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1. The transformation of the series

, x * x *
X~T T^""T""^2

or more generally the integral

- f
Jo>0 *

where a; is a real quantity, has been considered in Bertrand's Calcule Integral
§ 270 (1870), and connections are there established between this function

of x and the same functions of its co-anharmonic ratios 1—x, —, ,
., x 1—x

it* T - 1

- , . It will, however, be more convenient and will lead to
conciser results if we take the function

| + ( to j (1 )
o \ x 1 x I

which, if x is real and not greater than unity, may be represented by

x2 xs
x+-$r + -32 +•••+£log« log(l—x),

the logarithms being taken in their real principal values.
Calling this function La;, we see immediately that

Lx+L(l-x) = Ll, (2)

and, since log a; log(l—x) has zero for its limiting value when x = 0, we
see that LI = %-rr2.

The equation (2) gives us a connection between two L functions whose
arguments depend on one variable. This relation, we may shew, is a
particular case of a linear connection between n 2 + l such functions whose
arguments depend on n independent variables.



170 PROF. L. J. ROGERS [March 8,

Let

y= l—plx+p2x
2—...±pnxn = (l

where the /tx's are all real and positive, represent a curve in rectangular

\
x

Cartesian coordinates, and let us suppose for the present that this curve
cuts the line y = 1 in n real points, including (0, 1). In this case it is
evident that the curve will cut the line y = 1—m in n real points, pro-
vided m < 1; so that we may put

m—p1x+p2x
2—...±pnx

n = m{l—\x){\—\2x) ... (1—\nx),

where the X's are also real.

Now consider the sum of the n2 terms

X2dL-^-12dL - ^ ,
Xr fa

where in the positive terms fis < Xr, and in the negative terms Xr <
while r and s have all values from 1 to n. Since

(8)

we have
2dLx = log red log (1—x)—log(l—x)dlogx,

Ar

while

— {log (Xr—us)—log K\ d(logM.—logXr)]

= 2 S [(log A*S—log Xr) d log (Xr—fis)

—log (Xr—fjis) d (log us—logXr)

— log fxs d log Xr+log Xr d log M»] t

— log {fi,—Xr) d (log Xr—log Mx) '

—log Xr d log *t,+log A*, d log Xr].
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Hence twice the whole algebraic sum (8) may be represented by one
formula

n n

2 2 [(logM«—log Xr) d log(Xr~/xs) —log (Xr~us) d(logns—logXr)
t=l r=l

—log/xsdlogXr+logXrdlogMj- (4)
Since, identically,

un—pxu
n~l-{-... ±pn = {u—/xi)(w—Mss) ••• (u—fxn),

and mw71—PiUn~l-)r...+pn = ^(^—X^w—X2) ... (w—XJ,

we have (Xr—Mi)(Xr—Ma) ••• (Xr—AO = X"—^Xr""^ . . .

= ( l - m ) X ; , . (5)

and Ox,-X1)0u8-X3)... ( ^ . - X J = - ^

so that (X1~/>i8)(Xa~/it,)... (Xn~/i,) = ^ M ? (since m < l ) . (6)

Now, in (4), the terms

2 2 {log ACS d log (Xr~/us) —log (Xr~/xs) d log /*,[

can be reduced by summing first with respect to /*, and, using (6), and become

2 I log us d [n log Ats+log ~^p) — (n log Ms+log - ^ ) d log txs J,

= \ogpn d log ^ - l o g ! = p d log^n- (7)

Similarly, by summing first with respect to s, and using (5), the
corresponding set of terms in (4),

2 2 ) - log Xr d log (Xr~Ms)+log (Xr~Ms) d log Xr(,
reduce to

2 [—log Xr d {n log Xr+log (1—m)} + {n log Xr+log (1 —m) \ d log Xr],

= _ bg P±dlog ( l - m ) + l o g ( 1 - m ) dlog -2«. (8)

The remaining terms in (4) can be reduced independently in r and s, and
we get

2 2 { —logn, d log Xr+log"Xr d log/t*4|

= - \ogpn d log - £ + l o g ^ d \ogpn

^ log m —log m d\ogpn. (9)
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Collecting the reduced forms (7), (8), (9), we have

Xr /

= logf>n {d\og(l—?n)—d\ogvi} — |log(l— m)—logra} dlogpn

— (\ogpn—logm) d log (1—m)+log (1—m)(d \ogpn—d log m)

+log pn d log m—log w d log pn

= log m d log (1—m)—log (1 — m) d log m

= 2dLm.

