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1. Introduction.

This paper is an extension of one already published,* and deals with
the tides in an ocean bounded by two circles of latitude on a rotating
globe.

The introduction of two boundaries into the problem causes very great
complexity ; and it has been found necessary to omit the discussion of
many points of interest, in particular, the nature and magnitude of the
free periods of oscillation.

[ am again much indebted to Dr. T. H. Havelock for his advice and
asgistance.

Originally, in discussing the resuits, I had made numerical compari-
sons between the dynamical tides and the uncorrected  equilibrium *
tides. But, at the suggestion of a referee, to whom the paper was sub-
mitted, I have substituted the * corrected equilibrium ~ values. A ve-
markable agreement, exhibited and explained on p. 228 results. At his
suggestion I have also added a note making a comparison between the
dypamical tide heights found in the previous paper for a polar basin, and
the corresponding ‘‘ corrected equilibrium ” values.

2. The Equations for the Tides and thetr Solutions.

The equations which express the small oscillations of a liguid on a

* Proc. London Math, Soc., p. 31 of the present volume.
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208
rotating sphere are, in the usual notation,
= A (V= =7 et
=5m(§—‘§ { fx/(l Mg)d@ \/(19#_'#2)} k» 1)
7 = — = — oty

h
In these we have taken ont the time-and-longitude factor, and put

» = cos @ = sine of latitude.
The part of the tide-producing potential which depends upon u is, for

the three species : @ Hyw—3),
(0) Hypy/(1—ud,
and (¢ Hy(1—uh.
The form of these quantities suggests the substitution
{=(10—ud?e,
¢ = —udz,
B2

¢=010—n

and
where s = 0, 1 or 2, according to the species of tide

The first pair of equations (1) then becomes
2 _a-(l—,u.)”{ d’ ,( 1
it = W 0 (i ) |

2)»;/.. { 1
= mP—a 7

V(1 —u?
On substituting these in the third equation (1), we have
1 1\d#
d sue’ (1+ f> (1—u® -—] 22’+s,u<1—7>£ /
Bz = 7 = + 7=l ; (8)
73
dma _ 4o

where 8= 7 = gh

The coefficients of equation (8) are regular in the vicinity ofiu =0
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but they have singularities at the points

w==xf
w==1,
and mw =, *

1

The points x« = 4°f may be shown to be * apparent singularities.” * At
the points x« = + 1, we have indices 0 and 1; while the point x =
does not appear in the problem before us.

In choosing the form of the solution, the nature of the zone must be
considered. If the pole u = <+ 1 is included, a series of the type

2= (u—1[dg+ 4, (u—1+ Apu—12+...]

would be most useful. As such a series would usually be convergent up
to the other singularity u = —1, this would be a comprehensive form
including all polar basins, even those covering more than a hemisphere.
The period equation would be given by the expression which states that
the meridional velocity is zero along a certain circle of latitude. For a
zone bounded by two circles of latitude, however, this series is not con-
venient ; as, since the indices differ by an integer, the companion integral
will contain a logarithm. In spite of the obvious advantages of such a
series in the case of a polar basin, no use has been made of it; for the
recurrence relation between the coefficients is very complex and difficult to
haudle: even in the simplest case (the tides of the first species) this rela-
tion contains four terms.

If series of powers of u be used, we get two comparatively simple
integrals, one an odd and the other an even function of u. These are
convergent up to the singularities » = + 1, and so can be applied to any
zone bounded by two circles of latitude. But if we wish to include the
poles, a second and rather troublesome condition must be added. In
what follows, series of the latter class alone are used ; and the basins are,
consequently, such as do not include the poles.

By putting, in (8),
daz'

suz’ <1+ _}") —(1—u?) an = X(f?—u?), (4)

* Loc. cit., p. 34.
SER. 2. VoL, 14. xo, 1234. r
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sX+ -
we find Bz = r ld“ + ?ZX {h)
w(ie %)
Now assume 2 = § A.u",
1]
z = gj anﬂ-n,
0
and X =2 C.u"

‘We then f{ind

{s+n(b+§)}cn=(L+§)ﬁcmhrf3ho—fﬂn+nAHu

and, on substituting in (4) and eliminating the C’s,

y (n+1)(n+2)
" s+ m+DAF1]F)
ns(1—1/f)+nn—1) Bf*
+du{ o= s+r—DA+1]H) w+m+4ﬂl+lUJ
“'An—‘z B
s+ m—1A+1/f)
_ Bf? 4+B._s B (6)

= =B rurva+ip SFe—DaA+

If the ocean is bounded by circles of latitude, we must have, at each,
u=20; or

3 [BA+1N(Au i +Bu)—s/f2n+1) Auir| , _ -
,Eo [ s+n(l+1/f) w=0 @
But if the ocean extends up to and includes the pole, this condition is to
be replaced by the statement that the series 4, u" is convergent with its
first and second derivatives for « = + 1.

