
Anoma Research Topics | TECHNICAL REPORT

Nock for Functional Programmers
Lukasz Czajkaa

aHeliax AG

* E-Mail: lukasz@heliax.dev

Abstract
We present Nock using mainstream programming language theory notations and termi-
nology. The intention is to make Nock more accessible and to outline its use as a compi-
lation target for a high-level functional language.

Keywords: Nock ; combinators ; big-step operational semantics ;

(Received: August 21, 2023; Version: December 18, 2024)

Contents

1 Introduction 1

2 Nock definition 2
2.1 Remarks . 3

3 Compilation to Nock 5

Acknowledgements 5

References 5

1. Introduction
Nock [noca] is a Turing-complete low-level combinator language that is a
compilation target for the Hoon [hoo] programming language. Both Hoon
and Nock are part of the Urbit [urb] project. The purpose of this note is
to present Nock in a more accessible manner, using notation and terminol-
ogy familiar to functional programmers and type theorists. This makes the
specification of Nock more precise, as in fact some statements in [nocb] are
slightly ambiguous.

Recently, Nock has been utilized as a target for the Juvix [Hel24] program-
ming language to enable transparent execution in Anoma [GYB23]. The ver-
sion of Nock presented in this report is used internally by the Juvix compiler.

DOI: 10.5281/zenodo.14511714 Anoma Research Topics | December 18, 2024 | 1–5

https://art.anoma.net
https://dx.doi.org/10.5281/zenodo.14511714

2. Nock definition
Definition 1. An atom 𝑎,𝑏, 𝑐 ∈ A is a natural number 𝑛 ∈ N.
Terms 𝑡, 𝑠, 𝑟 ∈ T are defined inductively.

• An atom is a term.

• A cell [𝑡𝑡 ′] is a term for any terms 𝑡, 𝑡 ′.

Nock terms are essentially S-expressions over numeric atoms. For 𝑛 > 2,
we use the notation [𝑡1𝑡2 . . . 𝑡𝑛] to mean [𝑡1 [𝑡2 [. . . [𝑡𝑛−1𝑡𝑛] . . .]]]. In original
Nock terminology [nocb], terms are called “nouns”.

In Nockma (Anoma extension of Nock) the atoms are elements of integer
rings (Z𝑛) or finite fields (F𝑛).
Definition 2. A position 𝜌 is a sequence of letters 𝐿, 𝑅. The empty position is
denoted by 𝜖 .

The subterm of 𝑡 at position 𝜌 , denoted 𝑡 |𝜌 , is defined as expected: 𝑡 |𝜖 , [𝑡1𝑡2] |𝐿𝜌 =
𝑡1 |𝜌 , [𝑡1𝑡2] |𝑅𝜌 = 𝑡2 |𝜌 . Similarly, 𝑡1{𝑡2}𝜌 is defined as the term obtained from 𝑡1
by replacing the subterm at position 𝜌 with 𝑡2.
A position 𝜌 is encoded by a natural number 𝜑 (𝜌) as follows:

• 𝜑 (𝜖) = 1,

• 𝜑 (𝜌𝐿) = 2 ∗ 𝜑 (𝜌),
• 𝜑 (𝜌𝑅) = 2 ∗ 𝜑 (𝜌) + 1.

In Nock, a position 𝜌 is represented by its natural number encoding 𝜑 (𝜌).
For readability, we use 𝜌 and 𝜑 (𝜌) interchangeably.
Definition 3. A Nock program is any Nock term.
Combinators are the numbers defined below. These are used as instruction

opcodes in the Nock programs. We name them for readability.

• @ = 0 is the addressing combinator used to extract a subterm at a given position.
In original Nock terminology,@ is called “slot”.

• Quote = 1 is a quoting combinator – its quoted argument is not evaluated but
returned directly. It can be also seen as analogous to the K combinator from
Combinatory Logic [HS08] implementing the constant function.