Hence, integrating, we have

22 (L •£• -L ^L) = C+Lm. (10)

To determine the constant C, we may notice that, when m approaches
the value unity, the values of the X's approach equality with the AI'S, and we
may suppose X,. to be that X which is equal to fxr in the limit. Now ixsf\r

is ultimately equal to \s/vr, and, if r is not equal to s, the functions having
these fractions or their reciprocals as arguments will cancel each other.
Noticing from the diagram, where OA = 1/MI, that ^ < Xls yot2 > X2,
M3 < X3, ..., we see that, if n is even, then the left-hand side of (10)
vanishes and G = — LI; whereas, if n is odd, the left-hand side is L I and
C = 0.

We have then, for all positive integral values of n. a linear relation
consisting of n2-\-l L-functions depending on n independent variables;
and it is easy to see that the arguments are all real provided the curve in
the diagram cuts the axis of x in n real points, and the line y =• 1—m is
taken sufficiently near to the axis of x to cut every wave of the curve.

When n = 2, the relation is

Lj±+L !^.-L^--L^ = -Ll+L?n,

where in =

and —£
X

Let —- = x, m = y,
Ma

so that - ^ = xy;
Xx
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then Lx+Ly = L{xy)+L &-+L1-L - ^
A l Mi

But

therefore

so that

while

so that 1 _ X g -

Mi

Thus, finally, we have

01)

This formula is apparently the simplest that can be obtained in two
independent variables. It is remarkable that, although (1) has been made
use of in determining it, yet it is not possible to deduce (1) directly from
it. We might infer, then, that formulae included in (10) containing more
than two variables may be so reduced that (11) cannot be deduced as a
particular case ; and, conversely, it is possible that formulae (10) cannot
be deduced by repeated application of (11). Certain facts render this
very probable. For instance, by making y = x, we have

(12)

a relation which is closely connected with the obvious identity

- « ) = ^(x2), (13)

X2 X3

where \frx = x-J- -^- + -gr +>..,

when we take note of the connection given in Bertrand's Gale. Int., § 270,
(26), between >

V'(—x) and \js \rj-Y
\1 -f-X/

However, the equally obvious identity

where 1-f p+p° = 0,
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does not appear to be made deducible in any way from (1), even when this
formula is made adaptable to imaginary arguments.

2. By transforming the right-hand side of § 1, (11), by means
of § 1, (1), we get

These five arguments taken in the order

1—x .,

*• y> I=ZJ> l~*y< i=%
form a cyclic group in which any constituent is the same function of the
two preceding it.

If a and b are the sides of a right-angled spherical triangle, these
arguments may be written

cos2 a, cos2b, sin2 A, sin2 c, sin2!?,

the squared cosines of Napier's circular parts.
This property shews that, if we apply § 1, (1) to the function of any

consecutive three in the cyclic arrangement of the arguments, we again

get § 1, (11) in another form, e.g., transferring Ly, £ (-^—-)• and
L(l-xy), we get ' U - ^

which represents § 1, (11), where y is replaced by (l—x)/(l—xy).
The equation § 1, (11) may be written in another interesting form as

follows.
By direct application of the formula, we get

+LW I Tti+x ) ^ \tn+x)

By § 1, (1), this may be written

Lx+L (-£-) + i {0^21 +L O=S.)=L1+L (-M.
\x\mJ { x+m j Vl+m/ ^ Vl+w

f x \
Now, let the function Lx+L —:— be called Mx, where we may call x\x -\- mj J

the argument and m the parameter. Then
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and Ll+L (T^—) = Ml.

Hence Mx+M \ ^~x)m I = Ml. (1)
( x+m )

When m = oo, this relation reduces to § 1, (1).
When m = 1, we have

where /(re) = Lx+L (r-r—),

a result which is virtually given by Bertrand in connection with the series

x+ W + T2-+-- (see § 273).

