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Art. VI.—A Derivation of the Fundamental Relations of
Electrodynamics from those of Electrostatics ; by Lricu
PacEe.

MaxweLLs electrodynamic equations are based upon three
experimental laws : (1) the inverse square law for the electric
force between two point charges relatively at rest; (2)
Ampere’s law for the force between current elements, or its
equivalent; (3) Faraday’s law of current induction. Helm-
holtz gave a derivation of Faraday’s Jaw from Ampere’s law
by means of the principle of conservation of energy, which,
however, has been shown to be erroneous.* Indeed, it has
been impossible by any of the methods heretofore used to
derive the electrodynamiec equations without making use of all
three of these experimental laws.

The object of this paper is to show, that if the principle of
relativity had been enunciated before the date of Oersted’s
discovery, the fundamental relations of electrodynamics could
have been predicted on theoretical grounds as a direct conse-
quence of the fundamental laws of electrostatics, extended so
as to apply to charges relatively ih motion as well asto charges
relatively at rest. Of course, only that part of the theory
derived from the principle of relativity that is independent of
any a priori knowledge of the electrodynamic equations, will
be made use of. That is to say, we will use only the kine-
matics of relativity :—to use the dynamies of relativity, which
is derived from the electrodynamic equations, would be to
reason in a circle.

A material system is defined as an aggregate of material
bodies having no relative motion, and showing no linear accel-
eration or angular velocity as a whole. Suppose now that we
have any number of these systems moving in various directions
and with various velocities relative to one another. The
principle of relativity states that there are no experimental
methods, practical or ideal, of distinguishing one sueh system
as being marked out as different from all the others. In other
words, if there is an ether, there exist no experimental
methods by which we can find out which of these various sys-
temns is at rest relative to the ether.

One of the most obvious consequences of this principle is
that the velocity of light, as measured in any one system, must
be the same as measured in any other system. Otherwise
there would be accessible to us an experimental method of
locating the luminiferous ether, which is in contradiction to

* Maxwell’s ‘“ Electricity and Magnetism,” 3d edition, vol. ii, p. 192.
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the principle of relativity. As a mathematical consequence of
the fact that the velocity of light must be the same as observed
from different systems, Einstein, in his celebrated paper* in
the Annalen der Physik, has derived a set of space time trans-
formations, which, becaunse they were first deduced by Lorentz
from entirely different considerations, usually go by his name.

Einstein starts off by a consideration of the meaning that can
be attached to time simultaneity at two different points in any
one system. Suppose A and B to be two widely separated
places in the same system. An observer at A is watching cer-
tain phenomena in his immediate neighborhood, while an
observer at B is watching certain other phenomena in his (B’s)
immediate neighborhood. They wish to compare the times of
their observations. Obviously they must be provided with
synchronous clocks. How are these clocks to be set synchron-
ously? Let A send a light wave toward B when A’s clock
indicates the time ¢,. Thislight wave reaches Bata time ¢; on
B’s clock, and is returned to A Dby instantaneous reflection,
reaching A at the time ¢, as indicated on A’s clock. Since
the measured value of the velocity of light is the same in all
systems, and the same in all directions in any one system, the
clocks at A and B will be synchronous when, and only when,
ty = 3(¢s +t'5). Applying this definition of synchronism to
two systems in motion relative to one another, Einstein is led
to a set of transformations which show that the time at a point
P in one system is a function not only of the time at a point Q
in the other system, but also of the relative positions of the
points P and Q.

‘When applied to the measurement of distances, these trans-
formations show that a bar which is fixed in the first system
with its axis parallel to the direction of relative motion of the
two systems, and which has a length / as measured by an
observer in the first system, will appear to have a shorter
length when measured by an observer in the second system.
This apparent shortening is not surprising when we consider
the method used in measuring a body which is in motion rela-
tive to the observer. Let AD be a bar which has a velocity
relative to the observer in the direction AB. In order to
measure the length of the bar, the observer must mark the
positions of the two ends of the bar at the same instant, and
then measure the distance between these two marks. If he
marks the position of the end B a little earlier than he marks
the position of the end A, his measurement will be too short.
Hence we see that space measurements as well as time meas-
urements on moving systems, depend on the definition of
simultaneity at different points of the same system.

* Annalen der Physik, xvii, 891, 1905.
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Let K (o) denote the earth’s system at any instant. Then
K (v) denotes a system with velocity v relative to the earth.

Tet XYZ be a set of orthogonal right-handed axes fixed in
the earth’s system, and so oriented that K(v) has a velocity »
in the positive z direction.

Let X'Y’Z’ be a set of orthogonal right-handed axes fixed in
system K(v) and mutually parallel to XYZ.

