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Abstract
The Zeta Function and one of its analytic continuations are defined as follows:

∀s ∈ C | Re s > 1,  # s =( ) ( ) ∑∞
n=1

1
ns

∀s ∈ C ⧵ 1 +  | k ∈ Z ,  # s = ,  where ' s =2(ik
ln 2( ) ( ) ' s1 - 2( )1-s ( ) ∑∞

n=1
-1
n

( )n-1
s

The Riemann Hypothesis states the following, for all the nontrivial zeros:# s = 0 ⟹  Re s =( ) ( ) 12
It has already been proved that  for all the nontrivial zeros.Re s ∈ 0, 1( ) ] [
 
Firstly, for  and , we'll prove that:a = Re s( ) b = Im s( )

# s = 0 ⇒ ' s = 0 ⇔ + 2 ×  0 as n +∞( ) ( ) ∑n
k=1

1
k2a ∑n-1

k=1 ∑nj=k+1
-1 b k / j

kj
( )k+j-2 cos( ln( ))( )a → →

And since , this implies that there exists a map  satisfying  for 
all  sufficiently large, and for which:

∀x ∈ R,  - 1 ⩽ x ⩽ 1cos( ) rn -1 ⩽ r ⩽ 1nn
+ 2r ×  0 as n +∞∑n

k=1
1
k2a n ∑n-1

k=1 ∑nj=k+1
1
kj( )a → →

Secondly, by reformulating it as a problem of quadratic equations, we will figure out that this holds true 

only if  where , and therefore, 

that 

∀n ∈ N ⧵ ⟦0, 3⟧,  r ∈ - , - ⧵ -n 1
n - 1 1

n - 3 1
n - 2 ⟦0, 3⟧ = 0, 1, 2, 3{ }

r ∼ -  as n +∞n 1
n →

And through various asymptotic equivalences, we will get: 

- × 0 as n +∞∑n
k=1

1
k2a 1

n ∑n
k=1

1
ka

2 → →
Finally, from there, we'll consider  as a map  converging to a real number 

, rather than considering it as a fixed value (since we're dealing with infinity).
a = Re s( ) a = Re sn ( n)a ∈ 0, 1+∞ ] [

It is for convenience that we denote .a = a ∈ 0, 1limn +∞→ n +∞ ] [
Then we'll approximate these two sums with integrals depending on ,a+∞



and we shall distinguish three different cases:

• a ∈ 0,+∞ ] 12[
• a ∈ , 1+∞ ]12 [
• a =+∞ 12

And conclude that the only case that is logically consistent is when .a =+∞ 12
 
1 Simplifying the expression
 
First of all, for the sake of simplification, let's write  where  and ,s = a + ib a = Re s( ) b = Im s( )
We can write the Eta function as follows: 
 

' s = = =( ) ∑∞
n=1

-1
n

( )n-1
s ∑∞

n=1
-1 n

n
( )n-1 -ib

a ∑∞
n=1

-1 e
n

( )n-1 -ib nln( )
a

' s = + i×( ) ∑∞
n=1

-1 -b n
n

( )n-1 cos( ln( ))
a ∑∞

n=1
-1 -b n

n
( )n-1 sin( ln( ))

a

' s = - i×( ) ∑∞
n=1

-1 b n
n

( )n-1 cos( ln( ))
a ∑∞

n=1
-1 b n

n
( )n-1 sin( ln( ))

a
 

If we assume , then by the expression of its analytic continuation , we also 

have  and then  is null too:

# s = 0( ) # s =( ) ' s1 - 2( )1-s' s = 0( ) |' s |( ) 2
|' s | = + = 0( ) 2 ∑∞

n=1
-1 b n

n
( )n-1 cos( ln( ))

a
2 ∑∞

n=1
-1 b n

n
( )n-1 sin( ln( ))