Again, we have

Lx—L (xy)-\-Ll—L

i.e., Lz—L(xy)+L („ ~X)—L (y , ~x ) = Ll—Ly. (2)

Looking upon y as a parameter, and writing Yx for Lx—Lxy, we get

— ) = Yl. (3)
.—xyl

The equations (1) and (3) may be looked upon as a kind of generaliza-
tion of the formula § 1, (2), where, if x = sin20, l—x = cos2 6, we get a
type of relation of the form F(6)-\-F(^TT—6) = FQir). In (3), if x = sn2 u,
y = k2, the relation is of the form F(u)-\-F{K—u) = F(K). It is possible
that the terms in § 1, (10) may be so grouped that by looking upon one
variable as a modulus the identity may represent a relation between
functions of the (n—1) remaining variables, each associated with this
modulus ; but it is not easy to see how such a grouping may be effected.

3. The value of L {x-\-yi) when the argument is complex will depend
upon the path of integration, but will be unambiguous provided the path
does not cross the axis of real quantities at any point whose abscissa > 1
or < 0 . This value will be called the principal value of L (x-\-yi).

We may easily see then that the formula § 1, (10) can be employed in
the case of imaginary arguments, provided we make all the ^t's real and
positive. For, provided we make the line y = l—?n lie close enough to
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the axis of x, we have a case in which all the X's are real, even if the
waves of the curve do not reach y = 1. When m is made to diminish so
that two of the intersections are lost, then two of the X's will become
imaginary and will remain imaginary up to the final value of m, viz.,
unity. The corresponding arguments will therefore never again cross the
axis of real quantities, and the corresponding L-functions will have their
principal values. The same remark applies to all imaginary arguments
that may occur.

If, however, the /u's are imaginary, the same process of reasoning
fails, as may be seen in the following simple example.

In the formula 2Lz = 2z2+2L

let z = p, where p2+p + l = 0,

so that apparently 2Lp = Lp2+2L (—p2).

Now, if z = e6i, the value of Lz may be taken as

z2 z3
z+-#i + -32 + .

the principal values of the logarithms being taken. Thus

cos 20 . . . / . n • sin 20L{e$i) = c o s 0 + — ^ - + . . . + z\smO+ ——

The real part of this is

cos 20 , cos 80 , 1 1/3 / • a\ sin 20- ^ — + -32— + . + £0(^in0+ . . .J

= i r ~ ~ T (p r o v i d e d 0 > O < T T ) ,

and we get the same value for the real part of L (e~H), if 0 > 0 <, TT.
Thus the real parts of the principal values of Lp and Lp2 are zero, while
the real part of L{—p2) is T\7r2; so that the relation cannot be true. It
will be easily seen, however, that, if we make z move from (0, 0) to (0, 1)
and thence along the circle r = 1 from 0 = 0 to 0 = §ir, then z2 will
move across the axis of real quantities on the negative side of the origin,
and the value of Lp2 will not be the same as if the point z = p2 had been
reached by making 0 = —§TT\ In fact it differs by 7rilog (1—z), where
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z = p2, corresponding to a circuit about 0 of •£&£, i.e., — —
1—z 2 1—z)

in the integrand, i.e., — —^—. The real part of 7rUog (1—p9) is now
JL —~Z

—£TT2, which cancels with the real part of 2L(—p2) in the formula.
It is seen then that even in the simplest formula depending on

§ 1, (11) imaginary values of the arguments may lead to what at first
sight seem anomalous results. It may be observed also that in this
formula, whenever the /x's are real, the X's must be real; so that imaginary
arguments always imply imaginary values of the /x's.

The actual point at which the reasoning in § 1 fails for imaginary
arguments lies in taking logarithms of each side of equations § 1, (5), (6),
but it is easy to see that the logarithms differ by some multiples of 27ri.
Where such corrections have to be made, it will be seen that the reduced
form for § 1, (4) will contain further terms consisting of 2 in multiplied by
differentials of logarithms; so that § 1, (10) must be corrected by the
addition of terms consisting of 2,-Tri multiplied by logarithms of known
arguments, and an integral equation is thereby always obtained. General
rules for determining such terms and the constant of integration would be
very difficult to determine ; but, on the other hand, the system of arguments
of the L -functions would be simplified, as there is nothing to prevent
taking complex arguments with norm greater than unity, and so in the
L -function sum we may start by taking all terms positive and keeping
the /x's uniformly in all the numerators of the arguments.

