/en/site/
9 https://mobilitydb.com/

https://github.com/emeralds-horizon/

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

17

3 Containerization of EMERALDS Services

In this section, we provide an overview of the containerization and its relevance to the
deployment of EMERALDS services in urban mobility data workflows and applications. The computing
continuum introduces new opportunities for big data pipeline management addressing heterogeneity
and untrustworthiness of data resources. Despite the acclaimed disruptive effect of cloud computing
in the past years, stating resources accessible and configurable as a service for a variety of internet
applications in tandem offering elastic capacity and customizable connectivity over large scale
networks, big data processing and analytic tasks’ resilience, sustainability and collaborative
requirements ensue an interoperable end-to-end ecosystem that shifts data centre operations,
infrastructure services and functions closer to the data sources, meaning the manipulation of remote
nodes and adaptation to execute processing, privacy preservation or lite analytics tasksi. Figure 3-1
depicts an ecosystem for managing big data pipeline lifecycle management on the computing
continuum comprising six phases involving the relevant stakeholders at each stage.

Figure 3-1 An ecosystem for managing data pipelines on the computing continuum i.

Serverless computing and containerization are two pivotal technologies that synergize to enable
advanced edge-to-cloud extreme data analytics. Serverless computing abstracts away the
complexities of managing underlying infrastructure, allowing developers to focus solely on writing and
deploying code and is ideal for handling sporadic, event-driven workloads, typical in urban mobility
analytics, where data influxes can be unpredictable.

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

18

Containerization, on the other hand, encapsulates applications and their dependencies into
portable, self-sufficient units called containers. These containers can run consistently across different
computing environments, from edge devices to centralized cloud servers.
A combination of serverless computing and containerization provides a robust foundation for edge-
to-cloud data analytics by ensuring seamless scalability, portability, and orchestration of data
processing tasks. Containers ensure that the serverless functions have all necessary dependencies
packaged within, facilitating rapid deployment and execution across heterogeneous environments.
Together, these technologies lay the groundwork for extreme data analytics by enabling a distributed,
flexible architecture. Serverless functions can be deployed at the edge to preprocess and filter data
close to the source, reducing latency and bandwidth usage. Processed data can then be aggregated
and further analysed in the cloud using containerized applications, which benefit from the scalable
compute resources available there.

Containerization is a powerful strategy for streamlining the development, deployment, and
management of the diverse computer services. Containers package application and their
dependencies into a single unit, making them highly portable across different infrastructure
environments, such as development, testing, and production. These single units can be executed
under any Operating System equipped with a container engine. But the most crucial factor for the
EMERALDS project is the multi-language support, which allows each partner to develop their own
service on the programming framework that best meets their business and functional requirements.
On the same ground, this approach ensures consistency between different environments, by
minimizing the risk of configuration drift and deployment errors. On the aspect of application security,
each container provides a separated runtime environment, thus enforcing isolation for the deployed
services. All the above characteristics are key elements for the EMERALDS project on the design of a
toolset that can be used by other Mobility Analytics as a Service platforms and solutions.

The benefits of Containerization are extremely important during the development phase, as the
containers are the base for creating effective CI/CD pipelines. As we will further analyze on Section 2,
a CI/CD pipeline allows for the streamline of the development process by allowing faster testing and
deployment of the service.

Containerization builds upon the concepts of virtualization by providing a lighter and more
efficient alternative to certain use cases. Containerization can be seen as a complementary to
virtualization, offering additional deployment options and flexibility within virtualized environments.
In many scenarios on private and public cloud, organizations deploy containers within virtualized
environments to leverage the benefits of both technologies. This is a very common approach with the
utilization of Kubernetes orchestration tool, which is running on top of Virtual Machines (VM) and is
managing the lifecycle of containerized applications.

3.1 Container engines

The idea of containerization was first introduced in 2008, with the Linux Containers (LXC). The
LXC was based on Linux Kernel features such as namespaces and groups to provide lightweight process
isolation. The concept was popularized with the Docker, which was launched in 2013 and
revolutionized the containerization by introducing a user-friendly interface and standardized
container image format, thus making it the de-facto standard.

Docker follows a client-server architecture model, where the Docker client interacts with the
Docker daemon (also known as the Docker engine), a background service responsible for managing
Docker objects such as containers, images, networks, and volumes. It listens for Docker API requests
from the Docker Client and executes them accordingly. Other core components of the Docker
framework are the “images”, which are read-only templates that contains the application and its

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

19

dependencies. The image is the output of the docker building process and it is stored in Registries or
Container Hubs. Images can be downloaded and deployed as docker containers, which are isolated
processes on the host systems, with their own filesystem, network, and process space.

Over the years alternative container engines have been developed. Podman10 has been
considered a direct replacement for the Docker ecosystem. Its main characteristic is its daemonless
engine, which does not require root access on the hosted system. It is considered more secure
compared to Docker, while it maintains full compatibility with it. As a newer technology, it is less
mature, with smaller community and third-party integrations.

Docker is based on containerd11 engine. This is an industry-standard container runtime which has
been donated to Cloud Native Computing Foundation (CNCF) and adheres to the Open Container
initiative (OCI) standards. It provides only the core functionalities for container management and
therefore is much lighter that the Docker Engine. It is one of the available container runtimes for
Kubernetes. Another alternative is cri-o12, which is a runtime primarily tailored for Kubernetes, with
focus on performance and security. Its tightly integration with Kubernetes, make it a less suitable
solution for standalone deployments or scenarios requiring advanced container features. It is worth
noting that the choice of container engine does not impact the container image building process, since
all engines comply with the same OCI Standards, ensuring interoperability. Consequently, the decision
to use a particular engine in testing or production environments should be guided by the specific needs
of the underlying hardware or its compatibility with the container management platform.

3.2 Development Process

To achieve the containerization of the Emerald services, each emerald repository must contain
at least one Dockerfile13. A Dockerfile is a text document that contains all the commands a user could
call on the command line to assemble an image. Using docker build command users can create an
automated build that executes several command-line instructions in succession. This file is essentially
a blueprint for building a Docker image, which is the final output of the CI part of the CI/CD pipeline.

3.2.1 Dockerfile walkthrough
Figure 3-2 depicts a simplified Dockerfile for emeralds “Extreme-scale stream processing

Orchestrator”. The following key steps are explained.

FROM python:3.9-slim: The FROM command defines the base image, which is used to create the final
image for the application. In this specific example A Linux based image with Python14 version 3.9
installed is being used. There are a great number of base images available that support different
programming languages. Developers may also use a base Linux image and install the desired language
ecosystem through the use of the RUN command.

WORKDIR /usr/src/app: This sets the working directory inside the container.
COPY . . : The COPY Command copies the current directory's contents into the working directory in
the container. The “.” Is an alias for Linux current directory.

10 https://podman.io/
11 https://containerd.io/
12 https://cri-o.io/
13 https://docs.docker.com/reference/dockerfile/
14 https://www.python.org/

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

20

RUN pip install --no-cache-dir -r requirements.txt: The RUN Command is used to pass and execute
shell commands into the container. In this case, the “pip install --no-cache-dir -r requirements.txt” is
being executed within the docker container and it is responsible for installing all required python
modules for the application. As mentioned above, the command can be used to further customize the
final docker image.

EXPOSE 8080: This makes port 8080 available for use in the container.

ENV EMERALD_APP=data_broker: The ENV command can be used to pass environment variables into
the container. In this case sets an environment variable FLASK_APP to app.py.

CMD ["python", "./main.py"]: The CMD Command is providing the running command for the docker
container. Docker containers are designed to support at least a process, which is usually defined
through the CMD command.

