17 November, 1914.

BENJAMIN HALL BLYTH, M.A., President, in the Chair.

The PRESIDENT, in announcing the death of Mr. E. B. Ellington, Member of Council, said that at their meeting that day the Council had passed the following resolution :—" That the Council record the very deep regret with which they have learned of the death of their esteemed colleague, Mr. Edward Bayzand Ellington, and desire to convey to Mrs. Ellington and the other members of his family an expression of warm sympathy with them in their bereavement." He was sure that every member of The Institution would concur in that resolution.

(Paper No. 4119.)

"Economics of Electric Railway Distribution."

By HORACE FIELD PARSHALL, D.Sc., M. Inst. C.E.

THE problems incident to the design of an electric-traction installation are referable to the predetermined train-movement. By trainmovement is meant the space-time characteristic of the different classes of equipment, the tonnage referable thereto, and the general schedule of train-service. Allowing for such differences as may occur in the design of electrical equipment of the trains and rolling stock, the energy-consumption per ton-mile follows from the space-time characteristic of the trains. The total consumption of energy for traction purposes follows from the summation of the ton-mileage referable to the different classes of equipment, and the load-factor from the characteristics of the train-equipment and the tonnage determined by the train-schedule. The load-factor and the energy-consumption being known, the amount of power, as also the capacity of the transmitting mains, follows as a result, allowing, of course, such margins for emergencies or special conditions of working as experience has shown proper for any particular class of train-service.

Practically all modern traction systems of the larger class are referable to the same class of power-house and transmission system. There are differences due to different phase-characteristics, since with rotary-converter or synchronous-motor substation plant, the power-factor in the transmitting mains may be maintained at unity, whereas with static-transformer conversion only, as in the case of single-phase and three-phase locomotion, the power-factor falls below unity, so that larger mains and generators would be required to secure the same output and efficiency of transmission. It is necessary to make this reservation as to phasedifference, since the effect of low power-factor on the spacing of the sub-stations is of the same nature as increased load.

For the purposes of this Paper it is assumed that all the different systems are on the same basis, power-house and transmission considered, and that the main features of these follow from the trainmovement and a correct solution of the different problems to give the most economic supply up to the sub-stations, suitably arranged. Assuming, therefore, high-tension transmission, the remaining problem relates to the capacity and spacing of the sub-stations. The transmission and generation is not affected by the sub-station arrangement to any important extent, except with the reservation made, so that the sub-station arrangement has to be determined with reference to variations in the operating result occasioned by spacing and capacity. With the given energy-consumption per unit of length of line that follows from a given train-movement, the capacity of the sub-stations increases directly with the distance between them. The energy-loss in distribution-conductors of a given section varies with the cube of the distance between substations. The cost of attendance is, within wide limits, independent of the size of sub-stations. Maintenance and renewals per kilowatt is more or less constant. The cost of the plant per kilowatt falls off with the size of the units.

This Paper has been prepared to show graphically the arrangement of sub-stations that will operate different train-services with minimum total operating-cost. The Author takes as a basis railway records that have been accurately kept over a period of years. The Central London was the earliest railway to make use of large rotary converters, and accurate records, as to expenditure and performance of the sub-stations, have been kept since the railway was opened in 1900. The records relate to all expenditure for labour, supplies, and maintenance, and the energy-loss is known from the system of metering. These records have been compared with those available for other railways, with which they are found to be in general agreement. Taking these results, therefore, as a basis, Tables have been prepared showing under what conditions of spacing the best economy would be obtained. These Tables are appended to the Paper, so that all of the conditions on which the different curves are founded may be known. The Tables have been extended to include different train-services and different working-voltages. Synchronous motor-generator results are not brought into the Paper, as the capital cost and energy-loss are excessive as compared with rotary converters, with no attendant operative advantages, except at voltages in excess of those considered. The assumption as to rotary converters is that the design will be such that the over-compounding will compensate for line and transformer inductance drop in the distribution circuit, and that full load can be carried indefinitely, double load for periods of an hour, and triple load under the reasonable exigencies of a traction load. These are conditions being met by the improved apparatus now in use. The Central London machines were the first of so large a size. They will work intermittently at double load, and for considerable periods at 50 per cent. overload. The improvements since that apparatus came into use are principally due to the interpoles, which allow greater compounding and greater overloads and higher working-voltages.

In the case of continuous-current working, the working-voltages have been taken at 600, 1,200, and 2,400 volts, these being more or less standard. The Author has not extended the Tables, etc., to include higher direct-current voltages, since the commercial advantages are not apparent, and standardization has not proceeded so far that operating-results can be definitely assumed. He has taken as an example a railway 36 miles long, because with this length of line a normal distribution of sub-stations is possible in every case. A double line is assumed, since this provides the necessary facilities for the different train-movements dealt with. The assumptions do not extend beyond what may be termed the train-conducting system, as the mechanical arrangements may be varied widely, according to local arrangements, without affecting in any way the efficiency of the electrical arrangements. The general line of progress being to include traction systems as a part of more general systems of electrical distribution, and the class of conversion plant necessary to comply with the requirements of traction work admitting of wide differences as to voltage and frequency, it is unnecessary to assign close limits to either voltage Rotary converters complying with the general or frequency. conditions assumed are available for frequencies from 25, as THE INST. C.E. VOL. CXCIX.] Е

taken in the days of steam-engine drive, to 50 or 60 cycles, as equally satisfactory with turbine drive. The same wide range is permissible in transmission-voltage, without vitiating any of the conclusions of the Paper, as the performance and cost of transformers varies but little with any voltage suitable to a transmission system that could properly be a part of a traction installation. There are economical conditions peculiar to the traction system *per se*, independent of the wider problems that enter into a general system of generation and transmission, and the object of this Paper is to deal with these conditions.

For the solution of the general problems it is necessary to assume some definite figure for the cost of energy. This has been taken at a flat rate of 0.5d. per kilowatt-hour. The assumption of this figure must not be taken as an expression of the Author's opinion whether it is a fair price for a company to buy or generate at. If the figure is taken too high, it can only lead to an electrical system slightly higher in efficiency than it need be to comply strictly with the economic conditions, capital expenditure and energy-loss considered. The trains are taken in all cases as having an average weight of 100 tons loaded. The stopping-places are taken at 1 mile apart, and a schedule speed of 16 miles per hour, with stops of 20 to 30 seconds each, is assumed. The energyconsumption of the trains, including current for lighting, brakingequipments, and heating, is taken at 70 watt-hours per ton-mile as measured at the direct-current bars of the sub-stations.

The following effects of certain variations in these conditions may be noted. For example, if the energy-consumption is taken rather lower, but the average train-weight is increased proportionately, the figures in the Tables and the results remain exactly the same. If the average train-weight is taken as 125 tons, for example, and the energy-consumption as 56 watt-hours per ton-mile, the final results are not affected. Again, if the schedule speed is increased, this would decrease the average number of trains supplied from one sub-station at any instant; but if, at the same time, the trainfrequency is increased during the "rush hours," instead of a uniform service being assumed, the final result will again be approximately the same. These examples are mentioned as showing the flexibility of the Tables. These factors also, namely, train-weight and schedule speed, are the only assumed conditions, variations of which would seriously affect the final results.

Table I (Appendix I) shows the calculations worked out for the condition of a 600-volt conductor, and for the three train-services. Tables II and III show similar calculations for voltages of 1,200

and 2,400 volts respectively. The second column of each Table shows how each item is deduced and makes the Tables almost self-explanatory, but it may be as well to run through the items in some detail.

Item (a) gives the particular sub-station spacings for which each case is worked out. Item (c), the average number of trains fed at any instant from one sub-station, is deduced directly from the schedule speed, the train-service, and the distance between sub-stations. Item (d), the average amperes in the conductor at the sub-station. is obtained directly from the watt-hours per ton-mile and the trainservice, thus: the trains per hour, multiplied by the weight of train, multiplied by half the distance between sub-stations, gives the ton-miles per hour over the section of track. Multiplying by the watt-hours per ton-mile, the average power supplied in watts is obtained, from which is deduced the average amperes supplied to that section from the sub-station. The total average amperes (item e) fed from one sub-station to the four-track sections is, of course, four times this amount. Item (f) is the total output of the sub-station per annum, assuming a 19-hour day. The next item (q) in the Table, namely, the maximum demand per sub-station, must be estimated with reference to the train-movement and the probable diversity between the starting loads. With increasing number of trains fed from one sub-station, smaller proportions of the total number are assumed to be starting at the same instant. A starting train is assumed to take 480 kilowatts, and 120 kilowatts is allowed for each of the other trains on the section. Item (i) shows the maximum demand per sub-station.

In determining the sub-station capacity the Author has assumed that the instantaneous maximum demand, determined as above. can be dealt with by sub-station plant with a rated capacity of half this amount, but he has taken a plant-capacity 50 per cent. greater than this, to allow for spare plant. This required plant-capacity is divided up among two, three, or four units, in accordance with the size of the sub-station. The total cost of the sub-station is estimated by taking the price per kilowatt from the curves of Fig. 1. The full-line curves show the cost of plant only, while the dotted-line curves show the cost of the sub-station complete, including buildings, foundations, etc. In all cases the curves apply to rotary-converter sub-stations supplied with three-phase current at 10.000 to 50,000 volts, 25 to 50 cycles, the total sub-station capacity being divided in each case between two or three units. Separate curves are shown for 600- and 1,200-volt rotary converters, while, in the case of 2,400 volts on the direct-current side, it is assumed that each of the two sub-station units will consist of two 1,200-volt rotaries in series. The next two items (o and p)

show the sub-station load-factors, namely, the ratio of the above maximum demand to the average over 24 and 19 (running) hours

respectively. For the purpose of this investigation the trainservice is supposed to be uniform and the sub-stations running continuously during the 19 hours, so that this latter 19-hour loadfactor will be the same as the load-factor of the individual rotary converters. From this load-factor and the size of the units can be deduced, with the aid of the curves of Fig. 2, the annual overall efficiency of the sub-station (q), including both rotary converters and transformers. From this last figure and the total output of

the sub-stations can be deduced the energy lost per annum (r) in the sub-station.

The next four items give the annual cost of running the substations. The first item (s) is the capital charge per sub-station at 5 per cent. The next item (t) covers wages, superintendence, and stores. Repairs and renewals (item u) are taken at 0.5 per cent. of the first cost, in accordance with the experience on the Central London Railway. The last item (v) is the value of the units lost in the sub-station at 0.5d. per unit. The sum of these four items (w) is the total annual cost per sub-station.

53

The total section of conductor (C) has been taken in each case at the section corresponding to a maximum current-density at the sub-station of approximately 1,000 amperes. Any variation in section of the conductor will, of course, affect the annual cost of operation for the particular sub-station spacing in question, but the section so chosen is in each case approximately that most suitable. The resistance of this conductor and the track return from the substation to the neutral point midway between sub-stations, and back along the track-rails to the sub-station, is next given in the Table (item E), the resistance per mile of the running rails (100 lbs. per yard) being taken at 0.024 ohm.

Item (F), the average watt loss, or the C^2R power-loss in the conductors and rails of the four-track sections, is estimated thus:—The resistance in question is the last item (E). The C^2R loss will be greater than the product of this and the square of the average current (d), by the ratio of the mean square current to the square of the mean current. The ratio in these Tables is taken at 1·3, which is an average value determined from suitable load-curves. The actual C^2R loss along the whole section will be only one-third of this calculated C^2R loss, as it is assumed that the current is taken off from the overhead conductor uniformly along the section.

The next item in the Table (G) is the energy-loss per annum in conductor and rail return. The sum represented by this loss, at 0.5d. per unit for the whole line, is given in item (J). To this must be added the capital charge (M) on the cost of the overhead equipment taken at 5 per cent. of the first cost (L) as before, and a figure (N) for the maintenance and repairs of the overhead equipment and track-bonding, taken at 3 per cent. of the first cost. The summation of these last three items gives the total costs (O) due to the conductor system, and this figure has to be added to the total cost of running the sub-stations (B), the item (P) being the total sub-station and track costs per annum.

This series of calculations has been made with different distances between sub-stations for each particular service of trains and for each voltage. The various items to be considered are the individual and total sub-station capacity, the section of conductor, cost of sub-stations and overhead structure, and total capital cost for each of the nine cases considered. These are shown plotted against distances between sub-stations, in curves, Figs. 3-20, Plate 2. Figs. 4, 6, 8, 10, etc., show the sub-station and conductor annual costs respectively, and also the total of these two figures plotted as a function of the distance between sub-stations. The lowest point on this last curve indicates the most economical sub-station spacing for the conditions assumed.

Taking the particular case of a service of six trains per hour and a voltage of 600 volts, the results, plotted in Figs. 3 and 4, Plate 2, show that the annual costs are a minimum with a distance of $8\frac{1}{2}$ miles between sub-stations. The results with higher trainfrequency are shown plotted in Figs. 4, 5, 6, 7, from which it will be seen that the most economical sub-station spacing is 5.5 miles in the case of a train-service of twelve trains per hour, and 3.25 miles in the case of a train-service of twenty-four trains per hour. This last service corresponds with that obtaining on some of the London Underground railways and the most economical sub-station spacing arrived at, namely, 3.25 miles is approximately that which has been adopted. In the case of the Central London Railway, the distance between sub-stations is rather less, namely, about 2 miles.

The corresponding curves for a working-voltage of 1,200 volts are shown plotted (Figs. 9–14). The most economical sub-station spacings are seen to be 11, 7.5, and 5 miles respectively for the train-services of six, twelve, and twenty-four trains per hour. The curves for a working-voltage of 2,400 volts are shown plotted in Figs. 15–20, the most economical distances between sub-stations arrived at being 16, 12, and $8\frac{1}{2}$ miles for the respective trainservices of six, twelve, and twenty-four trains per hour.

The final curves for the total sub-station and conductor annual costs are shown plotted again, in groups, in Figs. 21, 23, and 25, Plate 2. Each group of curves represents the variation in annual costs with sub-station spacing and voltage for a given train-service. The two curves plotted in Figs. 22, 24, and 26 show the increase in the economical distance between sub-stations with higher voltages and the corresponding reduction in the total annual costs respectively.

Fig. 27 shows a series of curves based on the foregoing, from which may be determined the most economical sub-station spacing for any given traffic-density expressed in number of (100-ton) trains per hour and for various voltages. It will be seen from the curves applying to a voltage of 600 volts that with the heaviest service the most economical distance between sub-stations is not less than $2\frac{1}{2}$ miles. If the voltage is 2,400 volts the distance between substations will be about 7 miles. With a service of one train every 15 minutes and a working-voltage of 600 volts, sub-stations should be 10 miles apart. With 2,400 volts and the same service, the sub-stations should be 18 miles apart.

The curves, showing the reduction in total annual cost with

[Minutes of

higher voltages (Figs. 21-26) are plotted on one sheet and to the same scale in Fig. 28, Plate 3. These illustrate the advantage gained by working at higher voltages and confirm the Author's view that with the present arrangement of rotary-converter sub-stations and the cost of apparatus at present obtaining, there is little advantage in a higher voltage than 2,400 volts for the track conductor. The economy of higher voltages is shown to be approximately the same, whatever the train-service. Thus, as between 600 and 1,200 volts, there is a saving of about 14 per cent. in the total annual costs in each case. As between 1,200 and 2,400 volts, there is a further saving of about 7 per cent. in the annual costs, or 21 per cent. saving as between 600 and 2,400 volts, whatever the train-service. If the working-voltage is further increased to 3,600 volts, there is a decrease in total annual expenditure on sub-station and overhead conductor equipment of only 3 per cent. or less, which will be less than the additional cost of the rolling stock, and materially so in the case of heavier service conditions, where the cost of the rolling stock is a larger portion of the total.

The methods employed in dealing with direct-current installations have been applied in a modified form to single-phase and three-phase installations. The calculations are shown in detail in Tables IV and V for the case of single-phase distribution at 5,000 and 10,000 volts respectively, and in Table VI for three-phase distribution at 5,000 volts. These Tables need no explanation, but it should be noted that the average power-factor in the case of the single-phase system is taken as 0.8, and in the case of the threephase system at 0.9. The power-factor for a starting train is taken at 0.5 and 0.75 respectively. The cost per kilo-volt-ampere of the single-phase and three-phase sub-station is taken in every case from the curve of Fig. 30, Plate 3. Three-phase and single-phase transformer-stations cost approximately the same, as the cheaper transformers may be assumed to balance the higher cost of switch-gear in the latter case. Fig. 29 gives the curve from which the annual overall efficiency of sub-stations is determined.

The results obtained from these Tables are shown plotted in Figs. 32-49. For single-phase distribution at 5,000 volts, the most economical sub-station spacings are 31, 24, and 16 miles for trainservices of two, three, and six trains per hour respectively. It will be noted that this last spacing of 16 miles for 5,000 volts single-phase is the same as that for 2,400-volt direct current for the same service of six trains per hour. At 10,000 volts single-phase the most economical distances between sub-stations increase to 45, 34, and 26 miles for two, three, and six trains per hour respectively. With three-phase distribution at 5,000 volts, the most economical distances between sub-stations are 38, 31, and 18 miles for the same respective train-services.

It will be seen that, in many cases, the economical distance between sub-stations is greater than would be permissible in practice, from considerations of both traffic-operation and voltagedrop. There exists a wide difference between engineers at the present time as to practical points in operation, particularly in respect of sub-station attendance; the method employed in determining the economic distance is such, however, that new values can easily be obtained for any other conditions besides those assumed.

Fig. 31 shows the most economical sub-station spacing, plotted against the traffic-density expressed in number of (100-ton) trains per hour, for the two different voltages. A comparison of the total costs, associated with the distribution system, in the cases set out in Tables IV, V, and VI, will show that in many cases the lower pressure of 5,000 volts is the most economical, and the higher pressures of 10,000, 12,000, and 15,000 volts, in vogue on the Continent, are explained by considerations of voltage-drop.

The Paper is accompanied by forty-nine diagrams, from which Plates 2 and 3 and the Figures in the text have been prepared, and by the following Appendixes.

PARSHALL ON ECONOMICS OF

[Minutes of

APPEN

TABLE I .--- 36-MILE DOUBLE-TRACK SUBURBAN RAILWAY,

a	Distance between sub-stations miles	••
Ъ	Number of sub-stations	36/a
c	Average number of trains per sub-station \ldots	$\frac{\text{trs./hr.} \times 36 \times 2}{\text{schedule speed} \times b}$
d	" amperes in conductor at sub-station	$\frac{70 \times 100 \times \text{trs./hr.} \times a}{600 \times 2}$
e	Total average amperes per sub-station (19 hours) .	$d \times 4$
f	" output per sub-station per annum	$\left\{\begin{array}{c} \frac{e \times 600 \times 7000}{1000} \end{array}\right\}$
$g \\ h$	Demand per sub-station	
i	", kilowatt demand per sub-station KW.	$\left\{ \frac{h \times 600}{1000} \right\}$
$j \atop k$	Half above increased by 50 per cent. for spare ,, Sub-station units ,,	
l m	", capacity Cost per kilowatt of sub-station complete ,,	From curves
n o	Sub-station load-factor (over 24 hours) per cent.	$\left\{ \begin{array}{c} \frac{e}{h} \times \frac{19}{24} \times 100 \end{array} \right\}$
p	Converter ,, (,, 19 ,,), Annual overall efficiency of sub-station ,,	$e/h \ge 100$ From curves
r	Units lost per annum in sub-station	$\left(f \times \frac{100}{a}\right) - f$
s t v w x y z A B C D E	Capital charge per sub-station at 5 per cent	$ \begin{array}{c} n \times \frac{1}{20} \\ n \times \frac{1}{20} \\ r \times 0.5/240 \\ s + t + u + v \\ w \times 240/f \\ 0.5 + x \\ l \times b \\ z \times m \\ w \times b \\ \vdots \\ (D + 0.024) \times \frac{a}{2} \\ \end{array} $
F G H I	Average watts lost in four conductors and tracks Units lost per sub-station section per annum Percentage conductor and track loss	$\left.\begin{array}{c} -\frac{3}{3} \\ F \times 7000/1000 \\ G/f \times 100 \\ C \times 0.5/240 \end{array}\right\}$
I J K L	Total cost of track-equipment per mile of double-track	$ \begin{array}{c} \mathbf{G} \times 0^{-5/240} \\ \mathbf{I} \times b \\ \vdots \\ \mathbf{K} \times 36 \end{array} $
M N O P Q	Capital charge on track-equipment at 5 per cent. Maintenance of track-equipment at 3 per cent. Total charges due to track , sub-station and track charges , capital cost of sub-stations and track-equipment	$ \begin{array}{c} \mathbf{L} \times \frac{1}{2^{10}} \\ \mathbf{L} \times \frac{1}{3^{10}} \\ \mathbf{J} + \mathbf{M} + \mathbf{N} \\ \mathbf{O} + \mathbf{B} \\ \mathbf{A} + \mathbf{L} \end{array} $

DIX I.