4. It has been shewn in § 1 that a function exists such that, for any
arguments x, y which lie between 0 and 1,

/(*) +fiy)-ttxy) = /(«)+/(«), (i)

where u = — — and v = ^ .
1— xy l—xy

To find the differential equation which must be satisfied by any such
1 r) Pi P)

functions we must operate on both sides by ^- , 5— and x 5 y 5-, so as
r ox oy ox cy

to annihilate the left-hand side.

Now ox {l—xyr

therefore x{\-x)£-f{u) = u(l-u) ^-f(u) = F(u) say.
OX (til

VOL. 4 . XO. Wi'A. N
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•Dull «— ~~ "71 To >

dy (l-xyT

therefore a; (1—a;) ~ ~ f(u) = — - ^ —=—,
dxdyJ Q-—xyr du

a2

i.e., xdyJ {l—xyf du

The operation a;̂  y-*- leaves a function of xy unchanged, while

d a\ x
x-x—y-*-) u = ^ ;

ox J dy) 1—xy

therefore (x» y^-\ 5-5- / (M) = — .- r-g ^-gF(u)
\ ox oyl oxOyJ (1—xyf air

(l-x)(l-y)(l-xy) du*

By symmetry, the same operation on/fa) gives

whence n(l—u)~-*u(l— u)—f{u) = v(l—v) •3-*v(l—v)—f(v),
ou du dv dv

where u and v may be considered as independent. Hence

u(l—u) ^-su(X—u) -T-f(u) = a constant. (2)
du du

The complete solution of this equation is easily arrived at by straight-
forward integration and is of the form

so that it is possible that a more general form than Lu for f(u) in (1) may
satisfy that relation. Such may be shewn to be the case, provided no
demand is made that the functions of the several arguments should be
identical. In fact, if we write 2L(x, a) as denoting

Lx—£log alog(l—x)+% log (1—a) log x—La, (3)
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we shall have identically

L(x,a)+L(y, b)
l—a

for the L-functions obviously cancel out, and the logarithmic terms may
be easily shown to vanish. For such an identity to hold it is clear that
any multiple of the logarithmic terms might have been assumed in
defining L (x, a), but for reasons hereafter obvious the form above given
will be most important. The cancelling of these logarithmic products may
easily be proved as follows, in the most general case of § 1, (10).

Let alt a2, ..., aw, f3lt /32, ..., /3n, K be a set of quantities related in
the manner given in § 1, viz.,

and let us suppose that in the equation § 1, (3), viz.,

we take the operation d to denote changes of the letter /x into /3, X into
a, and in into K. Then the double sum will reduce as before to
log m d log (1— m)—log (1—m) d log m, which now denotes

log ??Uog(l — *c)—log (1—m)log/c,

and 22 + L (^, Si) = L (m, *), (5)
\ Ar Ctr /

the constant C disappearing.

5. When the argument z of a L function is complex, we must define
2Lz as the value of the integral of

—log (1—z) d log *+log z d log (1—z),

taken along a path which starts from the origin, and where log iX—z) and
log z have those values which correspond to integration along the same
path. The principal value of Lz will correspond to any path connecting
0 and z for which logd— z) and log z retain their principal values, i.e., one
in which z is never real unless it is a positive proper fraction.

If we take P

z = re9i and 1—z = se~*\

log# = logr+0* and log(l—z) = logs — <pi,

then the principal value will correspond to the °
case in which 6 and <p both lie between ir and
— x, r and s being of course always positive.

N 2
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We have now

MLz = -(logs—0z)d(log r+0i) + (\ogr+6i)d (logs—0i)

= — logs d log r+logrcZ logs—

+i(9d\ogs-\-<f>d\ogr—log sdd—log rd<f>). (1)

The real part of Lz will be written R(9, 0), while the coefficient of i in
2dLz is easily seen to be

Bd (log sin 0—log sin (0+0)} +<j>d {log sin 0—log sin (0+0)}

— {log sin 0—log sin (0+0)} d6 + Jlogsin 0—log sin (0+0)} d<j>

=(9 cot 9—log sin 0)cZ0+(0 cot 0—log sin 0) c?0

cot (0+0)-log sin(0+0) ( rf(0+0).