Figure 3-2 - Dockerfile Walkthrough Example

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

21

4 Continuous Integration/Continuous Deployment

Continuous Integration and Continuous Delivery pattern, usually referred to as CI/CD, is a set of
practices that automates and streamline the development lifecycle of software applications. Its main
goal is to increase the productivity of the software development teams by seamlessly integrating code
changes, automated testing and rapidly deploy them into production environments.

CI/CD is closely related to Agile methodologies, which emphasizes into iterative development,
through customer collaboration. CI/CD aligns with these principles by enabling teams to deliver small
increments of functionality frequently, gather feedback quickly, and adapt their approach accordingly.
These principles allow the development teams to maintain a higher productivity levels by reducing the
overhead associated with manual testing, integration, and deployment tasks. Figure 4-1 depicts this
iterative process.

Figure 4-1 - CI/CD Process

By automating these repetitive processes on every code commit, the teams identify issues early
in the development process and improve the quality of the software. Furthermore, it improves the
cost efficiency as it reduces the manual effort by the engineers, avoid error-prone tasks while
increasing the delivery speed. It is also worth mentioning that these practices allow the individual
members of a development team to grow as engineers by allowing them working on more meaningful
tasks rather than on non-brain activities.

The CI/CD pipelines that we will be described later in this section, are by design scalable and
flexible. They can adapt on varying workloads and project requirements, as they can be adapted with
minimum effort to accommodate different development workflows, environments, and technology
stacks, while providing the necessary scalability as development teams may increase in size and
number.

4.1.1 State of the Art in CI/CD
The CI/CD practices are constantly evolving rapidly, driven by the advancements in technology

and methodologies. One such method is the infrastructure-as-Code (IaC), which considers the
infrastructure as code, allowing for automated provisioning and configuration management. This
enables deployments to be consistent and repeatable across different environments.

Supplementary to IaC, the GitOps approach uses Git as the source of truth for application code
and declarative infrastructure. With GitOps any changes to infrastructure are following a similar
approach as the changes in the code by following the same Git flows, such as pull request and review,
versioning, logging, auditing, transparency, and better collaboration between the various actors
involved.

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

22

As cybersecurity is one of the most critical aspects in the design and implementation of software
module, a trend that has been observed is a shift-left Security. This refers to the integration of security
considerations earlier in the pipeline and closed to the development itself. Practices such as static
code analysis, policy enforcement and vulnerability scanning are happening on every commit
automatically and may deny the acceptance of a code commit.

A CI/CD Pipeline may consist of multiple steps with a lot of moving parts or variations based on
the deployment targets. Observability and monitoring tools are essential for gaining insights into the
performance, availability, and health of applications and infrastructure deployed through CI/CD
pipelines. Advanced monitoring solutions incorporate telemetry data, distributed tracing, to facilitate
proactive monitoring and easier troubleshooting for the DevOps team.

The most prominent advancement thought in this area is the adoption of ML/AI models to
improve various aspects of a CI/CD pipeline. Automated unit-tests can be generated by scanning the
source code and improve the code coverage or identify potential bugs. Recommendations on existing
test cases may improve the time needed to execute the test suites. In the area of the static code
analysis, AI/ML may provide better insight and identify more complex defects, refactoring
opportunities, and security risks. AI/ML-powered self-healing mechanisms can automatically detect
infrastructure failures or performance degradation in CI/CD environments. By analysing telemetry
data, distributed logs, and system behaviour in real-time, these solutions can dynamically adjust
configurations, scale resources, or restart services to maintain system stability and availability.

4.1.2 CI/CD Platforms
A diverse range of CI/CD platforms is available, spanning both open-source and commercial

offerings. Each platform incorporates a suite of state-of-the-art tools designed to streamline
development workflows and enhance deployment efficiency.

Jenkins15 is one of the most popular and widely used open-source frameworks for CI/CD. It may
be considered as a pioneer on the domain as it was one of the original solutions for setting up CI/CD
pipeline on local development environments. There is vast support from the community, both in the
form of plugins availability as well as through various forums. One of the most impressive features is
the support of pipeline as code, which can be integrated with version control.

In the area of Cloud hosted CI/CD tools, all major Cloud Providers offer their own solutions such
as Azure DevOps16, AWS CodePipeline17, Google Cloud DevOps18 suites. Similarly, the most common
cloud git providers are also offering their own platforms, the GitHub Actions19 and GitLab pipelines20.
In all the above cases, each provider offers the required infrastructure and a Domain Specific
Language, which allows the developers and DevOps engineers to define their pipeline in a declarative
way.

For EMERALDS, the decision was to implement the CI/CD Pipelines using the GitHub Actions. The
rationale behind this was due to consortium's prior selection of GitHub as the preferred code
repository, owing to its widespread adoption within the developer community21. Furthermore, all

15 https://www.jenkins.io/
16 https://azure.microsoft.com/en-us/products/devops/
17 https://aws.amazon.com/codepipeline/
18 https://cloud.google.com/devops
19 https://github.com/features/actions
20 https://docs.gitlab.com/ee/ci/pipelines/
21 https://survey.stackoverflow.co/2022/#section-version-control-version-control-platforms

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

23

essential features, including code repository, CI/CD pipeline resources, and Container Registry, are
available either free of charge or at a minimal cost.

4.1.3 GitHub Actions
GitHub Actions is a continuous integration and continuous delivery (CI/CD) platform, part of the

GitHub Development Ecosystem, designed to automate workflows for software development and
deployment directly within the GitHub repository.

Next, we will provide a brief description for the core components of the GitHub Actions
ecosystem22.

Workflow is a configurable automated process, defined by a yaml23 file checked into the same
repository that hosts the application source code, under a specific subfolder. Multiple workflows
might exist on the same repository to perform different tasks, such as building and storing the
application as image on Container registry, while other workflows are responsible for deployment on
different environments, such as testing, staging and production.

An event is a method for triggering workflow runs. A push commit, a creation of a pull request
can be considered such events. Workflows can also be triggered through scheduler or even manually
from the Github actions dashboard given the proper configuration.

A job is a set of steps executed on the same runner. Jobs can run sequentially or in parallel,
depending on the workflow configuration. Each job runs on a separate instance of the execution
environment, isolated from other jobs in the workflow. Each step is a single task, which can include
shell commands, scripts or predefined actions provided by GitHub, third-party providers or created by
the owner of the repository. Steps are executed sequentially and on the same runner, thus they can
share data. Actions are reusable extensions that simplify the creation of workflows. They can be
written in any programming language and uploaded to GitHub Actions as a docker container.

Workflows are being executed on runners, which are virtual machines or docker containers.
GitHub provides hosted runners with pre-installed software environments for common platforms such
as Linux, Windows, and macOS. Additionally, repository owners may set up self-hosted runners to
execute workflows in their own infrastructure, enabling greater customization and control over
execution environments.

4.2 Continuous Integration

In this subsection, we will provide further details regarding the CI part of the pipeline. This part
covers the building of the emerald Service, including the static analysis of the code, as well as the
packaging and subsequent storage of the emerald Services in the Container Registry. Additionally, it
will outline the management console features of GitHub Actions and provide strategies for debugging
a failed pipeline.

GitHub Actions is enabled by default on all repositories and GitHub Organizations. Policies may
be enforced to regulate how organization members utilize GitHub Actions, although the granularity of
those depends on the subscription plan that have been chosen by the Organization. Common policies
include access to local runners, restrictions on using reusable workflows and actions, automated

22 https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
23 https://yaml.org/ . YAML is a human-readable data serialization language that is used for writing
configuration files.

https://yaml.org/

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

24

repository modification triggered by running workflows on main line and forks and configuration of
GITHUB_TOKEN permissions. Typically, anyone with write access to the repository have the authority
to manage most of these policies and, naturally, create or modify workflows, since they are stored
within the repository as YAML files.