a
2

thus as n +∞,  + 0→ ∑n
k=1

-1 b k
k

( )k-1 cos( ln( ))
a

2 ∑n
k=1

-1 b k
k

( )k-1 sin( ln( ))
a

2 →
⟺ + 0 as n +∞∑n

k=1∑nj=1
-1 b k b j

kj
( )k+j-2 cos( ln( ))cos( ln( ))( )a -1 b k b j

kj
( )k+j-2 sin( ln( ))sin( ln( ))( )a → →

⟺ -1 + 0 as n +∞∑n
k=1∑nj=1 ( )k+j-2 b k b j

kj
cos( ln( ))cos( ln( ))( )a b k b j

kj
sin( ln( ))sin( ln( ))( )a → →

⟺ -1  0 as n +∞∑n
k=1∑nj=1 ( )k+j-2 b k - b ln j

kj
cos( ln( ) ( ))( )a → →

⟺  0 as n +∞∑n
k=1∑nj=1

-1 b k / j
kj

( )k+j-2 cos( ln( ))( )a → →



⟺ + 0 as n +∞∑n
k=1

-1
k

( )2k-22a ∑n
k=1∑nj=1j≠k

-1 b k / j
kj

( )k+j-2 cos( ln( ))( )a → →
⟺ + 2 ×  0 as n +∞∑n

k=1
1
k2a ∑n-1

k=1 ∑nj=k+1
-1 b k / j

kj
( )k+j-2 cos( ln( ))( )a → → ∀k, j ∈ ⟦1, n⟧, ∀b ∈ R,  - 1 ⩽ b k / j ⩽ 1cos( ln( )) 

Thus there exists a map  satisfying  for all  sufficiently large, and for which:rn -1 ⩽ r ⩽ 1n n
+ 2r ×  0 as n +∞∑n

k=1
1
k2a n ∑n-1

k=1 ∑nj=k+1
1
kj( )a → →

 
And we end up with what curiously resembles a quadratic equation.
 
2 The "Russian Doll" Quadratic Equations
 
Now let's assume there is  with  so that:x ,..., x ∈ R1 n x = 11

x + 2r × x x = 0∑n
k=1 2k n ∑n-1

k=1 ∑nj=k+1 k j
And let's try and figure out which kind of map  is.rn
But first, let's define  and ∀n ∈ N ,  u = x  ,  v = x x* n ∑n

k=1 2k n ∑n-1
k=1 ∑nj=k+1 k j p = xn ∑n

k=1 k
Our previous equation becomes:
 

u  +  2r v = x + 2r p x + u + 2r v = 0n n n 2n n n-1 n n-1 n n-1
 
And now let's define  and  so that :f( n)n∈N⧵ 0,1{ } g( n)n∈N⧵ 0,1{ } ∀n ∈ N ⧵ 0, 1{ }
 

f u  +  g v = f x + g p x + f u + g v = 0n n n n n 2n n n-1 n n n-1 n n-1
Let's now express the delta  of this equation and find the expressions of and ∆n f  n-1 g  n-1
so that :∆ = f u + g v ⩾ 0n n-1 n-1 n-1 n-1
 ∆ = g p - 4f f u + g v ,n ( n n-1)2 n( n n-1 n n-1)

 p = x  = u + 2v ,2n-1 ∑n-1
k=1 k

2
n-1 n-1

thus ∆ = g p - 4f f u + g v = g u + 2v - 4f f u + g vn ( n n-1)2 n( n n-1 n n-1) 2n( n-1 n-1) n( n n-1 n n-1)∆ = g - 4f u + 2g - 4f g vn 2n 2n n-1 2n n n n-1
 

(1)



We conclude that  and , and we see  is in turn a new quadratic 
equation:

f = g - 4fn-1 2n 2n g = 2g - 4f gn-1 2n n n ∆n
 ∆ = f x + g p x + f u + g vn n-1 2n-1 n-1 n-2 n-1 n-1 n-2 n-1 n-2
 
with a new  for which we must determine the conditions to ensure  and so on until 
(hence the comparison with a Russian doll).

 ∆n-1  ∆ ⩾ 0,n-1 ∆  2
But also, = = = =g

fn-1
n-1

2g - 4f g
g - 4f2n n n2n 2n

2g g - 2f
g - 2f g + 2fn( n n)( n n)( n n) 2g

g + 2fn( n n) 2+ 2
gfnn

gfnn
We observe that each time we calculate a , we actually apply  to the ratio  to 

obtain : .