Since the path of integration for Lz will always be taken as starting
from 0, we see that initially 0 = 0; so that the coefficient of i in L (re6*) is
of the form

. (2)

where /(0) = £ f (0 cot 0-log sin 0) d9
Jo

"Jo
6 d0-£01ogsin0.

tan0
r 6

The symbol T9 will be used to denote the function I 7—2 d9.J Jo tan 0
The formula § 1, (10) will lead, by consideration of imaginary terms,

to sum-formulae connecting T-iunctions in conjunction with such functions
as 0 log sin 0, but, by virtue of the extended form § 4, (5), it is not difficult
to see that these latter functions will vanish identically for

2L(re9i, re~H)

= L (re")—L (re'")+i (9 log s+0 log r)

= 2 i{T0+T0-T(0+0) | - .

If, then, in § 4, (5) all pairs of arguments such as /u«Ar and &/ar, m
and K are conjugate complexes, we shall obtain a relation in which a sum
of 3(n2+l) T functions, involving n 0's and n 0's, is equated either to
zero or (see the end of § 8) to a sum of logarithms. The case derived
from § 1, (11) will be considered below ab initio in § 8, where it will be
seen that the T sum will be equated to zero; and it is probable in all
cases that the relation will be free from logarithmic terms.
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If r < 1, we may write

d{T6+T<f>-T(e+<p)\ =ed\ogs + <pd\ogr

= d (0 log s)—log s dB+(p d log r

= d(d log s ) -£ log (1 - 2 r cos 0+r2) dd

• 1 , _i r sin 0 ,

H tan ' d r
r

tan
r 1—rcos

= d (0 log s)+ (r cos 0+ Y cos 20+...)

+ (sin 0+ y— sin 20+.. \ dr

Integrating from 0, where s = 1 and r = 0, we have

T0+T0-T(0+0) = r sin 0+ ^sin 20+ 4- sin 30+...

+^01og(l-2rcos0+r2). (3)

If we treat r as constant, this right-hand side may be written in the form

I %dQ, but this integral will not represent the left-hand
Jo 1—2rcos
side when r > l . For the latter implies a path of integration from 0,
and, if r is treated as a constant, we must first take the path along the
axis of x as far as (r, 0) before proceeding along the circle x 2 + y 2 = r2.
But, if r > 1, this first path would pass through U and pass along the
axis beyond it, which is not permissible.

However, if r < l , the ^-coordinate of l/reei is easily seen to be
IT—0—(f>; so that the expression Td-\-T<p—T (0+</>) becomes

T 0 + T ( T T - 0 - cj>) — T ( T T - <J6).

Now - 0 ) = - f - ^ - J-cZ0 = - ^ < f l 9 ;
Itan 0 tan(7r—0); tan 0

therefore T0 + T (ir—0) = C + TT log sin 0,

where C = 2T(£w).

But
T |TT = P ' 0 cot 06Z0 = [0 log sin 0 ] f - T log sin Odd = — f"log sin

Jo Jo Jo
which is known to be equal to ^ir log 2.
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Hence T0+ T{ir—6) = ir log (2 sin 0), (4)

and

= Td+T<p-T(<j>+e)-Trhgr. (5)

If, in (8), r = 1, then <f> = £ ( T T - 0 ) .

But by differentiating it may be easily verified that

so that, changing 0 into 20, we have

T6 = 01og(2sin0)+^(sin20+-|asin40+-^sin60+...). (6)

Hence also

(7)

In analogy to the above transformation, we may consider the difference
of any two L functions in the form L(peu)—L(pe~w), where u is positive
and peu < 1.