600-VOLT OVERE	IEAD CATENARY	EQUIPMENT.
----------------	---------------	------------

		6 Trains	per Hour in Each	Direction.		
	4	6	9	12	18	a
	9	6	4	3	2	b
•	3	4.5	6.75	9	13.5	c
	140	210	315	420	630	d
	560	840	1,260	1,680	2,520	e
	2,350,000	3,530,000	5,300,000	7,050,000	10,600,000	f
	3 starting 2,400	3 <u>1</u> st. 1 run. 3,000	4 st. $2\frac{3}{4}$ run. 3,750	41 st. 41 run. 4,500	6 st. 7 1 run. 6,300	$\begin{bmatrix} g\\h \end{bmatrix}$
	1,440	1,800	2,250	2,700	3,780	i
	$1,0802 \times 5001,000£5 \cdot 9£5,900$	$1,350 \\ 2 \times 675 \\ 1,350 \\ \pounds 5 \cdot 4 \\ \pounds 7,290$	$1,690 \\ 2 \times 850 \\ 1,700 \\ \pounds 4 \cdot 9 \\ \pounds 8,320$	2,025 3×675 2,025 $\pounds 5 \cdot 3$ $\pounds 10,720$	$\begin{array}{c} 2,840 \\ 4 \times 700 \\ 2,800 \\ \pounds 5 \cdot 0 \\ \pounds 14,000 \end{array}$	j
	18.5	22	26.6	29.5	31.7	0
	$23 \cdot 3 \\ 79 \cdot 5$	$28 \\ 82 \cdot 5$	$33 \cdot 6 \\ 84 \cdot 8$	$37 \\ 86\cdot 4$	$\begin{array}{c} 40\\ 87{\cdot}2 \end{array}$	$\left \begin{array}{c} p \\ q \\ q \end{array} \right $
	610,000	750,000	950,000	1,100,000	1,560,000	r
	$\pounds 295$ $\pounds 680$ $\pounds 30$ $\pounds 1, 270$ $\pounds 2, 275$ $0 \cdot 232d.$ 9, 000 $\pounds 53, 000$ $\pounds 20, 475$ $0 \cdot 35$ $0 \cdot 121$ $0 \cdot 290$	$\begin{array}{c} \pounds 365\\ \pounds 690\\ \pounds 37\\ \pounds 1,562\\ \pounds 2,654\\ 0\cdot 181d.\\ 0\cdot 681d.\\ 8,100\\ \pounds 43,700\\ \pounds 15,924\\ 0\cdot 50\\ 0\cdot 085\\ 0\cdot 327\end{array}$	$\begin{array}{c} \pounds 417 \\ \pounds 700 \\ \pounds 42 \\ \pounds 1,980 \\ \pounds 3,139 \\ 0 \cdot 142d \\ 0 \cdot 642d \\ 6,800 \\ \pounds 33,300 \\ \pounds 12,556 \\ 0 \cdot 75 \\ 0 \cdot 056 \\ 0 \cdot 360 \end{array}$	$\begin{array}{c} \pounds 536\\ \pounds 720\\ \pounds 54\\ \pounds 2,292\\ \pounds 3,602\\ 0\cdot 123d.\\ 0\cdot 623d.\\ 0\cdot 623d.\\ 6,075\\ \pounds 32,160\\ \pounds 10,806\\ 1\cdot 0\\ 0\cdot 042\\ 0\cdot 396\end{array}$	$\begin{array}{c} \pounds 700\\ \pounds 740\\ \pounds 70\\ \pounds 3,250\\ \pounds 4,760\\ 0 \cdot 108d.\\ 0 \cdot 608d.\\ 5,600\\ \pounds 28,000\\ \pounds 9,520\\ 1 \cdot 5\\ 0 \cdot 028\\ 0 \cdot 468\end{array}$	s t u v u x y z A B C C E E
	9,830	25,000	62,000	121,000	322,000	F
	$\begin{array}{c} 68,810\\ 2\cdot95\\ \pm144\\ \pm1,296\\ \pm3,130\\ \pm113,000\\ \pm5,650\\ \pm3,390\\ \pm10,336\\ \pm30,811\\ (116,000)\end{array}$	$\begin{array}{c} 175,000\\ 4\cdot 95\\ \pounds 365\\ \pounds 2,190\\ \pounds 3,400\\ \pounds 122,500\\ \pounds 6,125\\ \pounds 3,675\\ \pounds 1,990\\ \pounds 27,914\\ (1e6,000\end{array}$	$\begin{array}{c} 434,000\\ 8\cdot 2\\ \pounds 905\\ \pounds 3,620\\ \pounds 3,850\\ \pounds 138,500\\ \pounds 6,925\\ \pounds 4,145\\ \pounds 14,690\\ \pounds 27,246\\ (121,900)\end{array}$	$\begin{array}{c} 847,000\\ 12\cdot0\\ \pounds 1,765\\ \pounds 5,295\\ \pounds 4,300\\ \pounds 155,000\\ \pounds 7,750\\ \pounds 4,650\\ \pounds 17,695\\ \pounds 28,501\\ \ell 160\end{array}$	$\begin{array}{c} 2,254,000\\ 21\cdot 2\\ \pm 4,700\\ \pm 9,400\\ \pm 5,200\\ \pm 187,000\\ \pm 9,350\\ \pm 5,610\\ \pm 24,360\\ \pm 23,880\\ (3)19,000\end{array}$	GHIJKLMNOPC

TABLE I	36-MILE	DOUBLE-TRACK	SUBURBAN	RAILWAY.
---------	---------	--------------	----------	----------

a	Distance between sub-stations miles	
b	Number of sub-stations	36/a
c	Average number of trains per sub-station \ldots	$\frac{\text{trs./hr.} \times 36 \times 2}{\text{schedule speed} \times b}$
d	" amperes in conductor at sub-station	$\frac{70 \times 100 \times \text{trs./hr.} \times a}{600 \times 2}$
e	Total average amperes per sub-station (19 hours) \cdot	$d \times 4$
f	"output per sub-station per annum	$\left\{ \begin{array}{c} \frac{e \times 600 \times 7000}{1000} \end{array} \right\}$
${g \atop h}$	Demand per sub-station . Maximum amperes at 800 amperes starting, 200 running .	
i	,, kilowatt demand per sub-station KW.	$\left\{ \begin{array}{c} \frac{h \times 600}{1000} \end{array} \right\}$
j k l m n	Half above increased by 50 per cent. for spare, Sub-station units	From curves $l \times m$
0	Sub-station load-factor (over 24 hours) per cent.	$\left\{ \begin{array}{c} \frac{e}{h} \times \frac{19}{24} \times 100 \end{array} \right\}$
$p \atop q$	Converter ,, (,, 19 ,,) ,, Annual overall efficiency of sub-station ,,	$e/h \times 100$ From curves
r	Units lost per annum in sub-station	$\left(f \times \frac{100}{q}\right) - f$
s t u v w x y z A B C D E F G H I I	Capital charge per sub-station at 5 per cent	$ \begin{array}{c} n \times \frac{1}{20} \\ & \ddots \\ n \times \frac{1}{20} \\ r \times 0.5/240 \\ s + t + u + v \\ w \times 240/f \\ 0.5 + x \\ l \times b \\ z \times m \\ w \times b \\ \ddots \\ (D + 0.024) \times \frac{a}{2} \\ \end{array} \right\} \\ \frac{4 \times E \times d^2 \times 1.3}{3} \\ \frac{3}{F \times 7000/1000} \\ G/f \times 100 \\ G \times 0.5/240 \\ U \times b \\ \end{array} \right\} $
J K L M N O P Q	Total value of track loss for whole line Cost of track-equipment per mile of double-track Total cost of track-equipment Capital charge on track-equipment at 5 per cent. Maintenance of track-equipment at 3 per cent. Total charges due to track ,, sub-station and track charges ,, capital cost of sub-stations and track-equipment	$1 \times b$ $K \times 36$ $L \times \frac{1}{20}$ $L \times \frac{1}{100}$ $J + M + N$ $O + B$ $A + L$

	12 Trains	s per Hour in Eacl	Direction.		
2	3	4	6	9	a
18	12	9	6	4	ь
3	4.5	6	9	13.5	c
140	210	280	420	630	d
560	840	1,120	1,680	2,520	e
2,350,000	3,530,000	4,700,000	7,050,000	10,600,000	f
$3 ext{ starting } 2,400$	3½ st. 1 run. 3,000	4 st. 2 run. 3,600	$4\frac{1}{2}$ st. $4\frac{1}{2}$ run. 4,500	6 st. $7\frac{1}{2}$ run. 6,300	$g \atop h$
1,440	1,800	2,160	2,700	3,780	i
$\begin{array}{c} 1,080 \\ 2 \times 500 \\ 1,000 \\ \pounds 5 \cdot 9 \\ \pounds 5,900 \end{array}$	$1,350 \\ 2 \times 675 \\ 1,350 \\ \pounds 5 \cdot 4 \\ \pounds 7,290$	$1,620 \\ 2 \times 800 \\ 1,600 \\ \pounds 4 \cdot 9 \\ \pounds 7,840$	$\begin{array}{c} 2,025\\ 3\times675\\ 2,025\\ \pounds5\cdot3\\ \pounds10,720 \end{array}$	$2,840 \\ 4 \times 700 \\ 2,800 \\ \pounds 5 \cdot 0 \\ \pounds 14,000$	$ \begin{matrix} j \\ k \\ l \\ m \\ n \end{matrix} $
18.5	22	25	$29 \cdot 5$	31.7	0
$23 \cdot 3 \\ 79 \cdot 5$	28 82•5	$\frac{31}{84}$	$\frac{37}{86\cdot4}$	$\begin{array}{c} 40\\ 87\cdot 2\end{array}$	$\left \begin{array}{c} p \\ q \end{array} \right $
610,000	750,000	900,000	1,100,000	1,560,000	r
$\begin{array}{c} \pounds 295\\ \pounds 680\\ \pounds 30\\ \pounds 1,270\\ \pounds 2,275\\ 0\cdot 232d.\\ 0\cdot 732d.\\ \pounds 18,000\\ \pounds 106,000\\ \pounds 106,000\\ \pounds 40,900\\ 0\cdot 35\\ 0\cdot 121\\ 0\cdot 145\end{array}$	$\begin{array}{c} \pounds 365\\ \pounds 690\\ \pounds 37\\ \pounds 1,562\\ \pounds 2,654\\ 0\cdot 181d.\\ 0\cdot 681d.\\ \pounds 16,200\\ \pounds 87,400\\ \pounds 31,850\\ 0\cdot 5\\ 0\cdot 085\\ 0\cdot 164\end{array}$	$\begin{array}{c} \pounds 392\\ \pounds 700\\ \pounds 40\\ \pounds 1,875\\ \pounds 3,007\\ 0`154d.\\ 0`654d.\\ \pounds 14,400\\ \pounds 70,600\\ \pounds 27,063\\ 0`7\\ 0`061\\ 0`170\\ \end{array}$	$\begin{array}{c} \pounds 536\\ \pounds 720\\ \pounds 54\\ \pounds 2, 292\\ \pounds 3, 602\\ 0\cdot 123d.\\ 0\cdot 623d.\\ \pounds 12, 150\\ \pounds 64, 400\\ \pounds 21, 612\\ 1\cdot 0\\ 0\cdot 042\\ 0\cdot 198\end{array}$	$\begin{array}{c} \pounds 700 \\ \pounds 740 \\ \pounds 70 \\ \pounds 3, 250 \\ \pounds 4, 760 \\ 0.108d. \\ 0.608d. \\ \pounds 11, 200 \\ \pounds 56, 000 \\ \pounds 19, 040 \\ 1.5 \\ 0.028 \\ 0.234 \end{array}$	s t u v w x y z A B C D E
4.930	12.550	23,100	60.600	161.000	F
$\begin{array}{c} 34,510\\ 1\cdot5\\ \pounds72\\ \pounds1,296\\ \pounds3,130\\ \pounds113,000\\ \pounds5,650\\ \pounds3,400\\ \pounds10,346\\ \pounds51,246\\ \pounds219,000\\ \end{array}$	$\begin{array}{c} 2.5\\ 2.5\\ \pm 183\\ \pm 2,200\\ \pm 3,400\\ \pm 122,500\\ \pm 6,125\\ \pm 3,680\\ \pm 12,005\\ \pm 43,855\\ \pm 2009900\end{array}$	$\begin{array}{c} 161,700\\ 3\cdot44\\ \pm337\\ \pm3,033\\ \pm3,760\\ \pm135,000\\ \pm6,750\\ \pm4,050\\ \pm13,833\\ \pm40,896\\ \pm205,600\\ \end{array}$	$\begin{array}{c} 424,200\\ 6\\ \pounds 885\\ \pounds 5,310\\ \pounds 1,300\\ \pounds 155,000\\ \pounds 155,000\\ \pounds 7,750\\ \pounds 4,650\\ \pounds 17,710\\ \pounds 39,322\\ \pounds 219,400\\ \end{array}$	$\begin{array}{c} 1,127,000\\ 10^{\circ}6\\ \pm 2,350\\ \pm 9,400\\ \pm 5,200\\ \pm 187,000\\ \pm 9,350\\ \pm 5,620\\ \pm 24,370\\ \pm 43,410\\ \pm 243,000\\ \end{array}$	GHIJKLMNOPO

600-VOLT OVERHEAD CATENARY EQUIPMENT-continued.

TABLE I.--- 36-MILE DOUBLE-TRACK SUBURBAN RAILWAY,

a	Distance between sub-stations miles	••
b	Number of sub-stations	36/a
c	Average number of trains per sub-station	$\frac{\text{trs./hr.} \times 36 \times 2}{\text{schedule speed} \times b}$
d	" amperes in conductor at sub-station	$\frac{70 \times 100 \times \text{trs./hr.} \times a}{600 \times 2}$
e	Total average amperes per sub-station (19 hours)	$d \times 4$
f	"output per sub-station per annum	$\left\{\begin{array}{c} e \times 600 \times 7000 \\ \hline 1000 \end{array}\right\}$
$_{h}^{g}$	Demand per sub-station . Maximum amperes at 800 amperes starting, 200 running.	
i	" kilowatt demand per sub-station KW.	$\left\{ \begin{array}{c} \frac{h \times 600}{1000} \end{array} \right\}$
$j \atop k$	Half above increased by 50 per cent. for spare ,, Sub-station units	·· ··
l m	", capacity", Cost per kilowatt of sub-station complete,	From curves $l \times m$
n o	Sub-station load-factor (over 24 hours) per cent.	$\left\{\begin{array}{c} \frac{e}{\bar{h}} \times \frac{19}{24} \times 100 \end{array}\right\}$
$p \atop q$	Converter ,, (,, 19 ,,) ,, Annual overall efficiency of sub-station ,,	$e/h \times 100$ From curves
r	Units lost per annum in sub-station	$\left(f \times \frac{100}{a}\right) - J$
s t v w x y z A B C D E	Capital charge per sub-station at 5 per cent	$ \begin{array}{c} n \times \frac{1}{25} \\ \dots \\ n \times \frac{1}{25} \\ r \times 0.5/240 \\ s + t + u + v \\ w \times 240/f \\ 0.5 + x \\ l \times b \\ z \times m \\ w \times b \\ \dots \\ w \times b \\ \dots \\ (D + 0.024) \times \frac{a}{2} \end{array} \right\} $
\mathbf{F}	Average watts lost in four conductors and tracks {	$4 \times \mathbf{E} \times d^2 \times 1.3$
GHIJKLMNOPQ	Units lost per sub-station section per annum . Percentage conductor and track loss Value of loss at 0.5 <i>d</i> . per unit Total value of track loss for whole line Cost of track-equipment per mile of double-track Total cost of track-equipment Capital charge on track-equipment at 5 per cent Maintenance of track-equipment at 3 per cent Total charges due to track	$ \begin{array}{c} F \times 7000/1000 \\ G/f \times 100 \\ G \times 0.5/240 \\ I \times b \\ \\ K \times 36 \\ L \times \frac{1}{20} \\ L \times \frac{100}{100} \\ J + M + N \\ O + B \\ A + L \end{array} $

	24 Trai	ins per Hour in Eac	h Direction.			
1	2	3	4	6	a	-
36	18	12	9	6	1	-
} 3	6	9	12	18	c	
140	280	420	560	840	d	
560	1,120	1,680	2,240	3,360	e	
2,350,000	4,700,000	7,050,000	9,400,000	14,100,000	f	
$\begin{array}{c} 3 \ \mathrm{starting} \\ 2,400 \end{array}$	4 st. 2 run. 3,600	41 st. 41 run. 4,500	5 ¹ / ₂ st. 6 ¹ / ₃ run. 5,700	$7\frac{1}{2}$ st. $10\frac{1}{2}$ run. 8,100	g_h	
1,440	2,160	2,700	3,420	4,860	i	
$1,080 \\ 2 \times 500 \\ 1,000 \\ \pounds 5 \cdot 9 \\ \pounds 5,900$	$1,620 \\ 2 \times 800 \\ 1,600 \\ \pounds 4 \cdot 9 \\ \pounds 7,840$	$2,025 3 \times 6752,025\pounds 5 \cdot 3\pounds 10,720$	$2,560 3 \times 850 2,550 \pounds 4 \cdot 9 \pounds 12,500$	$\begin{array}{c} 3,640 \\ 4 \times 900 \\ 3,600 \\ \pounds 4 \cdot 8 \\ \pounds 17,300 \end{array}$	j k l m n	
18.5	25	29.6	31	$32 \cdot 8$	0	
23·3 79·5	31 84	$37 \cdot 4 \\ 86 \cdot 4$	$39 \cdot 3 \\ 86 \cdot 9$	$41.5 \\ 87.2$	p_q	
610,000	900,000	1,110,000	1,420,000	2,080,000	r	
$\begin{array}{c} \pounds 295 \\ \pounds 680 \\ \pounds 30 \\ \pounds 1, 270 \\ \pounds 2, 275 \\ 0 \cdot 232d. \\ 0 \cdot 732d. \\ 36, 000 \\ \pounds 212, 000 \\ \pounds 81, 800 \\ 0 \cdot 35 \\ 0 \cdot 121 \\ 0 \cdot 073 \end{array}$	$\begin{array}{c} \pounds 392 \\ \pounds 700 \\ \pounds 40 \\ \pounds 1,875 \\ \pounds 3,007 \\ 0.154d. \\ 0.654d. \\ 28,800 \\ \pounds 141,000 \\ \pounds 54,100 \\ 0.70 \\ 0.061 \\ 0.085 \end{array}$	$\begin{array}{c} \pounds 536\\ \pounds 720\\ \pounds 54\\ \pounds 2, 292\\ \pounds 3, 602\\ 0 \cdot 123d.\\ 0 \cdot 623d.\\ 24, 300\\ \pounds 129, 000\\ \pounds 129, 000\\ \pounds 129, 000\\ \pounds 129, 000\\ \ell 129, 000\\ $	$\begin{array}{c} \pounds 625 \\ \pounds 740 \\ \pounds 63 \\ \pounds 2,960 \\ \pounds 4,388 \\ 0 \cdot 112d. \\ 0 \cdot 612d. \\ 23,000 \\ \pounds 118,000 \\ \pounds 118,000 \\ \pounds 39,500 \\ 1 \cdot 40 \\ 0 \cdot 0305 \\ 0 \cdot 109 \end{array}$	$\begin{array}{c} \pounds 865\\ \pounds 760\\ \pounds 87\\ \pounds 4,340\\ \pounds 6,052\\ 0\cdot 103d,\\ 0\cdot 603d,\\ 21,600\\ \pounds 104,000\\ \pounds 36,350\\ 2\cdot 0\\ 0\cdot 021\\ 0\cdot 135\\ \end{array}$	s t v w x y z A B C D E	
2,480	11,550	30,150	59,300	165,000	\mathbf{F}	
$\begin{array}{c} 17,360\\ 0.74\\ \pounds 36\\ \pounds 1,295\\ \pounds 3,130\\ \pounds 113,000\\ \pounds 5,650\\ \pounds 3,390\\ \pounds 10,335\\ \pounds 92,135\\ \pounds 92,135\end{array}$	$\begin{array}{c} 80,850\\ 1\cdot72\\ \pounds 169\\ \pounds 3,040\\ \pounds 3,760\\ \pounds 135,000\\ \pounds 6,750\\ \pounds 4,050\\ \pounds 13840\\ \pounds 3,840\\ \pounds 67,940\\ \end{array}$	$\begin{array}{c} 211,050\\ 3\cdot 0\\ \pounds 440\\ \pounds 5,280\\ \pounds 4,300\\ \pounds 155,000\\ \pounds 7,750\\ \pounds 4,650\\ \pounds 17,680\\ \pounds 60,980 \end{array}$	$\begin{array}{c} 415,100\\ 4\cdot42\\ \pounds864\\ \pounds7,776\\ \pounds5,020\\ \pounds181,000\\ \pounds9,075\\ \pounds5,430\\ \pounds22,281\\ \pounds61,781 \end{array}$	$1,155,000 \\ 8.2 \\ \pounds 2,410 \\ \pounds 14,460 \\ \pounds 6,100 \\ \pounds 220,000 \\ \pounds 11,000 \\ \pounds 6,600 \\ \pounds 32,060 \\ \pounds 38,410 \\ $	GH JKLMNOP	

