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Introduction.

This paper arose out of the following question :—" What are the rela-
tions between the inscribed and circumscribed spheres of a tetrahedron ?"
In other words, given two spheres S, S', what are the necessary and suffi-
cient conditions that there should be real tetrahedra which are inscribed
in S and circumscribed to S''?

It is proved (§§ 8, 9) that the sole condition is

when B, r are the radii of the spheres and d is the distance between their
centres; corresponding conditions for the escribed spheres are found, and
in particular it is shewn that when two.spheres are external to each other
there are always real tetrahedra whose vertices lie on the one and whose
laces touch the other.

The earlier sections are concerned with some general properties of
quadrics which may be stated thus :—If the vertices of a tetrahedron lie
on a quadric S and its faces touch a quadric S", then, when one face IT is
given, the opposite vertex lies on a certain plane section IT' of S, and when
7r varies the envelope of x' is a quadric through the common curve of S
and S'..

At ohe end of the paper will be found some simpler arguments that
corroborate the general conclusions previously obtained ; these simpler
.arguments are, in fact, more forcible in some ways than the earlier ones,
but they are not so far-reaching.*

* I may add that the invariant of § 5 occurs in quite a different connexion in a paper by
M. G. Fontene relating to certain polyhedra that have a hole through them, and are inscribed
•in the one quadric and circumscribed to the other. See Nouv. Ann., 1904, p. 289. The quadric
envelope of § 3 is alluded to by Kohn, Lc. infra, § 2. None of the papers quoted has reference
to the reality oi the tetrahedra. I cannot find that this question has been discussed before.
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1. When a tetrahedron LMNP has its vertices on a fixed quadric 8*
its position depends on eight arbitrary constants, so we are led to expect
that the problem of finding a tetrahedron whose vertices lie on one quadric
S and whose faces touch a second quadric S' will admit of oo4 solutions.
This, as will presently appear, is usually the case; but, denoting the face
LMN by 7r, we cannot choose the vertex P and the face IT arbitrarily. In
fact denote by a- and a-' the conies in which w cuts S and the tangent cone
from P to S': then, if there were such a tetrahedron, there would be one
triangle LMN whose corners lie on <r and whose sides touch <r'; hence
there would be an infinite number of such triangles, and hence an infinite
number of the tetrahedra for which the vertex P and the opposite face x
are the same.

2. I proceed to shew that when the face ir (it is of course a tangent
plane to 8') is given, the locus of the vertex P is in general a plane sec-
tion of the quadric 8. In addition to being on the quadric, P must be
such that the conies o- and a-' satisfy the poristic condition already alluded
to. Suppose, then, that a generator of 8' in the plane TT cuts .S in H and
A'. Then, since HK is a tangent to the conic <r\ the other tangents from
H and K to <r' must meet on a.; but, if h and k are the other generators
of 8' through H and K, these two tangents are the lines in which the
planes Ph, Pk cut the plane x, and it follows that these two planes must
meet :on the conic ov Hence, the two pencils h{P), k(P) being homo-'
graphic, P must lie on a quadric containing the lines h, k- and the conic rr.
As this quadric has the plane section <x in common with S, the remaining
part of the intersection is also a plane section of S, and this is the re-
quired locus of the vertex P.

COR. I:—The quadric locus for P must also contain the other genera-
tors at the points H', K' in which S is cut by the other generator of 8' in
the plane ir.

COR. II.—It might happen that the quadric locus for P coincided with
S. In this case S and 8' must have four common generators, and the
quadric that contains them and the conic a- will coincide with S for all
positions of -K.

P and 7T can now be chosen arbitrarily, and there are oo5 tetrahedra
inscribed in 8 and circumscribed to S'.* In other cases there are <x>\

•This theorem is due to M. G. Fontend, Nouvettes Annales, 1900, p. 67. It has also been
discussed by Kohn, Monatshefte f'.ir Math, und Phys., 1900, p. 102, and by Humbert, Bull.
Sot. Math. Fran., 1904, p. 135. The same writers naturally notice the fact that the locus of
P, when IT is given, is usually a plane section of S.
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since when ir is given there are oo1 positions for P, and corresponding to
each such position there are oo1 tetrahedra.

3. I call the plane that contains P when ir is given T', and proceed to
prove that when ir varies the envelope of ir' is a quadric of the pencil

S+XS' = 0.