If 1— peu = a-e~v and 1— pe~u = <rev, we have p = sinhu/sinh^-fv)
and o- = sinh u/sinh(u-\-v); and

2d[L(peu)-L(pe-u)] =-(\ogo—v)d(\ogp+u)+(\ogp+u)d(log<r-v)

+(log <r+v)d(\og p—u)—(log p— u)dQog cr+v)

= 2(vd log /)-|-w£Z log o-—log <r du—log p dv);

therefore L{peu)-L{pe-U) =f(u)+f(v)-f(u+v),

where f{u) = I (ucothu—log sinh u)du = 21 -—r-—du—u log sinh u. (8)
Jo Jotannw

If in § 2, (2) we put x = /oew, y = e~2u, we get

lj\p6 )—Li\pe ) = -L/l—l>e —Lie -\-L/e ,

which may be easily identified with (8).

6. We may now establish the formula {v. Bertrand's Calc. Int.,
§271) connecting Lz with L{z/(z—1)} and Lz with L(l/z) where s is
complex.



1906.] FUNCTION SUM THBOKEMS. 188

The four bipolar coordinates of z/(z—l) corresponding to r, s, 0, <p
are rjs, 1/s, 6-\-<p—TT, —TT; therefore

2dL ( - — • ) = logsdlog — - l o g — dlogs+<t>d(e+<p)-(6+<t>)d<t>+Trd<t>
\Z~~ 1/ S S

7

Hence 2<ZL*+2dZ, (-?—) = i* — +Trdd>
\z—V s r

by § 5, (1), and, integrating from s = 1, ^ = 0,

^j = £7Ti lOg S + J7T0. (1)

Again, the four bipolar coordinates r~le~6i are 1/r, s/r, —6, 0+0—TT;
so that

d \ ] d \ +__ e9i) = log — d log r—log r d log

+i\-ed\og j - +(7r-0-0)dlo |

therefore 2dL (re81) + 2dL (r"1^"**) = — -K dQ+iri d log r

by § 5, (1), and Lz+L (1/s) = C—£71-0+^ log r

when z = 1, r = 1, and 0 = 0; so that C—21/1 = ^7r2 and

Lz-\-L (1/z) = 2L1—^7T0-t-|7ri log r (2)

(cf. Bertrand, Calc. Int., § 272).

7. We have seen in § 2 that, if z and w are complexes, we are not
justified in assuming that

Lz+Lw = L(ZW)+L(Z ±=^)+LL ±=±-),
\ 1—ZCO/ \ 1—Zdil

but that the formula would have to be corrected by the introduction of
logarithmic terms.

It is not easy to give a concise geometric meaning to the related
complexes in this equation, but, by § 6, (1), we see that there can be
a relation derived from the above connecting

T T f,z(-l—a>)! T fa>(l—z)\ , T i \
Lz, L(a, L\ —L\, Li———\, and L{zw).

{ z—1 ) { co— 1 J
These complexes are connected with one another and with 0, U in a
manner which is worthy of notice.
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If P, Q, R, S have complexes zv z2, z3, 24, it is
possible to find uniquely a point G (say, z^i such that
the triangle GPS, by rotation about C and enlargement
(or diminution), may take the position GRQ; that is,
there is a unique centre of similitude of SP and QR,
which, moreover, is the centre of similitude of SQ
and PR. The necessary and sufficient condition is that

i.e.,

Let •=• z, 2 2 = co, • * )

c o - 1

Then the vectors OP.OQ = OR.OS;

so that 0 is the centre of similitude of PS and RQ or of QS and RP.
Now the vectors drawn from U are

1—2, 1 — co, — ZU)

1 —

so that UP.UR = UQ.US,

and U is the centre of similitude of PQ and SR or of PS and QR.
Lastly, if V is the point whose complex is zu\, the vectors drawn to

V from P, Q, R, S are

—w),
1 - t o

BO that VP.VS = VQ.VR
and F is the centre of similitude of PR and QS or of PQ and RS.
Hence 0, U, V are the three centres of similitude of pairs of sides of
the quadrangle PQRS.

It may be observed that the shape of PQRS is quite general.

8. In establishing a function-sum theorem for the T-function of
§ 5 the most convenient method will be based on the formula in § 2
where the five arguments are expressed in the cyclic form

2 , CO,
1 - 2

1 - z c o 1 1—2C0,
1 - 0 )

I-Zoo'

after replacing x and y by z and w.
If (0lf fa), {02, c/>2), ..., (#5, c/>g) are the bipolar angular coordinates of the

points represented by these five arguments, we see immediately that
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and hence, in virtue of the cyclic property, the five points are

(01,-08-04), (02,-04-05), (08,-0«-0l), . . . .

