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Tue object of this paper is in the first place to set the theory of

hypercomplex numbers on a rational basis.

The methods usually

employed in treating the parts of the subject here taken up are, as &
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rule, dependent on the theory of the characteristic equation, and are
for this reason often valid only for a particular field or class of fields.
Such, for instance, are the methods used by Cartan in his fundamental
and far-reaching memoir, Su» les groupes bilinéaires et les systémes com-
plexes. It 18 true that the methods there used are often capable of
generalisation to any field ; but I do not think that this is by any means
always the case.

My object throughout has been to develop a treatment analogous to
that which has been so successful in the theory of finite groups. An in-
strument towards this lay to hand in the calculus developed by Frobenius,
and used by him with great effect in the theory of groups. This calculus
is, with slight additions, equally applicable to the theory of hypercomplex
number-systems, or, as they will be called below, algebras. Although a
short account of this calculus has already been given, it was thought
advisable to give a more detailed account in the present paper.

A word or two on the nomenclature adopted will perhaps not be out
of place. At Professor Dickson’s suggestion I have used the word algebra
as equivalent to Peirce’s linear assoctative algebra which is too long for
convenient use. An algebra which is composed of only a part of the
elements (or numbers) of an algebra is called a sub-algebra of that algebra.
It is assumed throughout that a finite basis can be chosen for any algebia
which is under discussion, that is, we suppose that it is always possible to
find a finite number of elements of the algebra which are linearly inde-
pendent with regard to some given field, and are such that any other
number of the algebra can be linearly expressed in terms of them. This
excludes from the present paper an interesting class of algebras which I
hope to discuss in a subsequent communication.

Most of the results contained in the present paper have already been
given, chiefly by Cartan and Frobenius, for algebras whose coefficients lie
in the field of rational numbers; and it is probable that many of the
methods used by these authors are capable of direct generalisation to any
field. It is hoped, however, that the methods of the present paper are,
in themselves and apart from the novelty of the results, sufficiently inter-
esting to justify its publication.

The greater part of Sections 1, 2, 4-6 was read in the Mathematical
Seminar of the University of Chicago early in 1905, and owe much to
Professor Moore’s helpful eriticism.

A list of memoirs referred to is given at the end of the paper, and
these memoirs are quoted throughout by their number in this list.
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1. The Calculus of Complexes.

The definition of the term algebra or hypercomplex number-system is
now 8o well known that it is unnecessary to give here a formal set of
postulates.*

Let z,, xy, ..., z» be a set of elements which are linearly independent
in & given field F. The set of all elements of the form

= 2 {1,
r=1

the £’s being any marks of F, is said to form an algebra, if
() SéotSéle, =S E+E) 2.

(ii.) The product of any two z’s is linearly dependent on =z, z,, ..., z.
' in F, in such a way that the multiplication so defined is
associative.

(iii.) For any three elements z, y, z of the algebra
z (yY+2) = zy+2z, Y+2) z = yz+2z.

The algebra is said to be of order n with respect to F. In what
follows the term ‘ linearly independent "’ will always be understood to be
with respect to a given field F' which is supposed to be constant through-
out but otherwise arbitrary.

The complex A = z,, z,, ..., z, is defined as the set of all quantities
linearly dependent on =z, Z,, ..., z,. The greatest number of linearly
independent elements which can be simultaneously chosen, is called the
order of the complex.

It A4 and B are two complexes, the complex formed by all elements of
A and B and those linearly dependent on them, is called the sum of 4
and B, and is denoted by 4+B. The operation of addition so defined is
evidently associative and commutative.

If a complex B is contained in a complex 4, we write B<<4 or
A > B. Similarly, if z is an element of a complex 4, we write z < 4.
This amounts to representing a complex of order one by one of its ele-
ments, and will be found to lead to no confusion if certain obvious pre-
cautions are observed.

If B<A4, we can always find C such that B4+C = 4. C is called
the supplement of B with regard to 4. It is obviously not uniquely

# The reader is referred to the following papers on this subject :—Dickson 2, 3.
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determined, but if B+C' = B+4C, any element of ¢’ can be expressed
as the sum of an element of B and an element of C. This is conveniently
denoted by writing ¢’ = C (med B).

The elements common to two complexes evidently also form a complex.
The greatest complex common to 4 and B is denoted by 4 ~B. Thus
the statement that 4 and B have no element in common is equivalent to
A~B=0.

If A and B are any two complexes, and if z and y are any elements
of A and B respectively, the complex of elements of the form wy and those
linearly dependent on them, is called the product of 4 and B and is
written 4B. For instance, if 4 = 2, ;... z, and B=y,, ¥, ... ¥, then

AB= ..., %Y ... r=1,2, ...,a;s=1,2,..,0).

AB of course is not in general the same as BA. The operation of
multiplication so defined is associative, and it is also distributive with
vegard to addition.

The following is a summary of the laws of the calculus described
above :—

(i) A+4+B=B+4.

(i) 44+(B+0) = (4+B)+C.

(i) 4.BC=A4B.C.

(iv) 4A(B+C)=A4B+4C, (B+C) A =BA+4CA.
v) A~B~0C)=4~B)~C.

(vi) A~B=B~A4.

(vii.) 4AB~0) << AB~A4C.

Integral powers of a complex are defined by the methods usually
employed in hypercomplex numbers, e.g., 4.4" = A" = A™. 4. A
necessary and sufficient condition that a complex 4 be an algebra is then
obviously A%< 4.

The above definitions will perhaps be made clearer by a special

example. Consider the algebra (quaternions) formed by four units e, e,

€y, €5, Where eres = — ege, (7, s 5 0),

— 2 2 2 0 —
etr =€ and —e; =€/ =¢€, = ¢, = —¢).

If Greek letters are used to denote marks of the given field, elements of
he form £ey+&,e, form a complex 4 = ¢, ¢,. If B =e, €, then
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4 ~B =¢;; we have also 4> = 4 and B* =¢,, ¢, €, 63 = 4. Again,
AB=B*=A4 and B(4 ~B)=g¢, e,
but BA ~B*= B?*> B(4 ~ B).

2. The Theory of Invariant Sub-algebras.

A sub-complex B of a complex 4, which is such that 4B < B and
B4 < B, is called an tnvariant* sub-complex of 4. If B is contained in
no other sub-complex of A4 which has this property, it is said to be
maximal. B is necessarily an algebra, since B* < B4 < B. An algebra
which has no invariant sub-complex is said to be simple.+

The theory of invariant sub-algebras is of great importance, as will be
seen in the succeeding sections. As most of the present section has

already appeared elsewhere! it is given here in a somewhat condensed
form.

Traeorem 1.—If AB< B and A* < 4, either BA =4 or B4 is an
nvariant sub-algebra of A.

For BA.4 < BA and 4.B4 < BA. This theorem is frequently
applied in the sequel.

We may also notice that B+4BdA is also an invariant sub-algebra,
unless it is identical with 4.

TaeorEM 2.—If B, and By are invariant sub-algebras of an algebra
A, B4+ By s also an invariant sub-algebra, unless 4 = B+ B,

For A (By+By) = AB,+ 4B, < B,+B,,
(By+By) A = B,A+B,4 < B,+B,.

CoroLrLary.-—If B, is maximal, then either 4 = B+ B, or B, < B,.
Hence, if B, and B, are two different maximal invariant sub-algebras, we
must necessarily have B,+B, = 4.

TreEoREM 8.—If B 1s an invariant sub-algebra of an algebra 4, @ new
algebra can be derived from A by regarding as dentical those elements of
A which differ only by an element of B.§

* Molien (10) ; Frobenius (6), p. 523 ; Cartan (1), p. 57.
+ Cartan (1), p. 57.

+ Epsteen and Maclagan Wedderburn (3).

¢ This fundamental theorem is due to Molien.

SER. 2. VOL. 6. No. 980. G
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The set of elements defined by regarding as identical those elements
of 4 which differ only by an element of B, is evidently closed under the
operations of addition and multiplication, and the distributive law holds.
The only law that is not evidently satisfied is the associative law for
multiplication. This law is shown to hold as follows.

Let A = B+4C, and let elements of B and C be respectively denoted
by z and y with subscripts attached. If, then, y,, y, and y. are any
three elements of C,

Yo-Ya¥r =Yp Yort2m) =¥py,r (mod B),
since y,z, < B. Similarly,
YoYa-Yr = Ym+2p) Yr = Ypyr (mod B);

therefore, since- : Y- YalUr = YpYq-Yrs
we have YpYor =Ymy- (mo0d B),

which shows that multiplication is associative.

The algebra defined in this way is called the difference algebra of 4
and B, and, on the analogy of the symbolism used for the quotient group
in the theory of finite groups, it is conveniently denoted by (4 —B).
(4 —B) is said to accompany A and to be complementary* to B.

TuroreM 4.—If B, and B, are invartant sub-algebras of an algebra A,
and By > By, (A—B,) has an tnvartant sub-algebra which is simply
isomorphic with (B,—B,) and conversely.

To show this,let 4 =B,+C, B, ~C=0,
B, =B,+D, B,~D=0;

then 4 = B,+D+C.

If D’ is the complex of (4 —B,), which corresponds to D, we have
(4—By D' D,

since D+0C)D <D (mod By).

Similarly D'(A—B) << D'.

Now D' is derived from D by regarding those elements as equal which
differ only by an element of B,. Hence

D' = (B,—By.

* Molien (10), p. 92 ; Frobenius (6), p. 523.
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Conversely, if (4 —B,) has an invariant sub-algebra D', and if, as
before, D is a complex of 4 which corresponds to D’, then since

ADL D (mod By,
we have A(By+D) < By+D, (By+D)A < By+D.