For this purpose I use elliptic parameters on the curve common to S and
S'. They can be so chosen that if a, b, c, d are four coplanar points

a-\-b-\-c-\-d = 0,

while if ab is a generator of a fixed quadric of the pencil

a-\-b = k,

a constant, and if cd is a generator of the opposite system

c-\-d = — k.

Now, referring back, let the generators h, k cut S again in a, /3, and let
the corresponding generators h', k', derived from H'K' the other generator
of S' in the plane ir, cut S again in a, /3'. Then we have

H+K = k, H+a =-k, K+/3 =-k,

H'+K' =-k, H' + a = k, K'+fr' = k,

and hence a -\-/3 = — 3k,

= dk.

It follows that the lines a/3, a''jB' are generators of a fixed quadric of the
pencil, and so the plane a/3a'/3', which is manifestly the plane ir', always
touches this fixed quadric.

4. Some further remarks will be useful.

(i) It is clear that, when -K is given, the plane ir' and its envelope
depend only on the quadric S' and its curve of intersection with S—not
on the quadric S in particular.

(ii) The plane ir is touched by two quadrics of the pencil besides S',
and the plane ir' by two besides the envelope. These remaining tangent
quadrics are the same for ir and ir'. In fact, if we write

' = X,
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we have a+a'=-\, p+(3' = +\, K+K' = -\,

shewing that the lines HH', KK\ aa', /3{3' are generators of the same
quadric, and hence that 7r and -K touch this quadric. Similarly for
the four lines

It follows, for example, that if ir' touches S, and TT does not touch S,
then S is itself the envelope.

(iii) If the plane TT is itself tangent to the envelope of x', the point
of contact of -K is on the common curve of the pencil.

(iv) If the point of contact of ir with S' is on the envelope of ir\
then TT' is also tangent to Sr.

5. I shall next find the equation of the envelope of TT' when the
equations of S and S' are

S = ax2+bif+cz2+dio2 = 0,

Sf = z 2 + 2/H z*+ ?«2 = 0.

For this purpose take -K to be

lx-{-m?j-\-nz-\-no =• 0.

The sections by -K of S and the tangent cone from P to S' being a aud a ,
we must have e , 2 _ 4 A , Q

the usual poristic condition. Eliminating w, a straightforward calcula-
tion shews that P must lie on the quadric whose equation is

\?;ix(b+c+d-a)}2

= 42a;2 {P(cd+ab+bc) + (ac+ad) m?+ {ad+al)n2+ (ab+ac) r2}

+ 8 |admnyz-\-...-f-bclrxw-{-...} :

and thence that the equation of - ' is

alx+fiimj + ynz + Srw = 0,

wherein a = 8a2—<La(a+b +

-(a+b+c+d)\

etc. Since Z2+m2+n2+r2 = 0,

the envelope of ir' is
+o^2 = 0.
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Of course we must have a2 = Pa+Q,

where P, Q are symmetrical in a, b, c, d.

If we denote the discriminant of S-\-\S' by

the zeros of this expression in X are —a, —b, —c, —d; and A, 9, &c,
are now the fundamental invariants of the two quadrics.

An easy calculation now shews that the envelope is

PS+QS' = 0,

where P = 8A' (9 ' 3 -4*e 'A ' - f 86A'2),

and Q = (4$A'-O'2)2-64AA'a.

If we take S' to be a proper quadric, the condition that .9 itself should be
the envelope of T ' is ( 4 < M , _ Qt9)i =

further the point of contact of IT' with its envelope is always the pole of -K
for the quadric « . o a , * , « Q /-.

^ ax2+/3?/2+yz2 + Sw2 — 0.
Hence, when S is the envelope of the planes ir', we can choose each vertex
to be the point of contact of the position of - ' that corresponds to the
opposite face, and all such tetrahedra are now self-conjugate for the quadric
last mentioned, say F.

In verification we may note that

so that there are oo3 tetrahedra inscribed in F that are self-conjugate for S\
and, further, S and S' are reciprocals with respect to F. These results are
analogous to known ones relating to triangles inscribed in one conic and
circumscribed to another.

6. I now proceed to discuss the reality of the tetrahedra when the two
quadrics are spheres, and begin by outlining the method.