There is, however, one relation connecting the five 0's, which will
necessarily be cyclic. Taking zv z2, ... as representing the five complexes
and rlf slt r2, s2, ... as their bivectorial coordinates, we have z3zA = 1—z ;
so that rsrA — sv But in all cases

r = sin <p/sm{<f>-\-6) and s = sin0/sin(0+0);

so that sin ^8 sin fa sin (fa + OJ = sin (<f>a+6J sin (^>4+04) sin dv

i.e., by substituting for the <p'B

Bin^j+Oj) sintfj+fla) sin(d8+d4--01)

+ sin(0l+05-03) sin(01+09--e4)8in01= 0. (2)

This is the relation required, but does not appear here in the requisite
cyclic form. To attain this end we may write alt a2, ... for e29li, e2"2*, ...
and put zx = rxe

6xi in the form

s i n t f g + e ^ V s i n ^ g H - ^ ^ ) = a.ia^

"With similar transformations for z2, z3, ..., we get

where clx = a9ai—-a1, ..., &c,

and S = a1a2asaia5—a1a2a3—a2a3a4—asaia5—aia5al

+ a4a5+a5a1 + a1a2+a2a3+a3a4 — 1, (4)

i.e.f sin(01+09+0a+04+0B)

= sin(01+02+03—04—05)+ four other terms cyclically derived. (5)

"We may now consider the function sum relation connecting the
fifteen T functions corresponding to these five complexes.

* I t is interesting to note that, if the fl's are independent, so that S ̂ = 0, the solution of

oi, a2, . . . from the equations zx — al(a-sa4—l)/(a3a4—al), ... may be effected. Writing w, for

1 — z, — 2as4, ... and vx for 1 —z6—a,—z2 + z6z,z2, . . . , we get

Mj = — axa3a4Sjdld3di aud vx = 05030.4 05 iS/rfjjrfî j.

From these two results we ge t o1M1«1/t
i
2v6 = cyclic analogues and dxtixvxuzu4lv2vs = cyclic analogues,

whence, by the relation 0^5^5—05^ = 0305^, we get ax = — VnV^u^, . . . , thereby obtaining the

eolution of the o ' s in terms of the z's. I t is remarkable also t h a t (1—ot) nxvx = u1vx +t'2t?6 = (1— zx)T,

where T i s the cyclic expression

2 — Zj — Z« — Z3 — Z4 — Z5 + Z1Z3 Z3 + Z3 Z3 Z4 + Z3 Z4 Z5 + Z4 £5 Zj + Z8 Z j Z2 + Z \ Zj Z3 — Zj Zj Zj Z4 Z5.

If T — 0, oi = 1 = «j = o3 = a4 =• 05; so that the 6'e are all zero and the z's all real.
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In the differential

d{Tdl+T<f>l-T(d1+<f>l) + ...\,

= 0! COt 0j <Z01-(03+04) COt (0g+04)d(08+04)

the coefficient of 0! is

cot 01(f01~cot(01+02) d(014-02)-

- co t (03+0,-0!) ^(03+04-01)+cot (0!+02-04

+ COt (^ + 0 5 -

_ . , sin 0, sin (0^02+04) sin (
g sin (0x+02) sin (0!+05) sin

= 0 by (2).

Similarly, the coefficients of 02, 03, 04, 05 are zero, and the differential
of the sum vanishes. Integrating then from the origin where all the 0's
are zero, we see that the sum of the fifteen T functions is zero.

This relation between the 0's, as is also (4), is cyclic, but not
symmetrical. If, however, we substitute the 0's in the relations, they
will both become symmetrical, as may be seen as follows.