Hence B,+ D is an invariant sub-algebra of 4.

CoroLrARY.—An immediate consequence of this theorem is that (4 —B)
is simple, if B is a maximal invariant sub-algebra.

Tueorem 5.—If B, and B, are two different mazimal invariant sub-
algebras of an algebra A, then D = B, ~ B, is a maximal invariant
sub-algebra of both B, and By,  Further (A—B,;) and (4A—Bjy) are
stmply isomorphic with (By— D) and (B,— D) respectively.

Let Bl = .D+02, .Bz = D+Cl,
where D~C, =0, DA~C,=0;
and therefore, since

D = .B]_ ~ .B2 ﬂ;nd A = BI+B2’
A =D+CI+C2, CIAC.2=0‘
If we denote simple isomorphism* by the symbol ~, we have
(A _‘Bl) ~ Cl (mOd Bl)’
and (By—D) ~ C, (mod D), ~ C; (mod By,

since C; < B,, and therefore any two elements of C, which are equal
modulo B,, are also equal modulo D. We have therefore

(4—B, ~ (Bs—D),

i.e., (By—D) is simple since (4 —DB,) is simple. Hence D is a maximal
invariant sub-algebra of B,. In exactly the same way it can be shown
that it is a maximal invariant sub-algebra of B,, and

(4 '_BQ) -~ (Bl"D)-

It 4,, Ay, ..., 4, is a series of algebras such that ., is a maximal
invariant sub-algebra of 4,_;, the series is called a composition series of
A;.  The series (4,—A4,), (d;—4y), ..., (4,-1—4,), ... is said to be a
difference series of A,. An algebra can of course have many composition
series. '

* J.c., isomorphism with regard both to addition and multiplication.
¢ 2



84 Mr. J. H. MacLagan WEDDERBURN [Nov. 14,

Let (1) A, 4, 4, ..., (ii.) 4, B, B,, ...,
be two composition series of 4 for which 4,5 B,. Then, if 4 ~ B, =D,
(i) 4,, 4o, D, D,, ..., (iv) 4,, B, D, D,, ...,

where D, Dy, ... is a difference series for D, are two composition series
for 4,, and, by Theorem 5, the corresponding differences are identical
apart from the order of their terms. If we now assume that all possible
difference series of the same algebra are equivalent for all algebras of
order less than the order of 4, (i.) and (ii.) are respectively equivalent to
(iii.) and (iv.) and hence to each other. For algebras of one unit, there is
only one difference series possible, hence we have by induction the follow-
ing theorem.

TreorEM 6.—Any two difference series of the same algebra are
tdentical apart from the order of their terms.

If in forming the series 4,, 4,, ... we make each term the largest sub-
algebra of the preceding algebra which is an invariant sub-algebra of 4,,
the corresponding difference series is called a principal difference series.
It can be shown by a method analogous to that used above, that the
principal series is also independent of the particular composition series
from which if is formed.

3. Reducibilety.

If an algebra 4 is expressible as the sum of two algebras 4, and 4,,
which are such that 4,4, =0 = A4,4,, 4 is said to be reductble, and to
be the direct sum of 4, and 4,. It was in this sense that the word sum
was first used by Scheffers. To avoid circumlocution, we shall in this
section call 4, an entegral sub-algebra of A4, if there is another sub-
algebra A4, such that 4 = 4,+4,, and 4,4,=0=4,4,. This term
is not used except in this section. An integral sub-algebra is always
invariant.

Taeorem 7.—If B is an invariant sub-algebra of A, and both A4 and
B have a modulus,* then A is reducible.

Let 4 = B+C', B~C =0,

* An algebra is said to have a modulus ¢, if ¢ is an element such that ez = z = z¢ for every
element z of 4.
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and let ¢ and ¢, be the moduli of 4 and B respectively, then
C=(—e)C (e—e) =C" (mod B),

and , (e—e) B=0= B(e—e,),

since, if y < B, then ey =y = ¢;y. Hence BC =0 = CB; and C* =,

since 42 = A. e—e¢, is evidently the modulus of C.

CoroLnary.—If B is an integral sub-algebra of 4 and both 4 and B
have a modulus, 4 is expressible uniquely as the direct sum of B and an
algebra C. For ¢ and e, being as above, we have

C = (e—e) A e—e).

TrcoreM 8.—If A, and A, are two different mazimal integral sub-
algebras of A, then A = A+ A,.

Let A = A1+B1, AlBl = 0 = BlAl’ Al ~ -Bl = 0,
== A2+B2, A2B2 =0= BQAQ, ’ AQ ~ B2 = 0.

Every element of 4, can be expressed in the form z-+y, where z <.,

and y < By, and the complex of 9’s so defined forms a sub-algebra C, of
B, which does not vanish.

Similarly, any element of B, can be expressed in the form z+y, the
y’s defining a sub-algebra D, of B;. But

AB, =B,4,=0= A,B, = Byd,;
therefore C; D, =0 = D, (C,.
Now A = A,+B; and 4, ~ B; = 0, hence we must have
B, = C,+D,.

But, since 4; is maximal, B, must be irreducible; from which there
results D, =0. Hence B, is contained in 4, and 4 = 4,4+ 4, It
follows also that B, is an integral sub-algebra of 4,. For, if the elements
of 4, are expressed in the form z+4y as before, the z’s compose a sub-
algebra D of A4, which is also a sub-algebra of 4, since the %’s have
been shown to be elements of 4,. Since

A; = D+B;, and 4,~ B, =0,
we must evidently have D= A4,~4,.

If A, Ay ... be a series of algebras such that A, is a maximal
integral sub-algebra of A, ;, the series (4;,—4,), (4;—4y), ... is said to
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form a reduction series of 4,. It then follows exactly as in Theorem 6,
that—

TeEOREM 9.—Any two reduction series of an algebra are identical
except as regards the order of their terms.*

There are evidently sub-algebras of the given algebra which are
isomorphic with the terms of the reduction series, but, as Holder has
noticed, these sub-algebras are not in general uniquely defined. The
following theorem is a slight extension of one by Schefferst dealing with
this point.

Treorem 10.—An algebra A can be uniquely expressed as the direct
sum of vrreducible algebras which have each a modulus, and an algebra
which has no modulus.

Let A=B+C, BC=0=(CB, B~C=0,

where B has a modulus ¢;, and C has (1) no modulus, (2) no integral sub-
algebra which has a modulus. 4 has then no integral sub-algebra which
contains B, and at the same time has a modulus.

We can form an algebra 4’ by adjoining a modulus ¢’ to the basis
of 4 ; and if ¢, is the modulus of B, and

C'= CH(—ey,
then A' = B+4-(e'—e,) C' (¢ —ey)
= B+4C'.

Hence C’, and therefore C, is unique for a given B by Theorem 7.
Suppose there is another algebra B, satisfying the same conditions as B.
As in Theorem 8, we can express B, as the direet sum of two algebras
B, < B and C, < C, where B, and C, have both moduli, unless one is
zero, seeing that B has a modulus. Now

Bl < ABI = BB2+CCQ;
therefore CC, = Cp, and similarly C,C = C,; and therefore C; is an
integral sub-algebra of C which has a modulus, contrary to the conditions
previously laid down for C. Hence we must have C; =0, from which it
follows that B = B,, ¢.e., B is unique.

Let B = B,+B,+...4+B., (1)
= Bi+B;+...+ B,

* Epsteen (4), p- 444.
1 Scheffers (13).
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be two expressions of B as the direct sum of irreducible algebras. From
Theorem 9 we have m = n. Again, since B has a modulus, we have

B, = BB,B = % B,B;B,= ZB.B,B,,

remembering that B,B,B, (r & s) is contained in both B, and B,, and
that B, ~ B, = 0. But, since B, is irreducible, B,B,B, must vanish
except for some particular value 7, of r which is necessarily different for
each value of p. We may therefore, by rearranging the terms, set », = p.
But B,B,B, = B,, since B, is invariant. Hence B, = B,.

4. Nilpotent Algebras.

It was mentioned in § 1 that a necessary and sufficient condition, that
a complex 4 shall be an algebra, is that A2<{ 4. If 4 bas a modulus,
z.e., an element ¢ such that ex = x — ze¢ for any element z of 4, we
must evidently have 4® = 4. In general, since we are dealing only with
algebras which have a finite basis, we must have A4°*'= A4* for some
integer a. The smallest integer a for which this is the case is called the
index* of the algebra. For instance, in the algebra whose multiplication
table 1s

we find 4% = e, = 4% Hence its index is 2.

It may, of course, happen that some power of 4 vanishes as in the
algebra

where 4% = 0.

If for some integer a, 4* = 0, 4 is said to be melpotent. Nilpotent
algebras are of great importance in the discussion of the structure of
algebras.

TueoreM 11.—If a is the index of A, the elements of A can be divided
into a—1 complezes By, By, ..., Bo_1, such that

Bqu < -Bp+q+Bp+q+1+ s +B¢—1’

* The index might also be suitably defined as the least integer a for which (4“)? = 4°,
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1.e., such that the product of two elements, belonging to complezes with
subscripts p and q respectively, lies entirely in the sum of the complexes
with subscripts greater than p+q—1L.

For let A =B, 44 =B, +B,+4° =...
= B,+Byt...+Bus,
where AP = Bg4-A4P+, A7 =B, ;;
then B,B, < 4?47 < AP,

which proves the theorem.
This theorem is evidently considerably stronger than the similar
theorems enunciated by Scheffers* and others.