∆n-k h : x ↦ 2x
x + 2 g

fn-kn-k
g
fn-k-1
n-k-1 ∀k ∈ ⟦1, n - 3⟧,  =g

fn-k-1
n-k-1

2 + 2
gfn-kn-k

gfn-kn-k
In our precise case,  and , so ; our  and  thus become: f = 1n g = 2rn n = 2rg

fnn n fn-1 gn-1
f = 4r - 4 f = 4 r - 1 f = 4 r - 1 r + 1 fn-1 2n 2n 2n 2n ( n )( n ) 2n

g = 2 × 4r - 4 × 2r f = 8 r - r f = 8r r - 1 fn-1 2n n 2n 2n n 2n n( n ) 2n
Thus, .= =g

fn-1
n-1

8r r - 1 f4 r - 1 r + 1 f
n( n ) 2n( n )( n ) 2n

2r
r + 1nn

Now, let's prove by induction that :∀k ∈ ⟦1, n - 2⟧,  =g
fn-kn-k

2r
k× r + 1n

n
Let's assume ,∃k ∈ ⟦1, n - 3⟧,  =g

fn-kn-k
2r

k× r + 1n
n

Then we have:

= h = 2 × × = 2 × 2r ×g
fn-k-1
n-k-1

g
fn-kn-k

2r
k× r + 1n

n
1 + 22r

k×r +1n
n

n 12r + 2 k× r + 1n ( n )
⇔  = h = =g

fn-k-1
n-k-1

g
fn-kn-k

4r2 r + k× r + 1n( n n ) 2r
k + 1 × r + 1n( ) n

Which proves that .∀k ∈ ⟦1, n - 2⟧,  =g
fn-kn-k

2r
k× r + 1n

n
 
Now,  we can express all the , and above all the following:∀n ∈ N ⧵ ⟦0, 3⟧,  ∀k ∈ ⟦1, n - 2⟧ ∆n-k
 

 (because )∆ = f u + g v = f x + f x + g x x = f x + g x + f3 2 2 2 2 2 22 2 21 2 2 1 2 22 2 2 2 x = 11∆ = g - 4f = 4 × - 1 × f2 22 22 r
n - 2 × r + 12n[( ) n ]2 22



To determine the positivity of  we only focus on the positivity of ,∆2 - 1r
n - 2 × r + 12n[( ) n ]2

for we know  and 4 are always positive.f22
 

- 1 ⩾ 0 ⇔  r ⩾ n - 2 × r + 1 ⇔ 1 - n - 2 r - 2 n - 2 r - 1 ⩾ 0r
n - 2 × r + 12n[( ) n ]2 2n [( ) n ]2 ( )2 2n ( ) n ∆ = 4 n - 2 - 4 × -1 1 - n - 2 = 4 n - 2 + 1 - n - 2 = 4 > 0( )2 ( ) ( )2 ( )2 ( )2

So solutions for all of our previous  exist;∆k 
, the quadratic coefficient  is strictly negative, so:∀n ∈ N ⧵ ⟦0, 3⟧ 1 - n - 2( )2

r ∈ , ⧵ -n 2 n - 2 -2 1 - n - 2( ) 4( )2 2 n - 2 +2 1 - n - 2( ) 4( )2 1
n - 2

which means:

 

r ∈ , ⧵ -n n - 2 - 11 - n - 2( )( )2 n - 2 + 11 - n - 2( )( )2 1
n - 2

⇔ r ∈ , ⧵ -n n - 2 - 11 - n + 2 1 + n - 2( )( )( ) n - 2 + 11 - n + 2 1 + n - 2( )( )( ) 1
n - 2

⇔ r ∈ - , - ⧵ - ,  ∀n ∈ N ⧵ ⟦0, 3⟧n 1
n - 1 1

n - 3 1
n - 2

(we exclude  because of the term  in );- 1
n - 2 r

n - 2 × r + 12n[( ) n ]2 ∆2
Therefore, as n +∞,  r ∼ -→ n 1

n
In conclusion, for the following to be true, as : n +∞→

x + 2r × x x 0∑n
k=1 2k n ∑n-1

k=1 ∑nj=k+1 k j →
We must have it in the following form:

x - × x x 0 as n +∞∑n
k=1 2k 2

n ∑n-1
k=1 ∑nj=k+1 k j → →

Now we could simplify this:

x - × x x = x - × x x∑n
k=1 2k 2

n ∑n-1
k=1 ∑nj=k+1 k j ∑n

k=1 2k 1
n ∑n

k=1∑nj=1j≠k k j

= x - × x x - x = 0∑n
k=1 2k 1

n ∑n
k=1∑nj=1 k j ∑n

k=1 2k



⇔ 1 + × x - × x x = 01
n ∑n

k=1 2k 1
n ∑n

k=1∑nj=1 k j
And as  the asymptotic equivalences give us the following:n +∞→

x - × x x 0 as n +∞∑n
k=1 2k 1

n ∑n
k=1∑nj=1 k j → →

⇔ x - × x 0 as n +∞∑n
k=1 2k 1

n ∑n
k=1 k

2 → →
Now to get back to our problem, if we assume that , then we get, as : ∀k ∈ ⟦1, n⟧,  x =k 1

ka n +∞→
- × 0∑n

k=1
1
k2a 1

n ∑n
k=1

1
ka

2 →
Which is therefore - thanks to all we've seen up to now - the new formula on which we'll work from now 
on, and which is way more easy-to-handle and less obscure than:

+ 2 ×  0 as n +∞∑n
k=1

1
k2a ∑n-1

k=1 ∑nj=k+1
-1 b k / j

kj
( )k+j-2 cos( ln( ))( )a → →

 
3 Comparison Of Asymptotic Behaviours
Now, We got this expression from the previous part: 

- × 0,  as n +∞∑n
k=1

1
k2a 1

n ∑n
k=1

1
ka

2 → →
 
Since we're dealing with infinity, instead of distinguishing the cases for different fixed values for ,a ∈ 0, 1] [
I will speak of a map  converging to a real number in :  with a 

rate of convergence .

a( n)n∈N* 0, 1] [ a a ∈ 0, 1limn +∞→ n → +∞ ] [8 = a - an n +∞
 
The sums with their corrections (obtained via Taylor expansions) become, as :n +∞→

- 28 - × - 8 0∑n
k=1

1
k2a+∞ n∑nk=1

k
k
ln( )2a+∞ 1

n ∑n
k=1

1
ka+∞ n∑nk=1

k
k
ln( )
a+∞

2 →
The correction terms can be ignored for a fast convergence of ;an
We'll deal with fast and slow convergences.

 
It has already been well-established in the literature [1, 2] that  for all the nontrivial zeros, so 

  and then the squared sum can be approximated with the following squared integral as 
follows if  converges fastly to its limit:

a ∈ 0, 1+∞ ] [1 - a > 0+∞ an



dt = ∼  as n +∞n
1∫ 1
ta

2 n - 11 - a
1-a 2

( )2 n1 - a
2-2a( )2 →

 to obtain the following (I omit the  index of  for convenience in these calculations):n an
∀a ∈ 0, 1  and as n +∞,  × ∼ × =] [ → 1

n ∑n
k=1

1
ka

2 1
n

n1 - a
2-2a( )2 n1 - a

1-2a( )2
And for a slow convergence, the sum of the correction term added in the squared sum:

∀n ∈ N , dt ⩽ ⩽ 1 + dt* 1∫n+1 t
t
ln( )
a+∞ ∑n

k=1
k

k
ln( )
a+∞ 2∫n+1 t - 1

t - 1ln( )( )a+∞
with dt = -n

1∫ t
t
ln( )
a+∞ n n1 - a

ln( ) 1-a+∞
+∞ n - 11 - a

1-a+∞( )2
Therefore, since  we get the following asymptotic equivalence:1 - a > 0+∞ ∼ dt ∼ -  as n +∞∑n

k=1
k

k
ln( )
a+∞

n
1∫ t

t
ln( )
a+∞

n n1 - a
ln( ) 1-a+∞

+∞ n1 - a
1-a+∞( )2 →

 
 
As to the sum of squares, for a fast convergence:

∀n ∈ N , dt ⩽ ⩽ 1 + dt * 1∫n+1 1
t2a ∑n

k=1
1
k2a 2∫n+1 1

t - 1( )2a
And the sum of the correction term added for a slow convergence:

∀n ∈ N , dt ⩽ ⩽ 1 + dt * 1∫n+1 t
t
ln( )2a+∞ ∑n

k=1
k

k
ln( )2a+∞ 2∫n+1 t - 1

t - 1ln( )( )2a+∞

So ∃: ∈ 0, 1  | [ ] ∼ : + dt as n +∞∑n
k=1

k
k
ln( )2a+∞

n
1∫ t
t
ln( )2a+∞ →

We get to distinguish  and  for the sum of squares.a ≠+∞ 12 a =+∞ 12
 

If :a ≠+∞ 12
Fast convergence:

⩽  ⩽ 1 +n + 1 - 11 - 2a( )1-2a ∑n
k=1

1
k2a n + 1 - 1 - 2 - 11 - 2a( )1-2a ( )1-2a

 
(I skipped the details of variable substitution on the right side)
 
We then obtain the following asymptotic equivalences, as :n +∞→



⩽  ⩽ 1 +n - 11 - 2a1-2a ∑n
k=1

1
k2a n - 11 - 2a1-2a

Which means that as n +∞, ∃; ∈ 0, 1 , ∼ ; +→ [ ] ∑n
k=1

1
k2a n - 11 - 2a1-2a

 
Sum of the correction term added for a slow convergence (asymptotic equivalent as ):n +∞→

∃: ∈ 0, 1  | ∼ dt + : = - + :[ ] ∑n
k=1

k
k
ln( )2a+∞

n
1∫ t
t
ln( )2a+∞

n n1 - 2aln( ) 1-2a+∞
+∞ n - 11 - 2a1-2a+∞( +∞)2

If : a =+∞ 12
Fast convergence:

∼ n  as n +∞∑n
k=1

1
k2a ln( ) →

 
Sum of the correction term for a slow convergence (asymptotic equivalent as ):n +∞→

∼ dt as n +∞∑n
k=1

k
k
ln( )2a+∞

n
1∫ t

t
ln( ) →

dt = n -n
1∫ t

t
ln( ) ln( )2 n

1∫ t
t

ln( )
⇔ dt =n

1∫ t
t

ln( ) n2ln( )2
 
We therefore have three different cases:

• a ∈ 0,+∞ ] 12[
• a ∈ , 1+∞ ]12 [
• a =+∞ 12

 

Case :a ∈ 0,+∞ ] 12[
If  converges fastly enough to its limit, we can take the following for granted:an

 so  grows unboundedly as , so:1 - 2a > 0+∞ n1-2a n +∞→
∼  as n +∞∑n

k=1
1
k2a n1 - 2a1-2a →

Thus our expression:



- 0 as n +∞∑n
k=1

1
k2a n1 - a

1-2a( )2 → →
becomes, as :n +∞→

- 0 ⇔ 1 - a = 1 - 2a ⇔ 1 - 2a + a = 1 - 2an1 - 2a1-2a n1 - a
1-2a( )2 → ( +∞)2 +∞ +∞ 2+∞ +∞

, which contradicts .⇔ a = 0 ⇔ a = 02+∞ +∞ a ∈ 0,+∞ ] 12[
If the convergence is slow, the expression with the correction terms is as follows:
As :n +∞→

- - + - 0n1 - 2a1-2a+∞
+∞

28 n n1 - 2an ln( ) 1-2a+∞
+∞ n1 - a

1-2a+∞( +∞)2 28 n n1 - a
n ln( ) 1-2a+∞( +∞)2 8 n n1 - a

2n ln( )2 1-2a+∞( +∞)2 →
⇔ n - - + - 01-2a+∞ 11 - 2a+∞

28 n1 - 2an ln( )
+∞ 11 - a( +∞)2 28 n1 - a

n ln( )( +∞)2 8 n1 - a
2n ln( )2( +∞)2 → which necessitates :

- 01 - 28 n1 - 2an ln( )
+∞

1 - 28 n + 8 n1 - a
n ln( ) 2n ln( )2( +∞)2 →

⇔ - 01 - a1 - 2a( +∞)2
+∞

1 - 28 n + 8 n1 - 28 n
n ln( ) 2n ln( )2

n ln( ) →
⇔ - 0a1 - 2a2+∞+∞

8 n1 - 28 n
2n ln( )2

n ln( ) → for < = 8 n ,  this means :n ln( )a - 2a < - 1 - 2a < 0 as n +∞2+∞ 2+∞ ( +∞) 2 → →∆ = 4a + 4a 1 - 2a = 4a 1 - a > 04+∞ 2+∞ 2+∞ 2+∞ 2+∞
This equation admits two real solutions, let's not delve into the details but just call them  and , (I'll 
write  for both to simplify), and just keep in mind that epsilon can then be expressed as:

c1 c2c
< ∈ c , c ⇔ 8 ∈ ,{ 1 2 } n c

n1ln( ) c
n2ln( )