• Apply = 2 is an application combinator – it evaluates its arguments and then
evaluates the second result in the context of the first. It can also be seen as
analogous to the S combinator from Combinatory Logic, but with the order of
arguments reversed.

• IsCell = 3 checks if a term is a cell or an atom.

• Inc = 4 increments a natural number atom.

DOI: 10.5281/zenodo.14511714 Anoma Research Topics | December 18, 2024 | 2

https://dx.doi.org/10.5281/zenodo.14511714
http://art.anoma.net

• Eq = 5 tests terms for equality.

• If = 6 is an if-combinator. In Nock, 0 denotes truth and 1 denotes falsity.

• Seq = 7 implements sequencing of operations. It can also be seen as analo-
gous to the B combinator from Combinatory Logic, only with argument order
reversed.

• Push = 8 implements “stack push”,

• Call = 9 is a method call combinator,

• Replace = 10 is a replacement combinator – it replaces a subterm at a given
position.

• Hint = 11 is a hint combinator – it provides a more efficient (possibly built-in)
implementation for a given Nock program.

In [nocb] the Nock evaluation function is defined by rewriting rules. We
present an equivalent definition in the style of big-step operational semantics
(see e.g. [NK14]).
Definition 4. The relation 𝑠 ∗ 𝑡 ⇒ 𝑡 ′ is defined by the rules in Figure 1. If
𝑠 ∗ 𝑡 ⇒ 𝑡 ′ then 𝑡 evaluates to 𝑡 ′ on 𝑠 . In the figure, 𝑡, 𝑠 are always terms, 𝑎 is
an atom, 𝑛 is a natural number, 𝜌 is a position (encoded by a natural number),
etc.

One can check that 𝑠 ∗ 𝑡 ⇒ 𝑡 ′ is equivalent to ∗[𝑠𝑡] = 𝑡 ′, where ∗[𝑠𝑡] is
theNock interpreter function from [nocb] (assuming an innermost reduction
strategy in [nocb]). In original Nock terminology, 𝑠 is the “subject”, 𝑡 is the
“formula” and 𝑡 ′ is the “product”.

Informally, the relation 𝑠 ∗ 𝑡 ⇒ 𝑡 ′ can be understood as as evaluating 𝑡
with data (stack, environment) 𝑠 , or as evaluating the application of 𝑡 to 𝑠
with result 𝑡 ′. The second interpretation reveals an analogy between Nock
combinators Quote,Apply, Seq and combinators K, S, B from Combinatory
Logic [HS08].
If for given 𝑡, 𝑠 , no finite derivation of 𝑠 ∗ 𝑡 ⇒ 𝑡 ′ can be constructed

for any 𝑡 ′, then the evaluation is undefined – it results in an error (or non-
termination).
The evaluation relation is deterministic (by induction on derivations), i.e.,

if 𝑠 ∗ 𝑡 ⇒ 𝑡 ′ and 𝑠 ∗ 𝑡 ⇒ 𝑡 ′′ then 𝑡 ′ = 𝑡 ′′. Hence, it defines a partial function
from T × T to T .

2.1. Remarks
• The combinators If , Seq, Push, Call, Replace, Hint are not strictly nec-
essary – they can be defined using the other combinators. See [nocb].

DOI: 10.5281/zenodo.14511714 Anoma Research Topics | December 18, 2024 | 3

https://dx.doi.org/10.5281/zenodo.14511714
http://art.anoma.net

𝑠 ∗ [𝑡1𝑡2] ⇒ 𝑡 ′ 𝑠 ∗ 𝑡3 ⇒ 𝑡 ′′

𝑠 ∗ [[𝑡1𝑡2]𝑡3] ⇒ [𝑡 ′𝑡 ′′]