For the creation of a workflow, properly formatted YAML files is being added under the each
Emerald ${REPOSITORY_ROOT}/.github/workflows folder. The files have been creating either
manually or through utilizing the GitHub Actions wizard, a feature provided by GitHub. This wizard
scans the repository and suggests a series of configurable workflows based on the technology stack
used. Additionally, GitHub Marketplace offers a wide range of available workflows.

The workflow YAML file consist of three distinct sections. The first one provides basic information
about the creator, the usage, and any other the potential configuration of the workflow. The second
part defines the events that may trigger it. Multiple events can be defined by the development team
in a “or” configuration. The last section holds utmost significance, as it defines the jobs requiring
execution, the corresponding runner assigned to accommodate them, and the steps necessary to
accomplish the task.

Figure 4-2 presents all the steps that need to be executed in the CI Pipeline, for each non-ML
Emerald Service

Figure 4-2 - CI Path

Check-our Repository: Since a CI pipeline is being executed on a runner, the actual repository
needs to be cloned and checked out locally on that runner. This is a mandatory step for such pipelines
and GitHub offers a reusable workflow24 for performing this task.

Configure Runner with additional tools: Depending on the tech stack used by the Emerald
Service, and mainly the selected programming language, different steps are required, and different
tools should be used. As an example, services based on scripting languages such as Python do not
require a build step compared to services written in Java25. Consequently, either a preconfigured

24 https://docs.github.com/en/actions/using-workflows/reusing-workflows
25 https://www.java.com/en/

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

25

runner needs to be used for the execution of a workflow or extra configuration steps should be
considered. GitHub offers a few generic preconfigured runners, which can be used as a base for further
customization. As an alternative, an organization may create their own preconfigured runners based
on their needs, thus reducing the total execution time of a pipeline by avoiding those extra repetitive
provisioning steps.

Static Code Analysis26 is the analysis of software programs performed without the need to be
executed. The primary use of them is to improve code quality, security, and maintainability during the
software development process and it can be considered as part of a Code Review process27. The
sophistication of the analysis performed by tools varies from those that only consider the behaviour
of individual statements and declarations, to those that include the complete source code of a
program in their analysis. The uses of the information obtained from the analysis vary from
highlighting possible coding errors (e.g., the lint tool) to formal methods that mathematically prove
properties about a given program.

The most notable strengths are the scalability and the identification of defects and bugs on areas
such as SQL Injection, buffer overflow, memory leaks and syntax errors with the latter especially
applies for scripting languages. Also, they are great to enforce coding standards, an approach that
ensures consistency, readability, and maintainability across the codebase, especially in large
development teams or projects with multiple contributors.

On the other hand, as a main weakness can be considering the high number of false positives and
false negatives identification that led to additional maintenance effort. The is happening due to limited
context awareness as the tools operate without any knowledge of environment or dependencies, or
difficulty in analysing complex codes. To that end, the state-of-the-art on Static Code Analysis is the
use of sophisticated ML models for analysing code and even writing code fixes automatically. This
brings up another limitation of the static code analysis pattern, the resource intensive nature of the
tools, which may lead to longer pipelines execution times, and the dependency on expensive hardware
resources. Furthermore, there is significant cost for the use of such tools and organization should
make their own cost-benefit analysis, before proceeding with the adoption of them.

In the context of EMERALDS project, we have mainly focused on how such tools can be integrated
in the CI/CD pipeline. It is also important to state that different set of tools are required for different
tech stack that have been used from the EMERALDS development teams. At the time of drafting this
report, “templated” workflows have been defined for four different programming languages, Python,
Java, Scala28 and Rust29.

The build process for a software program refers to the series of steps and operations required to
compile, package, and prepare the source code into executable software artifacts or deliverables. This
step may not apply for script-based languages, such Python, especially since it has been decided that
the main mean of packaging for Emerald Services shall be a container.

Unit Testing is a software testing method where individual units of source code are being tested
to determine whether they are fit for use. The unit refers to the smallest component that can be
isolated with the complex structure of an app, and it could be a method or a class for Object Orient
Programming languages30. The execution of unit tests on EMERALDS Project requires the

26 https://owasp.org/www-community/controls/Static_Code_Analysis#
27 https://en.wikipedia.org/wiki/Static_program_analysis
28 https://www.scala-lang.org/
29 https://www.rust-lang.org/
30 https://en.wikipedia.org/wiki/Unit_testing

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

26

implementation of such test cases by Emeralds development teams and therefore it has been marked
as optional in the CI Pipelines.

Build Docker Image: EMERALDS project strictly defines the containerization of the services as a
mean for delivering the EMERALDS Toolset to the community. To that end, each emerald will be
packaged as docker image and pushed on GitHub’s Container Registry. More on that subject can be
found on section 2. What is related to CI Pipeline is the access to the Container Registry and more
specifically the authorization for a pipeline to push build docker images to the Registry. GitHub Actions
provides a mechanism that generates a secret key, named GITHUB_TOKEN, which can be used by the
pipeline to be complete this action. The Repository owners may select to create their own secret
instead and define their access policy that will be bind to the key. In the context of EMERALDS Project,
we have used the internal generated process to authenticate pipelines. Furthermore, as part of the
Docker Build process, we have taken advantage of the Docker Scout 31feature which supports the
creation of Software Billing of Materials (SBOM) for the Docker Image. The SBOM provides to the
emerald Service development team and the final user of it enhanced visibility and license compliance
by listing all the third-party software in use and the relative license schemas that associated with them.
It also offers support for Security and Vulnerability Management, by allowing the stakeholders to
compare the components listed in the SBOM against known vulnerability databases.

4.2.1 GitHub Actions Management.
The GitHub Actions offers a management console that allows the developers to manage the

Actions on the repository.

Figure 4-3 - Github Actions Management Portal

In Figure 4-3 there is a snapshot of the console. Each execution of a pipeline is being logged and
presented in chronological order. By selecting one of the four workflows as presented, the Console
User may inspect the output of the workflow. In Figure 4-4, there is an such an example.

31 https://docs.docker.com/scout/

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

27

Figure 4-4 - Github SBOM Presented

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

28

Figure 4-5 is the generated output of the Docker Scout analysis that has been initiated as part of
the CI pipeline and presents all vulnerabilities along with each severity. The analysis is utilized to
minimize the attack surface of the generated image by applying the required security fixes. The
process is automated and takes place during the image build phase, with the appropriate commands
to be added in the Dockerfile.

Figure 4-5 - Docker scout vulnerabilities analysis.

By selecting the name of the Workflow, the End-User is presented with a complete log of the
pipeline that was executed along with basic performance metrics for each step. In Figure 4-6 we are
presenting such a log. An interesting observation is the time consumed for the “Set up job” test, which

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

29

was approximately 30% of the entire workflow run time. A preconfigured runner would avoid this step
and would bring down the required time, thus increasing productivity for large repositories with many
contributors. The creation of such runners will be one of the enhancements that will be part of the
“Deliverable D2.3 – Containerized EMERALDS Toolset v2”.

Figure 4-6 - Github Actions logging

4.2.2 Container Registry
EMERALDS main goal is the creation of a containerized toolset of Mobility Services that can be

reused in multiple Use Cases, as it will be demonstrated at WP5 and WP6. Toward that end, the last
steps of the designed CI pipeline are the packaging of each emerald service into a docker container
and its storage into the GitHub Container Registry.