600-VOLT OVERHEAD CATENARY EQUIPMENT-continued.

a	Distance between sub-stations miles	••
ъ	Number of sub-stations	36/a
c	Average number of trains per sub-station	$\frac{\text{trs./hr.} \times 36 \times 2}{\text{schedule speed} \times b}$
d	" amperes in conductor at sub-station	$\frac{70 \times 100 \times \text{trs./hr.} \times a}{1200 \times 2}$
е	Total average amperes per sub-station (19 hours)	$d \times 4$
f	"output per sub-station per annum	$\frac{e \times 1200 \times 7000}{1000}$
$egin{array}{c} g \ h \end{array}$	Demand per sub-station	
i	,, kilowatt demand per sub-station KW.	$\left\{ \begin{array}{c} \frac{h \times 1200}{1000} \end{array} \right\}$
j k l m n	Half above increased by 50 per cent. for spare , Sub-station units , , ,, capacity , , Cost per kilowatt of sub-station complete	$\frac{1}{l \times m}$
0	Sub-station load-factor (over 24 hours) per cent.	$\left\{ \frac{e}{h} \times \frac{19}{24} \times 100 \right\}$
$\begin{array}{c} p \\ q \end{array}$	Converter ,, (,, 19 ,,) ,, Annual overall efficiency of sub-station ,,	$e/h \times 100$ From curves
r	Units lost per annum in sub-station	$\left(f \times \frac{100}{q}\right) - f$
s t u v w x y z A B C D E F G H I J K L	Capital charge per sub-station at 5 per cent	$ \begin{array}{c} n \times \frac{1}{20} \\ & \ddots \\ n \times \frac{1}{20} \\ r \times 0.5/240 \\ s + t + u + v \\ w \times 240/f \\ 0.5 + x \\ l \times b \\ z \times m \\ w \times b \\ & \ddots \\ (D + 0.024) \times \frac{u}{2} \\ \} \\ \frac{4 \times E \times d^2 \times 1.3}{3} \\ \frac{3}{5} \\ F \times 7000/1000 \\ G/f \times 100 \\ G \times 0.5/240 \\ I \times b \\ & \ddots \\ X \times 36 \end{array} \right\} $
L M N O P Q	Capital cost of track-equipment	$ \begin{array}{c} \mathbf{L} \times \mathbf{z}_{0}^{3} \\ \mathbf{L} \times \mathbf{z}_{0}^{3} \\ \mathbf{J} + \mathbf{M} + \mathbf{N} \\ \mathbf{O} + \mathbf{B} \\ \mathbf{A} + \mathbf{L} \end{array} $

6 Trains per Hour in Each Direction.					
4	6	9	12	18	a
9	6	4	3	2	6
} 3	4.2	6.75	9	13.5	c
} 70	105	158	210	315	d
280	420	630	840	1,260	e
2,350,000	3,530,000	5,300,000	7,050,000	10,600,000	f
³ starting 1,200	3] st. 1 run. 1,500	4 st. 23 run. 1,875	41 st. 41 run. 2,250	6 st. 7 <u>1</u> run. 3,150	9 h
1,440	1,800	2,250	2,700	3,780	i
$1,0802 \times 5501,100\pounds 6 \cdot 1\pounds 6,700$	$1,350 \\ 2 \times 675 \\ 1,350 \\ \pounds 5 \cdot 7 \\ \pounds 7,690$	$1,6902 \times 8501,700£5.25£8,920$	$2,0152 \times 1,0002,000£5 \cdot 0£10,000$	2,840 3×950 2,850 $\pounds 4 \cdot 95$ $\pounds 14,100$	j k l m n
18.5	$22 \cdot 2$	26 6	29.5	31.7	0
$\begin{array}{c} 23 \cdot 3 \\ 81 \cdot 2 \end{array}$	$28 \cdot 0 \\ 82 \cdot 4$	33•6 84•8	37·0 86·4	$40.0 \\ 87.2$	p q
550,000	750,000	950,000	1,100,000	1,550,000	r
$\begin{array}{c} \pounds 335 \\ \pounds 690 \\ \pounds 34 \\ \pounds 1, 145 \\ \pounds 2, 204 \\ 0.225d. \\ 0.725d. \\ 9, 900 \\ \pounds 60, 400 \\ \pounds 19, 836 \\ 0.175 \\ 0.242 \\ 0.532 \end{array}$	$\begin{array}{c} \pounds 385\\ \pounds 700\\ \pounds 38\\ \pounds 1,565\\ \pounds 2,688\\ 0.183d,\\ 0.683d,\\ 8,100\\ \pounds 46,200\\ \pounds 16,128\\ 0.25\\ 0.170\\ 0.582\end{array}$	$\begin{array}{c} \pounds 446 \\ \pounds 710 \\ \pounds 45 \\ \pounds 1,980 \\ \pounds 3,181 \\ 0.144d \\ 0.644d \\ 6,800 \\ \pounds 35,700 \\ \pounds 12,724 \\ 0.375 \\ 0.114 \\ 0.621 \end{array}$	$\begin{array}{c} \pounds 500 \\ \pounds 720 \\ \pounds 50 \\ \pounds 2,400 \\ \pounds 3,670 \\ 0 \cdot 125d \\ 0 \cdot 625d \\ 6,000 \\ \pounds 30,000 \\ \pounds 11,010 \\ 0 \cdot 5 \\ 0 \cdot 085 \\ 0 \cdot 654 \end{array}$	$\begin{array}{c} \pounds 705 \\ \pounds 740 \\ \pounds 711 \\ \pounds 3, 230 \\ \pounds 4, 746 \\ 0.108d, \\ 0.608d, \\ 5,700 \\ \pounds 28, 200 \\ \pounds 9, 492 \\ 0.75 \\ 0.057 \\ 0.729 \end{array}$	8 <i>t</i> <i>w</i> <i>w</i> <i>w</i> <i>x</i> <i>y</i> <i>z</i> A B C D E
4,510	11,120	26,820	50,000	125,300	F
31,570 $1\cdot 34$ $\pounds 66$ $\pounds 594$ $\pounds 2,915$ $\pounds 105,000$ $\pounds 5,250$ $\pounds 3,150$ $\pounds 8,994$ $\pounds 28,830$ $\pounds 165,400$	$\begin{array}{c} 77,840\\ 2\cdot 2\\ \pounds 162\\ \pounds 972\\ \pounds 3,050\\ \pounds 110,000\\ \pounds 5,500\\ \pounds 3,300\\ \pounds 9,772\\ \pounds 25,900\\ \pounds 156,200\\ \end{array}$	$187,740 \\ 3.54 \\ \pounds 392 \\ \pounds 1,568 \\ \pounds 3,275 \\ \pounds 118,000 \\ \pounds 5,900 \\ \pounds 3,540 \\ \pounds 11,008 \\ \pounds 23,732 \\ \pounds 153,700 \\ $	$\begin{array}{c} 350,000 \\ 4.96 \\ \pounds 730 \\ \pounds 2,190 \\ \pounds 3,500 \\ \pounds 126,000 \\ \pounds 6,300 \\ \pounds 3,780 \\ \pounds 12,270 \\ \pounds 23,280 \\ \pounds 156,000 \end{array}$	$\begin{array}{c} 877,100\\ 8:28\\ \pounds 1,830\\ \pounds 3,660\\ \pounds 3,950\\ \pounds 142,000\\ \pounds 7,100\\ \pounds 4,260\\ \pounds 15,020\\ \pounds 24,512\\ \pounds 170,200\\ \end{array}$	G H J K L M N O P Q

1,200-VOLT OVERHEAD CATENARY EQUIPMENT.

[THE INST. C.E. VOL. CXCIX.]

F

[Minutes of

TABLE	II	DOUBLE-TRACK	SUBURBAN	RATLWAY.
Taphe	TT 00-111010	DOODDE-T HTOR	NO DO ROAM	10

a	Distance between sub-stations miles
6	Number of sub-stations $\ldots \ldots \ldots \ldots \ldots \ldots 36/a$
c	Average number of trains per sub-station
d	, amperes in conductor at sub-station $\left\{\frac{70 \times 100 \times \text{trs./hr.} \times a}{1200 \times 2}\right\}$
e	Total average amperes per sub-station (19 hours) $d \times 4$
f	, output per sub-station per annum $\ldots \ldots $
7 h	Demand per sub-station
:	,, kilowatt demand per sub-station KW. $\left\{ \begin{array}{c} \frac{h \times 1200}{1000} \end{array} \right\}$
	Half above increased by 50 per cent. for spare ,,
l m	", capacity
n	, sub-station $l \times m$
0	Sub-station load-factor (over 24 hours) per cent. $h \times \frac{1}{24} \times \frac{100}{100}$
$\stackrel{p}{q}$	Annual overall efficiency of sub-station
r	Units lost per annum in sub-station $(f \times \frac{100}{q}) - f$
stuvwxyzAB	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C D	Copper section of contact conductor
Е	$\left\{\begin{array}{c} \text{Resistance of conductor and track, from sub-station to} \\ \text{neutral point.}, \dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots \end{array}\right\} (D + 0.024) \times \frac{a}{2}$
F	Average watts lost in four conductors and tracks $\left\{ \begin{array}{c} \frac{4 \times E \times d^2 \times 1 \cdot 3}{3} \end{array} \right.$
GHIJKLMNOPO	Units lost per sub-station section per annumF \times 7000/1000Percentage conductor and track lossG/f \times 100Value of loss at 0.5d, per unitG \times 0.5/240Total value of track loss for whole lineI \times bCost of track-equipment per mile of double trackI \times bCapital charge on track-equipment at 5 per cent.K \times 36Capital charges due to track.L \times $\frac{1}{20}$ Maintenance of track-equipment at 3 per cent.J + M + N, sub-station and track chargesO + BA + I

12 Trains per Hour in Each Direction.					
4	6	9	12	18	a
9	6	4	3	2	6
6	9	13.5	18	27	c
} 140	210	315	420	630	d
560	840	1,260	1,680	2,520	e
4,700,000	7,050,000	10,600,000	14,100,000	21,200,000	ſ
4 st. 2 run. 1,800	4½ st. 4½ run. 2,250	6 st. 7] run. 3,150	$7\frac{1}{2}$ st. $10\frac{1}{2}$ run. 4,050	10 st. 17 run. 5,700	1) k
2,160	2,700	3,780	4,860	6,840	i
$1,620 \\ 2 \times 800 \\ 1,600 \\ \pounds 5 \cdot 5 \\ \pounds 8,800$	$\begin{array}{c} 2,025\\ 2\times 1,000\\ 2,000\\ \pounds 5\cdot 0\\ \pounds 10,000\end{array}$	2,835 3×950 2,850 $\pounds 4 \cdot 95$ $\pounds 14,100$	3,645 $3 \times 1,200$ 3,600 $\pounds 4 \cdot 4$ $\pounds 15,840$	5,130 $4 \times 1,250$ 5,000 $\pounds 4 \cdot 3$ $\pounds 21,500$	j k l m n
24.6	29.5	31.7	32.8	$35 \cdot 0$	0
$31 \cdot 0 \\ 83 \cdot 8$	$37.0 \\ 86.4$	$40.0 \\ 87.2$	41·5 88·0	44·0 88·4	p
910,000	1,100,000	1,550,000	1,950,000	2,800,000	r
$\begin{array}{c} \pounds 440\\ \pounds 700\\ \pounds 44\\ \pounds 1,895\\ \pounds 3,079\\ 0.157d.\\ 0.657d.\\ 14,400\\ \pounds 79,200\\ \pounds 27,711\\ 0.35\\ 0.121\\ 0.29\end{array}$	$\begin{array}{c} \pounds 500\\ \pounds 720\\ \pounds 50\\ \pounds 2,400\\ \pounds 3,670\\ 0\cdot 125d.\\ 0\cdot 625d.\\ 12,000\\ \pounds 60,000\\ \pounds 22,020\\ 0\cdot 5\\ 0\cdot 085\\ 0\cdot 327\end{array}$	$\pounds 705$ $\pounds 740$ $\pounds 71$ $\pounds 3,230$ $\pounds 4,746$ 0.108d. 0.608d. 11,400 $\pounds 56,400$ $\pounds 18,984$ 0.75 0.057 0.3645	$\begin{array}{c} \pounds 792 \\ \pounds 760 \\ \pounds 80 \\ \pounds 4,060 \\ \pounds 5,692 \\ 0.097d. \\ 0.597d. \\ 10,800 \\ \pounds 47,520 \\ \pounds 17,076 \\ 1.0 \\ 0.042 \\ 0.396 \end{array}$	$\begin{array}{c} \pounds 1,075\\ \pounds 780\\ \pounds 108\\ \pounds 5,830\\ \pounds 7,793\\ 0\cdot 688d,\\ 0\cdot 588d,\\ 10,000\\ \pounds 43,000\\ \pounds 15,586\\ 1\cdot 5\\ 0\cdot 028\\ 0\cdot 468\end{array}$	s t u v w x y z A B C D E
9,850	25,000	62,600	121,200	322,000	F
68,950 1.5 £144 £1,296 £3,230 £116,500 £5,825 £3,495 £10,616 £38,327 £195,700	$\begin{array}{c} 175,000\\ 2\cdot5\\ \pounds365\\ \pounds2,190\\ \pounds3,500\\ \pounds126,000\\ \pounds6,300\\ \pounds3,780\\ \pounds12,270\\ \pounds34,290\\ \pounds186,000\\ \end{array}$	$\begin{array}{c} 438,200\\ 4\cdot14\\ \pounds 914\\ \pounds 3,656\\ \pounds 3,950\\ \pounds 142,000\\ \pounds 7,100\\ \pounds 4,260\\ \pounds 15,016\\ \pounds 34,000\\ \pounds 198,400\end{array}$	$\begin{array}{c} 848,400\\ 6\cdot0\\ \pounds 1,767\\ \pounds 5,301\\ \pounds 4,400\\ \pounds 158,300\\ \pounds 7,915\\ \pounds 4,750\\ \pounds 17,966\\ \pounds 35,042\\ \pounds 205,820\end{array}$	$\begin{array}{c} 2,254,000\\ 10\cdot6\\ \pounds4,700\\ \pounds9,400\\ \pounds5,300\\ \pounds191,000\\ \pounds9,550\\ \pounds5,730\\ \pounds24,680\\ \pounds234,000\\ \end{array}$	GHIJKLMNOPO

1,200-VOLT OVERHEAD CATENARY EQUIPMENT-continued.

F 2

TABLE II .--- 36-MILE DOUBLE-TRACK SUBURBAN RAILWAY,

a	Distance between sub-stations miles	••
6	Number of sub-stations	36/u
c	Average number of trains per sub-station	$\frac{\text{trs./hr.} \times 36 \times 2}{\text{schedule speed} \times b}$
d	., amperes in conductor at sub-station {	$70 \times 100 \times \text{trs./hr.} \times a$
e	Total average amperes per sub-station (19 hours)	$d \times 4$
r	"output per sub-station per annum	$\left\{\begin{array}{c} e \times 1200 \times 7000 \\ 1000 \end{array}\right\}$
g_h	Demand per sub-station	
i	", kilowatt demand per sub-station KW.	$\left\{\begin{array}{c} \frac{h \times 1200}{1000} \right\}$
j k l	Half above increased by 50 per cent. for spare ,, Sub-station units	••
m n	Cost per kilowatt of sub-station complete	From curves $l \times m$
0	Sub-station load-factor (over 24 hours) per cent.	$\left\{\begin{array}{c} \frac{e}{h} \times \frac{19}{24} \times 100 \end{array}\right\}$
$p \\ q$	Converter ,, (,, 19 ,,) ,, Annual overall efficiency of sub-station ,,	$e/h \times 100$ From curves
r	Units lost per annum in sub-station	$\left(f \times \frac{100}{q}\right) - f$
s t w w w y z A B C D E	Capital charge per sub-station at 5 per cent. Wages, superintendence, and stores . Repairs and renewals at 0.5 per cent. Cost of lost units at 0.5 <i>d</i> , per unit . Total cost of running sub-stations, including capital charge Sub-station charge per unit delivered . Current cost per unit delivered . Total sub-station capacity . , capital cost of all sub-stations . , cost of running all sub-stations . , cost of running all sub-stations . , Resistance of conductor per mile . (Resistance of conductor and track, from sub-station to neutral point .	$n \times \frac{1}{20}$ $n \times \frac{1}{20}$ $r \times 0.5/240$ $s + t + u + v$ $w \times 240/f$ $0.5 + x$ $l \times b$ $z \times u$ $w \times b$ \vdots $(D + 0.024) \times \frac{a}{2}$
F	Average watts lost in four conductors and tracks {	$\frac{4 \times E \times d^2 \times 1.3}{3} \}$
GHIJKLMNOPQ	Units lost per sub-station section per annum Percentage conductor and track loss	$ \begin{array}{c} F \times 7000/1000 \\ G/f \times 100 \\ G \times 0.5/240 \\ I \times b \\ \\ K \times 36 \\ L \times \frac{1}{20} \\ J + M + N \\ O + B \\ A + L \end{array} $

Ì	24 Trains per Hour in Each Direction.					
	2	4	6	9	12	a
	18	9	6	4	3	6
	6	12	18	27	36	c
	140	280	420	630	840	d
ľ	560	1,120	1,680	2,520	3,360	c
	4,700,000	9,400,000	14,100,000	21,200,000	28,200,000	$\int f$
	4 st. 2 run. 1,800	5 <u>1</u> st. 6 <u>1</u> run. 2,900	$7\frac{1}{2}$ st. $10\frac{1}{2}$ run. 4,050	10 st. 17 run. 5,700	13 st. 23 run. 7,500	$g \\ h$
	2,160	3,480	4,860	6,840	9,000	i
	1,620 2×800 1,600 £5.5 £8,800	$\begin{array}{c} 2,610 \\ 3 \times 900 \\ 2,700 \\ \pounds 5 \cdot 0 \\ \pounds 13,500 \end{array}$	$3,650 \\ 3 \times 1,200 \\ 3,600 \\ \pounds 4 \cdot 4 \\ \pounds 15,850$	5,130 $4 \times 1,250$ 5,000 $\pounds 4 \cdot 3$ $\pounds 21,500$	$6,750 4 \times 1,700 6,800 £3 \cdot 8 £25,800$	j k l m n
	24.6	30.5	32.8	35.0	$35 \cdot 5$	0
	31·0 83·8	$38.6 \\ 86.8$	$41.5 \\ 87.8$	$44 \cdot 2 \\ 88 \cdot 5$	44.8 89.1	$\left \begin{array}{c} p \\ q \end{array} \right $
	910,000	1,420,000	1,950,000	2,740,000	3,480,000	r
	$\begin{array}{c} \pounds 440 \\ \pounds 700 \\ \pounds 44 \\ \pounds 1,895 \\ \pounds 3,079 \\ 0 \cdot 157d. \\ 0 \cdot 657d. \\ 28,800 \\ \pounds 158,400 \\ \pounds 158,400 \\ \pounds 55,422 \\ 0 \cdot 35 \\ 0 \cdot 121 \\ 0 \cdot 145 \\ 4,925 \\ 34,475 \\ 0 \cdot 75 \\ \pounds 72 \\ \pounds 1,296 \end{array}$	$\begin{array}{c} \pounds 675 \\ \pounds 740 \\ \pounds 68 \\ \pounds 2,960 \\ \pounds 4,343 \\ 0.111d. \\ 0.611d. \\ 24,300 \\ \pounds 121,500 \\ \pounds 139,087 \\ 0.70 \\ 0.061 \\ 0.170 \\ 23,100 \\ 161,700 \\ 1.72 \\ \pounds 337 \\ \pounds 3,033 \\ \end{array}$	$\begin{array}{c} \pounds 793\\ \pounds 760\\ \pounds 80\\ \pounds 4,060\\ \pounds 5,693\\ 0 \cdot 097d.\\ 0 \cdot 597d.\\ 21,600\\ \pounds 95,000\\ \pounds 95,000\\ \pounds 34,158\\ 1 \cdot 0\\ 0 \cdot 042\\ 0 \cdot 198\\ 60,510\\ 423,570\\ 3 \cdot 0\\ \pounds 883\\ \pounds 5,298\end{array}$	$\begin{array}{c} \pounds 1,075\\ \pounds 780\\ \pounds 108\\ \pounds 5,710\\ \pounds 7,773\\ 0 088d.\\ 0 0588d.\\ 20,000\\ \pounds 86,000\\ \pounds 86,000\\ \pounds 86,000\\ \pounds 86,000\\ \pounds 81,092\\ 1 ^5\\ 0 ^{1}028\\ 0 ^{2}24\\ 161,200\\ 1,128,400\\ 5 ^{3}22\\ \pounds 2,350\\ \pounds 9,400\\ \end{array}$	$\begin{array}{c} \pounds 1,290\\ \pounds 800\\ \pounds 129\\ \pounds 7,250\\ \pounds 9,469\\ 0.081d.\\ 0.581d.\\ 20,400\\ \pounds 77,500\\ \pounds 28,407\\ 2.0\\ 0.021\\ 0.270\\ 330,200\\ 2,311,400\\ 8.2\\ \pounds 4,810\\ \pounds 14,430\\ \end{array}$	s t u v w x y z A B C D E F G H H I J
sense i children a succession de la companya de la	$\pounds 3,230$ $\pounds 116,500$ $\pounds 5,825$ $\pounds 3,495$ $\pounds 10,616$ $\pounds 66,038$ $\pounds 274,900$	$\begin{array}{c} \pounds 3,860\\ \pounds 139,000\\ \pounds 6,950\\ \pounds 4,170\\ \pounds 14,153\\ \pounds 53,240\\ \pounds 260,500\\ \end{array}$	$\pounds 4,400$ $\pounds 158,400$ $\pounds 7,920$ $\pounds 4,752$ $\pounds 17,970$ $\pounds 52,128$ $\pounds 253,400$	$\pounds 5,300$ $\pounds 190,800$ $\pounds 9,540$ $\pounds 5,724$ $\pounds 24,664$ $\pounds 55,756$ $\pounds 276,800$	$\begin{array}{c} \pounds 6,200\\ \pounds 223,500\\ \pounds 11,175\\ \pounds 6,705\\ \pounds 32,310\\ \pounds 60,717\\ \pounds 301,000 \end{array}$	K L M N O P Q

1,200-VOLT OVERHEAD CATENARY EQUIPMENT-continued.