Since 0i = — 03—04, ...,

we have o- = - ( 0 ^ 0 2 + 0 3 4 - 0 4 + ^ = i ^ + ^ + ^ g + ^ + ^ e ) ;

so that (4) becomes

sin a- = sin (<r—20^+sin (a—2<j>J-{-am (o—203)+sin (cr—204)

(6)
while, since

01 = — O-

we have Tfa—Tier—02— 05) — T{o— 03—04)

+ T02-T(o— 03-01)-T(o— 0 4 - 0 B )

+ ... = 0, (7)

which is symmetric in the five angles <j>v 02, 08, 04, 05.
Referring the series from § 5, (6) for T6, we see that the above
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formula holds good, even if we understand by TO the series

sra20+-is in40+i-Bin60+. . . f

since it is obvious that the logarithmic sum vanishes identically.

If <p5 = 0, the equation (7) becomes nugatory; for in this case

sin (a— fa—02) cos (0!—02)+sin(o—08—04) coa (fa—fa) = 0,

i.e.,&in%(fa+fa—fa—fa)ain$(fa—fa+fa—<pJain%(fa—fa—fa+(f>J = Q;
so that the sum of two of the remaining angles equals the sum of the other
two. This makes the function sum in (7) vanish identically.

Moreover, it is impossible that four of the 0's should be equal and
real. For, if fa = fa = fa = fa, then

sin o-—sin (<r—205) = 4 sin (<r—2fa) = 4 sin %fa,

sin 05 cos (a—fa) = 2 sin %fa;

therefore cos£05cos (<r—0g) = 1, (8)

which is impossible, unless fa is imaginary.
Let fa = fa, and call each of these fa Then, if 2s =

so that 2cr = 2s+20, we have
sin(s+0) = sin(s+0—201)+sin(s+0—20a) + sin(s+0

+2sin(s—0),

, . sin(s—20,)-|-sin(s—202) + sin(s —20o)4-sinswhence tan 0 = - — *^—prfr—^^—^-r—°V—r—T 8 cos s—cos (s—20X)—cos (s — 20a)—cos (s—20s)

If fa = fa = 08 = co, we have

sin f«—8 sin hw , , ,
tan 0 = \ 3__ = | tan \u>,

T 8 cos f to—8 cos ô)
while 3Tco+2r0-3T(0—%oo) — T(|co-0)— 6T(^to) = 0.

It is possible therefore that, if the 0's are all real, three of them should
be equal.

Again, let fa = fa = fa say ; fa = fa = a>; and fa = >/r, so that
<r = ^/r-f-0+to. Now (2) may be written

sin (o—0X—0«j) sin (o—0!—0a) sin (cr—0a—0g)

+ sin 03 sin fa sin (<r—fa—<t>d = 0,
which now becomes

sin \jr sin (0—\fr) sin (a>—i/r) +sin 0 sin <o sin \fs = 0.
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Rejecting sin \js = 0, we have

sin(0—\fr) sin (\j/ — u>) = sin <f> sin a>,

while the T function relation becomes

/ ( 0 V ) ( ) - V r ) = 0.
It may be observed that

r r> j ^ r \tan>/<- tan 2 ^ / r J0

= 4\/r log (2 sin \fr) — 2\fr log (2 sin

^- sin

^ sin 3\/^-f -rjj-8i

that

Returning to the case in which 0X = 02 = <p3 = (j>4, we have seen in
(8) that

cos i 0 6 cos (20X—$<ps) = 1,

where we will suppose that %<p5 =• ui and 20X —-J-05 = 0; so that

cosh w = sec 6.
The T equation becomes

42>l+T06-6!Zl(*0B)-4r(01-*06) = 0,

4 [r (?±^) T (?=!»[r (?± )̂ - T (?=!»)] =

or, if we had put £<£5 = 9, 2^—^05 = ui, so that again cosh u = sec 0,
we should have

10. It is shewn by Bertrand {Gale. Int., § 271) that for certain values
of the argument x the values of \fsx may be determined. The notation
of the present memoir considerably simplifies the results, which may be
obtained as follows.
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In § 1, (2) let x = % ; then

In § 1, (12) let x2 = 2—x, so that x = £(V5 — 1) ; then

4 = a3 and

while, by § 1, (2), Lx+L (x2) = LI.

Hence Lx = L

while L (x2) = L ( i ^ 5 ) = f LI = ^ .

Apart from these cases, it does not seem possible to obtain a special
value of Lx for any real or complex argument.