(I) Suppose one of the faces -n- is fixed: then the opposite vertex will
lie on a plane TT'. It is necessary that ir' should cut S in a real circle in
some positions anyhow. Now the condition for a real section will be found
by expressing the condition that a certain expression, which when equated
to zero is the condition that ir' should touch S, is positive. We know (§ 4)
that ir only touches S either when S is the envelope or when IT touches S,
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so that the result will be largely independent of the position of T. In
fact the expression arising will be the product of two factors, one of which
will re-express the fact that TT should meet S in a real curve, and the
other the condition (§ 5) that S should be the envelope.

(II) It is not enough that the vertex P should be real: to give real
tetrahedra it must be external to S'—it will be seen that a real section by
7r' is always external to 8'.

(III) Even when the plane TT is given and there are real vertices
corresponding outside S', does it follow that some of the triangles inscribed
in the circle a and circumscribed to the conic <r (both of which are real)
are always real? The answer is " yes", though the argument is a little
tedious.

7. It will be well to begin by calculating the invariant

(4$A'-0'2)2-64AA'3,

for two spheres S = (x — d)2+y2+z*—R2 = 0,

S' =

whose radii are R, r, and whose centres are a distance d apart.
The simple invariants being

A' = r*, G' = R*+Sr*-cP, 3>

0 = S J F + ^ - d 2 , A = R\

the above invariant is quickly seen to be

X (R*-2Rr-8ri-d2)(R2+2Rr+ri-d?). (7 .1)

8. Suppose now that the plane -K is z = 0, and that the two spheres
arG S = x2+y2+z2+2ax+20y + 2yz+8 = 0,

.S' = r2+?y2 + *2-2rz = 0,

so that d2 = (y + r)2+a2+/32,
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Proceeding directly, we find for the equation of T'

z \S2-4.r2(a2+/32)\ -4ru8x-4r8Sy-4r | <S2 + 2r2 (<5 - a2 —/32) + 27-y<$f = 0.

We have now to set down the condition that this should cut S in a real
circle, i.e. be within a distance R of the centre of this sphere. A calcu-
lation shews that the condition is

(R2-y2)(R2~2Rr-Sr2—d2)(R2+2Rr- 3>*-d2)
J i 2 2 + r 2 — c l 2 ) > 0.

The first factor equated to zero is the condition that -w should touch 8,
and the remainder is merely the invariant (7.1), so that all is as could
have been predicted by § 6. If any of the other factors vanish, the
sphere S is itself the envelope of the planes x'.

9. There will not be real tetrahedra unless

(R2-1Rr- 3r2

and of these factors the first is the least and the last the greatest.
Take, for clearness, the inequality first.
There are three cases—

(a) K2

or (R + r)(R-Sr)-d2>0,

or . (R-r)'2>4r2-\-d2,

and all the other factors of course positive. Here the sphere S com-
pletely encloses the sphere S'.

((3) R2+2Rr+r2-d*<0,

or R+r < d,

and all the other factors negative. Here the spheres are completely
external to each other.

(y) (R-r)2 < d2,

(R+r)2 > 4r2+d?.

In this case the spheres intersect in a real circle.

The case (R-r)2 > d2, (R + i-)2 < 4?-2+d2 is impossible if R> r:
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and if R < r it shews that S' completely encloses S. This is out of the
question.

There are next the four cases in which the equality obtains in § 9, viz.

(a') (R-if =

(£') (R+r)
2 =

(/) (R-r)2 = d2,

ffl (R+r)2 = d2.

In each case nr' touches S. In (y') and (Sr) S and S' touch, and it can
be seen that TT' touches them at their point of contact, so that these cases
may be ignored.

(a') is merely the limiting case of (a) and (/3') of (y).
It may be noted that (/3') implies R <.r-\-d, so that the spheres cut

in a real circle.
Only in cases (a), (/3), (y), (a'), (Bf) can there be real tetrahedra.

10. We have next to see if the vertices so found are external to S'.
In (a), (/3), (a') the sphere S is completely external to S', so that any

real vertex so found must be external to Sr.
In the other two cases the spheres meet in real points, and the same

result follows from a different argument.

The condition is {R+r)2 > 4r2+d2.

Suppose S' is given, and Q is a given point common to S and S'. It is
easy to see that the centre 0 of S must not be inside the paraboloid of
revolution whose focus is Q, and whose vertex is 0', the centre of S'; for,
if 00' subtends an angle 6 at Q, we have

R COS2 h6 > ;•.

