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Abstract
The Zeta Function and one of its analytic continuations are defined as follows:

Vs € C| Re(s) > 1, C(s) = Z—

, where 1(s) = E S
n=1

27 _nls)
VSGC\{l mlkez} C(s) = =

The Riemann Hypothesis states the following, for all the nontrivial zeros:
C(s) =0 = Re(s) = =

It has already been proved that Re(s) € ]0, 1] for all the nontrivial zeros.

Firstly, for a = Re(s) and b = Im(s), we'll prove that:

€)= 0= n(s) = O@E—+2><Z 3 CDS2eosOInd /N g 1 e
k=1 j=k+1 (k)"

Andsince Vx € R, -1 < cos(x) < 1, this implies that there exists a map r,, satisfying -1 < r,, < 1 for
all n sufficiently large, and for which:

n

e PP

k=1 k k=1 j=k+1 (k))°

Secondly, by reformulating it as a problem of quadratic equations, we will figure out that this holds true

—0asn— +oo

1 1 1
onlyif Vm e IN\ [0,3], r, € [— , — ] \ {———¢ where [0, 3] = {0, 1, 2, 3}, and therefore,
n-1 n-3 n-—2

1
thatr, ~ ——asn— +oo
n

And through various asymptotic equivalences, we will get:
2

"1 1 (w1
—- ==X E—a —0asn— +oo
=1 k no |k

Finally, from there, we'll consider a = Re(s)_as a map a,, = Re(s,,) converging to a real number
d. € ]0,1[, rather than considering it as a fixed value (since we're dealing with infinity).
It is for convenience that we denote lim a, = a,. € ]0,1].

n— +oo

Then we'll approximate these two sums with integrals depending on g, ,



and we shall distinguish three different cases:

1
* i € ]O/ E[

1

* i € ]E/l[
1
(7 :E

And conclude that the only case that is logically consistent is when a, ., = —

1 Simplifying the expression

First of all, for the sake of simplification, let's write s = a + ib where a = Re(s) and b = Im(s),
We can write the Eta function as follows:

0 )n 1 —zbln(n)

= (—1)"" 1)n-1pib
e
n=1

n=1
B - (=1)"1 cos(—b In(n)) | (-1 1sm( ~b In(n))
n(s) = > +1X 21 —a
_ N ()" cos(bIn(n)) (=1)" sin(b In(n))
n(s) = 2211 r 21 pr
If we assume ((s) = 0, then by the expression of its analytic continuation {(s) = (117(—251_5) we also
have 7(s) = 0 and then |1(s)|? is null too:
2 2
, | % (=1)" 1 cos(b In(n)) O (-1 sin(bIn(n) |
()12 = [2} r ] - 2’; pr ] =0
2 2
e e [Z (1) cosoInG) | [Z (1) sin(b ln(k))J o
= ke k=1 k*
Z Z (-=1)772 cos(b In(k))cos(b ln(])) (=172 sin(b In(k))sin(b In(f)) 0 28 11— 400
k=1 j=1 L9)k (kj)”
— Z Z( )kt 2[cos(b In(k))cos(b ln(])) sin(b In(k))sin(b ln(]))] 045 11— +00
k=1 j=1 (kj)” (kj)“
reio | cOs(bIn(k) — b In(j)) . e
@%JE} (=1)*~ ( iy ] Oasn— +

(-1)*/2 cos(b In(k / j))
ki; ]2; (k)"

—0asn— +o0



" 2k-2 non k+j-2
=X +zz< ORI 045 oo
k=1 k=1 j=1 (])
j£k
" k+j-2 ;
‘:’Z—+2XEE (=)™ Coé(bln(k/]))—>0asn—>+oo
k=1 j=k+1 (kj)”

Vk,je[L,n],¥b € R, —1< cos(bIn(k/j) < 1

Thus there exists a map r,, satisfying —1 < r,, < 1 for all n sufficiently large, and for which:

Z—+2 xz E

k1 K k=1 joke1 (KD

—0asn— +oo

And we end up with what curiously resembles a quadratic equation.
2 The "Russian Doll" Quadratic Equations

Now let's assume there is x1,..., x,, € IR with x; = 1 so that:

Exk+2rn><2 E xpxj =0

k=1 j=k+1
And let's try and figure out which kind of map 7, is.