GitHub Packages along with the Github Container Registry are software packages hosting
services that allow developers to host their own software packages privately or publicly and use
packages as dependencies in their projects. GitHub Packages offers different package registries for
commonly used package managers, such as npm32, RubyGems33, Apache Maven34, and Gradle35.
GitHub's Container registry on the other end, is optimized for containers and supports Docker and OCI
images. As the goal of EMERALDS Project is the containerization of the Services, the use of Container
Registry is preferred.

The permissions for a docker image are either inherited from the repository where the package
is hosted or can be defined for specific users or organizations. Packages with granular permissions are
scoped to a personal account or organization. Package admins may change the access control and
visibility of the package separately from a repository that is connected (or linked) to a package. These
rules allow the Project Partners to select how each emerald service can be published, by separating
the source code from the executable deliverable.

32 https://www.npmjs.com/
33 https://rubygems.org/
34 https://maven.apache.org/
35 https://gradle.org/

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

30

 The Table 4-1 offers an Access Overview of the Container registry.

Table 4-1 - Github Package Manager Permission schema

Permission Access D

Read Can download package.
Can read package metadata

Write Can upload and download this package

Can read and write package metadata

Admin Can upload, download, delete, and manage this
package.

Can read and write package metadata.

Can grant package permissions.

The main repository page, presented in Figure 4-7, displays a list of all available containers within
the repository. For organizations, an additional tab is provided, showing containers across the
organization based on the user's access level. Furthermore, administrators can configure granular
access and visibility settings for containers through the Repository's or Organization's Settings Tab, as
shown in Figure 4-8. GitHub employs an inheritance model, with the Organization level serving as the
apex of this hierarchy.

Figure 4-7 - Github Packages

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

31

Figure 4-8 - Manage Access Level

For containers marked as private, User may download them through the available API. In this case
User should be authenticated using personal access token.

4.3 Continuous Deployment

Continuous Deployment (CD) is a software development practice where code changes are
automatically deployed to execution environments without manual intervention. A similar term
named Continuous Delivery is also used widely in the same context. There is a lot of controversy
regarding the difference between the “deployment” and the “delivery” term, with the most common
states that the “deployment” is a fully automated process of deploying the changes to the production
system, while the “delivery” includes a manual step, where the final deployment to the production is
triggered by the operation team.

Within Continuous Deployment practices, a range of deployment environments are commonly
employed to ensure the reliability and quality of software releases before they reach production.
These environments include testing, staging and production and in each environment, a unique array
of testing suites is utilized to validate the integrity and quality of the code. The level of automation of
those testing suites defines the actual maturity of the entire pipeline.

Regarding the EMERALDS project, the CD process as a practice is valid and followed by both ML
and non-ML emerald Services. Generally, both types of emerald services are stored in the same
Container Registry in the form of Docker containers and can be deployed on hosts supporting
containerization. Slight differences might exist related to ML Services, as they could benefit from the
use of GPUs during execution.

4.3.1 CD Platform

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

32

As discussed, part of the CD Pipeline is the execution environment that shall be the final
deployment destination for the emerald Services. The following list presents the primary
requirements derived from grouping of emerald Service according to their architecture and
technology stack utilized in the development. The requirements are focused on production systems
rather than staging or testing.
1. Edge Devices support

This is one of the primary objectives of the EMERALDS Project. The management of edge devices
and the corresponding network is a complex endeavor, as it needs to consider the quality of services
offered, the security of the network and the operational costs. It is essential that the emerald Services
are readily deployable and capable of receiving over-the-air updates in an automated and timely
fashion. Additionally, the service orchestration platform should provide lightweight agents for the
Edge node in terms of hardware requirements.

2. Batch and Stream data processing

The management platforms should be able to consume data both in the form of batch and as
streams. This requirement is more bound to the emerald services, rather than the operational
platforms. The latter should offer auxiliary services such as message brokers or Pub/Subs, storage
services and data warehouses.

3. Containerization

As it has already been analyzed in section 2 of this report, it will be pursued to offer all emerald
Services as containers. This approach allows for packaging each service in a single object for
distribution and easy integration to the state of art orchestration platforms, such as Kubernetes and
its extensions.

4. Apache SPARK 36

To effectively support the processing of extreme scale data, it is imperative to utilize distributed
systems capable of horizontal scaling. Apache Spark is such a framework, upon which the emerald
Services of Task 3.2 are built.

5. Dynamic Scaling and Resource Management

To successfully cope with the process of extreme scale data, the orchestrator should be able to
scale dynamically based on the load and the availability of edge devices and their computational
resources.
Load distribution or migration to available nodes, edge computation, small hardware footprint of the
management framework are just a few of the characteristics of an efficient orchestrator.

6. Task Scheduling

As task scheduling, we define the algorithm responsible for determining the deployment strategy
of each emerald Service to suitable nodes. This decision is made considering factors such as the
hardware capabilities of the target nodes, the hardware prerequisites of the service, and Quality of
Service (QoS) parameters like response latency, request throughput, and privacy considerations.
Ideally, the scheduling algorithm should dynamically adapt to changes in these factors and adjust its
behavior accordingly.

36 https://spark.apache.org/

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

33

7. Monitoring and logging
Monitoring and logging hold crucial roles in ensuring the reliability, performance, and security of

edge devices and associated services. It facilitates troubleshooting for emerald Services, while
gathering performance metrics provides the necessary means for the KPI calculation of the toolset.

8. Upgrade and rollback mechanism.

The ability to support automated upgrades for the new version of the software released is of
crucial importance to provide uninterrupted service for the end user. In a similar manner, rollback
back to the previous stable state, mitigating disruptions is a failsafe mechanism for the stability of the
system.

9. Network Flexibility

An important requirement for service orchestration platforms that are to be used within the
Compute Continuum is to allow for network connectivity between nodes that reside on different local
area networks. Access to public endpoints or NAT techniques might not always be available.

10. Federated Learning

Adopting a Continuous Deployment process is an essential requirement for establishing a
successful Federated Learning network across edge devices and cloud services. The process allows
organizations to efficiently manage and deploy machine learning models across distributed edge
environments, ensuring seamless updates, performance optimization, and scalability of decentralized
learning systems. This feature has been further investigated in “Deliverable 4.1 - Mobility Data
Analytics and Learning Services v1”.

Several platforms were evaluated for hosting the continuous delivery (CD) of the emerald Services.
The selection criteria included the extent to which each platform fulfilled the predefined requirements
outlined at the beginning of this section, along with considerations of the tool's maturity, adoption
within the DevOps community, and whether it is open source with a permissive license. Kubernetes37,
K3s38, MicroK8s 39 and were chosen for further investigation, while other tools such as Docker
Swarm40, Eclipse ioFog41, OpenYurt42, SuperEdge43, and Open Horizon 44were excluded from further
analysis either because they have become obsolete, as is the case with Docker Swarm, or of lower
popularity compared to the selected options. The popularity of each tool was assessed based on
metrics such as stars and forks in their respective GitHub repositories.ii

Kubernetes, often abbreviated as K8s, is an open-source container orchestration platform
designed to automate the deployment, scaling, and management of containerized applications and it
is considered the leading technology in the cloud-native ecosystem. Two of its main components are
the Control Plane, which acts as the brain of a Kubernetes Cluster, and the workers node, which are
responsible for running the actual workloads.

The primary challenge in integrating remote workers located on edge nodes into a Kubernetes
cluster lies in ensuring uninterrupted communication between the control plane and worker nodes.

37 https://kubernetes.io/
38 https://k3s.io/
39 https://microk8s.io/
40 https://docs.docker.com/engine/swarm/
41 https://iofog.org/
42 https://openyurt.io/
43 https://superedge.io/
44 https://open-horizon.github.io/

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

34

One workaround involves establishing a VPN network connecting the different nodes. The VPN
module, developed as part of Task 2.5, is a perfect fit to address this issue. Obviously, such a solution
brings in an extra configuration overhead that will not scale effectively in solutions with thousands of
edge nodes.