𝑠 ∗ [@𝜌] ⇒ 𝑠 |𝜌 𝑠 ∗ [Quote 𝑡] ⇒ 𝑡

𝑠 ∗ 𝑡1 ⇒ 𝑡 ′1 𝑠 ∗ 𝑡2 ⇒ 𝑡 ′2 𝑡 ′1 ∗ 𝑡 ′2 ⇒ 𝑡 ′

𝑠 ∗ [Apply 𝑡1 𝑡2] ⇒ 𝑡 ′

𝑠 ∗ 𝑡 ⇒ [𝑡 ′1𝑡 ′2]
𝑠 ∗ [IsCell 𝑡] ⇒ 0

𝑠 ∗ 𝑡 ⇒ 𝑎
𝑠 ∗ [IsCell 𝑡] ⇒ 1

𝑠 ∗ 𝑡 ⇒ 𝑛
𝑠 ∗ [Inc 𝑡] ⇒ 𝑛 + 1

𝑠 ∗ 𝑡1 ⇒ 𝑡 𝑠 ∗ 𝑡2 ⇒ 𝑡
𝑠 ∗ [Eq 𝑡1 𝑡2] ⇒ 0

𝑠 ∗ 𝑡1 ⇒ 𝑡 ′1 𝑠 ∗ 𝑡2 ⇒ 𝑡 ′2 𝑡 ′1 ≠ 𝑡 ′2
𝑠 ∗ [Eq 𝑡1 𝑡2] ⇒ 1

𝑠 ∗ 𝑡0 ⇒ 0 𝑠 ∗ 𝑡1 ⇒ 𝑡 ′1
𝑠 ∗ [If 𝑡0 𝑡1 𝑡2] ⇒ 𝑡 ′1

𝑠 ∗ 𝑡0 ⇒ 1 𝑠 ∗ 𝑡2 ⇒ 𝑡 ′2
𝑠 ∗ [If 𝑡0 𝑡1 𝑡2] ⇒ 𝑡 ′2

𝑠 ∗ 𝑡1 ⇒ 𝑡 ′1 𝑡 ′1 ∗ 𝑡2 ⇒ 𝑡 ′

𝑠 ∗ [Seq 𝑡1 𝑡2] ⇒ 𝑡 ′
𝑠 ∗ 𝑡1 ⇒ 𝑡 ′1 [𝑡 ′1𝑠] ∗ 𝑡2 ⇒ 𝑡 ′

𝑠 ∗ [Push 𝑡1 𝑡2] ⇒ 𝑡 ′
𝑠 ∗ 𝑡 ⇒ 𝑡 ′ 𝑡 ′ ∗ 𝑡 ′|𝜌 ⇒ 𝑡 ′′

𝑠 ∗ [Call 𝜌 𝑡] ⇒ 𝑡 ′′

𝑠 ∗ 𝑡1 ⇒ 𝑡 ′1 𝑠 ∗ 𝑡2 ⇒ 𝑡 ′2
𝑠 ∗ [Replace [𝜌𝑡1] 𝑡2] ⇒ 𝑡 ′2{𝑡 ′1}𝜌

𝑠 ∗ 𝑡2 ⇒ 𝑡 ′2 𝑠 ∗ 𝑡3 ⇒ 𝑡 ′3
𝑠 ∗ [Hint [𝑡1𝑡2] 𝑡2] ⇒ 𝑡 ′3

𝑠 ∗ 𝑡 ⇒ 𝑡 ′

𝑠 ∗ [Hint𝑎 𝑡] ⇒ 𝑡 ′

Figure 1. Nock evaluation semantics

• In the rule for e.g. Inc, in the premise 𝑠 ∗ 𝑡 ⇒ 𝑛 the term 𝑛 is required
to be a numeric atom. If the evaluation of 𝑡 on 𝑠 yields a cell, then the
rule cannot be applied and the evaluation of [Inc 𝑡] on 𝑠 is undefined.
Similar remarks apply to all other rules, with 𝑡, 𝑠 being arbitrary terms,
𝑎 an atom, 𝜌 a numeric representation of a position, etc.