n

But first, let's define Vi € IN*, u,, = Ex,% R Z 2 XeXjand p, = Exk
= k=1 j=k+1

Our previous equation becomes:

U, + 21,0, = X2+ 28 Pu1Xy + Uy1 + 270,10 =0
And now let's define (f ;) enj0,1) @nd ($1)nemnjo,1) SO that Vi € IN'\ {0, 1}:

fnun + &0y = fnx;% + &nuPn-1%Xn +fnun—1 +3n0p-1 = 0
Let's now express the delta A, of this equation and find the expressions of f,,_; and g,,_1
sothat A, = fn_lun_l + 911041 2 0:

n — (gnpn—l)z - 4fn(fnun—1 +gnvn—1)/
2

n-1
= Z'xk = Uy + 201’1—1/
k=1

thus An = (gnpn—l)z - 4fn(fnun—1 + gnvn—l) = g%(un—l + 27]11—1) - 4fn(fnun—1 +gnvn—1)
= (82 - 4f2)uyo1 + (283 — 4fugn) Vnt



We conclude that f,, 1 = ¢2—4f2and g, 1 = 2¢2 - 4f,4,, and we see A,, is in turn a new quadratic
equation:

— 2
An - fn—lxn_l + gn—lpn—an—l + fn—l”n—z + gn—lvn—Z

with a new A,,_; for which we must determine the conditions to ensure A,_; > 0, and so on until A,
(hence the comparison with a Russian doll).

8n
1 _ 280 =4fu8n _ 280(80—2f0) 2% _ °h

fn—l g%—4f% _(gn_zfn)(gn+2fn):(gn+2fn)_}gr—”+2

But also,

-k
We observe that each time we calculate a A,,_;, we actually apply /1 : x +— to the ratio gn— to

xX+2 fn—k
p&nk
obtain Sn k1 Vk e [[1,n-3], Snkl _ _fok .
n—k-1 fn—k—l Snk +2
n—k

In our precise case, f, =1andg, = 2r,, so g—n = 2r,;our f,_; and g,_; thus become:
n

foo = (4r2-4)f2 =4(r2-1)f2 = 4(r, — 1)(ra + 1) f2
n1 = (2 X 4r2 — 4 ><2r,1)fn = S(r,% — rn)f% = 8r,(r, — 1)f2
Su1 87, (r, —1)f> 2r,,

Thus,

for A -V +DfF 1yt 1

Now, let's prove by induction that Yk € [[1,n - 2], En = :
fok  kxr,+1

k 21’,1

_ 2r
Let's assume dk € [1,n - 3], Snk = . ,
fn—k kxr,+1

Then we have:

Tn-k-1 Tn-k Zrn 1 1
=h =2X X =2 X2r, X
frok-1 fuk kxr,+1 20 L 5 2r, +2(k xr, +1)
kxr,+1
k-1 -k 4rn Zrn
<:> == h = =
f k-1 fuk 2(r, +kxr,+1) (k+1)xr,+1

k 21’n

Which proves that Yk € [[1,n - 2], Sn- = :
fok kXxr,+1

Now, Yn € IN'\ [[0, 3], Yk € [[1, n — 2]] we can express all the A,,_;, and above all the following:

— — 2 2 — 2 —
A3 = le/lz + 820 = fzxz + fle +QoXoX1 = f2x2 +Q2X> +f2 (because x; = 1)
2
r

02462 = n _ 2
Ay =85 -4f3 4X[[(n—2)><rn+1]2 1]Xf2




2
L

To determine the positivity of A, we only focus on the positivity of -
[(n—2) %71, +1]?

for we know f3 and 4 are always positive.

2
L

[(n - 2) x +1]2_1>0‘:’732[(”‘2)”””]2@[1—(n—2)2]r,%—2(n—2)rn—1
n-— Ty

A=4n-22-4x(-)[1-(n-2)?] =4[(n-2)*+1-(n-2)*] =4>0
So solutions for all of our previous A exist;

Vn € IN'\ [0, 3], the quadratic coefficient [1 -(n- 2)2] is strictly negative, so:

) e[z(n—z)—\/i 2(n—2)+\/2]\{_ 1 }
T 2[1-m-2)2] 2[1-(n-2)?] n—2
which means:
n-2)-1 n-2)+1 1
rne[1—(11—2)2'1—(11—2)2]\{_n—Z}
(n-2)-1 n-2)+1 1
(1—n+2)(1+n—2)’(1—n+2)(1+n—2)]\{ n—Z}