Another consideration of using Kubernetes on edge networks is its hardware requirements. While
Kubernetes is often perceived as resource-intensive, the actual hardware footprint of a K8s worker
node is primarily determined by the workload it needs to execute, rather than the management
overhead of the cluster.

In the context of edge computing, service orchestration implies service management and
deployment across the available distributed execution environment. Kubernetes has introduced a
dedicated control plane component that executes the service scheduling in a two-step procedure. As
a first step, the algorithm filters out all available worker nodes with sufficient resources based on
specific service resource requirements, as being described in the Kubernetes manifest files. The
second step is named scoring, and in this case the scheduler assigns a score to each node that survived
filtering. The nodes with the highest score are selected for running the workload. There are multiple
plugins that can be installed and configured to further customize the scheduling procedure, and
additionally there is a possibility to configure a static approach by using nodeSelectors, node affinity
and Taint/Tolerance to label the nodes for selection. However, there are some deficiencies to be
addressed for the scheduling mechanism to be utilized within the edge environment, primarily the
inability to specify custom parameters, such as latency, throughput, and privacy. A solution to this
problem would be the creation of a separated Service that can also be deployed within the Kubernetes
cluster and take into account the variability of the QoS parameters defined previously and engage the
scheduler to dynamically distribute the workloads to the appropriate edge nodes.

K3s is a lightweight, fully compliant Kubernetes distribution focused on running in constrained
devices, bearing a much lower memory footprint than other available K8s distributions. It is also
optimized for several CPU architectures, such as ARM32, ARM64, and ARMv7, and with a binary size
of less than 100 MB, it has become the preferrable for edge environments based on Raspberry PIs45
or NVIDIA Jetson 46 boards. Its binary contains all Kubernetes control plane components encapsulated
within a single process, while the number of external dependencies is minimized. Moreover,
Rancher47, the company behind the initial development of the framework, also delivers an OS for
nodes optimized for running K3s, the K3OS48.

Conversely, the same features that make it ideal candidate for edge device, limit its suitability for
demanding workloads running on more powerful servers and cloud infrastructure. In this scenario,
the default K8s cluster is the preferred solution, as it offers better scalability and resource efficiency.
It is worth mentioning that K3s may match its performance to K8s, with additional configuration such
as the replacement of integrated SQLite 49database with etcd50, with obvious impact on hardware
footprint and installation complexity.

Another benefit of K3s is the ability to include devices without public IP addresses. This is achieved
with the initiation of the registration process from the worker node – or agent node according to K3s
nomenclature – and the establishment of WebSocket tunnel with the controller node. The data traffic
between the agent node and the controller can then be exchanged securely through this newly
established bidirectional link.

45 https://www.raspberrypi.org/
46 https://www.nvidia.com/en-eu/autonomous-machines/embedded-systems/
47 https://www.rancher.com/
48 https://k3os.io/
49 https://www.sqlite.org/
50 https://etcd.io/

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

35

Microk8s is a similar platform with K3s, focusing on a lightweight k8s cluster for small servers and
edge devices. Compared to K3s, it has a bigger memory footprint, but it has the advantage of being
one of the most easily customizable distributions via the installation of add-ons through simple one
liner commands. The available add-ons include some of Kubernetes' most popular modules, including
Helm 51 and Istio52. Additionally, it offers a straightforward path to achieving Kubernetes High
Availability features.

Last, KubeEdge53 is also an open-source platform, build on top of Kubernetes as extension, with
main goal to support distributed clusters across the compute-continuum. Like K3s and MicroK8s,
KubeEdge is flexible to support the edge heterogeneity and offer the same approach on worker’s node
communication with the control plane. Its main difference comes from the fact that while K3s is a strip
down version of Kubernetes, the KubeEdge is a framework specifically adapted to the edge that
follows Kubernetes principles without reusing the same components. In fact, in order to realize the
cloud-to-edge continuum based on K3s, the use of multi-cluster K8s-like clusters is required, a
condition that does not hold true with KubeEdge. Figure 4-9(a) presents the K3s deployment approach,
while Figure 4-9(b) depicts the KubeEdge main architecture.

Figure 4-9 - KubeEdge Installation Schema

A useful addition of KubeEdge, is the out-of-the-box support of MQTT 54protocol, a lightweight
messaging protocol which is the norm for IoT devices and machine-to-machine communication.
Leveraging the synergy between edge and cloud facilitated by KubeEdge, Sedna55, an edge-cloud
synergy AI project, can enable collaborative training and inference capabilities across edge-cloud
environments. This includes features such as joint inference, incremental learning, federated learning,
and lifelong learning. Sedna is another possible candidate for the orchestration of the Federated
Learning emerald Services of Task 4.2, which is further investigated in D4.1 and D4.2.

All frameworks that have been listed are following the same principles regarding the scheduling
algorithm, which is expected as all of them are derived from Kubernetes.

51 https://helm.sh/
52 https://istio.io/
53 https://kubeedge.io/
54 https://mqtt.org/
55 https://github.com/kubeedge/sedna

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

36

Table 4-2 - Kubernetes Variants

 Kubernetes K3s MicroK8s KubeEdge

Edge Devices support No Yes Yes Yes
Batch and Stream data processing Install 3rd

party app
Install 3rd
party app

Install 3rd
party app

Natively

Apache SPARK Install 3rd
party app

Configuration
Is needed

Install 3rd
party app

N/A

Upgrade and rollback mechanism Yes Yes Yes Yes
Network Flexibility No Yes Yes Yes
Federated Learning Install 3rd

party app
Install 3rd
party app

Install 3rd
party app

Natively

For purposes of CD platform, the use of MicroK8s shall be used in parallel with KubeEdge. This

approach should be sufficient to allow the project to execute demanding workloads on Fog/Cloud
servers, such as Spark tasks, taking advantage of the edge features offered by KubeEdge, while keeping
the installation complexity relatively low and maximizing the resource utilization.

4.3.2 Platform Deployment and Configuration
Based on DevOps practices, the deployment of the CD platform will adhere to the principle of

Infrastructure as Code (IaC). This entails automating all tasks related to software provisioning,
configuration management, and application deployment using configuration management tools, such
as Ansible56.

Ansible is a popular choice for managing configuration across edge devices due to its lightweight
agentless architecture and support for automating tasks through simple YAML playbooks. Ansible's
ease of use and minimal resource requirements make it well-suited for managing diverse and
distributed edge environments.

The ansible playbooks to be used for the deployment and configuration of the CD Platform can
be found on Github emeralds-horizon organization, under Emeralds Hosting Services repository. The
scripts will be applicable not only during testing and demonstration phases but also in production
scenarios. As such, the scripts are creating a form of a template for creating a hosting environment for
the emeralds Toolset, which is called Emeralds Hosting Services. End Users may clone the repository
and, by supplying the necessary hardware resources, effortlessly set up a platform to host the
emeralds along with any other services they might have.

The primary objectives of utilizing Ansible within the EMERALDS Project include installation and
configuration of container’s engine and containers management frameworks – specifically Docker and
Kubernetes respectively - on Cloud Nodes and to deploy the KubeEdge framework across both cloud
and edge nodes.