CoroLrary.—Since 4 = B;+4? we have on squaring
A? = B}+4-B, A*+4"B,+4' =B, +4°;
hence B'=B, (mod 4,
and similarly B! =B, (mod 4"*)).
From_this we readily derive the interesting result
A =B,+B'+...+B: 7 +4°

If A* =0 is zero, 4 is said to be generated by B,. In this case 4 is
reducible if B, is reducible; and conversely.

If a is the index of a nilpotent algebra, we have 4*~' =0, 4°* =0;
and hence the product of any element of 4 and any element of A°~! is

zera. This is a simple-proof of a theorem by Cartant to the effect that
there is at least one element in a nilpotent algebra whose product with

any other element is zero. It must be noticed, however, the above defini-
tion of a nilpotent algebra is not verbally identical with Cartan’s. The
identity of the two definitions will be shown in the next section.

An algebra in which the product of any two elements is zero, may be
called a zero-algebra. For example, if 4? < 4, A4? is an invariant sub-
algebra of 4, and (4 —4? is a zero algebra. Let 4 = B+4A4? where

— R—
B_yl’ Yoy «+vs Ym, A = Ty, Tgy ++vy T,

and m+n is the order of 4. A’ =y, ¥ ..., Ymy Ty, ..., ZTn 18 evidently

* Scheffers (12).
+ Cartan (1), p. 31.
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an invariant sub-algebra of A, such that (4—A4’') is a zero algebra of
order 1. This gives the following theorem regarding the difference series
of such an algebra.

TaEoREM 12.—If a is the index of an algebra A, and if the difference
of the orders of A and A° 145 n, the difference series of A can be so
arranged that the first n terms are zero algebras of order 1.

The following theorem also simplifies the study of the difference series
considerably.

Tueorem 18.—If N is a mazimal nilpotent invariant sub-algebra of
an algebra A, all other milpotent invariant sub-algebras of 4 are con-
tained n N.

Let N; be any nilpotent invariant sub-algebra of 4, then, by
Theorem 2, N+, is also an invariant sub-algebra of 4. It is, however,
nilpotent. For, if N, = N ~ N,, then

(N+N < NNy + 11,
since NN, : L N, and N, N < N,. Similarly,
| N +Np* < N*+Ni+Ne,
whence, if a is greater than the indices of N and N,,
(N+N)* < N,.

But N, is nilpotent and therefore also N+N,. Hence, since N is
maximal, we must have N; < N.

An immediate deduction from this theorem is that (4 —N) has no
nilpotent sub-algebra. This theorem is very important, its importance
lying in the fact that, in studying the difference series, it enables us to
confine our attention to algebras which have no nilpotent invariant sub-
algebra. Such algebras are called semi-simple.

5. Potent Algebras.

An algebra which is not nilpotent is called a potent algebra. If the
index of a potent algebra i3 a, theindex of A*is 1. Itis therefore sufficient
_in many investigations to consider only algebras with unit index.

Let A be an algebra such that 4> = 4. There will in general be
some complex C < A4, such that AC =4. In fact, if 4 has a modulus e,
it is possible to find elements z, such that 4z = 4. Let us suppose,
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however, that 4z, < A4 for every z; < A. Again, suppose that Az,z, < Az,
for every z, < Az, and so on. We thus derive a series of algebras each
one containing the preceding one, and, as we are dealing with algebras
with a finite basis, this process must terminate at some stage. This may
happen in either of two ways. After, say r—1 steps, we must find either

Az,zy... 2,12, =0 )
for every z. < 4z,z;... 2,1, Or
Az 2o ... Tr 2, = Ay Tq ... Troy @

for some z, < Az, z,...z,_,. In the first case, if B = 4x\2,... z,_,4,

then . .
B* L (Azyzg ... 2,1 A = 0,

and AB< B, BA < B, t.¢., B is an invariant sub-algebra of 4, unless
B =0 when Az, ...z, is an invariant sub-algebra of 4. The first case
then cannot arise if 4 is simple.

In the second case, if A’ = A4z, ... z,_;, there is an element z, such
that A’z = 4’. Hence every element of 4’ can be put in the form
y = zx. Here zis unique. For were zz = z'z, then (¢—2')z = 0, and
the order* of the basis of A’z would be less than the order of the basis
of 4'. In particular we have z = yz, hence yz = 3’z and therefore
y = y®.  Such an element is said to be sdempotent, and the result we have
obtained may be stated in the form that a simple algebra always contains
an idempotent element. By means of this result we can now establish
the following important theorem :—

TaeorEM 14.—Every potent algebra contains an idempotent element.

For, let B be a maximal invariant sub-algebra of 4° where 4°*' = 4°.
(A*—B) is simple and has 1 as its index.t A4 has therefore a non-
nilpotent element z, namely any element which corresponds to an idem-
potent element of the simple algebra (4*—B) Now for some value of #,
we must have Az = Ag
for otherwise we should have

A> Az > Ax*> ... > Ax" > Az > ...,

* In other words, if ¢, ¢, ..., ¢, is a basis of 4, ¢z, 2, ..., ¢,z are necessarily indepen-
dent if 4z = 4.
+ Since, if 4> = B+ C, then B+ C* = A> = 4 = B + C, and therefore ¢ = C? (mod B).
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which as before is impossible. Az", and @ fortiori A, must therefore
contain an idempotent element.*

The converse of this theorem is that an algebra, every one of whose
elements is nilpotent, is itself nilpotent. This shows that the definition
of a nilpotent algebra which was given in § 4, is identical with the one
given by Cartan and others.

CoroLLary.—If z is nilpotent, then 4z < 4.

The following extension of & theorem due to Peirce,t is easily deduced
from the results obtained above.

TrEOREM 15.—If an algebra A possesses only one idempotent element e,
every element which does not possess an inverse! with respect to e, is
nilpotent.

This is shown as follows. If for a given z there is no ¥, such that
zy = e, the same is true of all elements of the form zz. For were
zzz' = e, it would suffice to put y = 22'. It follows that e is not con-
tained in z4, which is therefore nilpotent by Theorem 14. Hence
z" = 0 for some integer n.

An obvious corollary to this theorem is that if an algebra 4 contains
only one idempotent element ¢ and no nilpotent element, then every
element possesses an inverse with respeet to e. Further, ¢ is the modulus
of A. For, since 4de = 4, every elementz can be put in the form z = ye,
and hence ze = z. Similarly ex ==z. Such an algebra is said to be
primitive. Also, if e is the only idempotent element of an algebra 4,
which is contained in ede, e is said to be a primitive tdempotent element
of 4.

Taeoren 16.—Ewvery algebra A, which does not possess a modulus, has
a nilpotent invariant sub-algebra.

If A is nilpotent, the theorem is obvious, and it may therefore be
assumed that this is not the case. Under this assumption 4 has at least
one idempotent element ¢;,. If de << 4, there must be elements = such
that ze;, = 0. All such elements form a sub-algebra B; of 4 ; because, if
z16, =0, xpe; = 0, then (x,+x,) ¢, =0 and z,x,¢, = 0. Let 4 =B,+C,

* In most proofs of this theortm, the idempotent element which is found, is in general
irrational. This objection does not apply to the proof given by Hawkes (7), p. 320.

+ Peirce (11), p. 112.

+ z is said to possess an inverse with respect to ¢, if there exist elements z, and z,, such that
2%, = € = Ty%.
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where By ~C = 0. C can be chosen so that Ce, = C. For
Ce, < C (mod B)),
and, if Cey, < C (mod By),

there would be an element x of C such that ze, < B, which is impossible

since Bye; =0 and ze, 0. Ce, = Ae, can therefore take the place of
C, and Ce,.e, = Ce,.

We have then Ad = B,+4e, Bye,=0, 1)
and similarly 4 =By+e 4, ¢,B,=0. (2)
From (1) follows e,d = e, B,+e Aey, (3)
and, from (2), Ade, = Byey+e, Ae,. 4)

Now e, B, ~ B,ye, = 0, since B,e; = 0 and ¢, B, = 0, hence
e d ~ de, = e, Aey,
and if B = B, ~ B,, we find similarly that
B, = B+e¢ B, B, = B+ Bye,.
Hence, from (2) and (3),
A = B+¢,B,+Bye,+e¢, Ae,.

It B is not nilpotent, it contains an idempotent element e, such that
€6, =0 =¢y6), e;4¢; is then also idempotent and may take the place of
e, in the above discussion.

Again, if e, is not primitive, ¢, de; can be broken up in the same
manner as 4, and so, by repeated application of this process, 4 can be
expressed in the form

A = B+eB,+B,e+-ede
= B+Ze, B,+ZBye,+2ep de,y, (5)

where
Bﬂ = 0, Bl = B""&Bl, Bz = B+B2 e, €= Zep; evel = 0 (p ¢ (Z):

and e, (p =1, 2, ..., 7) are primitive idempotent elements of 4. This
form is due to Peirce.* ¢ is called a principal idempotent of 4. If 4 has
a modulus, it is evidently the only principal idempotent element. Hence
two principal idempotent elements differ only by an element -of the
maximal invariant nilpotent sub-algebra.

¢ Peirce (11), p. 109.
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If A has a modulus ¢', B, and B, are zero, and ¢e = ¢'. For
(¢—e)?=¢—e and (—e)e=10=c¢e('—e).
Hence ¢/ —e < B, and is therefore zero.
In (5), B, B, is nilpotent. For, from (5),
B, A = B, B, = AB,,

and B,B,<B, B*=0,

hence (B4 < B, B°B, = 0.

But AB,A = A.ABy < ABy < B, 4,
B,A.4 < B, A.

