Data input and Quality Control

Bioplatforms Fungi Genomics Workshop 2024 Australian National University

Benjamin Schwessinger

Data input and Quality Control

✓ What is my research question?

✓ Genome evolution?

 Complete genome reconstruction?

✓ Care about TEs?

✓ What is already available in the public domain?

✓ How much data is engouh?

✓ Gene discovery?

✓ Pop-gen?

✓ Phylogenomics?

✓ Phasing of di- and ploykayrons?

✓ Else?

✓ Species identification?

"What input material is (easily) available to me?"

- ✓ Type?
- ✓ Culturable?
- ✓ Ploidy and nuclear state?
- ✓ Purity?
- ✓ Reproducibility?

"How do I (bloody) get some clean high-quality highmolecular DNA out of fungi?"

$\leftarrow \rightarrow$ C	\bigcirc ϵ	https://www.proto	cols.io/workspaces/high	-molecular-weight-dn	a-extraction-from-all-kir	ngdoms/pub 110%	公 ()	ා 👱 🖪 🗋 එ
Import bookmarks	Getting Started	l 🐞 Getting Started	W A polysaccharide deac	ۏ Getting Started 🗋	PR 🗋 reproducibility [🗋 blog 🗋 books 🗋	REDCUBE 🗋 isrfg10	>> 🗋 Other Bookm
≡	A 🐼	protocols.io			c) Search	SIGN IN	SIGN UP
MEMBER	RS 553	High Everywhere External link	molecular w	eight DNA	extraction 1	from all kir	ngdoms JOIN	MORE ↓
DNA, seque	encing, long reads	s, , ultra long-reads, l	Nanopore, PacBio, 10xG	Genomics, LongAs, hig	h quality genomics for	EVERYONE		
	,	About Timeline	Publications 74	Members 553	Discussions 159	Resources 16	News 1	
Q SEA	RCH			CATEGORY:	ALL PUBLICATIONS	• •	SC	DRT BY: DATE 🗘

https://www.protocols.io/workspaces/high-molecularweight-dna-extraction-from-all-kingdoms/publications

20221129 AshJMorning.pdf

A wryly wind simplified intro to DNA sequencing techs

Illumina

- Relatively forgiving (length and quality) Little DNA input High-quality short-reads Good for haploid gene space analysis Good of pop-gen including reduced representation like DArT Used for many different applications
- Cheap at scale

https://www.youtube.com/watch?v=fCd6B5HRaZ8

PacBio

- Not forgiving (length and quality)
- Large DNA input
- High-quality mid-range reads (up to 20kb)
- Build for human genomes
- Requires multiplexing to be cost effective which risks failing of all samples on the run

https://www.youtube.com/watch?v=_ID8JyAbwEo

Nanopore

- Sometimes forgiving (length and quality)
- medium DNA input
- High-quality reads of any size. Super high-quality reads of > 10kb
- Very (too) flexible platform
- Good for microbial genomes including fungi
- Different scales available
- Great for lots of applications https://www.youtube.com/watch?v=sv9fFeSd3kE

Output data types

Signal level data

- PacBio *.bam
- Nanopore *.pod5
- Important of DNA modification analysis otherwise not
- Allows reanalysis of data with different basecallers

Output data types

Per base data and per base quality

- Fasta < sequence and name only
- Fastq < sequence and quality value estimates
- The most important what most people ever need.
- These are plain text file and Windows might do wired stuff to them

Format of a FASTA definition line

https://www.ncbi.nlm.nih.gov/WebSub/html/help/fasta.html

Output data types

FASTQ file sample:

Quality scores as ASCII characters:						
Q: P _{error} :	!" # 0 1.0	<mark>\$ \$ % & ' ()</mark> 5 0.32	*+,/01234567 15 0.032	789:;<=>?@ABCDE	GHIJK 40 0.0001	Q = -10log ₁₀ P _{error}

Read Quality

Quality score	Base calling error probability	Base calling accuracy
10	10^{-1}	90%
20	10^{-2}	99%
30	10^{-3}	99.9%
40	10^{-4}	99.99%

Read length

Illumina

- Fixed based on sequencer and sequencing approach
- Most often paired end with 100, 150, 300bp each

PacBio

- Variable between runs but mostly fixed within run
- Current sweet spot 15-20kb per sequencing well

Nanopore

- Read length agnostic (bp to Mbp)
- Works best when DNA length in same range (order of magnitude)
- Great for amplicons
- For genome assembly should be > 10kb

Coverage/Sequencing depth

15-20x coverage per haplotype is a good start

Data purity

Data purity

K-mer based

- Kraken2, Bracken
- Krona and Pavian

Alignment based

• Blast, reference mapping

File formats > a coordinate based system

ACCAATTTTGGGACCAGACGCATACCAATTTTGGGACCAGACGCAT

A1	6	14
B1	3	9

https://rockefelleruniversity.github.io/Genomic_Data/presentations/slides/GenomicsData.html#1