The provisioning of the initial operating system in the servers depends on the environment that
will host them. The SotA approach is the use of Virtual Machines either on private or public cloud
infrastructure. For the EMERALDS Project, the use of the Azure Public Cloud Provider has been
selected and the required resources have been created through Azure Portal. To further automate the
process and make it re-usable we are planning to deploy the Virtual Machines and the required

56 https://www.ansible.com/

https://github.com/emeralds-horizon/emeralds-hosting-services

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

37

network resources with the use of tools like Terraform 57and OpenTofu58. Both tools are supporting
the IaC approach and allow the system administrators to redeploy or scale the CD Platform at will.
Furthermore, both tools can be used with minor changes for deploying the platform on different cloud
providers such as AWS, GCP or even on selected private cloud hypervisors such as KVM and Proxmox59.

For edge nodes, the OS installation depends on the type of these devices. For example, physical
machines such as Single Borad Computers require manual actions while Virtual Machines depends on
the underlying hypervisor. For demonstration purposes, the creation of micro-VMs on Azure Cloud
Provider and the use of Single Board Computers, such as Raspberry PI, shall be used.

Figure 4-10 - CD Platform Resource Diagram

Figure 4-10 provides a high-level representation of the different resource groups that will be
deployed on Azure Cloud Provider.

57 https://www.terraform.io/
58 https://opentofu.org/
59 https://www.proxmox.com/en/

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

38

Figure 4-11 - emeralds Hosting Service Installation Flow

Figure 4-11 presents the installation flow of the emeralds Hosting Service. The process begins with
cloning the repository from the EMERALDS Toolset portal. Users need to provide a Linux server with
network access to the public internet and install the Ansible software.

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

39

The next step depends on the availability of cloud servers to host the emeralds services. If the
user has access to public cloud provider infrastructure, the repository contains the necessary
OpenTofu scripts to automatically create the cloud resources—virtual machines, network, and firewall
rules. These scripts are a work in progress and shall be available as part of the “D2.3– Containerized
EMERALDS Toolset v2”. If not, the user must install a Linux operating system on the required servers.
The operating system installation process is outside the scope of this task as it depends on multiple
parameters such as available hardware for servers and networks and cannot be automated for all
possible cases.

Once the servers are available, the user must execute simple Ansible commands to install the
Kubernetes cluster, the KubeEdge master node, and ArgoCD. Similarly, the user must provide the
necessary information (location and credentials) for any edge nodes in the solution. The provided
Ansible scripts will install the KubeEdge slave software on these nodes.
The final step is the installation of the required emerald services in the cluster through the ArgoCD
portal. All emerald services are available in the portal as configured in the previous step. The user
needs to select the required emerald services and enable the sync process. After this step, the selected
services are automatically deployed and monitored for any future upgrades. Users can also use the
web portal to sync additional emerald services or remove those that are no longer needed.

All steps are documented in a text file available from the Emeralds Hosting Services repository.
Users only need to provide information regarding the IP addresses of the available servers and the
necessary credentials for accessing these servers or the public cloud provider’s account. A basic
understanding of Linux shell commands and basic networking is required for the user.

4.3.3 Deployment of Emerald Services on the CD Platform
For the deployment of the new versions of emerald Services on the CD platform, the use of Argo

CD60 tool has been selected. Argo CD is an open source, Kubernetes native CD tool. It is based on
GitOps principles to manage the deployment of applications. The tool continuously monitors changes
in the repositories and automatically reconciling the desired state with the actual one running in the
Kubernetes cluster.

Argo CD and generally GitOps considers the code repository as the source of truth for the
application definitions. It is a declarative tool, meaning that the desired state of the application is
declared in Kubernetes manifest files stored in Git. Four basic features of the tool are its rollback
capabilities, which can be combined with health monitoring of the application, the extensive
integration with multiple Git providers and the existence of user-friendly Web User Interface and
Command Line Interface.

Figure 4-12 presents the CD workflow to be implemented on top of Argo CD. Development teams
are pushing their latest source code modifications into the source code repository. This action triggers
the “Github Action”, which runs the CI Pipeline and eventually build and pushes the final container
image into the Github Container Repo. In the CD testing environment, the ArgoCD has been installed
and configured to watch for any changes in the Github repository of choice. Whenever such changes
are being observed, ArgoCD is downloading the latest changes and applies the Kubernetes manifest
files into the testing environment, which eventually updates the installed application.

60 https://argo-cd.readthedocs.io/en/stable/

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

40

Figure 4-12 - Argo CD Deployment flow

As an example of the process the following list presents the github repositories that contains the
required code for the emerald “Extreme-scale stream processing orchestrator” for each steps along
with a short description of each task.

1. CI Pipeline

Repo: Extreme-scale stream processing orchestrator github actions
Description: Execute automation test, static code analysis, build container image and push it to

Container Registry.

2. Kubernetes Manifest files

Repo: Extreme-scale stream processing orchestrator Kubernetes Configuration files
Description: Kubernetes configuration files for installing the container image and create the

necessary

3. ArgoCD Installation scripts

Repo: Emeralds-hosting-services ansible scripts
Description: Ansible Scripts that are used for the installation and configuration of the ArgoCD

Tool. All emerald Services shall be available on the CD Platform and synchronised automatically with
their repository. The execution of these scripts requires a Linux Server with Ansible application
installed.

4. Kubernetes Basic Configuration Scripts

Repo: Emeralds-hosting-services Kubernetes Configuration files
Description: These are generic configuration files for the Kubernetes cluster that apply for all

emeralds services. It contains installation instructions about the Ingress Controller which is a
Kubernetes network resource that acts as a load balancer, and Kubernetes Volume resources, which
are used as storage for files or folder. As a next step additional resources are added such as specific
databases images – MobilityDB, Minio.

https://github.com/emeralds-horizon/data_broker/tree/development-fotis/.github/workflows
https://github.com/emeralds-horizon/data_broker/tree/development-fotis/manifests
https://github.com/emeralds-horizon/knt-platform.git
https://github.com/emeralds-horizon/emeralds-hosting-services/tree/main/kubernetes

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

41

5 Integration with Analytics as a Service Platforms

Within the context of EMERALDS project, two established MAaaS platforms are foreseen as
maturity enhancing checkpoints for the overall EMERALDS technologies developed in WP3 and WP4
and bundled under T2.1 into the EMERALDS toolset.
ATOS is offering a Mobility AIaaS platform capable of training and inferencing machine learning and
artificial intelligence models. CARTO’s analytics cloud platform is one of the pioneers in the domain
and a key player in the geo-spatial analysis through it cloud based offer.

EMERALDS provides a versatile collection of specialised software modules containing
containerised versions of the tools and software stacks as shown in Section 3 and their bundling is the
focal point of T2.1. Following successful integration of the tools in the EMERALDS MAaaS toolset, a
dual-focus deployment and integration with two cloud-based platforms addressing different niche
user bases is performed: in one case, urban data scientists and users with strong technical
backgrounds (T4.3, ATOS open research environment fully compatible with the EU AI on Demand
ecosystem, fostering the reproducibility of method advancements and open access of innovative
technologies reported in D4.1); in the other case, needs and extending functionalities (extreme scale
cloud native data management, heavy caching visualizations and corresponding dashboards) of
broader user bases (T2.3, in CARTO established Geospatial Analytics as a Service commercial
environment reported in D2.4). The ATOS Mobility AI as a Service (Mobility AIaaS) platform offers
several key benefits: a) interoperability between computed or ingested data through synergies
between tools at all levels, b) seamless data transfer from processing to analytics to visualizations, and
c) the ability for stakeholders, mobility operators, and end users to configure models and tools
according to their workflow requirements. Consequently, users can explore analytics services across
all time horizons (hindsight, insight, foresight) and receive support in time-critical operations and
decision-making.