TABLE	III36-MILE	DOUBLE-TRACK	SUBURBAN	RAILWAY.

u	Distance between sub-stations miles	••
b	Number of sub-stations	36/a
c	Average number of trains per sub-station	$\frac{\text{trs./hr.} \times 36 \times 2}{\text{schedule speed} \times b}$
d	" amperes in conductor at sub-station{	$\frac{70 \times 100 \times \text{trs./hr.} \times u}{2400 \times 2}$
	Total average amperes per sub-station (19 hours)	$d \times 4$
F	,, output per sub-station per annum \ldots \ldots .	$\begin{cases} e \times 2400 \times 7000 \\ 1000 \end{cases}$
h	Demand per sub-station	
i	" kilowatt demand per sub-station KW.	$\begin{array}{c} h \times 2400 \\ \hline 1000 \end{array}$
	Half above increased by 50 per cent. for spare ,, Sub-station units (2 rotaries in series per unit) ,,	·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··
n n	Cost per kilowatt of sub-station complete	From curves $l \times m$
,	Sub-station load-factor (over 24 hours) per cent.	$\left\{ -\frac{c}{h} \times \frac{19}{24} \times 100 \right\}$
) 	Converter ,, (,, 19 ,,) ,, Annual overall efficiency of sub-station ,,	$e/h \times 100$ From curves
r	Units lost per annum in sub-station	$\left(f \times \frac{100}{g}\right) - f$
5 ; ;;	Capital charge per sub-station at 5 per cent	$n \times \frac{1}{20}$ $n \times \frac{1}{200}$ $r \times 0.5/240$
v c f	Total cost of running sub-stations, including capital charge Sub-station charge per unit delivered Current cost per unit delivered	s + t + u + v $w \times 240/f$ 0.5 + x $l \times b$
2 1 3	, capital cost of all sub-stations	$z \times m$ $w \times b$
)	Copper section of contact conductor	••
Ξ	[Resistance of conductor and track return from sub-station] to neutral point	$(1) + 0.024) \times \frac{a}{2}$
7	Average watts lost in four conductors and tracks $\left.\right\}$	$4 \times \mathbf{E} \times d^2 \times 1.3$
ł	Units lost per sub-station section per annum	$F \times 7000/1000$
1	Value of track loss at $0.5d$, per unit	$G \times 0.5/240$
J C	Total value of track loss for whole line	$\mathbf{I} \times b$
- 	Total cost of track-equipment	K × 36 L × 1
N	Maintenance of track-equipment at 3 per cent.	$L \times \frac{20}{100}$
)	Total charges due to track	J + M + N O + B
Ş	" capital cost of sub-stations and track-equipment .	A + L

	6 Trains per Hour in Each Direction.					
	6	9	12	18	36	a
	6	4	3	2	1	Ь
- []	4.2	6.75	9	13.5	27	0
	53	79	105	158	315	d
	210	315	420	630	1,260	e
	3,530,000	5,300,000	7,050,000	10,600,000	21,200,000	$\int f$
	3 1 st. 1 run. 750	4 st. 2 ³ / ₄ run. 938	4½ st. 4½ run. 1,125	6 st. 7 1 run. 1,575	10 st. 17 run. 2,850	g
	1,800	2,250	2,700	3,780	6,840	i
The support of the second seco	$\begin{array}{c} 1,350\\ 2\times(2\times340)\\ 1,360\\ \pounds 6\cdot85\\ \pounds 9,310 \end{array}$	$\begin{array}{c} 1,690 \\ 2 \times (2 \times 420) \\ 1,680 \\ \pounds 6 \cdot 25 \\ \pounds 10,500 \end{array}$	$\begin{array}{c} 2,025\\ 2\times(2\times500)\\ 2,000\\ \pounds 5\cdot 8\\ \pounds 11,600\end{array}$	2,835 $2 \times (2 \times 700)$ 2,800 $\pounds 5 \cdot 3$ $\pounds 14,850$	$5,1303 \times (2 \times 850)5,100£4 \cdot 8£24,480$	j k l m n
	22.2	26.6	29.6	31.7	35.0	0.
	$\begin{array}{c} 28 \\ 81 \cdot 8 \end{array}$	33·6 84·2	37·4 85·8	$40.0 \\ 86.9$	44·2 88·0	$\left \begin{array}{c} p \\ q \end{array} \right $
	785,000	1,000,000	1,170,000	1,600,000	2,900,000	r
	$\pounds 465$ $\pounds 700$ $\pounds 47$ $\pounds 1, 637$ $\pounds 2, 849$ 0.194d. 0.694d. \$, 160 $\pounds 55, 900$ $\pounds 17, 094$ 0.125 0.34 1.092 5, 310 37, 170 1.05 $\pounds 77$ $\pounds 462$ $\pounds 3, 025$ $\pounds 109, 000$	$\begin{array}{c} \pounds 525\\ \pounds 710\\ \pounds 53\\ \pounds 2,082\\ \pounds 3,370\\ 0 \cdot 153d.\\ 0 \cdot 653d.\\ 6,720\\ \pounds 42,100\\ \pounds 13,480\\ 0 \cdot 188\\ 0 \cdot 228\\ 1 \cdot 135\\ 12,280\\ 85,960\\ 1 \cdot 62\\ \pounds 179\\ \pounds 716\\ \pounds 3,138\\ \pounds 113,000\\ \end{array}$	$\pounds 580$ $\pounds 720$ $\pounds 58$ $\pounds 2,440$ $\pounds 3,798$ 0.129d. 6,000 $\pounds 34,800$ $\pounds 11,394$ 0.25 0.17 1.164 22,250 155,750 2.21 $\pounds 324$ $\pounds 972$ $\pounds 3,250$ $\pounds 117,000$	$\pounds 743$ $\pounds 740$ $\pounds 74$ $\pounds 3,340$ $\pounds 4,897$ 0.111d. 0.611d. 5,600 $\pounds 29,970$ $\pounds 9,794$ 0.375 0.114 1.242 53,700 375,900 3.54 $\pounds 781$ $\pounds 1,562$ $\pounds 3,475$ $\pounds 125,000$	$\pounds 1,224$ $\pounds 780$ $\pounds 122$ $\pounds 6,050$ $\pounds 8,176$ 0.093d. 5,100 $\pounds 24,500$ $\pounds 8,176$ 0.75 0.057 1.46 250,500 1,753,500 8.25 $\pounds 3,655$ $\pounds 3,655$ $\pounds 4,150$ $\pounds 149,500$	s t w v y z A B C D E F G H I J K L
	£5,450 £3,270 £9,182 £26,276 £164,900	£5,650 £3,390 £9,756 £23,236 £155,100	£5,850 £3,510 £10,332 £21,726 £151,800	£6,250 £3,750 £11,562 £21,356 £154,970	£7,475 £4,485 £15,615 £23,791 £174,000	M N O P Q

2,400-VOLT OVERHEAD CATENARY EQUIPMENT.

TABLE III, 00-MILE DOUBLE-IRACK SUBURBAN MAILWE	TABLE	III36-Mile	DOUBLE-TRACK	SUBURBAN	RAILWAY
---	-------	------------	--------------	----------	---------

	······································	
u	Distance between sub-stations miles	
6	Number of sub-stations	36/a
0	Average number of trains per sub-station	$\frac{\text{trs./hr.} \times 36 \times 2}{1}$
		$70 \times 100 \times \text{trs./hr.} \times a$
d	" amperes in conductor at sub-station	2400×2
e	Total average amperes per sub-station (19 hours)	$ = e \times 2400 \times 7000 $
Ĵ	" output per sub-station per annum	1 1000
$\begin{pmatrix} y\\ h \end{pmatrix}$	Maximum amperes at 200 amperes starting, 50 running	••
i	" kilowatt demand per sub-station KW.	$\left\{\begin{array}{c} \frac{\mathbf{h} \times 2400}{1000}\right\}.$
j	Half above increased by 50 per cent. for spare ,,	••
$\binom{\kappa}{l}$	γ , capacity γ ,	••
m	Cost per kilowatt of sub-station complete	From curves $l \times m$
0	Sub-station load-factor (over 24 hours) per cent.	$\left\{ \begin{array}{c} \frac{e}{1} \times \frac{19}{54} \times 100 \end{array} \right\}$
p	Converter ,, (,, 19 ,,) ,,	$\binom{h}{c/h} \times 100$
\overline{q}	Annual overall efficiency of sub-station "	From curves
r	Units lost per annum in sub-station	$\left(f \times \frac{d}{q}\right) - f$
8 t	Capital charge per sub-station at 5 per cent.	$n \times \frac{1}{20}$
u	Repairs and renewals at 0.5 per cent.	$n \times \frac{1}{200}$
v w	Total cost of running sub-stations, including capital charge	s+t+u+v
x	Sub-station charge per unit delivered	$w \times \frac{240}{f}$ 0.5 + x
$\begin{bmatrix} y\\z\end{bmatrix}$	Total sub-station capacity	$l \times b$
A	,, capital cost of all sub-stations	$z \times m$
Б С	Copper section of contact conductor	
Ď	Resistance of conductor per mile ohm	
E	Resistance of conductor and track return from sub-station	$(\mathbf{D} + 0 \cdot 0 \cdot 2) \times \frac{a}{2} $
F	Average watts lost in four conductors and tracks	$\frac{4 \times E \times d^2 \times 1.3}{3} \}$
G	Units lost per sub-station section per annum	$F \times 7000/1000$
H	Percentage conductor and track loss	$G/f \times 100$
	Total value of track loss for whole line	$G \times 0.5/240$
K	Cost of track-equipment per mile of double track .	
L	Total cost of track-equipment	$K \times 36$
M	Capital charge on track-equipment at 5 per cent.	ГХ- <u>ş</u> - ГХ- <u>ş</u> -
lő.	Total charges due to track	J + M + N
P	" sub-station and track charges	0 + B
Q	,, capital cost of sub-stations and track-equipment .	A+L
I		·

	12 Train	s per Hour in Each	Direction.		
6	9	12	18	36	a
6	4	3	2	1	Ъ
} 9	13.2	18	27	54	с
105	158	210	315	630	d
420	630	840	1,260	2,520	e
7,050,000	10,600,000	14,100,000	21,200,000	42,400,000	f
4½ st. 4½ run. 1,125	6 st. 71 r un. 1,575	7½ st. 10½ run. 2,025	10 st. 17 run. 2,850	17 st. 37 run. 5,250	$g \\ h$
2,700	3,780	4,860	6,840	12,600	i
2,025 $2 \times (2 \times 500)$ 2,000 $\pounds 5 \cdot 8$ $\pounds 11,600$	2,835 $2 \times (2 \times 700)$ 2,800 $\pounds 5 \cdot 3$ $\pounds 14,850$	$3,645 \ 3 \times (2 \times 600) \ 3,600 \ \pounds 5 \cdot 2 \ \pounds 18,720$	$5,130 \ 3 imes (2 imes 850) \ 5,100 \ \pounds 4 \cdot 8 \ \pounds 24,480$	$9,450 4 \times (2 \times 1,200) 9,600 £4 \cdot 5 £43,200$	j k l m n
29.5	31.7	32.8	35.0	38.0	0
37·0 85·8	40·0 87·0	41·5 87·3	44 · 0 88 · 0	$48.0 \\ 89.2$	$\begin{array}{c} p \\ q \end{array}$
1,170,000	1,600,000	2,000,000	2,900,000	5,200,000	r
$\begin{array}{c} \pounds 580 \\ \pounds 720 \\ \pounds 58 \\ \pounds 2, 440 \\ \pounds 3, 798 \\ 0 \cdot 129d. \\ 0 \cdot 629d. \\ 12, 000 \\ \pounds 69, 600 \\ \pounds 69, 600 \\ \pounds 22, 788 \\ 0 \cdot 25 \\ 0 \cdot 170 \end{array}$	$\begin{array}{c} \pounds 742 \\ \pounds 740 \\ \pounds 74 \\ \pounds 3, 340 \\ \pounds 4, 896 \\ 0.111d. \\ 0.611d. \\ 11, 200 \\ \pounds 59, 400 \\ \pounds 19, 584 \\ 0.375 \\ 0.114 \end{array}$	$\begin{array}{c} \pounds 936\\ \pounds 760\\ \pounds 94\\ \pounds 4,180\\ \pounds 5,970\\ 0\cdot 105d.\\ 0\cdot 605d.\\ 10,800\\ \pounds 56,160\\ \pounds 17,910\\ 0\cdot 5\\ 0\cdot 085\\ \end{array}$	$\begin{array}{c} \pounds 1,224\\ \pounds 780\\ \pounds 123\\ \pounds 6,050\\ \pounds 8,177\\ 0 \cdot 093d.\\ 0 \cdot 593d.\\ 10,200\\ \pounds 48,960\\ \cdot \pounds 16,354\\ 0 \cdot 75\\ 0 \cdot 057\end{array}$	$\begin{array}{c} \pounds 2,160\\ \pounds 800\\ \pounds 216\\ \pounds 10,850\\ \pounds 14,026\\ 0.080d.\\ 0.580d.\\ 9,600\\ \pounds 43,200\\ \pounds 14,026\\ 1.5\\ 0.028\\ \end{array}$	s t w w x y z A B C D
0.582	0.621	0.624	0.729	0.936	E
11,120	26,900	50,000	125,300	645,000	F
$\begin{array}{c} 77,840 \\ 1\cdot1 \\ \pounds 162 \\ \pounds 972 \\ \pounds 3,250 \\ \pounds 117,000 \\ \pounds 5,850 \\ \pounds 3,520 \\ \pounds 10,342 \\ \pounds 33,130 \\ \pounds 186,600 \end{array}$	$\begin{array}{c} 188,300\\ 1\cdot77\\ \pounds 392\\ \pounds 1,568\\ \pounds 3,475\\ \pounds 125,000\\ \pounds 6,250\\ \pounds 3,750\\ \pounds 3,750\\ \pounds 11,568\\ \pounds 31,152\\ \pounds 184,400 \end{array}$	$\begin{array}{c} 350,000\\ 2\cdot 5\\ \pounds 730\\ \pounds 2,190\\ \pounds 3,700\\ \pounds 133,000\\ \pounds 6,650\\ \pounds 4,000\\ \pounds 12,840\\ \pounds 30,750\\ \pounds 189,160\\ \end{array}$	877,100 $4\cdot15$ $\pounds1,825$ $\pounds3,650$ $\pounds4,150$ $\pounds7,475$ $\pounds4,500$ $\pounds15,625$ $\pounds31,979$ $\pounds198,460$	$\begin{array}{c} 4,515,000\\ 10\cdot 6\\ \pounds 9,400\\ \pounds 9,400\\ \pounds 5,500\\ \pounds 198,000\\ \pounds 5,950\\ \pounds 5,950\\ \pounds 25,250\\ \pounds 39,276\\ \pounds 241,200 \end{array}$	GH JKL MNOP Q

2,400-VOLT OVERHEAD CATENARY EQUIPMENT-continued.

Downloaded by [Purdue Univ Lib TSS] on [15/09/16]. Copyright © ICE Publishing, all rights reserved.