Unprimed letters denote quantities as measured in the earth’s
system, and primed letters denote the same quantities as meas-
ured in the system K(v).

Then the space time transformations between K(o) and K(v)
take the form:
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where ¢ denotes the velocity of light. and where the time
epochs are so chosen that the times at the respective origins of
the two systems are zero when these origins coincide.

Let a particle have the velocity V relative to K(o), and V'
relative to K(v). Let V,, V,, V, be the components of V|
and V), V/, V,/ the components of V. Then the following
kinematical transformations follow at once by taking the time
derivatives of the space time transformations, with consider-
ation of the relation
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Moving Charges.

We can represent the field due to a charged particle which
is at rest relative to the obscrver by radial lines of force so
drawn that equal solid angles contain the same number of lines
of force. Then we can define the intensity at any point as
having the direction of the line of force at that point and as

Fia. 1.

:

being proportional, in magnitude, to the density of the lines of
force at that point. Now let us extend this definition of
intensity to charges which are moving relative to the observer.
Consider a charge ¢ at the point O’ (fig. 1) in K (»). Let
a8’ be an elementary surface fixed in IC (v) at I/, and perpen-
dicular to O’P’. Let O'P’ = »’, and the angle hetween O'P’
and the Z’ axis be §’. Then E’, the force at P’ as measured

in K (v), will be 7-6 We wish to find the force E due to ¢,

WEN

at a point P in K (0), when P coineides with P’. On account
of the different definitions of simultaneity in the two systems
K (v) and K (0), when P’ and P coincide the charge ¢ as viewed
from K (o) will be at some point O not coincident with O,
Let OP =7, and let the angle between O and the Z axis be 6.
The space time transformations give the relations



L. Page—Fundamental Relations of Electrodynamaics. 61
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The direction of the lines of force, as viewed from K (o),
and hence the direction of the intensity, will be OP, and not¢
O'P’. Now d8’ as viewed from K (o) will not be perpen-
dicular to OP. Let dS Dbe the component of &8/, as viewed
from X (o), which is perpendicular to OP. Then a short
calculation gives
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Now the density of the lines of force at P in K (0) is to
the density of the lines of force at P’ in K (v), at the instant
when P and P’ coincide, as dS’ is to d S ; that is to say in the
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The force E, as already noted, has the direction of the line
of force through P, as observed in K (0); that is, the direction
OP, where O is the apparent position of the charge to an
observer in K (o) at the instant considered.

Thus, by means of the principle of relativity we have been
able to derive from the laws of electrostatics, with considerable
ease, an expression which Heaviside has derived from the
electromagnetic equations only by the use of somewhat compli-
cated mathematical processes.

The relations between the components of E at P and E’
at P’ follow at once from the expressions we have already
derived. '
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Force between Current KElements.

We can consider a current as made up of a given quantity of
positive electricity moving with a given drift velocity along the
wire in the direction of the current, and some other given
quantity of negative electricity moving with some other given
drift velocity in the direction opposite to that of the current.
Let 2, be the velocity of the positive electricity, and , that of
the negative electricity. ILet A, be the linear density, or the
quantity of moving positive electricity per unit length of wire,
and A, the quantity of moving negative electricity per unit
length of wire. Consider an element of the wire of length ds.
Then we can define a current element as (7w, +1u,) ds. Now
this element of wire is as a whole uncharged. So there must
be a quantity of positive electricity (£—A,) ds, and a quantity
of negative electricity (£—2,) ds at rest in the element, £ being
some constant. As the current is due to that part of the
charge in the wire which is in motion, our problem reduces to
a consideration of the forces between two charges both of
which are moving relative to the observer.

In order to make our reasoning as simple as possible, we
shall confine ourselves to currents lying in the same plane.
There is no difficulty in extending the reasoning to currents
which do not lie in the same plane, but in that case the demon-
stration becomes a little more complicated.
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At a given instant in K (o), two charged bodies (fig. 2), one
at A and the other at B, have velocities relative to IX (0) of »
and « em./sec. respectively. ADB =7. Choose axes XZ so’
that z is parallel to «. Let the origin be at B. We wish to
find the force on the charged body at I3, due to the other
charged body. To find this force we must observe from the

Fia. 2.

system K (w). DBut according to the time synchronism of
K (w), when the one charged body is at I3, the other will not
be at A, It will be at C, a point whose coordinates are found
to be

)
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These distances, as measured in X (%), are (the primes refer

to K () ),
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Applying I and reducing, we get
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Let F, and F, be the forces as measured in K (0) that must
be applied to the charge at B in order to produce the same
effect as F,” and F,”. Then
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Now replace ¢, by a current element (Au,+Au,) ds. In
this current element there is at rest the positive electricity
(A—A)) ds, and the negative electricity (A—A,) ds. Consider
the positive electricity A, ds which is moving, and a portion
A, ds of the negative electricity which is at rest. Then the
components of the force due to ¢, on the negative electricity
A, ds at rest will be
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But the components of the force due to ¢, on the positive
electricity A, ds in motion is, as we have just found,
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Combining, we have left the force

/ 292
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in the X direction.
Proceeding in the same manner, we find the total force on
the current element at B due to the moving charge at A is
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where ¢, is the current in electromagnetic units. As the drift
velocity of the charges constituting a conduction current in a
wire is certainly smail compared with the velocity of light, we
can place the factor

/

equal to unity.

