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Abstract
We present Nock using mainstream programming language theory notations and termi-
nology. The intention is to make Nock more accessible and to outline its use as a compi-
lation target for a high-level functional language.
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1. Introduction
Nock [noca] is a Turing-complete low-level combinator language that is a
compilation target for the Hoon [hoo] programming language. Both Hoon
and Nock are part of the Urbit [urb] project. The purpose of this note is
to present Nock in a more accessible manner, using notation and terminol-
ogy familiar to functional programmers and type theorists. This makes the
specification of Nock more precise, as in fact some statements in [nocb] are
slightly ambiguous.

Recently, Nock has been utilized as a target for the Juvix [Hel24] program-
ming language to enable transparent execution in Anoma [GYB23]. The ver-
sion of Nock presented in this report is used internally by the Juvix compiler.
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2. Nock definition
Definition 1. An atom 𝑎,𝑏, 𝑐 ∈ A is a natural number 𝑛 ∈ N.
Terms 𝑡, 𝑠, 𝑟 ∈ T are defined inductively.

• An atom is a term.

• A cell [𝑡𝑡 ′] is a term for any terms 𝑡, 𝑡 ′.

Nock terms are essentially S-expressions over numeric atoms. For 𝑛 > 2,
we use the notation [𝑡1𝑡2 . . . 𝑡𝑛] to mean [𝑡1 [𝑡2 [. . . [𝑡𝑛−1𝑡𝑛] . . .]]]. In original
Nock terminology [nocb], terms are called “nouns”.

In Nockma (Anoma extension of Nock) the atoms are elements of integer
rings (Z𝑛) or finite fields (F𝑛).
Definition 2. A position 𝜌 is a sequence of letters 𝐿, 𝑅. The empty position is
denoted by 𝜖 .

The subterm of 𝑡 at position 𝜌 , denoted 𝑡 |𝜌 , is defined as expected: 𝑡 |𝜖 , [𝑡1𝑡2] |𝐿𝜌 =
𝑡1 |𝜌 , [𝑡1𝑡2] |𝑅𝜌 = 𝑡2 |𝜌 . Similarly, 𝑡1{𝑡2}𝜌 is defined as the term obtained from 𝑡1
by replacing the subterm at position 𝜌 with 𝑡2.
A position 𝜌 is encoded by a natural number 𝜑 (𝜌) as follows:

• 𝜑 (𝜖) = 1,

• 𝜑 (𝜌𝐿) = 2 ∗ 𝜑 (𝜌),
• 𝜑 (𝜌𝑅) = 2 ∗ 𝜑 (𝜌) + 1.

In Nock, a position 𝜌 is represented by its natural number encoding 𝜑 (𝜌).
For readability, we use 𝜌 and 𝜑 (𝜌) interchangeably.
Definition 3. A Nock program is any Nock term.
Combinators are the numbers defined below. These are used as instruction

opcodes in the Nock programs. We name them for readability.

• @ = 0 is the addressing combinator used to extract a subterm at a given position.
In original Nock terminology,@ is called “slot”.

• Quote = 1 is a quoting combinator – its quoted argument is not evaluated but
returned directly. It can be also seen as analogous to the K combinator from
Combinatory Logic [HS08] implementing the constant function.

• Apply = 2 is an application combinator – it evaluates its arguments and then
evaluates the second result in the context of the first. It can also be seen as
analogous to the S combinator from Combinatory Logic, but with the order of
arguments reversed.

• IsCell = 3 checks if a term is a cell or an atom.

• Inc = 4 increments a natural number atom.
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• Eq = 5 tests terms for equality.

• If = 6 is an if-combinator. In Nock, 0 denotes truth and 1 denotes falsity.

• Seq = 7 implements sequencing of operations. It can also be seen as analo-
gous to the B combinator from Combinatory Logic, only with argument order
reversed.

• Push = 8 implements “stack push”,

• Call = 9 is a method call combinator,

• Replace = 10 is a replacement combinator – it replaces a subterm at a given
position.