If now 0' and the line of centres are given as well as Q, all the condi-
tion implies is that there is a point Q on the line such that 0 may be
anywhere not internal to the segment QO'. Further 0' and £2 are on
opposite sides of the radical plane, and Q is the centre of the envelope
sphere. It is now easy to deduce that no tangent plane •*•' to the
envelope sphere can meet S in points that are inside S'.

To sum up : in case any one of the following sets of conditions is
satisfied, viz.,

(a) ( JR-r)2>47-2+^, 08) R + r<d,

(y) (R+r)2 > 4^+d2, R-r < d
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and the plane x cuts S in real points, there are real positions of P on S
that are external to S', such that the two conies a and a-' are real and
satisfy the poristic condition

9 ' 2 = 4 A ' 6 (§5).

11. I shall now shew that in such cases it is practically certain that there
are real triangles whose sides touch <r\ and whose vertices lie on <r. If P
is any point on <r, the triangle with a vertex at P will be real if the tan-
gents from P to <rr are real. Now, if the conies cut (but do not touch) in
a real point A, there are points P on o- near A which are external to <r ;
when the conies have two conjugate imaginary points of intersection a
real projection will bring them into circles, and then the poristic con-
dition shews either that <r encloses <r or that a and <rf meet in two
real points. It follows that some of the triangles will be real except
possibly when o- and a-' touch in two real points. This is an actual
exception because the poristic condition then shews that at the common
points the curvature of a- is four times that of T', SO that a-' encloses a
completely, and there are no real triangles. This sole exception is
obviously a case of such rare occurrence that it might be ignored in a
discussion like that of the tetrahedra, but I add one or two remarks.

From the reality of the conies <r and a-' follows the reality of the
triangles (or some of them) except when a and <r' have double contact.
The condition of double contact is a double one of equality, and hence
in general none of the positions of P found will satisfy it. A more
minute argument confirms the conclusion, but, as the possible exception
is a trivial one and the argument is only destined to prove a negative,
I shall suppress it.

12. We have thus proved that the necessary and sufficient conditions
that there should be real tetrahedra whose vertices lie on a sphere S
and whose faces touch a sphere S', are

(a) S encloses S\ and CR—r)2> 4

or (3) S and S' are external to each other,

or (y) S and >S' meet in a real circle, and {B-\-rf

In general there are oo4 of the tetrahedra, but in case of the sign
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of equality there are oo3, and then (§ 5) the tetrahedra are self-con-
jugate with respect to a fixed quadric.

13. There are three types of spheres that touch the faces of a tetra-
hedron, viz. :—

(a) the inscribed sphere ;

(j3) the doubly escribed spheres, which touch two of the faces on the
opposite side to the inscribed sphere, and the other two on the same
side;

(y) the ordinary escribed spheres, which touch one face on the oppo-
site side to the inscribed sphere, and the other three faces on the same
side.

It seems natural to suppose that this classification coincides with that
in § 12. To establish this we have only to prove that an escribed sphere
iy) always cuts the circum-sphere in a real point, while an escribed sphere
{ft) is always external to the circum-sphere—it is obvious that the in-
scribed sphere is enclosed by the circum-sphere. The proofs required are
simple enough if we assume a known theorem,* to the effect that the
spheres touching the faces of a tetrahedron ABGD can be divided into
four pairs, such that the centres of a pair are collinear with D, and that a
pair are touched by the same sphere through the circle ABC. There
will be no need to give the argument in detail—it is simple when the
theorem alluded to is assumed and that theorem is not quite simple.

14. It may be of some interest to give an argument relating to the
inscribed sphere, which does not depend on the, sometimes elaborate,
apparatus used before.

We have two spheres S and S', of which the first encloses the second,
and we want the necessary and sufficient condition that there should be
real tetrahedra inscribed in S and circumscribed to S1.

The case in which the spheres are concentric is particularly simple.
Any real tetrahedron satisfying the conditions must now have its opposite
edges equal in pairs. For if it be ABGD, the circumcentre of the face
ABC, being the point of contact of the inscribed sphere with that face,
must be internal to the face, and the triangle ABC must thus be acute-
angled.

* Camb. Phil. Soc. Trans., Vol. 16, p. 166,
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Again, the circles ABC, ABB being equal, the angles ACB, ADB are-
equal or supplementary; as both are acute they must be equal.

It follows, that the angles at any corner, say B, are equal to the angles
in the opposite face ABC, and thence we deduce that the tetrahedron
must be .isosceles, as stated.