@rne[

1 1 1
or, € [_n—l' _n—Sl\{_n—Z}' VYn e IN\ O, 3]

2
¢
(we exclude — because of the term - in Ay);
n-2 [(n—2)x7r, +1]?
1
Therefore,asn — +o00, 1, ~ — —
n

In conclusion, for the following to be true, as n — +o0:

Exk+2rn><2 Z xrxj— 0

k=1 j=k+1

We must have it in the following form:

Zxk—;xE Z xXpxj — 0asn— +oo

k=1 j=k+1

Now we could simplify this:

Exk—;XZ 2 XXy = Exk——xzzxkx]

k=1 j=k+1 k=1 j=1
j*k

e [zzxkx] z]

k=1 k=1 j=1

>0



1 n 1 n n
& [1+—] xzx,%——xzz:xkxj=0
nJ) k=1 N k=1 j=1
And as n — +o00 the asymptotic equivalences give us the following:

n

1 n n
S 3 M vasn o

k=1 N k=1 =1
2
n 1 n
@Zx,%——x D x| > 0asn— +o0
k=1 k=

1
Now to get back to our problem, if we assume that Yk € [1, n]], xx = rE then we get, as 1 — +oo:

2
n n
1 1 1
E kz ——X Z k_ll -0
k=1 k=1
Which is therefore - thanks to all we've seen up to now - the new formula on which we'll work from now
on, and which is way more easy-to-handle and less obscure than:
n n-1 n :
1 —1)k+=2 cos(b In(k / j
ZEJFZXEZ( ) El (/]))—>Oasn—>+oo
-1 k k=1 j=k+1 (k7)

3 Comparison Of Asymptotic Behaviours
Now, We got this expression from the previous part:

2
n n

1 1 1
— - =X Z— — 0, asn— +oo
Pl P

Since we're dealing with infinity, instead of distinguishing the cases for different fixed values fora € 10, 1],
I will speak of a map (1,),cn- converging to a real number in |0, 1[: lim a4, »>a,, € ]0,1[ with a

1 — 400

rate of convergence €, = a,, — 4.

The sums with their corrections (obtained via Taylor expansions) become, as n — +oo:

2
n n n n

Zk;m—z%zgg‘:_lx D 1 —enzln(k) o

A+00 A+00
k=1 k=1 O P k=1 k™

The correction terms can be ignored for a fast convergence of a,;;
We'll deal with fast and slow convergences.

It has already been well-established in the literature [1, 2] that a,., € ]O, 1[ for all the nontrivial zeros, so
1-a,. > 0 and then the squared sum can be approximated with the following squared integral as
follows if 1,, converges fastly to its limit:



2
n1 2 (nl‘“ - 1) n2-2a
f —dt| = ~ as n — +oo
1 ¢ (1-a)? (1-a)?
to obtain the following (I omit the 7 index of a,, for convenience in these calculations):
2

1 "1 1 2-2a 1-2a
Va € ]0,1[ and as n — +oo0, — X E— ~ =X " _ "
no |-k n (1-a4? ((1-a)?

And for a slow convergence, the sum of the correction term added in the squared sum:

n+1]n (¢ I In(k n+1 In(t — 1
VnelN*,f n()dt<2n()<1+f In(t=1) 4,
2

1 ta+oo =1 kll+oo (t _ 1)a+oo
"In(t 1 1-a+c0 1-a+00 _ 1
with f n() yp  InGmn 77
1 e 1-a,c (1-a)?

Therefore, since 1 —a, ., > 0 we get the following asymptotic equivalence:

S In(k) "n(f) . In(mntTe gl
2 ~ f dt ~ - as n — +0oo
P ke 1+ 1-010 (1 _ a)z

As to the sum of squares, for a fast convergence:

n+l 1 1 n+l 1
Vne]N*,f —dt<2—<1+f
1t P 2

dt
(t—1)>

And the sum of the correction term added for a slow convergence:

n

m+ In(t In(k m+1 Int - 1
VnelN*,f n()dt<2n()<1+f In(t=1)
1 2

t2a+<>o =1 k211+<>o (t _ 1)2a+oo

dtas n — +oo

In(k "In(t
2y [0

k2ﬂ+oo

Sodue[0,1]] )