• Hint = 11 is a hint combinator – it provides a more efficient (possibly built-in)
implementation for a given Nock program.

In [nocb] the Nock evaluation function is defined by rewriting rules. We
present an equivalent definition in the style of big-step operational semantics
(see e.g. [NK14]).
Definition 4. The relation 𝑠 ∗ 𝑡 ⇒ 𝑡 ′ is defined by the rules in Figure 1. If
𝑠 ∗ 𝑡 ⇒ 𝑡 ′ then 𝑡 evaluates to 𝑡 ′ on 𝑠 . In the figure, 𝑡, 𝑠 are always terms, 𝑎 is
an atom, 𝑛 is a natural number, 𝜌 is a position (encoded by a natural number),
etc.

One can check that 𝑠 ∗ 𝑡 ⇒ 𝑡 ′ is equivalent to ∗[𝑠𝑡] = 𝑡 ′, where ∗[𝑠𝑡] is
theNock interpreter function from [nocb] (assuming an innermost reduction
strategy in [nocb]). In original Nock terminology, 𝑠 is the “subject”, 𝑡 is the
“formula” and 𝑡 ′ is the “product”.

Informally, the relation 𝑠 ∗ 𝑡 ⇒ 𝑡 ′ can be understood as as evaluating 𝑡
with data (stack, environment) 𝑠 , or as evaluating the application of 𝑡 to 𝑠
with result 𝑡 ′. The second interpretation reveals an analogy between Nock
combinators Quote,Apply, Seq and combinators K, S, B from Combinatory
Logic [HS08].
If for given 𝑡, 𝑠 , no finite derivation of 𝑠 ∗ 𝑡 ⇒ 𝑡 ′ can be constructed

for any 𝑡 ′, then the evaluation is undefined – it results in an error (or non-
termination).
The evaluation relation is deterministic (by induction on derivations), i.e.,

if 𝑠 ∗ 𝑡 ⇒ 𝑡 ′ and 𝑠 ∗ 𝑡 ⇒ 𝑡 ′′ then 𝑡 ′ = 𝑡 ′′. Hence, it defines a partial function
from T × T to T .

2.1. Remarks
• The combinators If , Seq, Push, Call, Replace, Hint are not strictly nec-
essary – they can be defined using the other combinators. See [nocb].
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𝑠 ∗ [𝑡1𝑡2] ⇒ 𝑡 ′ 𝑠 ∗ 𝑡3 ⇒ 𝑡 ′′

𝑠 ∗ [[𝑡1𝑡2]𝑡3] ⇒ [𝑡 ′𝑡 ′′]