Actually, since we only retained the dominant terms of the sums multiplying  and , we neglected the 
following ones:

8n 82n
n 2 - 8 + - 81-2a+∞ 11 - 2a( +∞)2 11 - a( +∞)3 n 2 n1 - a

ln( )( +∞)3 11 - a( +∞)4 2n
And these stay hidden in the parenthesis while  vanishes for 

 (I'll write  not to repeat both each time).

-1 - 28 n1 - 2an ln( )
+∞

1 - 28 n + 8 n1 - a
n ln( ) 2n ln( )2( +∞)2

8 ∈ ,n
c
n1ln( ) c

n2ln( ) 8 =n
c
nln( )



 
As a consequence, in the end, while this disappears:

n - - + - 01-2a+∞ 11 - 2a+∞ 2c1 - 2a+∞ 11 - a( +∞)2 2c1 - a( +∞)2 c1 - a
2( +∞)2 ⏫⏪⏪⏪n +∞→

We are left with this:

n + - - 01-2a+∞ 2c
nln( ) c1 - a( +∞)3 11 - 2a( +∞)2 11 - a( +∞)3 c

n 1 - a
2ln( )2( +∞)4 ⏫⏪⏪⏪n +∞→

And this is impossible because, if ,  and , so this 

can never tend to , and we have a contradiction here.

1 - 2a > 0+∞ n = o nln( ) 1-2a+∞ n = o nln( )2 1-2a+∞0
 
(In the following versions, I may make  and  explicit).c1 c2
 
For all the Taylor expansions of order , we'll get something of the following form:p ∈ N | p ⩾ 1

order p ∈ N : for q ∈ ⟦0, 2p⟧ and y ∈ R :* q 
n y + 8 n y + o n  + ... + 8 n y + o n 0,1-2a+∞ 0 n(ln( ) 1 (ln( ))) 2pn ln( )2p 2p ln( )2p ⏫⏪⏪⏪n +∞→

 
a polynomial where we are able to set the unknow as , and may find one or more real roots 

as we did for the expansion of order , we shall then have  again (for 

simplification, this single  denotes any root of the polynomial when we use an expansion of order  if 
they exist).

< = 8 nn ln( )1 8 = ,  with d ∈ Rn d
npln( ) p

dp p
This way, in the end, the parenthesis itself may tend to  (if roots exist for the polynomial), but because of 
the "hidden" terms denoted by each , we would anyway be left with:

0o nln( )q
n d  + ... + d + ... + 01-2a+∞ p

w
n1,1ln( ) 2pp w

n2p,1ln( ) w
n2p,2pln( )2p ⏫⏪⏪⏪n +∞→

with w ∈ R for k, j ∈ ⟦1, 2p⟧k,j ( ) 2
And this can't tend to  because  and then .0 1 - 2a > 0+∞ ∀q ∈ ⟦0, 2p⟧,  n = o nln( )q 1-2a+∞
A situation similar to that of the expansion of order .1
 

Case :a ∈ , 1+∞ ]12 [
If  converges fastly enough to its limit, we can take the following for granted:an
As n +∞,  ∃; ∈ 0, 1 , ∼ ; +→ [ ] ∑n

k=1
1
k2a n - 11 - 2a1-2a

In this case, ,1 - 2a < 0+∞
Therefore as  and then  becomes:n +∞, ; +→ ∑n

k=1
1
k2a → 12a - 1 - 0∑n

k=1
1
k2a n1 - a

1-2a( )2 ⏫⏪⏪⏪n +∞→

 

 

 

 

 



, and since  this means ; + - 012a - 1 n1 - a
1-2a( )2 ⏫⏪⏪⏪n +∞→ 1 - 2a < 0+∞ ; + = 012a - 1

 because  while  for 

, which contradicts .