=1 t2ﬂ+oo

1
We get to distinguish a, ., # 5 anda,. = E for the sum of squares.

1
Fast convergence:
1-2a _ i _1\1-2a _ (» _1\1-2a
(n+1) 1<Ei<1+(n+l 1) 2-1)
1-2a o k& 1-2a

(I skipped the details of variable substitution on the right side)

We then obtain the following asymptotic equivalences, as n — +o00:



nl—Za -1 n 1 n1—2a -1
r T« 2

1-2a =g 1-2a
n
1 1-2a _
Which means that as n — +o00, AA € [0, 1], Z — ~ A+ A
k=1 kza 1 - 2&1

Sum of the correction term added for a slow convergence (asymptotic equivalent as n — +0o0):

n

uel0,1]] )

k=1

; 1-2a 10 1-20+00 _
In(k) N f 1n(t)dt+ _In(m)n n 1 N
1 t2a+oo 1 — 2a+oo (1 - 2a+00)2

U

k2a+oo

If ﬂ+oo = —

Fast convergence:

n

1

E— ~ In(n) as n — +oo
e

k=1

Sum of the correction term for a slow convergence (asymptotic equivalent as n — +00):

n

Z (k) ~ flnwdt as n — +oo

=1 k2ﬂ+oo t
f Mdtzln(n)z—f In(t)
1 ¢t 1t
n 2
o [y 00
1t 2

We therefore have three different cases:
1
* i € ]O/ E[

1
* i € ]511[

* a+oo:

1
2

1
Casea., € ]0, 5[:
If a,, converges fastly enough to its limit, we can take the following for granted:
1-2a.., > 0son'=2* grows unboundedly as 1 — +00, s0:
1 pl-2a

asn— +oo

Thus our expression:



n 1 1-2a

Z_ n

- —0asn— +o0
Sk (1-a)

becomes, as n — +o0:

1-2a 1-2a

n'? n
1-2a (1-a)?

-0 (l-a,0)?=1-20,, ©1-2a,,+a% =1-2a,,

1
& a2, =0 a,. =0, which contradicts 4., € ]0, E['

If the convergence is slow, the expression with the correction terms is as follows:
As n — +oo:

nl=2=  2¢, In(n)n! 2= p 1200 .\ 2e, In(m)n'=2 €2 In(n)?n!-2" .
- - - —
120, 1-20r0 (-0 (-a.0)? (1-1..)
Lo 1 2¢,, In(n) 1 2¢,In(n)  €21In(n)?
Sn e —

— + —

which necessitates :
1-2¢,In(n) 1-2¢,In(n)+€2In(n)?

1-20... Aoy
(1-a,0)% 1-2¢,In(n)+ €2 1In(n)?
< 1-2a,, - 1-2¢, In(n)
a2, €2 In(n)?

—0

@ —_
1-2a,., 1-2¢,In(n)

for B =€, In(n), this means :
a2 —2a% B-(1-2a,,)B*—>0asn— +co
A = dat +4al (1-2a3,) = 403, (1-a3,) > O

This equation admits two real solutions, let's not delve into the details but just call them ¢1 and ¢, (I'll
write ¢ for both to simplify), and just keep in mind that epsilon can then be expressed as:

18 € {CIICZ} <€y € {C—ll - }
In(n)" In(n)

Actually, since we only retained the dominant terms of the sums multiplying €,, and e,%, we neglected the
following ones:

o 1 2In(n) 1 ,
" [2[<1—2a+m>2 (1—a+oo>3]€”+[<1—a+m>3 <1—a+m>4]€”]

1-2¢,In(n) 1-2¢,In(n)+€2In(n)?

1 _2a+00 (1 _a+oo)2

And these stay hidden in the parenthesis while vanishes for

c c c
€, € ! , 2 (I'l write €,, = not to repeat both each time).
In(n)" In(n) In(n)



As a consequence, in the end, while this disappears:

1 2 1 2 2
1200 [ c c c ] 0
1 — +00

— — + —
1-20,00 1-20000 (1-0400)? (1-0:00)% (1-0400)2

We are left with this:

1205 2¢ ¢ " 1 - 1 - c* 0
In(m) ((1-a.0)°  (1-2040)* (1-040)°) In(m)*(1-a100)%) "7

1720:2) 50 this

And this is impossible because, if 1 —2a,,, > 0, In(n) = o(nl_z‘”‘”) and In(n)? = o(n
can never tend to 0, and we have a contradiction here.