Conversely, the CARTO Geospatial Analytics as a Service platform presents an easy-to-use version
of the developed tools, targeting a broader audience. Initially, it unlocks ML analytics processes in the
CARTO Analytics Toolbox, offering solutions for new types of users who need to solve challenges
intuitively and rapidly with a low entry barrier. Existing analytics users are familiarized with spatial
analytics using technologies and interfaces they are accustomed to, rather than creating a specialized
system for spatial experts like current state-of-the-art solutions.
As an endpoint of the EMERALDS architecture, the CARTO platform houses data visualizations,
dashboards, and VA tools, all controlled by user-formed queries. In this sense, users can interact with
and leverage the full potential of the analytics tools seamlessly.
In this section, a description of the fundamental integration and deployment processes of the
EMERALDS toolset with the ATOS and CARTO platforms is explained.

5.1 ATOS Integration

The ATOS Mobility AIaaS platform (presented in D4.1) is engineered to support the development,
deployment, and scaling of machine learning models specifically designed for urban mobility
applications. As outlined in D2.1 - EMERALDS Reference Architecture, the platform serves as a
foundation for the MLOps process but does not directly offer Analytics as a Service. Instead, it provides
a variety of tools and frameworks that enable Project Partners to focus on delivering real value
through their algorithms to the Emerald services they are developing, rather than focusing on the
underlying infrastructure requirements.

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

42

To aid in the development and inference processes of the WP4 Emerald Services, the platform
includes the following features:

1. Data Management Integration

The platform features two storage services, Minio61 and MobilityDB, which are equipped with
robust authentication and authorization services based on Keycloak62. These storage solutions support
the training of models by storing both raw and processed datasets from the project's use case
scenarios. They also facilitate data exchange during both the development phase and production,
enabling integration with external analytic services, such as those provided by CARTO’s platform.

2. Deployment and Scaling

The platform is based on SotA MLOps open-source projects to ensure hassle-free deployment of
the generated models, while provides reliable scalability mechanism using Kubernetes cluster 63.

3. Machine Learning Models Development and Federated Learning

The development framework within the Mobility AIaaS platform is used to design, test, and refine
machine learning models. For Emeralds of WP4 that benefit from federated learning, such as models
that require data privacy preservation or models that operate in decentralized environments, the
Mobility AIaaS platform’s federated learning module provides the necessary infrastructure.

4. Dashboards and Virtual Analytics

The Mobility AIaaS Platform is offering JyputerHub64, a version of the Jupyter server hosted on
Cloud Infrastructure, accessible to the used through a web browser. JupyterHub is a multi-user version
of the notebook, that spawns, manages, and proxies multiple instances of the single-user Jupyter
notebook server.
As Jyputer can support out-of-box various data visualizations libraries in Python, it can be used to
create high-quality static, interactive or animated visualizations. This capability makes Jupyter
Notebooks an excellent tool for exploratory data analysis, where visualizations play a crucial role in
understanding data. The downside of these approach is that the use of the tool requires programming
knowledge - typically in Python and its libraries, and performance - as it is more oriented for small to
medium size data tasks.

Further details about the ATOS Mobility AIaaS platform are available in Chapter 4 of
“Deliverable D4.1 — Mobility Data Analytics and Learning Services V1”.

5.2 CARTO Integration

CARTO is a leading platform that specializes in location intelligence and spatial data analysis,
offering robust solutions for visualizing, analysing, and interpreting geographic data. This integration
facilitates enhanced decision-making processes and insights for projects requiring detailed spatial
analysis. Among its standout features are interactive data visualization, which enables the creation
of dynamic maps that clearly present complex spatial data. The platform also boasts a complete data
management framework that supports a standard SQL interface, ensuring scalability and data

61 https://min.io/
62 https://www.keycloak.org/
63 https://kubernetes.io/
64 https://jupyter.org/hub

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

43

integrity. Further, CARTO'S advanced spatial data analysis allows users to conduct detailed spatial
queries, utilize sophisticated GIS capabilities, and identify geographic patterns. For developers, CARTO
offers a developer toolset, including a frequently updated suite of APIs and SDKs, enabling the
creation of custom applications and the extension of the platform’s existing functionalities.
Additionally, as a cloud-native solution, CARTO provides a scalable, high-performance infrastructure
capable of hosting large datasets and handling complex analytical tasks without sacrificing
responsiveness.

Within the framework of the EMERALDS Project, CARTO Platform facilitates integration with the
newly developed Emerald Services in the following ways:

- REST API Integration: REST Clients can remotely trigger and exchange data with Emerald
Services that function as REST API Servers, enabling seamless interactions and data flows.

- Remote Data Access: CARTO platform may direct access to generated datasets stored on
external storage facilities, such as the PostgreSQL and PostGIS instance in Atos Mobility AIaaS
platform.

- Data Storage and Analysis: Emerald Services can directly utilize CARTO’S storage facilities to
dump generated data. Subsequently, CARTO’S Analytics Toolbox can be utilized to analyse this
data and extract valuable insights. An example of this approach is detailed in the blog post
"Analysing Mobility Hotspots with MovingPandas" available at
https://carto.com/blog/analyzing-mobility-hotspots-with-movingpandas.

Further details about the CARTO Platform and deployment of emeralds services are provided as
part of Deliverable D2.4 — Demonstration of integrated services (EMERALDS) V1

https://carto.com/blog/analyzing-mobility-hotspots-with-movingpandas

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

44

6 Conclusions and next steps

In this deliverable, we summarize the critical advancements and concepts developed throughout
this project, focusing on the integration and implementation of key technologies within EMERALDS.

Currently in its first version, the EMERALDS toolset sets the foundation for a robust and scalable
analytics framework. Future updates will build on this foundation, introducing new features and
enhancements to address the evolving needs of urban mobility analysis. As a living software
repository, the EMERALDS toolset is continuously updated and refined based on user feedback and
technological advancements. This iterative development process ensures that the toolset remains at
the forefront of urban mobility analytics, offering users the latest capabilities and improvements.

We detailed the process and the benefits of containerized EMERALD services, emphasizing the
versatility and efficiency brought about by this approach. Containerization ensures consistent
environments across different stages of development, reducing the risks associated with configuration
drift and deployment errors.

Next, we focused on establishing CI/CD pipelines as a crucial step towards automation and
streamlining of the development lifecycle. We explored the integration of security practices early in
the development phases and the utilization of modern tools and platforms like GitHub Actions,
Kubernetes Cluster and remote management tools for edge nodes, such as KubeEdge.

We provided a strategic overview of integrating diverse services and applications. We listed the
key architectural considerations necessary to ensure seamless interaction between different
components of the EMERALDS project. This integration is crucial for supporting the complex data
workflows that will be implemented as part of WP5. Last we provided the main points of integration
with external Analytics as a Service platforms. Specifically, we analysed how platforms like ATOS
Mobility AIaaS and Carto can enhance the capabilities of EMERALDS services through advanced data
management, processing, and visualization tools.

Covering the period M19-M36, the focus will be on concluding the CD infrastructure by providing
additional services such as central load balancer and storage layer, while improving the installation
automation process for public cloud providers. Furthermore, to fully support the Emerald Toolkit, the
Emeralds Hosting Service shall be enhanced to include ML frameworks which will be able to facilitate
the inference process of the Emeralds Services developed under WP4. Last the integration of the
security emeralds developed under “Task 2.3 Security & Data Governance” with the CD platform will
also be part of the “Deliverable D2.3 – Containerized EMERALDS Toolset v2” to support a secure and
trusted environment for the Emeralds Ecosystem.

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

45

 Annex 1: Ethics Checklist and Questionnaire

A. PERSONAL DATA
1. Are personal data going to be processed for the completion of this deliverable?

• If “yes”, do they refer only to individuals connected to project partners οr to
third parties as well?