ø

a	Distance between sub-stations miles
ь	Number of sub-stations
с	Average number of trains per sub-station \ldots \vdots
d	, amperes in conductor at sub-station $\left\{ \frac{70 \times 100 \times \text{trs./hr.} \times a}{2400 \times 2} \right\}$
c	Total average amperes per sub-station (19 hours) $d \times 4$
f	,, output per sub-station per annum $\left\{ \begin{array}{c} \frac{e \times 2400 \times 7000}{1000} \end{array} \right\}$
g_h	Demand per sub-station
	,, kilowatt demand per sub-station KW. $\left\{ \begin{array}{c} \frac{h \times 2400}{1000} \end{array} \right\}$
$j \\ k$	Half above increased by 50 per cent. for spare ,, Sub-station units (2 rotaries in series per unit) . ,,
и т п	Cost per kilowatt of sub-station complete
0	Sub-station load-factor (over 24 hours) per cent. $\left\{ \begin{array}{c} \frac{c}{h} \times \frac{19}{24} \times 100 \end{array} \right\}$
$p \atop q$	Converter ", (", 19 ",) , $e/h \times 100$ Annual overall efficiency of sub-station , From curves
r	Units lost per annum in sub-station $\left(f \times \frac{100}{q}\right) - f$
$\begin{array}{c} s\\t\\u\\v\\w\\x\\y\\z\\A\\B\\C\\D\\E\end{array}$	Capital charge per sub-station at 5 per cent. $n \times \frac{1}{20}$ Wages, superintendence, and stores \dots Repairs and renewals at 0.5 per cent. \dots Cost of lost units at 0.5 d. per unit \dots Total cost of running sub-stations, including capital charge $s + t + u + v$ Sub-station charge per unit delivered \dots Current cost per unit delivered \dots Total sub-station capacity \dots m, capital cost of all sub-stations \dots m, cost of running all sub-stations \dots m, cost of running all sub-stations \dots m, cost of conductor per mile \dots m, cost of conductor per mile \dots m, cost of conductor and track return from sub-station \dots (D + 0.024) $\times \frac{a}{2}$ $(D + 0.024) \times \frac{a}{2}$
F	Average watts lost in four conductors and tracks $\left\{ \begin{array}{c} 4 \times E \times d^4 \times 1^{-3} \\ 3 \end{array} \right\}$
GHIJKLMNOPQ	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

TABLE III .--- 36-MILE DOUBLE-TRACK SUBURBAN RAILWAY,

	24 Trains	per Hour in Each	Direction.		
4	6	9	12	18	a
9	6	4	3	2	<u>b</u>
12	18	27	36	54	c
140	210	315	420	630	d
560	840	1,260	1,680	2,520	e
9,400,000	14,100,000	21,200,000	28,200,000	42,400,000	f
51 st. 61 run. 1,425	7½ st. 10½ run. 2,025	10 st. 17 run. 2,850	13 st. 23 run. 3,750	18 st. 36 run. 5,400	!! h
3,420	4,860	6,840	9,000	13,000	i
 $2,560 \\ 2 \times (2 \times 650) \\ 2,600 \\ \pounds 5 \cdot 35 \\ \pounds 13,900$	3,640 $2 \times (2 \times 900)$ 3,600 $\pounds 4 \cdot 8$ $\pounds 17,300$	$5,130 \\ 2 \times (2 \times 1,250) \\ 5,000 \\ \pounds 4 \cdot 6 \\ \pounds 23,000$	$6,750 \\ 3 \times (2 \times 1,100) \\ 6,600 \\ \pounds 4 \cdot 65 \\ \pounds 30,700$	$9,750 4 \times (2 \times 1,200) 9,600 £4 \cdot 6 £44,200$	j k l m n
31.1	32.8	35.0	35.5	37•0	0
39·3 86·6	$41.5 \\ 87.6$	$44 \cdot 3 \\ 88 \cdot 5$	$44 \cdot 8 \\ 88 \cdot 5$	$46 \cdot 7 \\ 89 \cdot 0$	$p \atop q$
 1,460,000	2,000,000	2,800,000	3,650,000	5,300,000	r
$\begin{array}{c} \pounds 695 \\ \pounds 740 \\ \pounds 70 \\ \pounds 3,040 \\ \pounds 4,545 \\ 0.116d. \\ 0.616d. \\ 23,400 \\ \pounds 125,100 \\ \pounds 125,100 \\ \pounds 40,905 \\ 0.35 \\ 0.121 \\ 0.29 \end{array}$	$\begin{array}{c} \pounds 865\\ \pounds 760\\ \pounds 86\\ \pounds 4, 170\\ \pounds 5, 881\\ 0, 100d.\\ 0, 60d,\\ 21, 600\\ \pounds 103, 800\\ \pounds 35, 286\\ 0, 5\\ 0, 5\\ 0, 085\\ 0, 327\end{array}$	$\pounds 1, 150$ $\pounds 780$ $\pounds 115$ $\pounds 5, 840$ $\pounds 7, 885$ $0 \cdot 089d$. $0 \cdot 589d$. 20,000 $\pounds 92,000$ $\pounds 31, 540$ $0 \cdot 75$ $0 \cdot 057$ $0 \cdot 364$	$\begin{array}{c} \pounds 1,535\\ \pounds 800\\ \pounds 154\\ \pounds 7,600\\ \pounds 10,089\\ 0\cdot 085d,\\ 0\cdot 585d,\\ 19,800\\ \pounds 92,000\\ \pounds 30,262\\ 1\cdot 0\\ 0\cdot 042\\ 0\cdot 396\end{array}$	$\begin{array}{c} \pounds 2,210\\ \pounds 820\\ \pounds 221\\ \pounds 11,040\\ \pounds 14,291\\ 0.081d,\\ 0.581d,\\ 19,200\\ \pounds 88,400\\ \pounds 28,582\\ 1.5\\ 0.028\\ 0.468\end{array}$	s t u v w x y z A B C D E
9,840	24,950	62,600	121,000	322,000	F
$\begin{array}{c} 68,880\\ 0.73\\ \pounds 144\\ \pounds 1,296\\ \pounds 3,430\\ \pounds 123,500\\ \pounds 6,175\\ \pounds 3,705\\ \pounds 11,176\\ \pounds 52,081\\ \pounds 248,600\\ \end{array}$	$\begin{array}{c} 174,650\\ 1\cdot24\\ \pounds 364\\ \pounds 2,084\\ \pounds 3,700\\ \pounds 133,000\\ \pounds 6,650\\ \pounds 4,000\\ \pounds 12,734\\ \pounds 48,020\\ \pounds 236,800 \end{array}$	$\begin{array}{c} 438,200\\ 2,07\\ \pounds 914\\ \pounds 3,656\\ \pounds 4,150\\ \pounds 149,500\\ \pounds 7,475\\ \pounds 4,500\\ \pounds 15,631\\ \pounds 47,171\\ \pounds 241,500\\ \end{array}$	847,000 $3\cdot0$ $\pounds 1,765$ $\pounds 5,295$ $\pounds 4,600$ $\pounds 165,500$ $\pounds 8,275$ $\pounds 4,965$ $\pounds 18,535$ $\pounds 48,797$ $\pounds 257,500$	$\begin{array}{c} 2,254,000\\ 5\cdot31\\ \pm4,700\\ \pm9,400\\ \pm5,500\\ \pm198,000\\ \pm9,900\\ \pm5,950\\ \pm25,950\\ \pm25,250\\ \pm53,832\\ \pm286,400 \end{array}$	G H J K L M N O P Q

2,400-VOLT OVERHEAD CATENARY EQUIPMENT-continued.

4

a	Distance between sub-stations miles	
b	Number of sub-stations	
c	Average number of trains per sub-station $\ldots \ldots $ { $trs./hr. \times 72 \times 2$ schedule speed $\times b$	
d	, amperes in conductor at sub-station	
с	Total average amperes per sub-station $d \times 4$	
f	, output per sub-station per annum $\left\{\frac{2\times 3000\times 7000\times 0}{1000}\right\}$	
g	Demand per sub-station	
i	,, KVA. demand per sub-station KVA. $\left\{ \frac{h \times 5000}{1000} \right\}$	
$j \atop k$	Half this increased by 50 per cent. for spare	
$\frac{n}{n}$	Total cost per KVA. of sub-station complete . . . From curves Total cost per sub-station . . . $l \times m$	
0	Sub-station load-factor (24 hours) per cent. $\left\{ \begin{array}{c} e \\ \overline{h} \times \frac{19}{24} \times 100 \end{array} \right\}$	ŧ. 1
p_q	Transformer,, $(19$,, $e/h \times 100$ Annual overall efficiency of sub-station,From curves	
r	Units lost per annum in sub-station $\left(f \times \frac{100}{a}\right) - f$	
s t u	Capital charge per sub-station at 5 per cent $n \times \frac{1}{20}$ Wages, superintendence, and stores	
v w	Cost of lost units at $0.5d$. per unit	
$\begin{bmatrix} x\\ y \end{bmatrix}$	Sub-station charge per unit delivered $\dots \dots \dots$	
Å	Total sub-station capacity $l \times b$,, capital cost of all sub-stations	
B C	,, cost of running all sub-stations $w \times b$ Copper section of conductor	
D	Resistance per mile of track ohm	
Е	Resistance of conductor and track return $(D + 0.168) \times \frac{1}{2}$	
F	Average watts lost in four tracks and conductors $\left\{ \begin{array}{c} \frac{4 \times E \times a^2 \times 1^{-5}}{3} \end{array} \right\}$	
G H	Units lost per sub-station per annum $F \times 7000/1000$ Track loss per cent. $G/f \times 100$	
I J	Value of track loss at $0.5d$, per unit $G \times 0.5/240$ Total value of track loss for whole line $I \times b$	
K L	Cost overhead structure and bonding per mile double-track $K \times 72$	
M	Capital charge at 5 per cent	
10	Total charges due to conducting system. $J + M + N$	
P Q	,, sub-station and conductor energies \dots	

TABLE IV .- 72-MILE DOUBLE-TRACK RAILWAY,

	2 Trains per Hour.					
	12	18	24	36	u	
	6	4	3	2	b	
]}	3	4.5	6	9	c	
}	$21 \cdot 3$	32	43	64	d	
,	85	128	172	256	e	
	2,350,000	3,525,000	4,700,000	7,066,000	f	
	3 starting 576	$3\frac{1}{2}$ st. 1 run. 702	4 st. 2 run. 828	4½ st. 4½ run. 999	g = h	
	2,880	3,510	4,140	4,995	i	
a contract of the second s	$\begin{array}{c} 2,160 \\ 2 \times 1,000 \\ 2,000 \\ \pounds 2 \cdot 5 \\ \pounds 5,000 \end{array}$	2,630 $2 \times 1,250$ 2,500 $\pounds 2 \cdot 25$ $\pounds 5,625$	$\begin{array}{c} 3,105\\ 2\times 1,500\\ 3,000\\ \pounds 2\cdot 1\\ \pounds 6,300\end{array}$	$\begin{array}{c} 3,750 \\ 3 \times 1,250 \\ 3,750 \\ \pounds 1 \cdot 9 \\ \pounds 7,125 \end{array}$	j k l n	
	11.7	14.4	16.5	20.3	0	
1	$14 \cdot 8 \\ 93 \cdot 0$	$\frac{18\cdot 2}{94\cdot 2}$	$20.8 \\ 95.0$	$25 \cdot 6 \\ 95 \cdot 8$	p q	
	178,000	215,000	250,000	310,000	r	
	$\pounds 250$ $\pounds 690$ $\pounds 25$ $\pounds 371$ $\pounds 1, 336$ 0.136d. 0.636d. 12,000 $\pounds 30,000$ $\pounds 8,016$ 0.256 2.55 2,010 14,070 0.60 $\ell 20$	$\begin{array}{c} \pounds 281\\ \pounds 700\\ \pounds 28\\ \pounds 448\\ \pounds 1,457\\ 0 099d,\\ 0 0599d,\\ 10,000\\ \pounds 22,500\\ \pounds 5,828\\ 0 166\\ 0 0256\\ 3 \cdot 82\\ 6,780\\ 47,360\\ 1 \cdot 34\\ \pm 08\end{array}$	$\begin{array}{c} \pounds 315\\ \pounds 710\\ \pounds 32\\ \pounds 521\\ \pounds 1,578\\ 0{}^\circ081d.\\ 0{}^\circ581d.\\ 9{}_{,000}\\ \pounds 18,900\\ \pounds 4,734\\ 0{}^\circ166\\ 0{}^\circ256\\ 5{}^\circ09\\ 16,320\\ 114,240\\ 2{}^\circ42\\ \pounds 238\end{array}$	$\begin{array}{c} \pounds 357\\ \pounds 720\\ \pounds 36\\ \pounds 646\\ \pounds 1,759\\ 0.059d.\\ 0.559d.\\ 7,500\\ \pounds 14,250\\ \pounds 3,518\\ 0.188\\ 0.228\\ 7.14\\ 50,700\\ 354,900\\ 5.02\\ \pounds 740\\ \end{array}$	s t u v w x y z A B C D E F G H	
	$\pounds 29$ $\pounds 174$ $\pounds 3,350$ $\pounds 241,000$ $\pounds 12,050$ $\pounds 7,230$ $\pounds 19,454$ $\pounds 27,470$ $\pounds 271,000$	$\begin{array}{c} \pounds 98\\ \pounds 392\\ \pounds 3,350\\ \pounds 241,000\\ \pounds 12,050\\ \pounds 7,230\\ \pounds 19,672\\ \pounds 25,500\\ \pounds 263,500\end{array}$	$\pounds 238$ $\pounds 714$ $\pounds 3,350$ $\pounds 241,000$ $\pounds 12,050$ $\pounds 7,230$ $\pounds 19,995$ $\pounds 24,729$ $\pounds 259,900$	$\begin{array}{c} \pounds 740\\ \pounds 1,480\\ \pounds 3,390\\ \pounds 244,000\\ \pounds 12,200\\ \pounds 7,320\\ \pounds 21,000\\ \pounds 24,518\\ \pounds 258,250\\ \end{array}$	I J K L M N O P Q	

5,000 VOLTS, SINGLE-PHASE.

a	Distance between sub-stations miles	_
b	Number of sub-stations $\dots \dots \dots$	
c	Average number of trains per sub-station \ldots \ldots \vdots	5
d	, amperes in conductor at sub-station	<u><a< u=""></a<></u>
e	Total average amperes per sub-station $d \times 4$.8)
f	,, output per sub-station per annum	
g h	Maximum amperes at 192 amperes starting, 30 running	
i	,, KVA, demand per sub-station , KVA, $\left\{ \frac{\hbar \times 5000}{1000} \right\}$	}
$_k^j$	Half this increased by 50 per cent. for spare ,	
l m	Total sub-station capacity	
n	Total cost per sub-station $l \times m$	$\overline{\mathbf{i}}$
0 n	Sub-station load-factor (24 hours) per cent. $\begin{pmatrix} h \\ 24 \end{pmatrix}$)
Ŷ	Annual overall efficiency of sub-stations ,, From curves	
r	Units lost per annum in sub-station $(f \times \frac{d}{q}) - f$	
s t u	Capital charge per sub-station at 5 per cent. $n \times \frac{1}{20}$ Wages, superintendence, and stores Repairs and renewals at 0.5 per cent. $n \times \frac{1}{200}$	
v w	Total cost of running sub-stations, including capital charge Sub-station charge are unit delivered s + t + u + v	:
y	Current cost per unit delivered \dots \dots \dots $0^{\circ}5 + x$ Tatal sub-station approximately \dots	
A A D	, capital cost of all sub-stations	
C B	Copper section of conductor \dots sq. in.	
	Resistance per mile of track	s di
ы	Resistance of conductor and track return $(d + 0.100) \times \frac{1}{2}$	Ϊ.) 3 γ
F	Average watts lost in four tracks and conductors $\frac{3}{3}$	- }
H	Track loss per cent. $G/f \times 100$	
1	Value of track loss at 0.5 <i>d</i> . per unit	
ĸ	Cost overhead structure and bonding per mile double-track	
\mathbf{L}	Total capital cost of track-equipment $\ldots \ldots \ldots$	1
Μ	Capital charge at 5 per cent	
N	Maintenance at 3 per cent. $L \times \frac{1}{100}$	
$\begin{bmatrix} 0\\ \mathbf{p} \end{bmatrix}$	Total energies due to conducting system $J + M + N$ sub-station and conducting shares $O + B$	
	, capital expended on sub-stations and track $A + L$	}
1		

TABLE IV. -72-MILE DOUBLE-TRACK RAILWAY,

		3 Trains per Hou	r.	
9.	12	18	24	36
8	6	4	3	2
3.38	4.5	6.75	9	$13 \cdot 5$
24	32	48	64	96
96	128	192	256	384
2,650,000	3,525,000	5,300,000	7,050,000	10,600,000
3·38 starting 649	3] st. 1 run. 702	4 st. 2 3 run. 850	4½ st. 4½ run. 999	6 st. 7½ run. 1,377
3,245	3,510	4,250	4,995	6,885
2,435 $2 \times 1,200$ 2,400 $\pounds 2 \cdot 3$ $\pounds 5,520$	$2,630 \\ 2 imes 1,250 \\ 2,500 \\ \pounds 2 \cdot 25 \\ \pounds 5,625$	$3,185 \\ 2 \times 1,500 \\ 3,000 \\ \pounds 2 \cdot 1 \\ \pounds 6,300$	$3,745 \\ 3 \times 1,250 \\ 3,750 \\ \pounds 1 \cdot 9 \\ \pounds 7,125$	$5,1633 \times 1,7505,250£1.65£8,663$
11.7	14.4	17.9	20.3	22.1
$14 \cdot 8 \\ 93 \cdot 0$	$18 \cdot 3 \\ 94 \cdot 3$	$22 \cdot 6 \\ 95 \cdot 2$	$25 \cdot 6 \\ 95 \cdot 8$	$28.0 \\ 96.0$
200,000	210,000	270,000	310,000	440,000
$\pounds 276$ $\pounds 700$ $\pounds 28$ $\pounds 417$ $\pounds 1,421$ 0.128d. 0.628d. 19,200 $\pounds 44,200$ $\pounds 11,368$ 0.166 0.256	$\begin{array}{c} \pounds 281\\ \pounds 710\\ \pounds 28\\ \pounds 438\\ \pounds 1,457\\ 0\cdot 120d.\\ 0\cdot 620d.\\ 15,000\\ \pounds 33,750\\ \pounds 8,742\\ 0\cdot 166\\ 0\cdot 256\\ 2\cdot 55\end{array}$	$\begin{array}{c} \pounds 315\\ \pounds 720\\ \pounds 32\\ \pounds 563\\ \pounds 1, 630\\ 0 \cdot 074d.\\ 0 \cdot 574d.\\ 12,000\\ \pounds 25,200\\ \pounds 6,520\\ 0 \cdot 166\\ 0 \cdot 256\\ 2 \cdot 82\end{array}$	$\begin{array}{c} \pounds 356 \\ \pounds 730 \\ \pounds 236 \\ \pounds 646 \\ \pounds 1,768 \\ 0 \cdot 060d. \\ 0 \cdot 560d. \\ 11,250 \\ \pounds 21,400 \\ \pounds 5,304 \\ 0 \cdot 188 \\ 0 \cdot 228 \\ 4 \cdot 75 \end{array}$	$\begin{array}{c} \pounds 433\\ \pounds 740\\ \pounds 43\\ \pounds 916\\ \pounds 2, 132\\ 0.048d.\\ 0.548d.\\ 10,500\\ \pounds 17,350\\ \pounds 4,264\\ 0.25\\ 0.17\\ \pounds .08\end{array}$
1.91	2.55	$3 \cdot 82$	4.75	6.08
1,905	4,530	15,250	33,750	97,200
$\begin{array}{c} 13,335\\ 0\cdot51\\ \pounds28\\ \pounds224\\ \pounds3,350\\ \pounds241,000\\ \pounds12,050\\ \pounds7,230\\ \hline\end{array}$	$\begin{array}{c} 31,710\\ 0.90\\ \pounds 66\\ \pounds 396\\ \pounds 3,50\\ \pounds 241,000\\ \pounds 12,050\\ \pounds 7,230\\ \end{array}$	$\begin{array}{c} 106,750\\ 2\cdot01\\ \pm222\\ \pm888\\ \pm3,350\\ \pm241,000\\ \pm12,050\\ \pm7,230\\ \end{array}$	$\begin{array}{c} 236,250\\ 3\cdot 36\\ \pm 493\\ \pm 1,479\\ \pm 3,390\\ \pm 244,000\\ \pm 12,200\\ \pm 7,320\\ \pm 7,320\end{array}$	$\begin{array}{c} 680,400\\ 6\cdot 42\\ \pm 1,420\\ \pm 2,840\\ \pm 3,500\\ \pm 252,000\\ \pm 12,600\\ \pm 7,560\end{array}$
$\pounds 19,504 \\ \pounds 30,872 \\ \pounds 285,200$	$\pounds 19,676 \\ \pounds 28,418 \\ \pounds 274,750$	$\begin{array}{c} \pounds 20,168 \\ \pounds 26,688 \\ \pounds 266,200 \end{array}$	$\pounds 20,999$ $\pounds 26,303$ $\pounds 265,400$	$\begin{array}{c} \pounds 23,000 \\ \pounds 27,264 \\ \pounds 269,350 \end{array}$

5,000 VOLTS, SINGLE-PHASE-continued.