(In the following versions, | may make c; and ¢, explicit).

For all the Taylor expansions of order p € IN | p > 1, we'll get something of the following form:

orderp € N*: for g € [0,2p] and y, € R:

n— +oo

172 (yo + €(In()yr +0(n(m) + ... + € (Inm)¥ya, +o(In(m)) )] =0,

a polynomial where we are able to set the unknow as § = ¢, In(n), and may find one or more real roots

d
as we did for the expansion of order 1, we shall then have €,, = ﬁ, with dp € IR again (for
n(n
simplification, this single dp denotes any root of the polynomial when we use an expansion of order p if
they exist).
This way, in the end, the parenthesis itself may tend to O (if roots exist for the polynomial), but because of

the "hidden" terms denoted by each o(ln(n)q), we would anyway be left with:

w w w
TR dp[ 1’1] b b d| L 2 50
In(n P\ In(n) In(n)? )| n—=+
with wy; € R for (k, j) € [1,2p]?

And this can't tend to 0 because 1 — 24, ., > 0 and then Vg € [0, 2p], In(n)7 = o(nl_z’“‘”).
A situation similar to that of the expansion of order 1.

1
Cased.. € ]E' 1[:

If a,, converges fastly enough to its limit, we can take the following for granted:

n
1 1—2a_1
Asi— +oo, AN €[0,1], Dy — ~ A+ =
kzlkza 1—211

In this case, 1 —2a,,, <0,
n 1 1-2a

n
and then E - 2 hD 1o
201 el CHNC I

n
1
Therefore as 1 — +o0, E o - A+ 0 becomes:

k=1



1 nl—Za
+ - >0, and since 1 — 24, < 0 this means A + =0
2a-1 (1-a)> "2+ 2a-1

S2-DA+1=002Dr=A-1a,, = 7<0becauseA—l<0while2A>Ofor

1
A € [0, 1], which contradicts a.,, € ]5, 1[.

If the convergence is slow, the expression with the correction terms is as follows:

2
1 1 1[ nl2~ e, In(n)n'
At — 26| ———— 4| - | - ) ,0
2a+oo -1 (1 _ 2a+oo)2 n n— 400

1-a,- 1-a

1
where 1 € [0, 1]; ¢, ———— 0 thus —2¢,,| ———— + u| vanishes anyway:
H " 5 +oo ”[(1_2a+00)2 lu]
A 1 2 2e In(m)n'2 €2 In(n)? nlTAe
+ - + —~
i1 (1-0,0)?  (1-0y0)? Qa7
and n 1724 — 0, then:
1 . A-1 . _ 1 _
A+ ——— = 0 which means a,,, = —— < 0 which contradicts 1., € |-, 1] once again.
20, —1 2A 2

The same thing happens for all the expansions of orderp € N | p > 1

1-2a+0

Same as the first-order approximation, since n — 0, all the powers of €,, will be multiplied by

a constant value and since €, s 0, the Taylor expansion of any order would leave us only with
1 A=1

A+ —— =0, and we'll end up with the same a,, = —— < 0 contradicting 2., € |-, 1] .
20,00 — 2A 2

Cased, ., =

N[

Ifa, converges fastly enough to its limit, we can take the following for granted:

1 2an

As 1 — +00, Z—~1n(n) soZkZa 1 )2—>Oasn—>+00becomes:
n

nl—Zun
In(n) - —— —>0asn— +o0
(1 _an)2

And now, let's reflect upon the conditions for this statement to hold:

- As said earlier, we deal with a map (a,,),,en¢ converging to a real number in |0, 1[ as n — +oo, >

1
in this case, rather than a fixed value a = > otherwise it would mean that lim In(n) — 4 which

n— +oo

is absurd,

1
’ ﬁ — 4.as n — +00, so it doesn't affect the asymptotic behaviour of 7172,



« In(n) grows unboundedly as n — +c0, so we must have 1 —2a,, > 0 for all n sufficiently large, for

n'=2 1o grow unboundedly as n — +o00 as well,
!
« Had we assumed that 3/ > 0 | lim 1 -2a,, = [, we would get In(n) —

n—+eo 1+1
2

which is impossible because YI > 0, In(n) = o(nl), therefore this subtraction tends to —co and

—0asn— +o0,

not 0 as n — +o9,
« So itis necessary that 1 — 2a,, be strictly positive for all 72_sufficiently large while converging to

0* as 1 — 400, in order to adequately "bend" 12172"" for it to match In(n), for the subtraction to
tend to zero,

You'd think we finished, the problem is, even in this case, the expression of €,, = a,, —a, ., becomes

ln(¥

something like €, = — T() which is too slow a rate of convergence to neglect the correction
n(n
terms; which we ironically did here.