Hence B;4 = B,B; is a nilpotent invariant sub-algebra of .. It
B, B, = 0, then (B,+B)? = B,B, < B,
4 (B;+By) < AB, £ B,+B,.
(Bi+By) 4 L Bod < B,+B;, and B,+B,+#0,
unless 4 has a modulus. Hence, if an algebra has no modulus, it has a

nilpotent invariant sub-algebra.

CoroLLary 1.—B; and B, are also nilpotent. For suppose y*> =y,
y <B;. y can be expressed in the form y=y,+4y,, where y, < B,
¥y < eB,, and therefore y2 = 1,9, = 0. It follows, then, that

Yy = @—y" = y—yr—1:y+y;
= y1+y2—YaY1
But ¢B; B < eB, and B? < B; hence we must have
Y=Y Y2 =Rl
which is impossible, since B, and therefore y,, is nilpotent. Hence B, and

B, are nilpotent.

Cororrary 2.—Unless eB;B,e =0, it is a nilpotent invariant sub-
algebra of ede.

Cororrary 3.—If the index of 4 is 1, then B = B,eB;, and con-
versely. For from 4%= A we deduce
B = B*+B,eB, = B*4+C (say).
It B® =0, then B =B"1C+B"*C+...4+C.
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But BC < C; henee B = C, and
A= B2€B1+8.B1+B26+€A6.

If 4 has no modulus, it is always possible to add one to the algebra.
Let ¢' be the added modulus and let ¢, = ¢’—e¢; then

A =¢€'Ae' = eyBeyteB, eyt ey Byetede.
This form will be of use later.

Algebras which have no nilpotent invariant sub-algebra form a very
important class. Such algebras are called semi-simple.* A semi-simple
algebra always has a modulus.

TreorEM 17.—A4 semi-simple algebra, which ts not simple, is reductble.

Let A be the algebra and B an invariant sub-algebra. A4, having no
nilpotent invariant sub-algebra, has a modulus. Hence 4B = B = B4.
If B has no modulus, it has a nilpotent invariant sub-algebra N. BNB
is a nilpotent invariant sub-algebra of 4 and is therefore zero, seeing that
A is semi-simple. Also ANA is an invariant sub-algebra of 4 which 1is
contained in B, and, since 4 has a modulus, it is not zero unless N is
zero. Now, since ANA < B, we have

(ANA® =ANA.N.ANA < BNB =0.

Hence N = 0 and B has a modulus, and, by Theorem 13, 4 is reducible.
It follows immediately that 4 can be expressed in the form

A= 4,+4,+...+ 4.,
where A4,A,=0=4,4, (pFq)
and 4, (p=1,9,...,n)
are simple. . is therefore the direct sum of 4,, 4, ..., 4..

Tueorey 18.—If e is an tdempotent element of a semi-stmple algebra
A, then ede is sema-simple.

If ede is not semi-simple, it must necessarily have a nilpotent sub-
algebra N. Then ANA is an invariant sub-algebra of 4 which is not
zero. Also ANA = A4, since

¢ANAe = edeNede = N < ede.

Hence, if A4 is simple the theorem is proved. The main theorem can now
be made to depend on this particular case, since any semi-simple algebra

* Cartan (1), p. 57.
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can be expressed as the direct sum of simple algebras. The following
proof is more direct and also more comprehemnsive. Let ¢ be the modulus
of 4. If, then, ¢, =¢'—e, we have e¢; =0 ==e¢,¢; and therefore

&N =0 = Ne,. @
We have also | A = edet-e,Aet-ede,+e Ae. (2)
From (1) and (2), it follows that
ANA =eAeNeAe+eAdeNede,+e;, AeNede+e, AeNede,

= N+Nde,+e, AN-+e, ANAe,,
and (ANA)? = ANANA = A (N*+N?4e)

= N2+, AN*+N?4e,+e, AN?4e, = AN*A.
Similarly (ANA)® = AN34,
and so on. Hence ANA is nilpotent and therefore N =0, since 4 is

semi-simple.

CoroLLary.—If in the above theorem. e is primitive, ede¢ is also
primitive.

6. The Classification of Potent Algebras.

This section is chiefly concerned with the classification of semi-simple
algebras. The result is, however, incomplete in so far as the classification
is given in terms of primitive algebras which have themselves not yet
been classified. At the same time, a considerable step is made towards
the classification of non-nilpotent algebras in general.

Let e, (p =1, 2, ..., n) be a set of primifive idempotent elements of
A4, which are so chosen that e = Z ¢, is a principal idempotent element

p=1
of 4, and e,e, = 0 (p = ¢). This was shown to be possible in the proof
of Theorem 16, where it was also shown that 4 can be expressed in the

form A = B+eB,+Byetede, ede= 1)2:/ e

The algebras e,de, occur so frequently in the sequel that the following
notation is convenient, viz.,

epde, = Ay, (e, te) Aler+e) = Apiyrrs

and so on. It is also convenient to denote elements of A, by Tpg, Ypgs --- -
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TueoreM 19.—If .1 is simple, A,y 5 0 for any p and q ; and if semi-
simple, but not simple, then A,,=0 entails 4, = 0.

Suppose that 4,, = 0, then
A)""’l- P+q A’I']’ = (A]'P+A’IP+A07) A‘I]' < ‘4'"' ’
Ay Ay, pre S "1'11'-

Hence 4., is a nilpotent invariant sub-algebra of Apyq p+q, and is there-
fore zero by Theorem 18. This proves the second part of the theorem.
To prove the first part, we observe that, if ¢’ = ¢,+¢,, 4,, is an invariant
sub-algebra of 4,,, ., = €'de’ when A, =0=4,,. But 44,,45 4,

3 *
swce e'dd, de' = e'de'd,pe'de’ < A< Apigpias

and therefore A4,,4 is an invariant sub-algebra of 4. Hence we cannot
have 4,, =0, if 4 is simple.

TreoreM 20.—If 4 is sumple, then A, A, = A, and the order of 4,,
1s the same for all values of p and g.*

Let A = Ay A,
From the definition of 4,,, we have
A" =e,A'e, < 4,y
But A'4,, < A" and 4,4'<< 4.

Therefore, either A’ is identical with 4,, or it is zero. If it is zero, then
also 4,4, = 0. For, were 4,,4,, = 4, we.should have

Al = Ay Apdp. 4, =0,
which is impossible, since 4,, is primitive. If 4’ =0, then
Apigpradpy = (AptApyt+ Ayt Aoy Apg < Aps
ApgApra,p+a < Apos
which is impossible by Theorem 18, since 4 is simple and 4, is nilpotent.
Hence ApgAgp = App. (1)
Again, since

(A,,,,+AW+A,,,,+A,,,,)2 = A:+q, pee = Aprg,prq = ApptApt+Appt+4Ay,

* Cf. the proof of Theorem 18.
t Cartan (1), p. 50.



1907.] HyPERCOMPLEX NUMBERS. 97

on multiplying on the left by e, and on the right by ¢,, we get
App At Apg Ay = Apg.
But AppApy = ApyApApg = Apg Ay
by (1); hence Appdpy = Apg = Ap Ay, (2)
and, finally, from (1) and (2),
Apdy =Apdndy = Apdr = Ay

It will now be shown that, if z,, and z,, are any elements, not zero, of
A4, and 4, respectively, then z,,z, 5 0.

If zpyzer = O, then zpz,, 4., = 0. But z,4,, < 4y, which is primi-
tive ; and therefore for any* y, such that z,y,, 50, there is an z,,
such that g, y.,z4, =e¢,. Hence, as ZpF 0, ZpZ;d. =0 entails
ZLer Arg = 0. It follows for any z,, that z,z,, = 0; therefore, as above,
Zq A = 0; and, as this is true for any z., we must have 4,,4, =0 in
contradiction to the first part of the theorem. Hence z,4x,» 7= 0 for any
%y and T4, and, since T, 4y < dp and 2,4, < 44, We have evidently
Zpq A r = Apr, from which the second part of the theorem follows imme-
diately.

Cororrary.—For any z,, % 0, there is an z,, such that z,z, =e¢,.
This is evident from the relation z,, 4, = 4,,.

TaroreM 21.—If A 1s simple, it ts possible to find a set of n® elements
epg (0, ¢ = 1,2, ..., n) such that ey e = €pr and ep e, = 0 (g F7); and
e = e, 1S the modulus of A.t

Let ¢ =¢, (p=1,2,...,m). By the corollary to the previous
theorem, we can find for any z, %0 an z,, such that z,,z, = ey.
Forming the square of z,,x,, we get

ZLopTpqLapLpy = Lyp€pTpg = LypTpq 5
therefore, since ¢, is primitive,
LypTpg = €q = €qq-

It is therefore possible to find an algebra of order 4 which has the required
laws of combination. Suppose that m® elements e, (p, ¢ =1, 2, ..., m)

* As previously stated, Zpq, ¥pq, ... Will be used to denote elements of 4,,.
t Molien (10), p. 124 ; Cartan (1), p. 46 ; Frobenius (6), p. 527 ; Shaw (14), p. 275.
H

SEn. 2. vor. 6. wo. 981.
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have been found which satisfy these laws, and let ¢, 41 be any element
of 43 ms+1. There is then an element ény1,1 0f Am41, 1 such that

€1, m+1€m+1,1 = €13 = €.
Let el’lel’ i - 6p’ m ]’ (p = 13 2, ceey 7"/).