.	· · · · · · · · · · · · · · · · · · ·	
	Distance between out of the	
	Distance between sub-stations	
$b \mid$	Number of sub-stations	72/a
c	Average number of trains per sub-station	trs./hr. \times 72 \times 2
		schedule speed $\times b$ 70 \times 100 \times trs /br $\times a$
d	" amperes in conductor at sub-station	$5000 \times 2 \times 0.8$
e	Total average amperes per sub-station	$d \times 4$
f	" output per sub-station per annum	1000 × 7000 × 0.8
$\frac{g}{h}$	Demand per sub-station Maximum amperes at 192 amperes starting, 30 running	
;	KVA, demand per sub-station KVA	$h \times 5000$
	Half this increased by 50 new cent for spars	1000 ∫
$\frac{j}{k}$	Sub-station units	••
1	Total sub-station capacity ,,	
m	Cost per KVA. of sub-station complete	From curves
n		$(e 19 \dots)$
0	Sub-station load-factor (24 hours) per cent.	$\left\{\begin{array}{c} \lambda \times \frac{1}{24} \times 100 \end{array}\right\}$
p	Transformer $(19, 1)$,	$e/h \times 100$
q	Annual overall efficiency of sub-station ,,	From curves
r	Units lost per annum in sub-station	$\left(f \times \frac{100}{g}\right) - f$
s t	Capital charge per sub-station at 5 per cent	$n \times \frac{1}{20}$
u v	Cost of lost units at 0.5d, per unit	$n \times \frac{1}{2\overline{0}0}$ $r \times 0.5/240$
w	Total cost of running sub-stations, including capital charge	s+t+u+v
\boldsymbol{x}	Sub-station charge per unit delivered	$w \times 240/f$
$\frac{y}{2}$	Total sub-station canacity KVA	0.5 + x
Å	,, capital cost of all sub-stations	$z \times m$
В	" cost of running all sub-stations	$w \times b$
C	Copper section of conductor	
ש	Resistance per fille of track	··· · · · · · · · · · · · · · · · · ·
Е	Resistance of conductor and track return	$(D + 0.168) \times \frac{1}{2}$
F	Average watts lost in four tracks and conductors $\{$	$\frac{4 \times \mathbf{E} \times d^2 \times 1 \cdot 3}{3} \}$
G	Units lost per sub-station per annum	F × 7000/1000
H	Track loss per cent.	$G/f \times 100^{-1}$
1 J	value of track loss at $0.5d$, per unit	Ixh
ĸ	Cost overhead structure and bonding per mile double-track	* ^ 0
Ĺ	Total capital cost of track-equipment	$K \times 72$
М	Capital charge at 5 per cent	$L \times \frac{1}{20}$
N	Maintenance at 3 per cent.	$\Gamma \times I_{30}$
0	Total charges due to conducting system.	J + M + N () + P
P	, sub-station and conductor energes	A + L
Ŷ	", outrout offender of sur-scatteres and flatt	

TABLE IV. -72-MILE DOUBLE-TRACK RAILWAY,

		o Trains per Hou	r.	
9	12	18	24	36
8	6	4	3	2
6.75	9	13'5	18	27
48	64	96	128	192
192	256	384	512	768
5,350,000	7,050,000	10,600,000	14,100,000	21,200,000
4 st. 2 3 run. 850	4 <u>1</u> st. 4 1 run. 999	6 st. 7 1 run. 1,377	71 st. 101 run. 1,755	10 st. 17 run. 2,430
4,250	4,995	6,885	8,775	12,150
$3,190 \\ 2 \times 1,500 \\ 3,000 \\ \pounds 2 \cdot 1 \\ \pounds 6,300$	3,745 $3 \times 1,250$ 3,750 $\pounds 1 \cdot 9$ $\pounds 7,125$	5,165 3×1.750 5,250 $\pounds 1 \cdot 65$ $\pounds 8,663$	6,580 3×2,200 6,600 £1.6 £10,560	9,170 $3 \times 3,000$ 9,000 $\pounds 1 \cdot 5$ $\pounds 13,500$
$17 \cdot 9$	20.3	$22 \cdot 1$	23.0	25.0
$22 \cdot 6 \\ 95 \cdot 2$	$25 \cdot 6 \\ 95 \cdot 8$	28·0 96·0	$29 \cdot 1 \\ 96 \cdot 2$	$31 \cdot 6 \\ 96 \cdot 5$
270,000	310,000	440,000	570,000	800,000
$\pounds 315$ $\pounds 710$ $\pounds 32$ $\pounds 563$ $\pounds 1,620$ 0.072d.	$\begin{array}{c} \pounds 356 \\ \pounds 720 \\ \pounds 36 \\ \pounds 646 \\ \pounds 1,758 \\ 0.060 d. \end{array}$	$\pounds 433$ $\pounds 730$ $\pounds 43$ $\pounds 916$ $\pounds 2,122$ 0.048d.	$\pounds 528 \\ \pounds 740 \\ \pounds 53 \\ \pounds 1,188 \\ \pounds 2,509 \\ 0.043d.$	$\pounds 675 \\ \pounds 750 \\ \pounds 68 \\ \pounds 1,668 \\ \pounds 3,161 \\ 0.036d.$
0.572d. 24,000 £50,400 £12,960 0.166	0.560d. 22,500 £42,800 £10,748 0.188	0.548d. 21,000 £34,650 £8,488 0.25	0.543d. 19,800 £31,700 £7,527 0.375	0.536d. 18,000 £27,000 £6,322 0.5
0.256	0.228	0.12	0.114	0.082
1.91	2.38	3.04	3.38	4.55
7,630	16,900	48,600	96,000	291,000
53,410 1.00 £111	118,300 1.68 $\pounds 246$ $\pounds 1.576$	340,200 $3\cdot 21$ £709 £2,836	672,000 4·77 £1,400	2,037,000 9.60 $\pounds 4,240$
$\begin{array}{c} x000\\ \pounds 3,350\\ \pounds 241,000\\ \pounds 12,050 \end{array}$	$\pounds 1,970$ $\pounds 3,390$ $\pounds 244,000$ $\pounds 12,200$	$\pounds 2,800$ $\pounds 3,500$ $\pounds 252,000$ $\pounds 12,600$	\pounds ,200 \pounds 3,730 \pounds 268,500 \pounds 13,425	£3,950 £284,500 £14 225
$\pounds 7,230$ $\pounds 20,168$ $\pounds 33,128$ $\pounds 201,400$	£7,320 £21,096 £31,844	£7,560 £22,996 £31,484 £386,650	£8,060 £25,625 £33,152	£8,540 £31,245 £37,567
æ291,400	\$200,000	£200,000	2000,200	2011,000

5,000 VOLTS, SINGLE-PHASE-continued.

_		
a	Distance between sub-stations	••
ь	Number of sub-stations	72/a
c	Average number of trains per sub-station	$\frac{\text{trs./hr.} \times 72 \times 2}{\text{schedule speed} \times b}$
d	" amperes in conductor at sub-station	$\frac{70 \times 100 \times \text{trs./hr.} \times a}{10,000 \times 2 \times 0.8}$
e	Total average amperes per sub-station (19 hours)	$d \times 4$
f	" output per sub-station per annum.	$e \times 10,000 \times 7000 \times 0.08$
$\frac{g}{h}$	Demand per sub-station Maximum demand at 96 amperes starting, 15 running	
i	,, KVA. demand per sub-station KVA.	$\left\{ \begin{array}{c} h \times 10,000 \end{array} \right\}$
i	Half this increased by 50 per cent. for spare	1,000
k	Sub-station units	
l m	Cost per KVA. of sub-station complete	From curves
n	Total cost per sub-station	$l \times m$
0	Sub-station load-factor (24 hours) per cent.	$\left\{\begin{array}{c}\frac{e}{h}\times\frac{19}{24}\times100\end{array}\right\}$
p_a	Transformer ,, (19 ,,) ,, Annual overall efficiency of sub-station	$e/h \times 100$ From curves
r	Units lost per annum in sub-station	$\left(f \times \frac{100}{2}\right) - f$
8	Capital charge per sub-station at 5 per cent.	$n \times \frac{1}{20}$
$\begin{bmatrix} \iota \\ u \end{bmatrix}$	Repairs and renewals at 0.5 per cent.	$n \times \frac{1}{260}$
v	Cost of lost units at 0.5d. per unit	$r \times 0.5/240$
$\frac{w}{x}$	Sub-station charge per unit delivered	$w \times 240/f$
y	Current cost per unit delivered	0.5 + x
2	Total sub-station capacity	$l \times b$
A D	cost of running all sub-stations	$z \times m$
c	Copper section of conductor	" ^ v
Ď	Resistance per mile of track	1
E	,, of conductor and track return	(D + 0.168) a/2
F	Average watts lost in four tracks and conductors	$\left\{ \begin{array}{c} 4 \times E \times d^2 \times 1.3 \\ \hline 3 \end{array} \right\}$
G	Units lost per sub-station per annum	F × 7,000/1,000
Η	Track loss per cent.	$G/f \times 100$
1	Value of track loss at 0.5d. per unit	$G \times 0.5/240$
J	Total value of track loss for whole line	$1 \times b$
К	track	
L	Total capital cost of overhead structure	$K \times 72$
м	Capital charge at 5 per cent	$L \times \frac{1}{20}$
Ν	Maintenance at 3 per cent.	$L \times \frac{3}{100}$
0	Total charges due to conducting system.	J + M + N
P	,, sub-station and conductor charges	O + B
Q	" capital expended on sub-stations and track	ATL

TABLE V. -72-MILE DOUBLE-TRACK RAILWAY,

	2 Trains	per Hour.		
18	24	36	72	0
-4	3	2	1	t
4.5	6	9	18	6
16	21.3	32	64	6
64	85	128	256	6
3,525,000	4,700,000	7,066,000	14,132,000)
3] st. 1 run. 351	4 st. 2 run. 414	4½ st. 4½ run. 500	$7\frac{1}{2}$ st. $10\frac{1}{2}$ run. 878	9
3,510	4,140	5,000	8,780	
2,630 $2 \times 1,300$ 2,600 $\pounds 2 \cdot 22$ $\pounds 5,770$	3,100 $2 \times 1,550$ 3,100 $\pounds 2.05$ $\pounds 6,360$	3,750 $2 \times 1,850$ 3,700 $\pounds 1.9$ $\pounds 7,040$	$\begin{array}{c} 6,580\\ 3\times 2,200\\ 6,600\\ \pounds 1\cdot 6\\ \pounds 10,550\end{array}$	
14.4	16.2	20.4	23.1	
$\begin{array}{c} 18 \cdot 2 \\ 94 \cdot 3 \end{array}$	$20.5 \\ 95$	$25 \cdot 6 \\ 95 \cdot 8$	$29 \cdot 2 \\ 96 \cdot 3$	
215,000	250,000	304,000	538,000	
$\pounds 289$ $\pounds 700$ $\pounds 29$ $\pounds 448$ $\pounds 1,466$ 0.100d. 0.600d. 10,400 $\pounds 23,100$ $\pounds 5,864$ 0.166 0.256 3.82	$\begin{array}{c} \pounds 318\\ \pounds 710\\ \pounds 32\\ \pounds 521\\ \pounds 1,581\\ 0.081d.\\ 0.581d.\\ 9,300\\ \pounds 19,100\\ \pounds 4,743\\ 0.166\\ 0.256\\ 5.09\\ \end{array}$	$\begin{array}{c} \pounds 352\\ \pounds 720\\ \pounds 35\\ \pounds 633\\ \pounds 1,740\\ 0.059d.\\ 0.559d.\\ 7,400\\ \pounds 14,050\\ \pounds 3,480\\ 0.166\\ 0.256\\ 7.63\\ 10.550\\ \end{array}$	$\begin{array}{c} \pounds 528\\ \pounds 730\\ \pounds 53\\ \pounds 1,120\\ \pounds 2,431\\ 0.041d.\\ 0.541d.\\ 6,600\\ \pounds 10,550\\ \pounds 2,431\\ 0.188\\ 0.228\\ 14.25\\ 14.25\\ 14.25\\ \end{array}$	
1,700	4,000	13,570	112,000	
$ \begin{array}{c} 11,900 \\ 0.34 \\ \pm 25 \\ \pm 100 \end{array} $	28,000 0.60 £58 £174	94,990 1·35 £198 £396	784,000 5+55 £1,630 £1,630	
£3,750	£3,750	£3,750	£3,790	
$\pounds 270,000 \\ \pounds 13,500 \\ \pounds 8,100 \\ \pounds 21,700 \\ \pounds 27,564 \\ \pounds 293,100$	$\begin{array}{c} \pounds 270,000\\ \pounds 13,500\\ \pounds 8,100\\ \pounds 21,774\\ \pounds 26,517\\ \pounds 289,100\end{array}$	$\pounds 270,000$ $\pounds 13,500$ $\pounds 8,100$ $\pounds 21,996$ $\pounds 25,476$ $\pounds 284,050$	$\begin{array}{c c} \pounds 273,000\\ \pounds 13,650\\ \pounds 8,180\\ \pounds 23,460\\ \pounds 25,891\\ \pounds 283,550\end{array}$	

10.000 VOLTS. SINGLE-FHASE.	10,000	VOLTS.	SINGLE-PHASE.
-----------------------------	--------	--------	---------------

G 2

Downloaded by [Purdue Univ Lib TSS] on [15/09/16]. Copyright $\ensuremath{\mathbb{O}}$ ICE Publishing, all rights reserved.

THERE I ALLER AL	TABI	ь V	-72-Mile	DOUBLE-TRACK	RAILWAY,
--	------	-----	----------	--------------	----------

a	Distance between sub-stations miles	••
b	Number of sub-stations	72/4
c	Average number of trains per sub-station	trs./hr. $\times 72 \times 2$ schedule speed $\times b$
d	,, amperes in conductor at sub-station \ldots	$\frac{70 \times 100 \times \text{trs./hr.} \times a}{10,000 \times 2 \times 0.8}$
e	Total average amperes per sub-station (19 hours)	$d \times 4$
f	"output per sub-station per annum.	1,000
$_{h}^{g}$	Demand per sub-station	
i	" KVA. demand per sub-station KVA.	$\left\{\begin{array}{c} h \times 10,000\\ -1,000\end{array}\right\}$
j k l m n	Half this increased by 50 per cent. for spare " Sub-station units " Total sub-station capacity " Cost per KVA. of sub-station complete " Total cost per sub-station "	$\begin{array}{c} \ddots \\ \vdots \\ From curves \\ l \times m \\ c \\ 19 \end{array}$
0	Sub-station load-factor (24 hours) per cent.	$\left\{\begin{array}{c} h \times \frac{10}{24} \times 100 \end{array}\right\}$
$p \\ q$	Transformer ,, (19 ,,) ,, Annual overall efficiency of sub-station ,,	$e/h \times 100$ From curves
r	Units lost per annum in sub-station	$\left(f \times \frac{100}{q}\right) - f$
s t w w x y z A B C D E	Capital charge per sub-station at 5 per cent	$n \times \frac{1}{20}$ $n \times \frac{1}{210}$ $r \times 0.5/240$ $s + t + u + v$ $w \times 240/f$ $0.5 + x$ $l \times b$ $z \times m$ $w \times b$ \vdots $(D + 0.168) a/2$ $(4 \times E \times d^2 \times 1.3)$
F	Average watts lost in four tracks and conductors	{ 3 }
	Units lost per sub-station per annum	$\begin{cases} F \times 1,000/1,000 \\ G/f \times 100 \\ G \times 0.5/240 \\ I \times b \\ & \\ K \times 72 \\ L \times \frac{1}{20} \\ L \times \frac{1}{20} \\ J + M + N \\ O + B \\ A + L \\ \end{cases}$

3 Trains per Hour.					
12	18	24	36	72	a
6	4	3	2	1	b
4.5	6·75	9	13.5	27	e
} 16	24	32	48	96	d
, 64	96	128	192	384	e
3,525,000	5,300,000	7,050,000	10,600,000	21,200,000	$\int f$
3 <u>1</u> st. 1 run. 351	4 st. 2 ³ / ₄ run. 426	4 <u>1</u> st. 4 <u>1</u> run. 500	6 st. 7 1 run. 689	10 st. 17 run. 1,215	g h
3,510	4,260	5,000	6,890	12,150	i
$\begin{array}{c} 2,630 \\ 2 \times 1,300 \\ 2,600 \\ \pounds 2 \cdot 22 \\ \pounds 5,770 \end{array}$	$\begin{array}{c} 3,190 \\ 2 \times 1,600 \\ 3,200 \\ \pounds 2 \cdot 02 \\ \pounds 6,460 \end{array}$	$\begin{array}{c} 3,750 \\ 2 \times 1,850 \\ 3,700 \\ \pounds 1 \cdot 9 \\ \pounds 7,040 \end{array}$	5,170 $3 \times 1,750$ 5,250 $\pounds 1.7$ $\pounds 8,920$	$\begin{array}{c} 9,100\\ 3\times3,000\\ 9,000\\ \pounds1\cdot52\\ \pounds13,700 \end{array}$	j k l m n
14.4	$17 \cdot 9$	20.4	22	25	0
$18 \cdot 2 \\ 94 \cdot 3$	$22 \cdot 6$ 95 \cdot 3	$25 \cdot 6$ $95 \cdot 8$	$27 \cdot 9$ 96 · 0	$31.6 \\ 96.5$	$p \\ q$
215,000	260,000	300,000	450,000	800,000	r
$\begin{array}{c} \pounds 289 \\ \pounds 700 \\ \pounds 35 \\ \pounds 448 \\ \pounds 1,472 \\ 0 \cdot 100d. \\ 0 \cdot 600d. \\ 15,600 \\ \pounds 34,600 \\ \pounds 34,600 \\ \pounds 3,832 \\ 0 \cdot 166 \\ 0 \cdot 256 \\ 2 \cdot 55 \end{array}$	$\begin{array}{c} \pounds 323\\ \pounds 710\\ \pounds 32\\ \pounds 542\\ \pounds 1,607\\ 0.073d.\\ 0.573d.\\ 12,800\\ \pounds 25,800\\ \pounds 6,428\\ 0.166\\ 0.256\\ 3.82 \end{array}$	$\begin{array}{c} \pounds 352 \\ \pounds 720 \\ \pounds 35 \\ \pounds 625 \\ \pounds 1,732 \\ 0.059d. \\ 0.559d. \\ 11,100 \\ \pounds 21,100 \\ \pounds 21,100 \\ \pounds 5,196 \\ 0.166 \\ 0.256 \\ 5.09 \end{array}$	$\begin{array}{c} \pounds 446 \\ \pounds 730 \\ \pounds 45 \\ \pounds 937 \\ \pounds 2,158 \\ 0 \cdot 049d \\ 0 \cdot 549d \\ 10,500 \\ \pounds 17,850 \\ \pounds 4,316 \\ 0 \cdot 166 \\ 0 \cdot 256 \\ 7 \cdot 63 \end{array}$	$\begin{array}{c} \pounds 685 \\ \pounds 740 \\ \pounds 68 \\ \pounds 1,668 \\ \pounds 3,161 \\ 0 \cdot 036d \\ 0 \cdot 536d \\ 9,000 \\ \pounds 13,700 \\ \pounds 3,161 \\ 0 \cdot 25 \\ 0 \cdot 17 \\ 12 \cdot 18 \end{array}$	8 t w w x y z A B C D E
1,130	3,820	9,040	30,500	194,500	F
7,9100.22£17£102£3,750	26,740 0.50 £56 £224 £3,750	$\begin{array}{c} 63,280\\ 0\cdot 89\\ \pounds 132\\ \pounds 396\\ \pounds 3,750\end{array}$	213,500 2.01 £445 £890 £3,750	$\begin{array}{c} 1,361,500\\ 6\cdot42\\ \pounds2,840\\ \pounds2,840\\ \pounds3,900 \end{array}$	G H J K
$\pounds 270,000 \\ \pounds 13,500 \\ \pounds 8,100 \\ \pounds 21,702 \\ \pounds 30,534 \\ \pounds 304,600$	$\pounds 270,000$ $\pounds 13,500$ $\pounds 8,100$ $\pounds 21,824$ $\pounds 28,352$ $\pounds 295,800$	$\pounds 270,000$ $\pounds 13,500$ $\pounds 8,100$ $\pounds 21,996$ $\pounds 27,192$ $\pounds 291,100$	$\pounds 270,000$ $\pounds 13,500$ $\pounds 8,100$ $\pounds 22,490$ $\pounds 26,806$ $\pounds 287,850$	$\begin{array}{c} \pounds 281,000\\ \pounds 14,050\\ \pounds 8,430\\ \pounds 25,320\\ \pounds 28,481\\ \pounds 294,700 \end{array}$	L M N O P Q

10.000	VOLTS.	SINGLE-PHASE-continued.
10,000	10110,	NAROLE-I HASE-CONCINCULO.

TABLE V.-72-MILE DOUBLE-TRACK RAILWAY,

	- <u> </u>
a	Distance between sub-stations miles
Ъ	Number of sub-stations $\ldots \ldots \ldots$
c	Average number of trains per sub-station
d	amperes in conductor at sub-station $70 \times 100 \times \text{trs./hr.} \times a$
e	Total average amperes per sub-station (19 hours) , , $d \times 4$
f	, output per sub-station per annum,
g h	Demand per sub-station
i	, KVA, demand per sub-station KVA. $\left\{\begin{array}{c} h \times 10,000\\ 1,000\end{array}\right\}$
i	Half this increased by 50 per cent. for spare
k	Sub-station units
m	Cost per KVA. of sub-station complete
n	Total cost per sub-station $\ell \times m$
0	Sub-station load-factor (24 hours) per cent. $\left\{ \frac{\bar{h} \times 24}{24} \times 100 \right\}$
p	Transformer ,, (19 ,,) ,, $e/h \times 100$ Annual overall efficiency of sub-station ,, From curves
r	Units lost per annum in sub-station $(f \times \frac{100}{a}) - f$
8	Capital charge per sub-station at 5 per cent $n \times \frac{1}{20}$
t u	Repairs and renewals at 0.5 per cent $n \times \frac{1}{2\sqrt{0}}$
17	Cost of lost units at 0.5 <i>d</i> , per unit
x	Sub-station charge per unit delivered $\dots \dots \dots$
$\begin{bmatrix} y\\z \end{bmatrix}$	Total sub-station capacity
AB	,, capital cost of all sub-stations $z \times m$
č	Copper section of conductor
	resistance per mile of track
F	Average watts lost in four tracks and conductors $\left\{ \frac{4 \times E \times d^2 \times 1.3}{2} \right\}$
G	Units lost per sub-station per annum
H I	Track lossper cent. $G/f \times 100$ Value of track loss at 0.5d, per unit. $G \times 0.5/240$
Ĵ	Total value of track loss for whole line
K	track
L	Total capital cost of overhead structure
N	Maintenance at 3 per cent. $L \times \frac{3}{100}$
0 P	Total charges due to conducting system \dots $J + M + N$ sub-station and conductor charges. $O + B$
Q	,, capital expended on sub-stations and track \dots $A + L$
	· · · · · · · · · · · · · · · · · · ·