𝑠 ∗ [@𝜌] ⇒ 𝑠 |𝜌 𝑠 ∗ [Quote 𝑡] ⇒ 𝑡

𝑠 ∗ 𝑡1 ⇒ 𝑡 ′1 𝑠 ∗ 𝑡2 ⇒ 𝑡 ′2 𝑡 ′1 ∗ 𝑡 ′2 ⇒ 𝑡 ′

𝑠 ∗ [Apply 𝑡1 𝑡2] ⇒ 𝑡 ′

𝑠 ∗ 𝑡 ⇒ [𝑡 ′1𝑡 ′2]
𝑠 ∗ [IsCell 𝑡] ⇒ 0

𝑠 ∗ 𝑡 ⇒ 𝑎
𝑠 ∗ [IsCell 𝑡] ⇒ 1

𝑠 ∗ 𝑡 ⇒ 𝑛
𝑠 ∗ [Inc 𝑡] ⇒ 𝑛 + 1

𝑠 ∗ 𝑡1 ⇒ 𝑡 𝑠 ∗ 𝑡2 ⇒ 𝑡
𝑠 ∗ [Eq 𝑡1 𝑡2] ⇒ 0

𝑠 ∗ 𝑡1 ⇒ 𝑡 ′1 𝑠 ∗ 𝑡2 ⇒ 𝑡 ′2 𝑡 ′1 ≠ 𝑡 ′2
𝑠 ∗ [Eq 𝑡1 𝑡2] ⇒ 1

𝑠 ∗ 𝑡0 ⇒ 0 𝑠 ∗ 𝑡1 ⇒ 𝑡 ′1
𝑠 ∗ [If 𝑡0 𝑡1 𝑡2] ⇒ 𝑡 ′1

𝑠 ∗ 𝑡0 ⇒ 1 𝑠 ∗ 𝑡2 ⇒ 𝑡 ′2
𝑠 ∗ [If 𝑡0 𝑡1 𝑡2] ⇒ 𝑡 ′2

𝑠 ∗ 𝑡1 ⇒ 𝑡 ′1 𝑡 ′1 ∗ 𝑡2 ⇒ 𝑡 ′

𝑠 ∗ [Seq 𝑡1 𝑡2] ⇒ 𝑡 ′
𝑠 ∗ 𝑡1 ⇒ 𝑡 ′1 [𝑡 ′1𝑠] ∗ 𝑡2 ⇒ 𝑡 ′

𝑠 ∗ [Push 𝑡1 𝑡2] ⇒ 𝑡 ′
𝑠 ∗ 𝑡 ⇒ 𝑡 ′ 𝑡 ′ ∗ 𝑡 ′|𝜌 ⇒ 𝑡 ′′

𝑠 ∗ [Call 𝜌 𝑡] ⇒ 𝑡 ′′

𝑠 ∗ 𝑡1 ⇒ 𝑡 ′1 𝑠 ∗ 𝑡2 ⇒ 𝑡 ′2
𝑠 ∗ [Replace [𝜌𝑡1] 𝑡2] ⇒ 𝑡 ′2{𝑡 ′1}𝜌

𝑠 ∗ 𝑡2 ⇒ 𝑡 ′2 𝑠 ∗ 𝑡3 ⇒ 𝑡 ′3
𝑠 ∗ [Hint [𝑡1𝑡2] 𝑡2] ⇒ 𝑡 ′3

𝑠 ∗ 𝑡 ⇒ 𝑡 ′

𝑠 ∗ [Hint𝑎 𝑡] ⇒ 𝑡 ′

Figure 1. Nock evaluation semantics

• In the rule for e.g. Inc, in the premise 𝑠 ∗ 𝑡 ⇒ 𝑛 the term 𝑛 is required
to be a numeric atom. If the evaluation of 𝑡 on 𝑠 yields a cell, then the
rule cannot be applied and the evaluation of [Inc 𝑡] on 𝑠 is undefined.
Similar remarks apply to all other rules, with 𝑡, 𝑠 being arbitrary terms,
𝑎 an atom, 𝜌 a numeric representation of a position, etc.

• In the rule for@, if 𝜌 is not a valid position of 𝑠 , then the rule cannot be
applied and the evaluation of [@𝜌] on 𝑠 is undefined. Similarly with
the rules for Replace and Call.

• In the first rule for the hint combinator Hint, the result 𝑡 ′2 of evaluat-
ing 𝑡2 is not used. However, the presence of 𝑠 ∗ 𝑡2 ⇒ 𝑡 ′2 as a premise
ensures that the evaluation of [Hint [𝑡1𝑡2] 𝑡3] on 𝑠 is defined only if the
evaluation of 𝑡2 on 𝑠 is defined.

• In [Hint 𝑡1 𝑡2], the term 𝑡1 is a (more efficient) hint (a built-in if 𝑡1 is an
atom) that has the same semantics as 𝑡2.
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3. Compilation to Nock
In the Juvix compiler, the Nock code is generated from the JuvixTree inter-
mediate representation [Cza24, Section 4.2]. The evaluation argument 𝑠 con-
tains a stack of locally let-bound values, argument values, function library
pointer, etc. The generated Nock code performs “low-level” manipulations
on 𝑠 , extracting the required values, and updating the stack. This is fea-
sible thanks to the addressing @ (slot) and replacement Replace combina-
tors, which allow “random access” into 𝑠 . Function calls are implemented
with Call. Let-expressions are implemented with Push.
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