If we replace ¢, by a current clement, we will find for the
total force exerted by the current clement ¢, ds, at A on the
current element ¢, ds, at B, as measured on the earth (system
K (0) ), the expression

i1, sin 0 dsds,

x 7’1

where ¢, and ¢, are measured in electromagnetic units.

Awm. Jour. Scr.—Fourtr SERIES, VoL, XXXIV, No. 199.—Juvry, 1912,
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This expression gives all the forces between currents, and
also the induced current phenomena due to moving a closed
circuit through a so-called magnetic field. The induced cur-
rent effects produced in a secondary circuit by variation of the
current in the primary are very simply treated as follows :

Taraday’s Law.

Whenever a charged body is accelerated, it is obvious that
the lines of force will be kinked. If the charged body is
accelerated only for a very short time, these kinks will travel
outwards in the form of a pulse. Now this pulse must have
the same velocity relative to the system of the field inside the

Fia. 3.

e 1
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pulse as it has relative to the system of the field outside the
pulse. These two systems, however, may be chosen arbitrarily.
Therefore the pulse must have the same velocity relative to all
systems. The only velocity to satisfy this condition is the
velocity of light. Hence the velocity of the pulse must be ¢.*

*This reasoning may be objected to on the ground that the pulse may
expand as it moves outward: i. e., the outside of the pulse may have
a greater velocity than the inside. But if this was true under certain
conditions, it would be necessary to assume that the reverse was true under
certain other conditions. So we would be forced to the most improbable
conclusion that the inside of the pulse might outstrip and pass through the
outside of the pulse.
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Consider two charges e, and ¢, at A and B (fig. 3) respec-
tively. Let the charge at B be at rest relative to the observer
in K (0), and the charge at A be moving to the right with the
velocity . While ¢, is at A the acceleration f'is applied to it
in the direction of its velocity v. Let AB=7r=¢t. BE is
an arc with A as center and ¢ as radius, CD an arc with A as
center and ¢ (¢—dt) as radius. If, as before, we define the
intensity as proportional to the density of the lines of force at
the point considered, the force just to the left of B will be

) v?
€, €, 1 — —c',— 1
. v’ i

provided v is small compared to ¢. So the intensity at the same
point due to e, will be
e, (l _ 'v")
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If we denote by E, and E, the components of E parallel to
and perpendicular to the radius AB,
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So we see that the component of the force parallel to the
radius AB is continuous through the pulse.

T tsin @
Now cot a = Jt sin 0 i

E =

v o,
f -— 1s small.
¢ ¢

et ¢
Kl
(1 — —- sin? 0)
¢

If we replace ¢, by a current element ids
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v, .
If — i small, this reduces to

di sin 6
E = — —~
! dt r ds

which is the expression for the induced electromotive force in
one wire due to a variation of the current in another.

Conclusions.

Our object was to deduce the fundamental laws of electro-
dynamics,—the law for the force between currents, and the
law governing current induction,—from those of electrostatics.
‘We assumed that part of the theory derived from the principle
of relativity which depends only upon the fact that the velocity
of light must be the same as measured in different systems,
and which depends in no way upon the electrodynamic equa-
tions. Then we extended the following conceptions of electro-
statics to moving charges:

(1) To an observer at rest relative to a charge, the charge
can be replaced by a field of lines of force radiating from the
charge in such a way that equal solid angles contain equal
numbers of lines of force.

(2) To an observer relative to whom the charge is in motion,
as well as to an observer at rest relative to the charge, the
electric intensity due to the charge is proportional to the
instantaneous density of the lines of the force at the point
considered.

By the means of these extensions of electrostatic concep-
tions to moving charges, we were able to deduce (a) the
expression for the electric intensity due to a charge moving
relative to the observer; (b)) Ampere’s law, or its equivalent ;
(¢) Faraday’s law, or its equivalent.

Viewed from another standpoint, the fact that we have been
able, by means of the principle of relativity, to deduce the
fundamental relations of electrodynamics from those of electro-
statics, may be considered as some confirmation of the principle
of relativity.

I want to express my thanks to Professor H. A. Bumstead
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