So we're left with one case, our last chance:

1
If the convergence to E is slow, the equivalence with the correction terms is as follows:

1
ln(n)z] no 2 (1 - 2¢, In(n) + €2 ln(n)z)

Ty

S In(n)(1 -€, In(n)) -4 (1 —2¢, In(n) + €2 1n(n)2) — 0, asn — +oo

—0, asn— +o0

In(n) — 2¢, [

& In(n) -4 + (8 In(n) - In(n)?) e, — 4€2 In(n)2 — 0, as n — +oo

is an ideal choice:

"~ In(n) 2
In() — 4 + (8 In(n) — In(1)? ﬁ - 4[%] In(1)>
8In(n) In(n)* A

=In(n) -4+
In(n) In(n)
=In(n)-4+8-In(n)-4=0

We have a good €,, = —0asn— +oo,

In(n)

So if a,, tends to 5 slowly, this adequate €,, exists, and voila, we get the right resulit.

1
E is the only limit the map a,, can reach as n — +o0, if it hopes to satisfy:



2

n n
Z ! —1X[E 1] —0asn— +oo

=1 kzan n =1 kﬂn

And we could ideally write a,, as a,, = — + , for a first-order Taylor expansion.

2  In(n)
What about the Taylor expansions of any order p — +00?

x, In(n) +y

We are going determine x,, and y, to figure out our rate of convergence €,, = In( )2 P for which the
n(n

total sums tends to 0 as n — +oo for an infinite order of expansion.

The Taylor expansion of the totals sums is as follows (equivalences as 1 — +00):

2
k -k k+1 P vk k '
i+ 3 GO 1| Vi D'V
k=1 (1_5)1('

X
= (k+1)! n|q_ %
2\ (=2)% ek In(n)k+1 2\ (—e,)F In(n) 2\ (=€) In(m)k+ |
> —4-8x ), EZ . 2
1 (k+1)! k! k=1 =1 k!X j!

In(n) +

xp In(n) +y,

In(n)2
| spare the details, we have something in the lines of:

now let's search x, and y, for €, = to make the total sum tend to zero,

P (_oykyk Po(_ kxk PP
In(n)|1 + 2% —yp—4—8><2(1) xzz(l
j=

o (k+1)! . K P kgt note

You may ask "how did y,, get out just like this?", it's because at k =1, we had:

2In(m)*  (pIn(m)+y,) _
> X ()2 x, In(n) -y,

And that's the only k at which it happens.

( 2)k k
Now we must find x,, so that In(n)| 1 + 2 it 1)' v 0; we'll do as follows:
k=1

1 Z ( 2xp)k+1 1 i Z (—2xp)k 1 1 (—2xp)k



Lo
Soasp— +o0: 1—2—x(e x”—1+2xp) =0

<:>e_2x”—1+2xp:2xp<:>e_2x” =lex,=0

4

In(n)?

As a consequence, we're only left with -y, -4 = 0 & y, = 4,and then,as p — +0, €, =

Therefore, for an infinite order of expansion, we can ideally write:

.= 1 N 4
"2 Inn)?
1
soa, ——— —
n—+oo” o
Conclusion:
ik - (—1)k 1
For any nontrivial zeros € C\ {1 + e |keZ;, lim EL =0
ln(Z) n— oo, o ks
1
implies that Re(s) be a map of n, a,, = Re(s,,), the limit of which necessarily is: lim a4, = >
n— +00

O 1yn-1
Therefore, since ((s) = 0 = 1(s) = E L = 0:
nS

n=1
2mik
In(2)

This proves the Riemann Hypothesis.

1
For any nontrivial zero s € C \ {1 + | k € Z}, C(s) =0 = Re(s) = 5
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