⇔ 2a - 1 ; + 1 = 0 ⇔ 2a; = ; - 1 ⇔ a = ⩽ 0( ) +∞ ; - 12; ; - 1 ⩽ 0 2; ⩾ 0; ∈ 0, 1[ ] a ∈ , 1+∞ ]12 [
 
If the convergence is slow, the expression with the correction terms is as follows:

; + - 28 + : - - 012a - 1+∞ n 11 - 2a( +∞)2 1
n

n1 - a
1-a+∞

+∞
8 n n1 - an ln( ) 1-a+∞ 2

⏫⏪⏪⏪n +∞→
where ; thus  vanishes anyway:: ∈ 0, 1[ ] 8 0 n ⏫⏪⏪⏪n +∞→ -28 + :n 11 - 2a( +∞)2
; + - + - 012a - 1+∞ n1 - a

1-2a+∞( +∞)2 28 n n1 - a
n ln( ) 1-2a+∞( +∞)2 8 n n1 - a

2n ln( )2 1-2a+∞( +∞)2 ⏫⏪⏪⏪n +∞→
and , then:n 01-2a+∞ ⏫⏪⏪⏪n +∞→

 which means  which contradicts  once again.; + = 012a - 1+∞ a = ⩽ 0+∞ ; - 12; a ∈ , 1+∞ ]12 [
 
The same thing happens for all the expansions of order :p ∈ N | p ⩾ 1
Same as the first-order approximation, since , all the powers of  will be multiplied by 

a constant value and since , the Taylor expansion of any order would leave us only with 

, and we'll end up with the same  contradicting  .

n 01-2a+∞ ⏫⏪⏪⏪n +∞→ 8n8 0n ⏫⏪⏪⏪n +∞→; + = 012a - 1+∞ a = ⩽ 0+∞ ; - 12; a ∈ , 1+∞ ]12 [
Case :a =+∞ 12
If  converges fastly enough to its limit, we can take the following for granted:an
As , , so  becomes:n +∞→ ∼ n∑n

k=1
1

k2an ln( ) - 0 as n +∞∑n
k=1

1
k2an n1 - a

1-2an( n)2 → →
 

n -  0 as n +∞ln( ) n1 - a
1-2an( n)2 → →

And now, let's reflect upon the conditions for this statement to hold:

• As said earlier, we deal with a map  converging to a real number in  as ,  

in this case, rather than a fixed value , otherwise it would mean that  which 

is absurd,

a( n)n∈N* 0, 1] [ n +∞→ 12
a = 12 n 4limn +∞→ ln( ) →

• , so it doesn't affect the asymptotic behaviour of ,4 as n +∞11 - a( n)2 → → n1-2an

 

 
 

 
 

 
 



•  grows unboundedly as , so we must have  for all  sufficiently large, for 
 to grow unboundedly as  as well,

nln( ) n +∞→ 1 - 2a > 0n nn1-2an n +∞→
• Had we assumed that , we would get  as , 

which is impossible because , therefore this subtraction tends to  and 

not  as ,

∃l > 0 | 1 - 2a = llimn +∞→ n n - 0ln( ) nl
l+12 2 → n +∞→

∀l > 0,  n = o nln( ) l -∞0 n +∞→
• So it is necessary that  be strictly positive for all  sufficiently large while converging to 

 as , in order to adequately "bend"  for it to match , for the subtraction to 
tend to zero,

1 - 2an n0+ n +∞→ n1-2an nln( )
 

You'd think we finished, the problem is, even in this case, the expression of  becomes 

something like , which is too slow a rate of convergence to neglect the correction 

terms; which we ironically did here.

8 = a - an n +∞
8 = -n 2 n

ln n4ln( )
ln( )

 
 
So we're left with one case, our last chance:

If the convergence to  is slow, the equivalence with the correction terms is as follows:
12

 

n - 28 - 0,  as n +∞ln( ) n n2ln( )2 n 1 - 28 n + 8 n
1 -

1-212 n ln( ) 2n ln( )2
12 2 → →

⇔ n 1 - 8 n - 4 1 - 28 n + 8 n 0,  as n +∞ln( )( n ln( )) n ln( ) 2n ln( )2 → →⇔ n - 4 + 8 n - n 8 - 48 n 0,  as n +∞ln( ) ln( ) ln( )2 n 2n ln( )2 → →
 

 is an ideal choice:8 =n 1
nln( )

n - 4 + 8 n - n - 4 nln( ) ln( ) ln( )2 1
nln( ) 1

nln( ) 2 ln( )2
= n - 4 + - - 4ln( ) 8 n

n
ln( )ln( ) n

n
ln( )2ln( )= n - 4 + 8 - n - 4 = 0ln( ) ln( )