€m+1,1€1p = €ny1,p
Together with the previous m® elements and €,41 n+1, these form an
algebra of (m+-1)? elements satisfying the given laws; for
€pg€g,m+1 = €pg€q1€1, m+1 = €p1 €1, m+1 = €p m+1,

and similarly €p, m+1 Emil,r = Epr.
By induction it is thevefore possible to find #* such elements.

This form of algebra we shall call a simple or quadrate matric algebra
of order n>.* When a semi-simple algebra is expressed as the sum of

simple matric algebras, it is said to be a matric algebra.
In accordance with the corollary of Theorem 20, we have

Apy =Aper, =epndyerp.

This gives a 1, 1-correspondence between the elements of the algebras 4,,
and 4,,, which is obviously preserved under the operations of addition and
multiplication—i.e., the two algebras are simply isomorphic. =~ More

generall
© y’ AM = eplAnelq,

which establishes a 1, 1-relation between the elements of A4, and A;.
Let z,, be any element of 4,,, and let the element z, of 4,, which is
associated with it by the above relation, be denoted by

Tpg — {‘511’ 6pq}-
Then Tpg = {21y, €} = ey ey
Similarly, if y.. < 4,, we may write

Yrs = {?/11» e"} = énYnts,

if y;; corresponds to y,.. This form of relation is preserved under addi-
tion and multiplication, since

Zpot+Ype = €n @ty ey = {(qu‘i"!/m)» em} ’
ZpqYrs = €p1 11619671 Y11 615
. { [ PUPPR g+,

ep Ty Y11 €1s = { T Y1y Epoyr} = {Zuyw e} (@=1).

* The algebra is also said to be of degree #. Cartan calls this type of algebra a quaternion.
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This result can be expressed as follows. If C is an algebra simply iso-
morphic with 4;;, and D is a simple matric algebra of order »?; and if
every element of C is commutative with every element of D; then
A=CD. In general, if C and D are any algebras such that every
element of the one is commutative with every element of the other, and if
the order of the complex 4 = CD 1s the product of the orders of C and D,
then 4 is an algebra which is called the direct product* of C and D.
The final result can therefore be stated as follows.

TrEOREM 22.—Any simple algebra can be expressed as the direct pro-
duct of a primitive algebra and a simple matric algebra.t

Since semi-simple algebras can be reduced to the direct sum of several
simple algebras, Theorem 22 amounts to a determination of the form of
all semi-simple algebras.

Tueoreyn 23.—The direct product 4 of ¢ primative algebra B and a

quadrate matric algebra C vs sumple ; and any element which s comma-
tative with every other element of A is an element of B.

Let the basis of C be €, (p, g =1,2, ..., 0, e, =¢,p (p=1,2,..., %)
being a primitive set of idempotent elements. If D is any invariant sub-
algebra, then e, De,, < D, and is not zero for some value of p and ¢
unless D = 0. But every element of ¢, De,, is the product of ¢,, and an
element of B; and if z < B, then Bx = B = zB. Hence Be,, < D.

‘We have, however, :

Be,,e,, = Be,,, esp Bep = epepr B = €, B,

for every value of s and . This gives 4 = D, which proves the first part
of the theorem.

¥ Scheffers used the term *‘product ’’ in this sense. As this term is used in this paper in
a different sense, I employ the term ‘¢ direct product,”” which is used in the theory of groups in
a similar sense. Cf. § 11.

1 Cartan (1), p. 67, gives this form of a simple algebra in the field of all real numbers,
apparently without observing that his result is capable of this simple description.

The theorem may also be proved as follows. If z < 4, then

z = 2%y, = Zepr6y,

Zpg = €pg 3 rp Tegr = T 6;p Teyr « Cpg,
r v

since rp Teqr = Cyp Tppy Eqr-

"This method is fully developed in (9), where it is shown that, if & is any matric sub-algebra
of 4, which has the same modulus as 4, then 4 can be expressed as the direct product of B and
some other algebra (.

H 2
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Again, if z is any element which is commutative with every element
of 4, then z = TE‘ Z,s€,, where z,, <B. But ¢,z = ze,, ; hence

;xrp Erp = ZTlpy = €T = § ZysCps 5

therefore z,= 0 (» + s) and z,, = z,,, %.c., z is an element of B.
This theorem is the converse of the preceding one.

CoroLLary.—The only element of a quadrate matric algebra which is
commutative with every other element is the modulus.

TreoREM 24.—If N 1s a mazimal nilpotent invariant sub-algebra of
an algebra A which possesses a modulus, and if (A—N) is stmple, then A
can be expressed as the direct product of a simple matric algebra and an
algebra which contains only one idempotent element.

From Theorem 22, we have
ApAp =4, (modN).
Now ApApdey < Ay Ay, ApgAdgp Ay < Ap Ay

Hence, as any invariant sub-algebra of 4, is necessarily nilpotent, we
must have 4,,4,, = 4,,. In particular, 47, = 4,,, and since, when
P = q, the proof does not assume that e, is primitive, we also have

9

Ao, pia = Aprgpia-

It may now be proved, as in Theorem 20, that 4,4, = Apr.  If 2, 15 an
element of 4,, which is not contained in N,,, then zy, A4, = 4p. The
proof of this is almost exactly as it is given in the proof of Theorem 20,
and it is therefore only necessary to give it very briefly. If x4, < A4y,
there must be some z,, such that z,z, = 0. But, by Theorem 20, there
is an 2, such that x,, = 24,,, is not zero, and therefore has an inverse,
Ya With respect to e,. Hence

Tyr = €q%ar = Yy ToqLar = YpqTapTpgTyr = 03

and therefore x4, = A, An important consequence of this is that,
for any x,, which is not contained in N,,, there is an z,, such that
ZpgTap == €p-
It can now be proved, exactly as in Theorems 21 and 22, that 4 con-
tains a simple matric sub-algebra, and that it can be expressed as the
direct product of this matric algebra and an algebra containing only one

idempotent element,
It is possible at this point to state Cartan’s main theorem regarding
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the classification of algebras in the field of ordinary complex or real
numbers, if use is made of the fact that, in the latter field, quaternions is
the only primitive algebra ; and in the former the algebra of one idem-
potent unit. The result for an arbitrary field seems much more difficult
to obtain, the difficulties centring round the proof of the theorem that an
algebra with only one idempotent element can be expressed as the sum of
a primitive and a nilpotent algebra; & theorem which is obvious in the
above two special cases. The proof given in the next section is rather

long, but much additional information is obtained in the course of the
work.

7. The Identical Equation.

This section is not intended as a development of the theory of the
identical equation, and so only those points are dealt with which are of
importance from our present point of view.

If z is any element of an algebra A4, which has a finite basis, the
algebra generated by z, being a sub-algebra of 4, must itself have a finite
basis. z therefore satisfies a relation of the form

a2 . Fapaz+w, =0, 1

where a,, a,, ..., a, are marks of the given field, and «, is to be taken as
zero, if the algebra has no modulus, and otherwise as the product of the
modulus and a mark of the field. If zy, &y, ..., Zo is & basis of 4 and
z = Z§,x,, the »-th power of » can be expressed in the form

o — (r)
= 2§ x,

where £ is a rational integral function of the £’s; hence not more than «

powers of z can be independent, and z satisfies an equation of the form (1),
where a,, g, ..., @, are now rational integral functions of the £'s. This
equation being an identity in the £’s, there must be an equation of this
form of lowest degree which is satisfied by = whatever values are assigned
to the £s. This equation is called the identical or characteristic equation
of the algebra. For particular values of the £’s, z may satisfy an equation
of lower degree ; but there is evidently at least one z which satisfies no
equation of lower degree. The equation of lowest degree satisfied by a
particular z has been called by Frobenius the reduced equation of that
element.

The characteristic of the identical equation will be denoted by f(z), or
by f:(z) where it is desirable to emphasise the fact that the coefficients
are functions of .
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If N is the maximal nilpotent invariant sub-algebra of 4, a being its
index, and if g(z) = O is the identical equation of (4 —N), then g (z) < N.
if z < 4, and hence ; «

lg@t==o0.

{g(@)}* is therefore divisible by f(z). It may, of course, happen that
g (x) = f(&), as in the algebra

€ € €3 ¢

ele 0 ¢ O
e |10 e 0 e
g0 e 0 O
e, e, 0 00

where =+ z+H66=0,
if = 5161+§262+$a€3+f434-

In a primitive algebra, f(z) is irreducible ; for otherwise the product
of two rational elements would be zero. An immediate consequence of
this is that, if the given field is so extended that every equation is
soluble, the only primitive algebra in the extended field is the algebra of
one unit, e = é°.

Tueorey 25.—If A is an algebra which s semi-simple in a given
field F, and if F' is another field containing F, then A is also sems-
simple wn F'.*

Since a semi-simple algebra is the direct sum of a number of simple
algebras and a simple algebra can be expressed as the direct product of
a matric and a primitive algebra, it is sufficient to consider the latter
type of algebra.

Let the identical equation of the primitive algebra 4 be

f@) = z"+a, 2" '+...4a, = 0. (1)

If A has a nilpotent invariant sub-algebra N in the extended field, the
identical equation of (4 —N) is also f(z) = 0, since the latter has no
multiple roots. Hence, if # is any element of N and z any element
of 4, z and z+2 have the same identical equation, since they are equal
modulo N.