15.̂  Conversely, if a tetrahedron is isosceles, the faces are acute-angled
and the circum-centre and in-centre both coincide with the centroid. Also
the radius of the inscribed sphere is one-fourth of each perpendicular of
the tetrahedron, and hence at most one-third of the radius of the circum-
scribing sphere.

16. Take now two concentric spheres S and S' of radii R and r (R > r).
A plane ir touching S' at H will cut S in a circleV whose centre is H, and
the tangent cone from any point R on S to S' in a conic cr\ of which H is
a focus. If z is the distance of R from -w and t the tangent from E to S'r
the major axis 2a of a-' is given by

r
2a = 2t z—2r

When this major axis is equal to the radius of the circle <x, which is t,.
there will be triangles inscribed in <r whose sides touch a-' (§ 2). Thus there
will be tetrahedra with one vertex at R, and the other three in the plane
7r, which are inscribed in S and circumscribed to S'. The condition for
this is

z =• 4 ? - ;

so R must lie on a plane parallel to -K and at a distance 4r from it. This
plane cuts S in a real circle only if Sr < R : it touches S if Sr = R.

All this corroborates §§ 8, 9, and shews that, if 3ra^ R, there are real
tetrahedra having S for circumscribing sphere and S' for inscribed sphere-
There are oo4 if 3?- < R and oo3 if Sr = R. The tetrahedra are all
isosceles (of course regular if Sr = R) and their altitudes are 4r.

17. Passing to the general case in which S and S' are not concentric,.
I first shew that if there is one real tetrahedron inscribed in S and circum-
scribed to S', then there exists such a tetrahedron, one of whose faces is
an arbitrary tangent plane ir of S'.

Suppose LMNP is the given tetrahedron : the plane LMN will cut S
and the tangent cone from P to S' in two conies <r and <r\ of which <r
encloses a' completely. Hence there will be a tetrahedron with one
corner at P and another anywhere on the circle <x. The vertices L, M,.
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N, P cannot all be on the same side of the plane -K ; if L and M, say, are
on opposite sides, it is clear that the sections of S by the planes LMN
and x have two real points in common. It follows that we can bring one
vertex, say L, of the tetrahedron into the plane TT without moving P.

Repeating the process and keeping L fixed, we can bring a second
vertex, say M, into the plane ir. The two remaining vertices are one on
each of the tangent planes through the line LM to S' ; thus one of them is
•cm 7T, and ir ip now a face.

The argument would apply equally well to two ellipsoids : it depends
merely on Poncelet's Porism, and the fact that one surface is entirely in-
side the given tetrahedron, while the other is all but completely external
to it.

18. We are thus justified in finding the necessary and sufficient con-
dition for the existence of real tetrahedra by taking one face to be any
tangent plane to the inscribed sphere S'. Naturally one of those whose
point of contact is on the line joining the centres is chosen.

Call this plane CT and the opposite vertex P : the radii of the spheres
are R, r, and the distance between the centres is d: z is the distance of P
from zs, and t the tangent from P to S'. Then the major axis 2a of the
<jonic a', in which CT cuts the tangent cone from P to S', is given by

a = z—2r

The section of S by rs is a circle <r of radius p, say, whose centre is the
point 0 when CT touches S', and the poristic relation between a and <r' is

p = 2a.

Now, using 0 for origin, the equations of the spheres will be

S = x*+y*+z'*-(lcz-p'1 = 0,

S' = x2+y2+z2-2rz = 0.

The point P must satisfy the conditions

from (II), and x2+if+z'2-2cz-p2 = 0.

We thus get an equation for z which reduces to

fi*z = 4pV+8r2c - 8/-3, (III)
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and the distance of P from z = 0 must not be greater than c-\-R. Thus

and, of course, R2 = p2+c2.

We deduce (R'-c*){R + c) > 4(JK
2-c2) r+8r2c-Sr3;

and, since d-\-r = c,

this gives {U2-(r+df\ {R + d-Sr\ > 8i*d,

or 2i;a—2e2(3r—^)—iJ(r-|-d)2~h(r—<i)(3^-h<^2) > 0,

or (R-r+d)(R2-2Rr-3>3-d?) > 0.

Clearly S' must be inside S, so that the first factor is positive, and we aru
left with

or (R — rf > 4 r + ^ (cf. §§ 8, y>.