 

We have a good .8 = 0 as n +∞n 1
nln( ) ⏫⏪ →

So if  tends to  slowly, this adequate  exists, and voilà, we get the right result.an 12 8n
 is the only limit the map  can reach as , if it hopes to satisfy: 

12 an n +∞→
 



- × 0 as n +∞∑n
k=1

1
k2an 1

n ∑n
k=1

1
kan

2 → →
And we could ideally write  as , for a first-order Taylor expansion.an a = +n 12 1

nln( )
 
What about the Taylor expansions of any order ?p +∞→
We are going determine  and  to figure out our rate of convergence  for which the 

total sums tends to  as  for an infinite order of expansion.

xp yp 8 =n x n + y
n

p ln( ) pln( )20 n +∞→
 
The Taylor expansion of the totals sums is as follows (equivalences as ):n +∞→
 

n + - × +ln( ) ∑p
k=1

-2 8 n
k + 1 !( )k kn ln( )k+1( ) 1

n 1 -
n12 ∑p

k=1
-1 8 n1 - k!( )k kn n ln( )k12

2

=
n + - 4 - 8 ×  - 4 ×ln( ) ∑p

k=1
-2 8 n

k + 1 !( )k kn ln( )k+1( ) ∑p
k=1

-8 n
k!( n)k ln( )k ∑p

k=1∑pj=1
-8 n

k! × j!( n)k+j ln( )k+j

now let's search  and  for  to make the total sum tend to zero,xp yp 8 =n x n + y
n

p ln( ) pln( )2
I spare the details, we have something in the lines of:
 

n 1 + - y - 4 - 8 × - 4 × 0ln( ) ∑p
k=1

-2 x
k + 1 !( )k kp( ) p ∑p

k=1
-1 x
k!( )k kp ∑p

k=1∑pj=1
-1 x
k! × j!( )k+j k+jp ⏫⏪⏪⏪n +∞→

You may ask "how did  get out just like this?", it's because at , we had:yp k = 1
 

- × = - x n - y2 n2ln( )2 x n + y
n

( p ln( ) p)ln( )2 p ln( ) p
 
And that's the only  at which it happens.k
Now we must find  so that ; we'll do as follows:xp n 1 + 0ln( ) ∑p

k=1
-2 x
k + 1 !( )k kp( ) ⏫⏪⏪⏪p +∞→

 

1 + = 0∑p
k=1

-2 x
k + 1 !( )k kp( )

⇔ 1 - = 1 - = 1 - - 1 + 2x = 012x∑pk=1
-2x
k + 1 !( p)k+1( ) 12x ∑p+1

k=2
-2x
k!( p)k 12x ∑p+1

k=0
-2x
k!( p)k p

 

 

(2)

(3)



So as p +∞ :  1 - e - 1 + 2x = 0→ 12x -2xp p⇔ e - 1 + 2x = 2x ⇔ e = 1 ⇔ x = 0-2xp p p -2xp p
 

As a consequence, we're only left with , and then, as , -y - 4 = 0 ⇔ y = 4p p p +∞→ 8 =n 4
nln( )2

 
Therefore, for an infinite order of expansion, we can ideally write:

a = +n 12 4
nln( )2

so an ⏫⏪⏪⏪n +∞→ 12
 

Conclusion:

For any nontrivial zero  s ∈ C ⧵ 1 +  | k ∈ Z , = 02(ik
ln 2( ) limn +∞→ ∑n

k=1
-1
k

( )k-1
s

implies that  be a map of , , the limit of which necessarily is: .Re s( ) n a = Re sn ( n) a =limn +∞→ n 12
 

Therefore, since : # s = 0 ⇒ ' s = = 0( ) ( ) ∑∞
n=1

-1
n

( )n-1
s

For any nontrivial zero .s ∈ C ⧵ 1 +  | k ∈ Z ,  # s = 0 ⟹  Re s =2(ik
ln 2( ) ( ) ( ) 12

This proves the Riemann Hypothesis.
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