* It is here assumed that rational elements which are independent in F are also in-
dependent in F.
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a
Let 2 = %{‘,x, be any element of N, the z’s forming a rational
basis for 4. Then

7 = wyz—2x, = 2§ (@x,—zy) = o2,
where 2, (r =1, 2, ..., a) are rational and z; = 0. Similarly
= me —dr = @ n—2a) = Zéa,

where there are now at most ¢—2 terms under the surmmation sign.
This process may be continued till each of the terms z*” under the sum-
mation sign after the p-th operation is commutative with 29, i.e.,
A0 =0, #9, being commutative with each of z’ (r =1,2, ..., ), is
also commutative with every element of the algebra generated by them.
Let this algebra be denoted by B and its identical equation by f(z) = 0.
Since x(lp), .’B(gp, ... are rational, B has a rational basis and is therefore
primitive in F. There is then a rational element z whose identical equa-
tion, with regard to B, is also its reduced equation, and a non-zero element
z of B, which 18 also an element of N, such that zz = zz. Since z is
nilpotent, we can obviously assume 2*> = 0. As before, f(z+2) =0:
hence, on expanding, we get

= fl@+2) = f@)+f(x)e = f(z)2.

But, seeing that B is primitive, f'(z), being of lower degree than f(z),
has an inverse ; hence 2 =0, .., 4 has no nilpotent invariant sub-
algebra and is therefore semi-simple in F'.

Tugorem 26.—If an algebra is rational in a field F and F' ts any
field containing F ; and if B is the algebra composed of all elements
of 4 which are, in F', commutative with every element of a sub-complex
C of 4 ; then, if a rational basis can be chosen for C every element of
which possesses an tnverse, B s also rational tn F.

Let z,, @, ..., Z, be a rational basis of 4, then an arbitrary element
y of B can be expressed in the form y = 2§, z,, where & (r=1,2,...,0)
are marks of F'. If b is the order of B, at least b of the £'s are linearly
independent in F. We may therefore suppose that the first n (n > )
of the £'s are linearly independent in F and that the remainder are
Zero.

Let z be any rational element of C which has an inverse.
xx,, *Zy, ..., XL, are then linearly independent and so also are
I,%, Tk, ..., TaZ; hence

Z,z = ;ﬂrszz: (7‘ = 1) 2’ seey a):
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the »’s being rational. Since zy = yz, we must have
0= Yy —yr = ?(fv‘%ﬂnfa)zzr;
hence: E—Zn.6=0 (r=12 ..mn)

But tha £s are linearly independent and therefore these equations must
reduce to identities. Hence ‘

X, =22 (r=1,2,...,n). (1)

Now a rational basis can be chosen for C in which every element has an
inverse, so that (1) is true for every £ <C. Hence it is possible to choose
a rational basis for B, viz., z,, Zg, ..., Ta-

TrEOREM 27.—If F' is a field, containing the given field F, in which
every equation ts soluble, and if a primitive algebra A 1is expressed in
F' as the direct sum of r simple algebras A,, 4y, ..., 4., these algebras
are simply tsomorphic with each other and, in F', A can be expressed
as the direct product of a commutative algebra, which is rational in F,
and an algebra isomorphic with A,, 4,, ..., 4,.

Let e, €, ..., &, be the moduli of 4,, 4,, ..., 4, respectively. Then
every element of the algebra B =e¢,, €, ..., e, is commutative with every
element of 4, and, conversely, every such element is, by Theorem 28,
contained in B. Hence, by the previous theorem, a basis can be found
for B which is rational in F. It is easily shown (as in the theory of
finite groups) that we can find a/b = ¢ rational elements z,, z,, ..., .
such that any element of 4 can be expressed uniquely in the form

c
x = Ellyx,

y. (r=1,2, ..., c) being elements of B. Hence we have a primitive
algebra C of ¢ units in the field ¥ obtained by adjoining B to F, and
in this algebra, scalar multiples of the modulus are the only elements
commutative with every element of C. In F”, C can therefore be expressed
as a simple matric algebra C = (¢,) of degree n = 4/c.* It follows that
4 can be expressed as the direct produet of C and B.

* This gives a proof of a theorem by Allan to the effect that the order of a primitive algebra
is of the form &n3. I have only seen an abstract of this paper. See dmer. Math. Soc. Bull.,
Vol. x1. (1905), p. 351.
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Treorem 28.—If A is an algebra in which every element, which has
no inverse, s nilpotent, it can be expressed in the form A =B+-N, where
B s a primitive algebra and N s the mazimal nilpotent invariant sub-
algebra.

We shall first show that the theorem is true-in the case where (4 —N)
18 commutative. To do this it is only necessary to show that there is
a sub-algebra of 4 which has the same identical equation, f(z) =0, as
(4—N). Let x be an element of 4 which corresponds to an element
of (4—N) whose identical equation is also its reduced equafion. If
f (@) =0, the theorem is proved. We therefore set f(z) =2z 0, 2 being
then an element of N which is commutative with z. Let us first suppose
that N>=0. Then, putting z—z/f'(z) for z in f(z), we get

flz—z/f'(z)] = f@)—= = 0.

The theorem is therefore true in this case and so is also true of (4—N?
when N?3£0. Hence we can so choose B' in 4 = B'+N that B? =B’
(mod N?, and therefore B'4-N? is an algebra which can be treated as
before. The theorem then follows for commutative algebras by in-
duction. If the given field is a Galois field, it can be shown * that there
1s no non-commutative primitive algebra. In this case, therefore, the
proof of the theorem is complete at this point.

Let us now consider the case where (4 —N) is not commutative.
Suppose, first, that (4 —N) is not simple when the given field is sufficiently
extended. There is then a commutative sub-algebra whose elements
are commutative with every element of (4—N). To this algebra there
corresponds a sub-algebra of 4, in which the primitive part B’ can be
separated from the nilpotent part as above. Hence,t by adjoining B’ to
the given field as in Theorem 27, we obtain an algebra A4’ such that
(4'—N) remains simple when the given field is extended. It is,
therefore, sufficient to confine our attention to such algebras. We shall
therefore suppose that, in the extended field F’, 4 can be expressed as
the direct product of a simple matric algebra B and an algebra M’,
which consists of the modulus and a nilpotent algebra 37, of index a.
Since M* =0 and every element of M is commutative with every element
of B, it follows that every element of M*~' is commutative with every
element of 4, and therefore, by Theorem 26, we can choose a basis for
M*~! which is rational in F. Similarly there is a rational sub-algebra
of (4—N*"Y) corresponding to (M*~2—M>"'). This means that we can

* Maclagan Wedderburn (8). 7 See p. 117.
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choose a basis for M*~? such that each element consists of a rational
element and an element of M*~! which is not necessarily rational. But,
since M“~% contains M*~', which has a rational basis, we may neglect
the non-rational parts, <.e., we can choose & rational basis for M*~%, and
hence, by induction, for M. The problem can now be stiil further
simplified by showing that the general case can be made to depend on
the case where M consists of a single unit. Let y be any element of
M which is not an element of M?; then, as in Theorem 12, we can
express M in the form M = y-+M, where AM, is an invariant sub-
algebra of 4 and N = Ay+AM, (since N=BM=AM). The algebra
of (A—AM,) which corresponds to 1}/ then consists of a single unit.
If, now, the theorem is true in this particular case, (4—A4M;) can be
expressed as the sum of a primitive and a nilpotent algebra, and hence
A can be expressed in the form 4 = B,+N, where B = B, (mod 4 M,).
Hence B,+AJM, is an algebra which can be treated as before, and so
on till all the elements of M are exhausted. We shall, therefore, now
suppose that the basis of M consists of a single element of y. N* is
then zero.

For the remainder of the proof we require certain identities * which
can be derived from the identical equation as follows :—

If in the identical equation f,(z) = O we substitute z+4&y for z,
£ being a scalar, and expand as a polynomial in £, we have a relation
which is true for any value of £ and hence the coefficients of the various
powers of £ vanish. The following notations are of value in expressing
these identities. Let the coefficient of £" in the expansion of (z+ £y)" be

T
denoted by (n—q-

(§1$(1)+few(2)+ ces +fsx(5))n by (

:J) and, similarly, the coefficient of &'&*...£" in

(1) ,(2) (s)
:1:' a: ez ) Thus
1 Ty s

(Z ?{) — :c"y-f-z"'lyw-f-...-i-yw".
7

Also let the coefficient of 2" in f(z) be denoted by [f] [ﬂ is of degree
M@ | 2@

r in the coefficients of z. Finally, let o N denote the co-
1 g ses g

B+ b+ 6]

efficient of £'£’...£" in the expansion of )

where » = r,+7,+...+7. We may here observe that

x(f Z)_C Z)xz(a-il sil)y—y<ri1 il)'

* Sylvester (15); Shaw (14), p. 284.
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With this notation the above mentioned identities can be expressed as
follows :—

fi@=3 [ v ]x"=0, ©
r=0 Lyp—17

nil [x] < T y) +'"";l [;’L' 7/:] zn—'r—-l =0 (1)

r=0 | 9* n—r—1 1 =0 r 1 ,

é nif [z y ( T Y ) — O, (7')

s=0t=0L¢ g4 \n—r—t yr—s/

n
Fp=x1{ Y ]y' = 0. )
r=0 Ln—71.

Similar identities can easily be obtained by the same method for three
or more elements.