-

			6 Trains per hou	ır.		
	9	12	18	24	36	a
	8	6	4	3	2	b
	6.75	9	$13 \cdot 5$	18	27	c
	24	32	48	64	96	d
	96	128	192	256	384	e
	} 5,300,000	7,050,000	10,600,000	14,100,000	21,200,000	f
	4 st. 2 3 run. 426	4 <u>1</u> st. 4 <u>1</u> run. 500	6 st. 7 1 run. 689	7½ st. 10½ run. 878	10 st. 17 run. 1,215	!! h
	4,260	5,000	6,890	8,780	12,150	i
	$3,190 \\ 2 \times 1,600 \\ 3,200 \\ \pounds 2 \cdot 02 \\ \pounds 6,460$	$3,750 \\ 2 \times 1,850 \\ 3,700 \\ \pounds 1 \cdot 9 \\ \pounds 7,040$	$5,170 3 \times 1,750 5,250 \pounds 1 \cdot 7\pounds 8,920$	$\begin{array}{c} 6,580 \\ 3 \times 2,200 \\ 6,600 \\ \pm 1 \cdot 6 \\ \pm 10,550 \end{array}$	$9,100 \\ 3 \times 3,000 \\ 9,000 \\ \pounds 1 \cdot 52 \\ \pounds 13,700$	j k l n
	$17 \cdot 9$	20.4	22	$23 \cdot 1$	25	0
	$22 \cdot 6 \\ 95 \cdot 3$	$25 \cdot 6$ $95 \cdot 8$	$27 \cdot 9$ 96 $\cdot 0$	$29 \cdot 2$ 96 \cdot 3	$\begin{array}{c} 31 \cdot 6 \\ 96 \cdot 5 \end{array}$	p q
	260,000	300,000	450,000	538,000	800,000	r
	$\begin{array}{c} \pounds 323\\ \pounds 700\\ \pounds 32\\ \pounds 542\\ \pounds 1, 597\\ 0\cdot 072d.\\ 0\cdot 572d.\\ 25, 600\\ \end{array}$	$\pounds 352 \\ \pounds 710 \\ \pounds 35 \\ \pounds 625 \\ \pounds 1,722 \\ 0.058d. \\ 0.558d. \\ 22,200 \\ 22,200 \\ 0.058d. \\ 0.558d. \\ 0.558$	$\begin{array}{c} \pounds 446\\ \pounds 720\\ \pounds 45\\ \pounds 937\\ \pounds 2,148\\ 0.049d.\\ 0.549d.\\ 21,000\\ \end{array}$	$\begin{array}{c} \pounds 528 \\ \pounds 730 \\ \pounds 53 \\ \pounds 1,120 \\ \pounds 2,431 \\ 0.041d. \\ 0.541d. \\ 19,800 \end{array}$	£685 £740 £68 £1,668 £3,161 0.036d. 0.536d. 18,000	8 t u r w x y z
!	$\pounds 51,700 \\ \pounds 12,776 \\ 0.166 \\ 0.256 \\ 1.91$	$\pounds 42,240 \\ \pounds 10,332 \\ 0.166 \\ 0.256 \\ 2.55$	$\begin{array}{c} \pounds 35,680 \\ \pounds 8,592 \\ 0.166 \\ 0.256 \\ 3.82 \end{array}$	$\pounds 31,650$ $\pounds 7,293$ 0.188 0.228 4.75	$\pounds 27,400$ $\pounds 6,362$ 0.25 0.17 6.08	A B C D E
	1,905	4,520	15,250	33,750	97,100	F
	$13,335 \ 0.25 \ \pounds 28 \ \pounds 224$	${31,640 \atop 0.45 \pounds 66 \pounds 396}$	106,750 1.05 $\pounds 222$ $\pounds 888$	$236,250 \\ 1\cdot 67 \\ \pounds 492 \\ \pounds 1,476$	679,700 $3\cdot 20$ £1,410 £2,820	G H I J
	£3,750	£3,750	$\pounds3,750$	£3,790	£3,900	ĸ
· · · ·	$\pounds 270,000$ $\pounds 13,500$ $\pounds 8,100$ $\pounds 21,824$ $\pounds 34,600$ $\pounds 321,700$	$\pounds 270,000$ $\pounds 13,500$ $\pounds 8,100$ $\pounds 21,996$ $\pounds 32,328$ $\pounds 312,240$	$\pounds 270,000$ $\pounds 13,500$ $\pounds 8,100$ $\pounds 22,488$ $\pounds 31,080$ $\pounds 305,680$	$\pounds 273,000$ $\pounds 13,650$ $\pounds 8,180$ $\pounds 23,306$ $\pounds 30,599$ $\pounds 304,650$	$\begin{array}{c} \pounds 281,000\\ \pounds 14,050\\ \pounds 8,430\\ \pounds 25,300\\ \pounds 31,662\\ \pounds 308,400 \end{array}$	L M N O P Q

^{10,000} VOLTS, SINGLE-PHASE-continued.

TABLE	VI72-MILE	DOUBLE-TRACK	RAILWAY,
-------	-----------	--------------	----------

a	Distance between sub-stations miles
b	Number of sub-stations $\dots \dots \dots$
c	Average number of trains per sub-station
l	, amperes per phase in conductor at sub-station $.\left\{\frac{70 \times 100 \times \text{trs./hr.} \times a}{5000 \times 2 \times 0.9 \times \sqrt{3}}\right\}$
2	Total average amperes per phase per sub-station \ldots $d \times 4$
f	,, output per sub-station per annum $\left\{\frac{e \times 5000 \times 7000 \times 0.9 \times \sqrt{3}}{1000}\right\}$
	Demand per sub-station Maximum demand at 74 amperes starting, 16 running
	,, KVA. demand per sub-station KVA. $\left\{ \begin{array}{c} h \times 5000 \times \sqrt{3} \\ 1000 \end{array} \right\}$
[• ! п	Half this increased by 50 per cent. for spare,,Sub-station units,,Total sub-station capacity,,Cost per KVA. of sub-station completeTotal cost per sub-station $l \times m$
	Sub-station load-factor (24 hours) per cent. $\left\{ \begin{array}{c} \frac{e}{h} \times \frac{19}{24} \times 100 \end{array} \right\}$
	Transformer, $(19$,, $e/h \times 100$ Annual overall efficiency of sub-station,
•	Units lost per annum in sub-station $(f \times \frac{100}{g}) - f$
B LuvweyzABCDDE F	$\begin{array}{c c} \text{Capital charge per sub-station at 5 per cent.} & n \times \frac{1}{2^{10}} \\ \text{Wages, superintendence, and stores} & & & & & & \\ \text{Repairs and renewals at 0.5 per cent.} & & & & & & & & \\ \text{Cost of lost units at 0.5d, per unit} & & & & & & & & & \\ \text{Total cost of running sub-stations, including capital charge} & & & & & & & & \\ \text{Sub-station charge per unit delivered} & & & & & & & & \\ \text{Current cost per unit delivered} & & & & & & & & \\ \text{Current cost per unit delivered} & & & & & & & \\ \text{Total sub-station capacity} & & & & & & & \\ \text{KVA} & & & & & & & \\ \text{g. capital cost of sub-stations} & & & & & & \\ \text{g. capital cost of sub-stations} & & & & & & \\ \text{g. capital cost of sub-stations} & & & & & & \\ \text{g. capital cost of sub-stations} & & & & & & \\ \text{g. capital cost of running all sub-stations} & & & & & & \\ \text{g. cost of running all sub-stations} & & & & & & \\ \text{g. cost of running all sub-stations} & & & & & \\ \text{g. cost of running all sub-stations} & & & & & \\ \text{g. cost of running all sub-stations} & & & & & \\ \text{g. cost of running all sub-stations} & & & & & \\ \text{g. cost of running all sub-stations} & & & & & \\ \text{g. cost of running all sub-stations} & & & & & \\ \text{g. cost of running all sub-stations} & & & & & \\ \text{g. cost of running all sub-stations} & & & & & \\ \text{g. cost of running all sub-stations} & & & & \\ \text{g. cost of running all sub-stations} & & & & \\ \text{g. cost of running all sub-stations} & & & & \\ \text{g. cost of running all sub-stations} & & & & \\ \text{g. cost of running all sub-stations} & & & & \\ \text{g. cost of running all sub-stations} & & & & \\ \text{g. cost of running all sub-stations} & & & & \\ \text{g. cost of running all sub-stations} & & & & \\ \text{g. cost of running all sub-stations} & & & & \\ \text{g. cost of running all sub-stations} & & & & \\ \text{g. cost of running all sub-stations} & & & & \\ \text{g. cost of running all sub-stations} & & & & \\ \text{g. cost of running all sub-stations} & & & & \\ \text{g. cost of running all sub-stations} & & & & \\ \text{g. cost of running all sub-stations} & & & & \\ g. cost of running all sub-$
G	Units lost per sub-station per annum
H I	Track lossper cent. $G/f \times 100$ Value of track loss at 0.5d, per unit $G \times 0.5/240$
Ĵ	Total value of track loss for whole line
K	double track
L M N O P	Total capital cost of track-equipmentK × 72Capital charge at 5 per cent.L × $\frac{1}{20}$ MaintenanceBL × $\frac{1}{100}$ Total charges due to conducting systemJ + M + N,, of sub-station and conductor chargesO + B

	2 Trains	per Hour.		
12	18	24	36	- u
6	4	3	2	
3	4.5	6	9	c
} 11	16.4	22 • 1	32.9	d
44	65.6	88.4	131.6	c
$} 2,350,000$	3,525,000	4,700,000	7,066,000	$\int f$
3 starting 222	$\frac{3\frac{1}{2} \text{ st. 1 run.}}{275}$	4 st. 2 run. 328	$4\frac{1}{2}$ st. $4\frac{1}{2}$ run. 405	$\frac{g}{h}$
1,925	2,385	2,840	3,510	i
$1,4402 \times 7501,500£2.7£4,050$	$\begin{array}{c} 1,790 \\ 2 \times 900 \\ 1,800 \\ \pounds 2 \cdot 55 \\ \pounds 4,585 \end{array}$	$\begin{array}{c} 2,130 \\ 2 \times 1,100 \\ 2,200 \\ \pm 2 \cdot 37 \\ \pm 5,210 \end{array}$	$\begin{array}{c} 2,630 \\ 2 \times 1,300 \\ 2,600 \\ \pounds 2 \cdot 22 \\ \pounds 5,770 \end{array}$	j k l m n
15.7	18.9	$21 \cdot 3$	26.8	0
19·8 94·7	$23 \cdot 9$ $95 \cdot 5$	$27 \cdot 0$ 96 \cdot 0	$32 \cdot 5$ 96 \cdot 6	p q
130,000	170,000	200,000	250,000	r
$\begin{array}{c} \pounds 202\\ \pounds 690\\ \pounds 20\\ \pounds 271\\ \pounds 1, 183\\ 0 \cdot 120d\\ 0 \cdot 620d\\ 9, 000\\ \pounds 24, 300\\ \pounds 7, 098\\ 0 \cdot 166\\ 1 \cdot 535\\ 1 \cdot 010\\ 4 \cdot 080\\ 855\end{array}$	$\begin{array}{c} \pounds 229\\ \pounds 700\\ \pounds 23\\ \pounds 354\\ \vartheta 1, 306\\ 0 \cdot 089d,\\ 0 \cdot 589d,\\ 7, 200\\ \pounds 19, 340\\ \pounds 5, 224\\ 0 \cdot 166\\ 2 \cdot 305\\ 1 \cdot 510\\ 6 \cdot 120\\ 2, 860\\ \end{array}$	$\begin{array}{c} \pounds 260\\ \pounds 710\\ \pounds 26\\ \pounds 417\\ \pounds 1, 413\\ 0 \cdot 072d\\ 0 \cdot 572d\\ 6, 600\\ \pounds 15, 630\\ \pounds 4, 239\\ 0 \cdot 166\\ 3 \cdot 075\\ 2 \cdot 018\\ 8 \cdot 168\\ 6, 920\\ \end{array}$	$\begin{array}{c} \pounds 289\\ \pounds 720\\ \pounds 29\\ \pounds 521\\ \pounds 1,559\\ 0{}^\circ053d\\ 0{}^\circ553d\\ 5,200\\ \pounds 11,540\\ \pounds 3,118\\ 0{}^\circ166\\ 4{}^\circ610\\ 3{}^\circ025\\ 12{}^\circ245\\ 23,000\\ \end{array}$	s t u v w x y z A B C D F F
$5,985 \\ 0.25 \\ \pounds 12.5 \\ \pounds 75$	$20,020 \ 0.57 \ \pounds 41.8 \ \pounds 167$	$48,440 \\ 1 \cdot 03 \\ \pounds 101 \\ \pounds 303$	$161,000 \\ 2.28 \\ \pounds 336 \\ \pounds 672$	G H J
$\pounds 4,350$ $\pounds 313,000$ $\pounds 15,650$ $\pounds 9,400$ $\pounds 25,125$ $\pounds 32,223$ $\pounds 337,300$	$\pounds 4,350$ $\pounds 313,000$ $\pounds 15,650$ $\pounds 9,400$ $\pounds 25,217$ $\pounds 30,441$ $\pounds 332,340$	$\pounds 4,350$ $\pounds 313,000$ $\pounds 15,650$ $\pounds 9,400$ $\pounds 25,353$ $\pounds 29,592$ $\pounds 328,630$	$\begin{array}{c}\pounds4,350\\\pounds313,000\\\pounds15,650\\\pounds9,400\\\pounds25,722\\\pounds28,840\\\pounds324,640\end{array}$	K E M N O P O

5,000 Volts, Three-Phase.

TABLE VI72-MI	E DOUBLE-T	'RACK RAILW	/AΥ,
---------------	------------	--------------------	------

	:	
u	Distance between sub-stations miles	
I,	Number of sub-stations	72/a
	Average number of trains per sub-station	trs./hr. \times 72 \times 2
		schedule speed $\times b$
ţ	,, amperes per phase in conductor at sub-station	$\frac{70\times100\times\mathrm{trs./hr.}\times a}{100\times\mathrm{trs./hr.}\times a}$
	Tatal average amneres ner phase ner sub-station	$3000 \times 2 \times 0.9 \times \sqrt{3}$ $d \times 4$
	Total average amperes per phase per sub-station	ex5000×7000×0·9×√3
	"output per sub-station per annum.	1000
	Demand per sub-station Maximum demand at 74 amperes starting, 16 running	···
		$\int h \times 5000 \times \sqrt{3}$
		1000
	Half this increased by 50 per cent. for spare	••
	Total sub-station canacity	••
	Cost per KVA, of sub-station complete	From curves
	Total cost per sub-station	$l \times m$
		(e 19 100)
	Sub-station load-factor (24 nours) per cent.	$(\tilde{h}^{\wedge} 24^{\wedge} 100)$
	Transformer ,, (19 ,,) ,,	$e/h \times 100$
	Annual overall efficiency of sub-station ,,	From curves
Ì	Units lost per annum in sub-station	$\left(f \times \frac{100}{q}\right) - f$
	Capital charge per sub-station at 5 per cent	$n \times \frac{1}{20}$
1	Wages, superintendence, and stores	•• .
-	Repairs and renewals at 0.5 per cent.	$n \times \frac{1}{2} \overline{v} \overline{v}$
ł	Total cost of munning sub stations including capital charge	$r \ge 0.0/240$
l	Sub-station charge per unit delivered	$v_{1} \times \frac{240}{f}$
	Current cost per unit delivered	0.5 + x
	Total sub-station capacity	$l \times b$
	" capital cost of sub-stations	$z \times m$
	", cost of running all sub-stations	w imes b
	Copper section of conductor	D
	Resistance of one conductor to half-way point	Res. per mile $\propto a/2$
Ì	Total resistance in three phases	$(2 D + D^{1})$
		$4 \times E \times d^2 \times 1.3$
ļ	Average watts lost in four tracks	3
	Units lost per sub-station per annum	$F \times 7000/1000$
	Track loss per cent.	G/f imes 100
ļ	Value of track loss at $0.5d$. per unit	$G \times 0.5/240$
	Total value of track loss for whole line	$1 \times b$
ŀ	double track	••
I	Total capital cost of track-equipment	$K \times 72$
l	Capital charge at 5 per cent.	$L \times \frac{1}{20}$
	Maintenance ,, 3 ,,	$L \times \frac{3}{100}$
	Total charges due to conducting system	J + M + N
	" of sub-station and conductor charges	0 1 B
1	capital expended on sub-stations and track-equipment	***

		3 Trains per Hou	ır.		1
9	12	18	24	36	a
8	6	4	:}	2	6
$\left. \right\}$ 3.38	4.5	6.75	. 9	13:5	e
$12 \cdot 3$	16.4	24.6	$32 \cdot 9$	49.3	d
49.2	$65 \cdot 6$	98.4	131.6	197.2	e
2,650,000	3,525,000	5,300,000	7,050,000	10,600,000	$\int f$
3·38 starting 250	3 1 st. 1 run. 275	4 st. 24 run. 340	4½ st. 4½ run. 405	6 st. 7 1 run. 564	9 h
2,165	2,385	2,950	3,510	4,880	i
$1,6252 \times 8001,600£2.67£4,270$	$\begin{array}{c} 1,790 \\ 2 \times 900 \\ 1,800 \\ \pm 2 \cdot 55 \\ \pm 4,585 \end{array}$	$\begin{array}{c} 2,210 \\ 2 \times 1,100 \\ 2,200 \\ \pounds 2 \cdot 37 \\ \pounds 5,210 \end{array}$	$2,630 \\ 2 \times 1,300 \\ 2,600 \\ \pounds 2 \cdot 22 \\ \pounds 5,770$	$\begin{array}{c} 3,660 \\ 3 \times 1,200 \\ 3,600 \\ \pounds 1 \cdot 95 \\ \pounds 7,020 \end{array}$	j k l n
15.6	18.9	$22 \cdot 9$	26.8	27.6	0
$19 \cdot 7 \\ 94 \cdot 7$	$23 \cdot 9 \\ 95 \cdot 5$	$29 \cdot 0$ $96 \cdot 3$	$32 \cdot 5 \\ 96 \cdot 6$	$35 \cdot 0$ $96 \cdot 7$	p q
150,000	170,000	200,000	250,000	370,000	r
$\pounds 214 \\ \pounds 700 \\ \pounds 21 \\ \pounds 312 \\ \pounds 1,247 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$\pounds 229 \\ \pounds 710 \\ \pounds 23 \\ \pounds 354 \\ \pounds 1,316 \\ 0.000 \ l$	$\begin{array}{c c} \pounds 260 \\ \pounds 720 \\ \pounds 26 \\ \pounds 417 \\ \pounds 1,423 \\ 0.0444 \end{array}$	$\pounds 289 \\ \pounds 730 \\ \pounds 29 \\ \pounds 521 \\ \pounds 1,569 \\ 0.0544$	\pounds 351 \pounds 740 \pounds 35 \pounds 771 \pounds 1,897	8 t u v w
0.113a. 0.613d. 12,800 $\pounds 34,160$ $\pounds 9,976$ 0.166	$\begin{array}{c} 0.089a.\\ 0.589d.\\ 10,800\\ \pounds 27,510\\ \pounds 7,896\\ 0.166\\ 0.166\end{array}$	$\begin{array}{c} 0.064a. \\ 0.564d. \\ 8,800 \\ \pounds 20,840 \\ \pounds 5,692 \\ 0.166 \\ 0.166 \end{array}$	0.054a. 0.554d. 7,800 $\pounds 17,310$ $\pounds 4,707$ 0.166	0.043a. 0.543d. 7,200 £14,040 £3,794 0.166	$\begin{array}{c c} x \\ y \\ z \\ A \\ B \\ C \\ \end{array}$
$1 \cdot 151 \\ 0 \cdot 756 \\ 3 \cdot 058$	1.535 1.010 4.080	$2 \cdot 305$ $1 \cdot 510$ $6 \cdot 120$	3.075 2.018 8.168	$4 \cdot 610$ $3 \cdot 025$ $12 \cdot 245$	D D E
802	1,900	6,420	15,350	51,600	\mathbf{F}
$5,614 \\ 0.21 \\ \pounds 11.7 \\ \pounds 94$	$13,300 \\ 0.38 \\ \pounds 27.7 \\ \pounds 166$	44,940 0·85 £94 £376	$107,450 \ 1.52 \ \pounds 224 \ \pounds 672$	$360,200 \ 3\cdot41 \ \pounds753 \ \pounds1,506$	G H I J
$\pounds4,350$	$\pounds4,350$	$\pounds4,350$	$\pounds4,350$	$\pounds 4,350$	K
$\begin{array}{c} \pounds 313,000\\ \pounds 15,650\\ \pounds 9,400\\ \pounds 25,144\\ \pounds 35,120\\ \pounds 347,160\end{array}$	$\begin{array}{c} \pounds 313,000\\ \pounds 15,650\\ \pounds 9,400\\ \pounds 25,216\\ \pounds 33,112\\ \pounds 340,510\end{array}$	$\pounds 313,000 \\ \pounds 15,650 \\ \pounds 9,400 \\ \pounds 25,426 \\ \pounds 31,118 \\ \pounds 333,840$	$\pounds 313,000$ $\pounds 15,650$ $\pounds 9,400$ $\pounds 25,722$ $\pounds 30,429$ $\pounds 330,310$	$\begin{array}{c} \pounds 313,000\\ \pounds 15,650\\ \pounds 9,400\\ \pounds 26,556\\ \pounds 30,350\\ \pounds 327,040 \end{array}$	L M N O P Q

5,000 VOLTS, THREE-PHASE-continued.