 No

2. Are “special categories of personal data” going to be processed for this deliverable?
(whereby these include personal data revealing racial or ethnic origin, political opinions,
religious or philosophical beliefs, and trade union membership, as well as, genetic data,
biometric data, data concerning health or data concerning a natural person's sex life or
sexual orientation)

 No

3. Has the consent of the individuals concerned been acquired prior to the processing of their

personal data?
• If “yes”, is it based on the Project’s Informed Consent Form, either on the
provided Template or on other attached herein Template?
• If “no” is it based on a different legal basis?

 N/A

4. In the event of processing of personal data, is the processing:

• obviously “Fair and lawful”, meaning executed in a fair manner and following
consent of the individuals concerned or based on another - acknowledged as
adequate and proportionate as per above - legal basis?
• Performed for a specific (project-related) cause only?
• Executed on the basis of the principle of proportionality and data
minimisation (meaning that only data that are necessary for the processing purposes
are being processed and such deductive reasoning is documented)?
• Based on high-quality, updated and precise personal data?

 N/A

5. Are there any provisions for a storage limitation period of the personal data-in case of

storage- after which they must be erased?

 N/A

6. Are all other lawful requirements for the processing of the data (for example, notification
of the competent Data Protection Authority(s) or undergoing a DPIA procedure and
consulting with the competent DPA, if and where applicable) adhered to and on what
legislative basis are such notifications justified as necessary or dismissed as unnecessary?

 N/A

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

46

7. Have individuals been made aware of their rights on the processing of the personal data as

per the GDPR and the relevant and executive national legislation (particularly the rights to
access, rectify and delete the personal data and their right to lodge a complaint with the
relevant Competent Authority) and if yes, by what demonstrable means (e.g. the informed
consent form as per above or as per other Templates, attached herein?)

 N/A

8. Even if anonymized or pseudonymized or aggregated data are referred to, does the dataset

contain location data that could potentially (even via the combined use of other datasets)
be traced back to individuals? If yes, what specific measures are taken to ensure this data
(i) is anonymized or pseudonymized and (ii) cannot be used to track individuals without
their consent? If no, what is the scientific methodology used to collect and gather said
data?

 N/A

9. In the context of risk assessment, prediction and forecasting, as foreseen in the scope of the

EMERALDS project, during traffic, population movement monitoring or weather events, is
there any risk that personal data could be inadvertently revealed in the event of an
emergency or unusual event, because of the dataset usage, either on its own or combined
with other openly available datasets, triggering identification or unwanted disclosure of
PII? What measures are in place to protect - still identifiable if the dataset allows such
extraction - personal data in these circumstances?

NO

10. For the use case of Trip Characteristics Inference as per the EMERALDS project scope, are

there specific measures to ensure that inferences made about trip characteristics cannot
be linked back to specific individuals or reveal sensitive information about their habits or
routines i.e. by identifying specific individuals’ absence or presence routines whether in
the home or in a professional environment or in other premises?

 NO

11. Are there any potentially personal identifiable information (PII) in the datasets, disclosable
by combination with other datasets, either open data or proprietary (e.g., E-tickets
validation data)? If yes, how is PII adequately anonymized or pseudonymized or how other
datasets that by combination may result in unwanted or illegal disclosures or identification
before any processing takes place?

 NO

B. DATA SECURITY
1. Have proportionate security measures been undertaken for protection of the data, taking

into account project requirements and the nature of the data?
• If yes, brief description of such measures (including physical-world measures,
if any)

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

47

• If yes, is there a data breach notification policy in place within your
organization (including an Incident Response Plan to such a breach)?

NO. At the moment the platforms described in the document do not store any data.

2. Given the large-scale nature of some datasets, are there specific measures in place to protect
included personal data at scale at the data source or in the possession of data processors?

 N/A

3. Regardless of personal data, in the case of Multi-modal integrated traffic management as
defined under the EMERALDS scope, are there specific measures in place to ensure the
availability and integrity of data spanning multiple modes of transport from being disclosed
in other manners than the ones intended and covered under an open data scheme?

N/A

4. Are there specific measures in place to secure sensitive infrastructure data, if present?

 YES. Access tokens for private repositories and access credentials for remove servers shall be
stored on secure and encrypted storage facilities.

C. DATA TRANSFERS
1. Are personal data transfers beyond project partners going to take place for this deliverable?

• If “yes”, do these include transfers to third (non-EU) countries and if what
policies apply?

NO

2. Are personal data transfers to public authorities going to take place for this deliverable?

 NO

3. Do any state authorities have direct or indirect access to personal data processed for this

deliverable?

 NO

3. Taking into account that the Project Coordinator is the “controller” of the processing and

that all other project partners involved in this deliverable are “processors” within the same
contexts, are there any other personal data processing roles further attributed to any third
parties for this deliverable? And if any, do they conformed to the GDPR provisions?

NO

4. Given the geographical diversity of the datasets, are there measures in place to ensure

compliance with specific personal data protection regulations in different jurisdictions i.e.
at the place of the data source establishment as well as at the place of the establishment
of a Data processor?

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

48

N/A

5. Are there additional protocols for data transfers involving sensitive infrastructure data, if

present?

N/A

D. ETHICS AND RELATED ISSUES
1. Are personal data of children going to be processed for this deliverable (ie. “underage”
signified e-tickets)?

 NO

2. Is profiling of identifiable individuals in any way enabled or facilitated for this deliverable?

 NO

3. Are automated decisions for identifiable individuals made or enabled on the basis this
deliverable?

 NO

4. Have partners for this deliverable taken into consideration system architectures of privacy

by design and/or privacy by default, as appropriate?

 YES

5. Have partners for this deliverable taken into consideration gender equality policies or is
there an explicit reasoning that dismisses such risk as unsubstantiated or such need as
irrelevant as per the methodology of work and production of the deliverable?

YES

6. Have partners for this deliverable taken into consideration means of protecting the
confidentiality of the dataset if it is not signified as open data?

N/A

7. Are there additional considerations around the collection and processing of location data
and data that could potentially be used to infer patterns about individuals’ movements?

NO

8. Have partners identified any additional ethical issues related to the processing of sensitive
infrastructure data?

 NO

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

49

9. Are shared economy (ie. “Uber” transfer services or “Lime” Scooters or other solution) or
other shared mobility infrastructures used by the data sources? If yes, are there measures in
place to ensure that the processing of shared mobility data respects privacy rights?

NO

10. In the context of Traffic Flow Data Analytics, are there specific considerations to ensure
that the analysis of traffic flow data does not infringe on privacy rights or reveal sensitive
information about individuals’ movements or routines?

N/A

11. Is the Project taking into account the need for an all people-inclusive policy in the future
within its overall goals and not only the ‘’tech-savvy’’ (i.e. elderly people not familiar with some
tech devices) and does it entail possible proposals for that?

YES

 | Page

This project has received funding from the Horizon Europe R&I programme under the GA No. 101093051

50

References

i Roman, Dumitru, Radu Prodan, Nikolay Nikolov, Ahmet Soylu, Mihhail Matskin, Andrea Marrella, Dragi Kimovski
et al. "Big data pipelines on the computing continuum: tapping the dark data." Computer 55, no. 11 (2022): 74-
84
ii https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143384/
Vaño, R., Lacalle, I., Sowiński, P., S-Julián, R., & Palau, C. E. (2023). Cloud-native workload orchestration at the
edge: A deployment review and future directions. Sensors, 23(4), 2215. Accessed on 15 May 2024 from:
https://www.mdpi.com/1424-8220/23/4/2215
https://training.linuxfoundation.org/blog/opportunities-and-challenges-in-edge-computing-under-kubernetes/