In the algebra we are considering, the primitive algebra (4 —N) is.
in F', equivalent to a matric algebra e, (p, ¢ = 1, 2, ..., n), which, by
Theorem 24, is a sub-algebra of 4 in the extended field F’. Hence.
if x1, 3, ..., ., are elements of (4 —N) corresponding to the rational
elements x,, Z, ..., Tm of A, we must have a relation of the form

Zy = Zoprpy (1)

Consider these relations now as defining z;, 25, ..., z, as elements of 4 and
so giving a primitive algebra, isomorphic with (4 —N), but not necessarily
rational in F. We have, however, z, = «, (mod N) or, say,

’ ’r
T, = L= Y,

where it is immaterial whether z,” is expressed in terms of zi, 23, ... or
Zy, Ty, ..., since these differ only by elements of N and N> = 0. We can
choose one of the elements, say z, 7 ¢, so that z; = z;. For this it is
sufficient to choose z, so that f, (z,) = 0 and then to choose ey, ey, ..., €un
so that the primitive idempotent elements of the algebra generated
by z, are linearly dependent on ey, ey, ..., €nn. Further, if z, (p 3= 1)
is Irrational, we may suppose z, = Z§&,.2®, where z® (s =1, 2, ...} are
rational and &, are irrational scalars which are linearly independent*
mm F. Let us now consider the »-th of the series of invariant relations

* In general we have x,’,' = Z{m% +2,, where z, is rational. We may, however, suppose
thut the rational element z, y is included in z,.
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connecting z, and z, as elements of (4 —N), viz.,

22[3‘1 “”P]( ’“3")_0.
s ¢ n—')——t r—3

Putting z,+x, y for z, in the left-hand side, we get

OB x”] ) x"’l) Y=z 1.
ST [ n—)—t r—s—1 1 4 ’ )

where 2 is rational, since z, = 2,42,y is rational. Also

7 1’ 17,
( Iy Zpt+apy xp)

n—r—t r—s—1 1

I T
= .’/l +y 2 )

n—r—t r—s—1 1 nw—r—t r—s—2 1 1

n—r—=t r—s—1 1

since y* =0. Hence we may put z, for z, in (i.). The left-hand side
of (i.) then becomes a linear and homogeneous expression in &, (s =1,2,..)
with rational coefficients and, as the &'s are linearly independent in F, it
cannot equal a rational quantity. Hence it must vanish identically, <.e.,
z = 0. Hence f({,z,+&x,) = 0 for all values of £ and & and for
p=1,2,...,n By a repetition of this argument, & 2z,4&,z, taking
the place of z,, we can show that f(Z&z) = 0. Furthermore, in the
above process z, may be replaced by a rational integral function of it,
say h(z,), and, since

h@) z, = h(z)zp+hiz) 2y y,
which is linear in z,, x, may be replaced by i(z,)z,. Hence
f(hq(z1)+h2($1)zp hg(z,)) = 0,

where h,(xry), hy(z,), and hg(x,) are rational integral functions of x;. Again,
Ty = 25+ @, 0+ 1, 2) Y = T+ T,y

where x;p = T &z :c(3)+ 20z,

the £’s remaining linearly independent. Hence 2, or any rational
integral function of z,, may take the place of z,, Combining these
results, we find that, if z is any element of the algebra C generated
by z, and z,, then f;(x) =0. This algebra cannot be identical with 4.
For it would then contain the element y which is commutative with every
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other element. Hence, since f,(x) = O is the identical equation both of
(A—N) and of C = A, therefore f.(z-+y) =0. But

foz+y) = f@+f:@y = fz(@)y F=0.

Let the theorem be now assumed to hold for algebras of order less
than the order of 4. C then has a rational primitive sub-algebra C,,
which contains elements congruent to z; and «, modulo N, and is there-
fore of higher order than the algebra generated by z,. Let D be any
rational primitive sub-algebra of 4 of order ». Since in the extended
field it is equivalent to a matric algebra, we may suppose nq
w,¢g=1,2,...,n) so chosen that zi, zj, ..., z, form a rational basis
of D, and hence zy = ... =z, = (. But the algebra generated by D
and z, (p > 7) has, as we have shown, f.(z) = 0 as its identical equation.
As before, it cannot be equal to 4; hence it has a rational primitive
sub-algebra which is greater than D, since z, < D. Hence, by a
repetition of this process, 4 can be expressed as the sum of a primitive
and a nilpotent algebra. Now the theorem is obviously true of algebras
of one unit. Hence, by induction, it is true for algebras of any order.

8. The Classification of Potent Algebras (continued).

The results of the preceding sections may be summarised as
follows :—

(1) An algebra can be expressed uniquely as the direct sum of two
algebras, one of which has a modulus, and the other no modulus and no
integral sub-algebra which has a modulus. (Theorem 10.)

(i) An algebra, which has a modulus, can be expressed uniquely as
the direct sum of a number of irreducible algebras. (Theorem 10.)

(iii.) Any algebra can be expressed as the sum of a nilpotent algebra
and a semi-simple algebra. The latter algebra is not unique, but any
two determinations of it are simply isomorphic. (Theorems 24 and 28.)

(iv.) A semi-simple algebra can be expressed uniquely as the direct
sum of a number of simple algebras. (Theorems 10 and 17.)

(v.) A simple algebra can be expressed as the direct product of a
primitive and a simple quadrate algebra. (Theorems 22 and 23.)

(vi.) A simple quadrate algebra can be expressed as a matric algebra.
(Theorem 22.)

The classification of algebras cannot be carried much further than
this till a classification of nilpotent algebras has been found which is
much more complete than any that has as yet been found.
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9. Non-assoctative Algebras.

Many of the results of the previous sections are true of a much larger
class of number-systems than the linear associative algebras. In this
section I discuss the extension of some of these results to non-associative
algebras. .

A non-associative algebra differs from an associative one only in that,
for some elements, the associative law does not hold true. Throughout
this section the term ‘algebra’ will be used to include non-associative
algebras as well as associative ones, the appropriate adjective being
affixed when it is necessary to distinguish between them.

The calculus of complexes is the same as in § 1, except that 4.BC
is not necessarily the same as AB.C. Hence, any of the previous
theorems which do not involve, directly or indirectly, products of more
than two members, hold unaltered for non-associative algebras. Thus an
invariant sub-complex of an algebra is itself an algebra, and so on, the
terms ‘‘simple ” and “invariant” being defined as in § 2. Hence also,
if B, and B, are invariant sub-algebras of 4, B,+ B, is also an in-
variant sub-algebra ; and, if B, and B, are maximal, 4 = B,+ B,
when B, 5= B,.

If B is any sub-algebra of 4 and 4 = B+4C, the elements of C
define a new algebra if elements, which differ only by elements of B,
are regarded as equsl. This algebra, which may be said to be com-
plementary to B, is not, however, unique, since C can be chosen in a
variety of ways. Buf, if B is invariant, if is easily seen that the algebra
i1s unique; it can therefore in this case be denoted by (4—B). The
proofs of Theorems 4-6 are therefore applicable word for word to non-
associative algebras, the final result being that any two difference series
of an algebra with a finite basis differ from one another merely in the
order of their terms.

We may notice here a peculiar difference between associative and non-
associative algebras, namely, that in the latter an algebra may have all
its elements nilpotent and yet be simple. Consider the non-associative
algebra A with three units whose multiplication table is

e, €y €

the given field being GF[2]. Here
z? = (5161+5282+5393)2 = ffé‘*"-~+f152(3182+5251)+--- =0,
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since e =0, e et = e,+¢, = 0.
AlSO el €r = 5261+§—362 = :Bel,
ez = §1e1+Eses = e,
eyl = é:-le»:"*'fzea = Zég.
At least two of these are independent, say ¢;x and e;z. Then, if
B = ¢z, ¢;x, AB = A, this being also true if any other two be taken to
be independent. A is therefore simple.
We may also observe that 4% = 4, although - has no idempotent

element. This marks another difference between the two classes. Another
interesting example of this is the algebra

e | ey te, e (2)
€y €y 61

the field being the same as before. It is easily verified that, in this
algebra, the equation zy = z has, for given values of y and 2z, not both
zero, a unique solution z. The algebra has therefore many of the
properties of a primitive algebra, although it has no modulus.

The formation of powers in a non-associative algebra is rather com-
plex. Thus z.2? is not necessarily the same as .z, nor .« .4* the same
as A%. 4. We shall use the following notation :—

A ... 4)...)) = 4",
(A" . A™) AP = Aerm+p
and so on, the index indicating the manner in which the terms are
grouped. All powers for which the sum of the indices is », are said to be
of the r-th degree.

If all the n-th powers of an algebra are zero, it is said to be a nilpotent
algebra of index n. If A is nilpotent, the sum of the r-th powers is less
than the sum of the (r—1)-th powers. To show this, let A be the sum
of the s-th powers, and suppose that the theorem holds for s <<». Then

AT = 4 A4 400 4 LA AT 044020 4 L A0
But AU 401 and AP = 42 < 4; hence the theorem follows by
induction. Now AUIAPl L AU+3 and AUT L A7), Hence, as in
Theorem 7, we may express 4 in the form

4 = B,+B,+...+Bu-1,
where B,B, < Bpiy+Bprg1+... .
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Every element of a nilpotent algebra is nilpotent in the sense that, for
some 7, all its n-th powers are zero. This condition is, however, not
sufficient to render the algebra nilpotent, as may be seen from the first of
the examples given on p. 110. A sufficient condition is, however, not
difficult to find. If » is the index of a nilpotent algebra A4, then 41" = 0,
and in particular, if z and y are any two elements,

yy(...yly=z)...))=0.
Now the proof of Theorem 14 holds for non-associative algebras step for
step, except that we cannot deduce from A’z = A4’ that 4 has an idem-
potent element. There is, however, an element y such that yz =z,
from which it follows that

y@(..y@2)..))+0,

and 4 is therefore not nilpotent. Hence a necessary and sufficient con-
dition that 4 is nilpotent is that it contains no pair of elements y and «
such that yz =z (z 3£ 0). y, of course, need not be distinct from z.

Of the remaining theorems of Section 5, Theorems 9 and 13 hold also
for non-associative algebras. The others deal chiefly with idempotent
elements and do not seem to have any direct analogue in the general
theory.