TABLE VI.-72-MILE DOUBLE-TRACK RAILWAY,

a	Distance between sub-stations miles	
ь	Number of sub-stations	72/a
e	Average number of trains per sub-station	$\frac{\text{trs./hr.} \times 72 \times 2}{\text{schedule speed } \times b}$
.,		$70 \times 100 \times \text{trs./hr.} \times a$
a	,, amperes per phase in conductor at sub-station .	$5000 \times 2 \times 0.9 \times \sqrt{3}$
e r	1 otal average amperes per phase per sub-station	a × 4 e×5000×7000×0·9×√3
1	,, output per sub-station per annum	1000
$\frac{g}{h}$	Maximum demand at 74 amperes starting, 16 running	
i	" KVA. demand per sub-station KVA.	$\left\{\begin{array}{c} \frac{h \times 5000 \times \sqrt{3}}{1000} \right\}$
j_{j}	Half this increased by 50 per cent. for spare "	••
$\frac{k}{l}$	Sub-station units	
m	Cost per KVA, of sub-station complete	From curve
n	Total cost per sub-station	$l \times m$
0	Sub-station load-factor (24 hours) per cent.	$\left\{ \frac{e}{h} \times \frac{19}{24} \times 100 \right\}$
p	Transformer ,, (19 ,,) ,,	$e/h \times 100$
q	Annual overall efficiency of sub-station ,,	From curves
r	Units lost per annum in sub-station	$\left(f \times \frac{100}{q}\right) - f$
\$	Capital charge per sub-station at 5 per cent.	$n \times \frac{1}{20}$
ı u	Repairs and renewals at 0.5 per cent.	$n \times n^{1}$
v	Cost of lost units at 0.5d. per unit	$r \times 0.5/240$
w	Total cost of running sub-stations, including capital charge	s+t+u+v
x	Sub-station charge per unit delivered	$w \times 240/f$
y	Total sub station conscitute KVA	0.5+x
A	capital cost of sub-stations	5 X M
B	. cost of running all sub-stations	$\frac{1}{10} \times b$
$\overline{\mathbf{C}}$	Copper section of conductor	••
Ð	Resistance of one conductor to half-way point	Res. per mile $\times a/2$
Di	,, track rails to half-way point	$0.168 \times a/2$
E	Total resistance in three phases	$(2 D + D^{*})$
F	Average watts lost in four tracks	4 X E X (X I 3
G	Units lost per sub-station per annum	F × 7000/1000
H	Track loss per cent.	$G/f \times 100$
I	Value of track loss at 0.5d. per unit.	$\begin{array}{c} G \times 0.5/240 \\ T \times b \end{array}$
17	(Cost of overhead structure and track bonding per mile of)	1.4.4
<u>n</u>	(double track	
	Total capital cost of track-equipment	$K \times 72$ L $\times 1$
M	Maintenance 3	
0	Total charges due to conducting system	J + M + N
P	,, of sub-station and conductor charges .	0 + B
Q	,, capital expended on sub-stations and track-equipment	A + L

		6 Trains per Hou	r.	
9	12	18	24	36
8	6	4	3	2
6.75	9	$13 \cdot 5$	18	27
24.6	32.9	$49 \cdot 3$	65.7	98.5
$98 \cdot 4$	131.6	$197 \cdot 2$	$262 \cdot 8$	394.0
5,350,000	7,050,000	10,600,000	14,100,000	21,200,000
4 st. 2 4 run. 340	4½ st. 4½ run. 405	6 st. 7 1 run. 564	71 st. 101 run. 723	10 st. 17 run. 1,012
2,950	3,510	4,880	6,260	8,770
2,210 $2 \times 1,100$ 2,200 $\pounds 2 \cdot 37$ $\pounds 5,210$	$2,6302 \times 1,3002,600£2 \cdot 22£5,770$	3,670 $3 \times 1,250$ 3,750 £1.95 £7,390	$\begin{array}{c} 4,700 \\ 4 \times 1,175 \\ 4,700 \\ \pounds 1 \cdot 75 \\ \pounds 8,920 \end{array}$	$6,570 \\ 4 \times 1,640 \\ 6,560 \\ \pounds 1 \cdot 6 \\ \pounds 10,500$
22.9	26.8	27.6	28.8	30.8
$29.0 \\ 96.3$	$32.5 \\ 96.6$	35·0 96·7	$36.4 \\ 96.8$	39·0 97·0
200,000	250,000	370,000	470,000	650,000
$\pounds 280$ $\pounds 710$ $\pounds 226$ $\pounds 417$ $\pounds 1, 413$ 0.063d. 0.568d. 17,600 $\pounds 41,680$ $\pounds 11.304$	$\pounds 289$ $\pounds 720$ $\pounds 29$ $\pounds 521$ $\pounds 1,559$ 0.053d. 0.553d. 15,600 $\pounds 34,620$ $\pounds 9,354$	$\pounds 366 \\ \pounds 730 \\ \pounds 37 \\ \pounds 37 \\ \pounds 771 \\ \pounds 1,904 \\ 0 \cdot 043d. \\ 0 \cdot 543d. \\ 15,000 \\ \pounds 29,250 \\ \pounds 7,616 \\ \end{bmatrix}$	$\begin{array}{c} \pounds 413\\ \pounds 740\\ \pounds 41\\ \pounds 980\\ \pounds 2,174\\ 0.037d.\\ 0.537d.\\ 14,100\\ \pounds 24,750\\ \pounds 6,522 \end{array}$	$\pounds 525$ $\pounds 750$ $\pounds 52$ $\pounds 1, 355$ $\pounds 2, 682$ 0.030d. 0.530d. 13, 120 $\pounds 21, 000$ $\pounds 5, 364$
0.166 1.151 0.756 3.058	0.166 1.535 1.010 4.080	0.166 2.305 1.510 6.120	0.188 2.735 2.018. 7.488	0.25 3.060 3.025 9.145
3,215	7,680	25,750	56,000	154,000
$22,505 \ 0.42 \ \pounds 47 \ \pounds 376$	53,760 0`76 £112 £672	$\begin{array}{c} 180,250 \\ 1\cdot70 \\ \pounds 376 \\ \pounds 1,504 \end{array}$	392,000 2.78 £817 £2,451	$1,078,000 \\ 5\cdot09 \\ \pounds 2,245 \\ \pounds 4,490$
$\pounds4,350$	£4,350	$\pounds4,350$	£4,430	$\pounds 4,650$
$\begin{array}{c} \pounds 313,000\\ \pounds 15,650\\ \pounds 9,400\\ \pounds 25,426\\ \pounds 36,730\\ \pounds 354,680 \end{array}$	$\begin{array}{c c} \pounds 313,000 \\ \pounds 15,650 \\ \pounds 9,400 \\ \pounds 25,722 \\ \pounds 35,076 \\ \pounds 347,620 \end{array}$	$\begin{array}{c} \pounds 313,000 \\ \pounds 15,650 \\ \pounds 9,400 \\ \pounds 26,554 \\ \pounds 34,170 \\ \pounds 341,080 \end{array}$	$\begin{array}{c} \pounds 319,000\\ \pounds 15,950\\ \pounds 9,560\\ \pounds 27,961\\ \pounds 34,483\\ \pounds 343,750\end{array}$	$\begin{array}{c} \pounds 335,000\\ \pounds 16,750\\ \pounds 10,050\\ \pounds 31,290\\ \pounds 36,654\\ \pounds 356,000\\ \end{array}$

5,000 VOLTS, THREE-PHASE-continued.

APPENDIX II.

THE CENTRAL LONDON RAILWAY.

Some particulars of the electrical equipment of this railway may be convenient to the proper understanding of the figures relating to sub-station operating-costs. The Author has access, of course, to the operating-results of all the different plants with which he is associated, so that he is in a position to state that these operating-costs are representative. The reason why they are presented at such length is that they have been carefully kept over a longer period than applies to any other installation of the kind. The power-installation was designed to work a combined lighting, lift and train load, aggregating at normal maximum 5,000 kilowatts. The sub-station arrangement was to be such that the voltage should be maintained at all points within the limits applying to good lighting practice, and that there should be a duplicate sub-station supply to each section of railway. Since the failure of supply in the case of underground working, even temporarily, is of very serious moment, there are six sub-stations, three underground at the bottom of the lift-shafts and three on the surface. The underground stations have been very largely used since the opening of the railway, and, owing to the difficulty of ventilating them, they have seen abnormally hard service.

The transmission is at 5,000 volts, and it is worthy of note that there has not been a cable-failure since the opening of the railway. All the sub-stations are equipped with 900-kilowatt rotary converters, of the earlier type without interpoles, which convert three-phase 330-volt current at 25 cycles to continuous current at 525 volts. The rating is such that 900 kilowatts is the continuous output for 40° C. increase, 1,350 kilowatts for 1 hour, and 1,800 kilowatts peak load. There are ten of these, six underground and four on the surface. In the underground sub-stations there are three 330-kilowatt air-cooled transformers to each rotary. In the surface sub-stations there are three 330-kilowatt water-cooled oil transformers. Since the opening of the railway there has been no interruption of service due to the failure of the electrical supply. The diversity-factor between the different sub-stations is of the order of 1.4 and the average working-efficiency is 90 per cent. The nature of the repairs and renewals is shown in detail in the Tables. With the exception of the switchgear, which has been subjected to great improvements in the period since the railway was opened, the plant is practically as installed. As will be seen in the records, the majority of the larger class of repairs has been caused by accident rather than by deterioration. For instance, a bank of airblast transformers were burned out owing to the ignition of certain cables by a match being dropped in the air-blast duct. There have been five rotary-converter armature-failures in the 14 years the railway has been in operation. One was caused in transit by a screw in the packing-case penetrating the windings, another by a rivet dropping into an armature while running. The other three have occurred in the same machine in an underground sub-station where proper ventilation is very difficult to provide for. Twelve air-blast transformers have been rewound, the damage to nine of these being caused by overheating from lack of ventilation. It should be explained that sub-station operation was not in contemplation when the railway was begun, so that the disposition of the plant is not a normal one, and, in general, is unfavourable to efficient ventilation. The Central London Railway plant has been described at such length elsewhere that the present description is limited to what is required to complete the arguments on which the present Paper is based.

The costs associated with sub-station operation on the Central London Railway are shown in Table VII (p. 96), which gives the figures for each half-year from January, 1903, to December, 1913. Table VIII shows the repairs to sub-stations, set out in detail for the years 1906 to 1912. TABLE VII.-SHOWING INFLUENCE OF SUB-STATION CHARGES ON CENTRAL LONDON RAILWAY CURRENT-COST.

96

		Totol				[nits			Sub-si	tation Ch	arges.			Total Sub-	Cost
Half Year,	Units delivered from Power House to Cable System.	Cost per Unit delivered to Cables includ- ing Capital Charges.	Units delivered to Sub- stations (at 98 per Cent. Efficiency)	Trans- mission Charge per Unit delivered to Sub- stations.	Total Cost per Unit delivered to Sub- stations.	delivered from Sub- stations to Track, Lifts, etc. (at 8 per Cent. Efficiency.)	Operat- ing and Super- intend- ence.	Repairs and Re- newals.	Total.	Operat- ing and Repair Charge per Unit deliv- ered.	Capital Cost of Sub- station Plant and Build- ings.	Capital Charge Der Unitde- livered at 5 per Cent. per ann.	Charge due to 12 per Cent. Loss.	Track.	per Unit deliv- from sta- sta- tions.
Working com- menced Aug	8	٩	v	q	8	6 -4	50	ч	·i	j	*	-	Ħ	я	0
1900.		-		ď.	d.		સ	સ	સ	d.	સ	ď.	d.	d.	d.
1903 1st half	8,208,000	992-0	8,044,000	0.035	0.801	7,079,000	1,046	289	1,335	0.045	55,215 64 201	0.047	01110	0.202	1.068
2nd "	2,888,000	0.813	2,730,000	0.033	0.220	6,802,000 7 476 000	1,119	295	1,414	0.045	68,609	0.055	001.0	0.200	0.929
1204 180	8.821.000	0.704	8 645 000	0.033	0.737	7,608,000	1,378	524	1,902	0.060	72,131	0.057	0.101	0.218	0.955
1905 1st "	9,039,000	0.612	8,858,000	0.030	0.642	7,795,000	1,320	603	1,923	0.059	73,168	0.056	0.088	0.203	0.845
2nd "	8,955,000	0.589	8,776,000	0.041	0.630	7,723,000	1,441	482	1,923	090.0	14,297	80.0	0.080	101.0	112.0
1906 Ist "	9,898,000	0.582	9,700,000	0.038	0.620	8,536,000	1,409	455 55 5 6 5	1,842	0.048	81,170	190.0	0.084	161-0	0.804
1907 1st	9,300,000	2/6.0	8,968,000	0.039	0.604	7,892,000	1.514	339	1,853	950-0	81,170	0.062	0.083	0.201	0.805
2nd "	8,383,000	0.628	8,215,000	0.043	0.671	7, 229, 000	1,503	240	1,743	0.058	82,500	0.068	0.092	0.218	0.889
1908 lst ,,	9,547,000	0.597	9,356,000	0.039	0.636	8,233,000	1,457	173	1.579	0.044	82,963	0.058	180.0	181-0	0.809
1909 1st	9,901,000	0.526	9,703,000	0.036	0.562	8,538,000	1,334	118	1,452	0.041	82,963	0.058	220.0	0.176	0.738
2nd ,,	9,567,000	0.496	9,375,000	0.037	0.533	8,250,000	1,392	104	1,496	0.044	82,963 89 063	0.060	0.073	0.177	017.0
1910 lst ,, 2nd	9,518,000	0.487	9,328,000	0.037	0.528	8,250,000	1.330	29	1,389	0.040	82,963	0.060	0.072	0.172	0.700
1911 1st "	9,448,000	0.478	9,259,000	0.036	0.514	8 148,000	1,295	23	1,368	0.040	82,963	0.061	0.070	0.171	0.685
2nd ,,	9,166,000	0.471	8,983,000	0.037	0.508	7,905,000	1,266	50	1,316 1.940	0.040	82,903 82,963	0.071	0/0.0	261-0	100.0
1912 Ist ,, 2nd	9 035 000	0.516	8,854,000	0.038	0.554	7.792.000	1,300	57	1,357	0.042	82,963	0.064	0.076	0.182	0.736
1913 1st .,	9,164,000	0.498	8,980,000	0.038	0.536	7,902,000	1,185	125	1,310	0-040	82,963	0.063	0.074	0.177	0.735
2nd "	8,530,000	0.513	8,360,000	0.040	0.553	7,354,000	1,199	48	1,24/	0±0.0	02,20	100.0	e / n - n	701.0	

PARSHALL ON ECONOMICS OF

[Minutes of

MATERIALS.
AND
WAGES,
REPAIRS,
SUB-STATION
RAILWAY :
LUNDON
CENTRAL
VIII.
TABLE

	a. 11	- നേ	4 oo ka	ဂောတ	~~	10	n oc	ž	5	-	0	
tal.	.º 0	- 10 a	° 1 7	r-0	212	i vo (ი ლ	2	12	16	19	00
ecial To	433 133	339 940	59 172	118	110	22	60 60 60	56	1,958	279	69	ī
	d.	<i>и</i> ча	o 4 .	2	10	9	27	6	∞	eo	4	~
	s. one	01 0	e de la	one	5	15	8 one	10	16	20	-	5.8
S.	_ж ч г	212	3 01 2	104	00 Z	101	en 7	5	309	44	=	
	5 7 G	10 4	* ~~ E	10		• •	നെയ	50	0	5	-	
ools and ndrie	8. 10	7 7	174	15.0	84	10	H 10	9	~	12	13	11
L ans	ع 43 43	22 4	70,4	203 03	35.	19		~ ~ ~	214	30	7	
501S.	d.	a	∞ ⊂	> • • •	46		4 6		4	ъ	-	
oress	s. one	4 Ione	1.2	lone		10		10		14	63	1.8
tilating Comp	3 ^N 9		440	5ZZ	1 x0 <	501	00	4	33	4		
	5.6	90	۰ <u>۱</u> ۰	⊿ ∾ E	122	4	11	10	=	Ō	6	5
	°. 13. 5	01 01	NHC	° ∾ ⊂	2 II °	181	00	16	16	11	5	11.(
Vent P	ئى تى :	1	# 61 67	ဥက ၎	16	19	18	15	227	32	œ	
es ions.	d.	ი თ.	مور ا	11.	6 1 2	2 61	<u>م</u> ۱	- 1-	п	80	5	~
and	°, 6,	14	121	n 133 k	19	13.0	C7 10	o 10		00	7	50 50
es Con	ം ന	3 27	400	000	100			0	66	6	5	
	d. 11	0 11	10	040	 - 0	ာကာ	01	11	2	73	1	5
tari 0,00 10,00	°°°	15	မာရ	<u>0</u> ∞ -	* %] `	13	15	- F - F	13	16	6	19.
a Kilo	£ 56	15	01 4 - 0	7 % î	58,	0 0	100	00 18	376	53	13	
	9 0 g	~ ~	n n t	~ 900	000	4	4,7	•	1	× ×	10	
form	0.25	edit	200	01-1	120	0 17	4	one	4	0	10	13.6
hboards. Blo	239 53	5.2.6	16	0 4 1 2 4	- 07 -	49	40	NZ	266	38	cì	
	2.4	6 1-1	⊳ +1 •	ধা ২৮ ৫	ით. დ	р Ф	4	2 °P	4	4	10	4
	- 1 -	$12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\$	11	11	, o	18	°° ,	91-	11	1	11	23.
Half Year. Swite	£ 84	20 20	333	52 S	388	582	20	2 cî	464	66	16	
	•		• •	• •	• •	• •	•	• •	•	ual)	ub- our	ion .
	half	z z	: :	: :	: :	: :	: :	: :	•	ann tre	er s (fe	stat
	st	st	and st	st	st	st	Snd	lst 2nd	otal	iditu ditu	te p n atio	tage sub-
	6, 1	1, 1 1, 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2000 2000	60	0,1		ที่ต่ำ	Ĥ	erag	erag atio	rcen tal s pair
	190	190 190	190	190	191	161	161	191 191		Av	Av. st su	Pen to re
· ····												

[THE INST. C.E. VOL. CXCIX.]

н

Downloaded by [Purdue Univ Lib TSS] on [15/09/16]. Copyright © ICE Publishing, all rights reserved.

97

WATTERLOW HERDS. & LAYTON LAY LATE THOSE KELL & SUR, LONDON. Downloaded by [Purdue Univ Lib TSS] on [15/09/16]. Copyright © ICE Publishing, all rights reserved.

economics

OF ELECTRIC RAILWAY DISTRIBUTION.

PLATE 2. ECONOMICS OF ELECTRIC RAILWAY DISTRIBUTION

H. F. PARSHALL.

Downloaded the Country Librass 100/15/09/1610 Copyright @ ICE Publishing, all rights reserved.

ECONOMICS OF ELECTRIC RAILWAY DISTRIBUTION.

PLATE 3. ECONOMICS OF ELECTRIC RALWAY DISTRIBUTION.