• In the rule for@, if 𝜌 is not a valid position of 𝑠 , then the rule cannot be
applied and the evaluation of [@𝜌] on 𝑠 is undefined. Similarly with
the rules for Replace and Call.

• In the first rule for the hint combinator Hint, the result 𝑡 ′2 of evaluat-
ing 𝑡2 is not used. However, the presence of 𝑠 ∗ 𝑡2 ⇒ 𝑡 ′2 as a premise
ensures that the evaluation of [Hint [𝑡1𝑡2] 𝑡3] on 𝑠 is defined only if the
evaluation of 𝑡2 on 𝑠 is defined.

• In [Hint 𝑡1 𝑡2], the term 𝑡1 is a (more efficient) hint (a built-in if 𝑡1 is an
atom) that has the same semantics as 𝑡2.

DOI: 10.5281/zenodo.14511714 Anoma Research Topics | December 18, 2024 | 4

https://dx.doi.org/10.5281/zenodo.14511714
http://art.anoma.net

3. Compilation to Nock
In the Juvix compiler, the Nock code is generated from the JuvixTree inter-
mediate representation [Cza24, Section 4.2]. The evaluation argument 𝑠 con-
tains a stack of locally let-bound values, argument values, function library
pointer, etc. The generated Nock code performs “low-level” manipulations
on 𝑠 , extracting the required values, and updating the stack. This is fea-
sible thanks to the addressing @ (slot) and replacement Replace combina-
tors, which allow “random access” into 𝑠 . Function calls are implemented
with Call. Let-expressions are implemented with Push.

Acknowledgements
The present report is only a reformulation of the Nock specification using
terminology from mainstream programming language theory. The gener-
ation of the Nock code from JuvixTree mentioned in the last section was
implemented by Paul Cadman and Jan Mas Rovira.

References
Cza24. Lukasz Czajka. Compiling Juvix to Cairo assembly. Anoma Research Topics, Sep

2024. doi:10.5281/zenodo.13739343. (cit. on p. 5.)
GYB23. Christopher Goes, Awa Sun Yin, and Adrian Brink. Anoma: a unified architec-

ture for full-stack decentralised applications. Anoma Research Topics, Aug 2023.
URL: https://doi.org/10.5281/zenodo.8279841, doi:10.5281/zenodo.8279842. (cit.
on p. 1.)

Hel24. Heliax AG. Juvix Compiler, 2024. URL: https://github.com/anoma/juvix/. (cit. on
p. 1.)

hoo. Hoon. https://docs.urbit.org/language/hoon/. (cit. on p. 1.)
HS08. J. R. Hindley and J. P. Seldin. Lambda-Calculus and Combinators: An Introduction.

Cambridge University Press, 2 edition, 2008. (cit. on pp. 2 and 3.)
NK14. T. Nipkow and G. Klein. Concrete Semantics with Isabelle/HOL. Springer, 2014. (cit.

on p. 3.)
noca. Nock. https://docs.urbit.org/language/nock/. (cit. on p. 1.)
nocb. Nock Definition. https://docs.urbit.org/language/nock/reference/definition. (cit. on

pp. 1, 2, and 3.)
urb. Urbit. https://docs.urbit.org/. (cit. on p. 1.)

DOI: 10.5281/zenodo.14511714 Anoma Research Topics | December 18, 2024 | 5

https://doi.org/10.5281/zenodo.13739343
https://doi.org/10.5281/zenodo.8279841
https://doi.org/10.5281/zenodo.8279842
https://github.com/anoma/juvix/
https://docs.urbit.org/language/hoon/
https://docs.urbit.org/language/nock/
https://docs.urbit.org/language/nock/reference/definition
https://docs.urbit.org/
https://dx.doi.org/10.5281/zenodo.14511714
http://art.anoma.net

	Introduction
	Nock definition
	Remarks

	Compilation to Nock
	Acknowledgements
	References