A rough classification of non-associative algebras may, however, be
obtained as follows.

In an algebra 4 there will, in general, be a sub-algebra M, composed
of all elements z, such that z.zy = 2z.y for any elements z and y of 4.
The modulus, if the algebra has one, will be contained in it. For this
reason I shall call it the modular sub-algebra of the first kind. Similarly,
the elements z such that z.zy = zz.y form an associative algebra M,
which may be called the modular sub-algebra of the second kind; and
elements such that z.yz = zy.z form an associative algebra M; called
the modular sub-algebra of the third kind. The elements common to all
three will be called the principal modular sub-algebra of A. For
example, in the algebra

e;jee 0 0 O
e | 0 e e e
es | es 0 0 ¢
e, | es 0 ¢ O

we have Mi=My=My=M=ce¢,é€;
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and in ‘ e, e - e
e, ‘ g, 0 .0
e | 0 e ey
63 6.2 63—62 62

M, = ¢, €y, My = My = M = (¢;}¢,.
If ey, €, ..., €y is a primitive set of idempotent elements of 3, we have
4= p,zq Apy Apdrs =0 (gF 1), Adpde<dp-

This is analogous to Pierce’s form for a linear associative algebra, and a
partial classification of non-associative algebras can obviously be based
upon it.

10. Semi-invariant Sub-algebras.™

A sub-algebra B of 4 is said to be semi-invariant if either 4B < B
ot BA < B. We shall assume throughout this section that 4B < B.

If B, and B; are two different maximal semi-invariant sub-algebras
of A4, then evidently B,+B, = 4, since 4 (B,4+B,) < B,+ B,- Further,
if B= B, ~B,, it may be shown that the difference algebras comple-
mentary to By, B, and B, may be so chosent that

(A—B) ~(B;—B), (4—By ~ (B,—B).
It then follows, as in Theorem 6, that, if
A4, By, By, ...; 4, By, By, ...
are two series of algebras such that each of them is a maximal semi-
tavariant sub-algebra of the preceding term, then the corresponding series
of difference algebras can be so chosen that they differ merely in regard

to the order in which their terms occur.
In a potent associative algebra A4, a maximal nilpotent semi-

* The proofs of the theorems of this section are merely repetitions of what has already been
done aud are, therefore, for the most part omitted.

T Since (4 —B,), ... are not uniquely determined, these symbols have no meaning uuless it
ix shown how these algebras are to be determined, e.¢., in this case by setting

By=C+B, C—~B=0; By=Ce+DL, Co—~B=0;
A 1+ Cox Nt
(A — B) is of course not neceasanily simple when B is maximal.

sEi., 2. vou. 6. wno. 982. I
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invariant sub-algebra is invariant, and is therefore unique. For
ANN, NA.AL N4, A.NALNA,
(NA? = NANA < N*4, (N4 < N4 =0,

if N*=0. Hence N4 is a nilpotent invariant sub-algebra of 4, and
therefore either NA L N or A = NA+N. In the latter case,

A* < N*4A+N-=;
and therefore 4 is nilpotent contrary to our assumption. Hence we must
have NA < N, which proves the theorem.

Suppose now that both 4 and B have a modulus, the moduli being
respectively e and ¢;. Then, if ¢, = ¢—e,,

A = Ae,+e Aeyte,de; = B+C+ D,
where B=Ade, C=¢Ade,, D =¢eyde,
and B~({C+D)=0 and C~D=0.
Since 4% = 4, we have
A =Aede,;+e de;deytey ey Ae,+Ade, Aegte, Aeg Aey+e, Aey Aey.
Therefore D* = D, and the multiplication table of 4 has the form

B C D
BB C 0
c|0 0 C
D|O0 0 D

C is a nilpotent invariant sub-algebra of 4 whose complementary algebra
is reducible. Hence no semi-invariant sub-algebra of a semi-simple
algebra has a modulus. We may also notice that D is a left-hand semi-
invariant sub-algebra, and that B4+C and D4 C are invariant sub-
algebras of 4.

A primitive algebra is the only type of algebra which has no semi-
invariant sub-algebra. For, if 4 has no semi-invariant sub-algebra, it
must have a modulus, and if z is any element of 4 which has no inverse,
Az is a semi-invariant sub-algebra of 4.

11. The Direct Product.

Let 4 ==z, z;, ..., 2., B =14y, ¥y, ..., Y» be two complexes of order a
and b respectively, such that every element of 4 is commutative with
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every element of B; and further, let all the elements
Teys r=1,2,...,a; s=1,2, ..., 0)
be linearly independent ; then the complex
C=z,yy, L1Ygs vy Tnlfsy ---

is called the direct product of A and B.

The following is an alternative definition. Consider all pairs of
elements of the form (z, y) where 2 < 4 and y < B. Lt

@+, y+y) = (=@, N+, y)+, )+ &', y)

and @ Y@, y) = @', yy").
The elements (z, y) generate an algebra of which they themselves form a
complex of order ab which is said to be the direct product of 4 and B and

i8 denoted by 4 X B. A4 X B is of course the same as B X 4.
We shall generally take 4 and B to be algebras, in which case 4 X B

is an algebra.
The following relations follow immediately from the definition of 4 X B.

AXBXC) =(AXB)XC,
AXB+0C) =4XxB+4XC,
AXB~C)=AXB~A4AXC.

It 4 = BXC has a modulus, B and C must each have a modulus
and conversely. In this case there is also a sub-complex of 4 isomorphic
with B, namely, the direct product of B and the modulus of C. Also, if
B' and C' are the sub-complexes of 4 which correspond to B and C, then

A =CB = B'C.
If B has an invariant sub-algebra B;, B, X C is evidently an invariant

sub-algebra of 4 ; hence, if 4 is simple, B and C are also simple. The
converse of this is, however, not always true. For instance, let

€ €
€ | —¢

be the table of B, and let C = B; then the table of 4 is

A e € &
eg - 61 64 - 63
63 64 —‘el “eg
e, | —es —ey €



116 MRg. J. H. MacLacaN WEDDERBURN [Nov. 14,

where 6= (e €), €= (e, ), e=Ie e,
and ey = (€5, €9).
If we put a = 3(ete), e =21(ea—e),
es =% (e1—e), e =13 (etey),

the table becomes e, e e ¢

e1ler e 0 O

e {es—e; 0 O

es {0 0 e e

e |0 0 er —es

Hence BX C is reducible. If, however, the given field is such that.
every simple algebra is matric, the converse does hold; therefore, in any
field, the product of two simple algebras is simple or semi-simple.

It is interesting to note that the algebra given above can also be ex-
pressed as the direct product of B and the algebra C; whose table is

Hence, from A = BXC = BXC,, it does not necessarily follow that
¢~ C,. This is, however, probably true if the field is sufficiently
extended.

12. Conclusion.

It is remarkable that the properties of a field with regard to division
are not used in many of the theorems of the preceding sections. The first
place, where it is used, is where it is assumed that, if 4% << 4, the order of
A? is less than the order of 4. Thus, if the table of an algebra is

‘ € €

e | 2¢; 2e
e | 26 2¢

and the set of positive and negative integers takes the place of the given
field, then A = 2¢,, 2¢,, which is not equivalent to 4, but is still con-
tained in 4. In other words, if B< A4 and 4 = B+, then, for every
such C, B is contained in C.
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If we now call B a proper sub-complex of A when we can find C such
that 4 =B+4+C, B~C =0, and, in Theorem 2, substitute * proper
invariant sub-complex ” for ‘‘invariant sub-complex” throughout, we find
that all the theorems of the section hold without further modification.
Most of the theorems of the other sections can be modified in a similar
fagshion. Thus, Theorem 15, when modified, would read:—If 4 is an
algebra with not more than one idempotent element, and x is any element
such that Ax is a proper sub-compler of A, then x is nilpotent.

I have not carried out this process in detail, as the results obtained do
not seem to be of sufficient importance. '

[Added February lst, 1908.—Since the above paper was in print [
have noticed a mistake in the proof of Theorem 28 ; this mistake is, how-
ever, easily remedied. The notation used below is that of page 105.

It is there assumed that the algebra B’ is commutative with every
element of 4. Suppose that this is not the case, and let I be the maxi-
mum sub-algebra of N which is composed of elements commutative with
every element of B’. As on page 105, we may assume N = 0. Let z, y,
and z be elements of A, B’, and M respsctively. From the definition
of B', we have zy—yxz < N, and therefore, since N> =0 and M < N,
xzy = zyz = yxz. Hence zz < M, v.e., M is invariant. Now, if we prove
the theorem for (4 — M), 1t follows for - as in the text; for if the theorem
is true for ({4 —M), then 4 can be expressed in the form 4,4 N, where IV,
18 nilpotent and 4, is an algebra, containing B', of which M is the maximal
invariant nilpotent sub-algebra; B’ is then commutative with every
element of 4, and the proot proceeds as on page 105. We may therefore
suppose that there are no elements of N commutative with every element
of B', t.e., M = 0.

If the given field is sufficiently extended, it follows from Theorems 22
and 27 that 4 contains a simple matric algebra A’ such that (4 —N) is
the direct product of 4’ and B’ ; and, since M = 0, evidently the elements
of A'B" are the only elements of 4 which are commutative with every
element of B’. But B’is rational ; hence, by Theorem 26, A'B’ is also
rational if B’ is of order greater than 1, z.e., the theorem is true in this
case. We may therefore assume that every element of B’ is commutative
with every element of 4, as we have shown that the theorem follows if
this is not the case.]
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