The values of B entering into the tide-raising potential are confined
to By, B,, and B,; hence, in discussing the convergence of the series
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24,.u" we may omit the right-hand side of (6). We then find

_ ns(l—1//)+nn—1) _ Bf?
Apio]/An = {3+ stm—DA+1]f) s+ m+1)1+41/f)

- B 1 }s+(n+1)(1+1/f)
s+ n—1QA+1[f) Apfdn_s n+1)n+2) -

Whatever finite value f may have, it is clear that 4,.»/4, tends to the
limit O or 1. In the first event, the series £4,u" is valid up to and in-
cluding the poles. In the second we have, more precisely,

- 1 m
];Jnli)nlt AgmiofAowm = 1— o + ;%5,
where w,, i3 less than a fixed finite quantity for all values of m greater
than a given value. Hence, in this case, the series is only valid so long
as |u| << 1; that is, up to, but not at, the pole. It is evident then, that
if we wish to determine a series that will express the height of the tide at
the poles we must determine the arbitrary quantities so that the condition

Limit 4,,9/4, =0, (8)

n—>w

is fulfilled.
It is further clear from (6) that two independent series are repre-
sented, viz.,
@ Ao+ Asp®+ A+ + Ao+ ..,
and (i) A1M+A3,u.3+A5,u5+...+A2,+1,u2"+‘+... .

The zonal oceans that can be discussed by means of the preceding analysis
fall info two sets which are best examined separately as follow :

(i) 4 Zonal Ocean bounded by Two Parallels of Latitude Symmetrically
Placed with regard to the Equator.

For convenience, write

L. = {_s_ﬂs(l—l/f)ﬂ(n—l) Bf* }s+(9t+1)(1+1/f)
T s+m—1A4+1)) " s+@a+1DA4+1/))  ®B+HDOe4+2)
M = B s+n+8)1+1/f)
st m—1DA+1/)  m+3)@m+4)
and o = —s/f?. ! BA+1/f) wi*! o

s+m—1)A+1/)  s+@+D(1+1/f)"
r 2
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Also let the boundaries be the ecircles of latitude arvesinu, and
are sin (—pu,).

In seeking for comprehensive expressions that will represent the
facts of all three tide-species, the differences of the three forms of tide-
producing potential must be noted. For the first species B, and B, both
appear, for the second B,, and for the third By, only. The introduction of
the two coefficients for the long period tides complicates the general
process, so that a slight variation of the method, given later, has been
found advisable. But for the second and third species, where only one
coefficient appears, we shall give but one expression, and we shall suppose
that only B, is present. To cover species 2, this will simply necessitate
placing the additional quantities in the right-hand side of the equations
for the odd terms instead of the right-hand side of the equations for the
even terms. With this understanding the following analysis may be re-
carded as comprehending the two cases s = 1 and s = 2.

Let Bo =H,= KAO'

Then from (6) and (7), the equations to be satisfied are

. \

(B +1,) 4, 4, =0
—Bs+3+38/)x . ( _

{(s+1+1/f)3.4 My} Aot Lydatd, =0}, (100

—MyA, 4+ L A4 4,=0

L1A1+A3 — 0
— M, 4 3 —
M A+ LgAg+4; 0 5 ton
_D13A3+L5A5+A7 =0
A+ Bewy , o
{ S+1+1/f +ao} Ao+a1A1+a2‘12+... =0 o
- ¢
A UPBos | o eer ot
{— s+1+4+1/f ' —uolr Ayt did;—azdg+... = 0 /

This group of equations represents both the free and the forced oseilla-
tions. For, in the case of the former, « = 0 and f can then be deter-
mined ; in the case of the latter, f is known and x (or 4y can be defer-
mined.
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It is easily seen that, as in the case of an ocean wholly covering the
globe, there are two possible systems of free oscillations: the first is
characterized by symmetry with regard to the equator and has a non-zero
height there; the second is asymmetric with regard to the equator and
has & zero height there.

By a process of step-by-step elimination of the quantities 4 from
{10a) and (10c¢), we have, in the limit, the following infinite determinantal
equation

(Lt 1/) By + wh o = 0. ay
9+1+1/j‘ 0 2 4 1 e
/- 2
-"—’%’— +1, 1 0 o
_ (+3+3[)8c
(_——__4_.9+1+1/f)3.4 My L, 1 o0 ..
0 —M, L, 1
Taking advantage of the notation
A, = ‘lL “)’L+2 ‘4':':+4 CEEIE B
Ly 1 0

—Jlu Iln«r—‘_’ 1

to which may be added the relation between successive A's,
A':L = U:r—LnA:t+2+MnA;'l+4;

we find the following reduced form of equation (11)

v Bru A1) B o 3+3+3[H8c
Au—--" S'+1+1/j' + 2 L\z (s+1+1/j-)3'4A-h

. v T B U1 | B s+343H8 |,
o ‘“*’"[ sHitif T 2 2T Gr1+1/8.4 -‘]H (12)

Equation (12) shows that the free periods are given by the transcendental
equation "
A =0,

A corresponding equation can be written down from (100) and (10c) for
the other system of free oscillations.
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(i) 4 Zonal Sea bounded by Two Circles of Latitude not Symmetrically
Placed with regard to the Equator.

Let the circles of latitude be are sin (u,) and arc sin (u;). The equa-
tions to be satisfied are then (10a), (10d), and

14-1/f) B« ! ' : |
: ( S-S_I/_’Zf/;.‘l +ap : dptoad;+urdy+... =0 '

(A+ 1) Brug | » v " _ J
iy T detadibdidat . =0

By the same process as before, we find that, in order that (10a), (104),
and (13) may be consistent, we must have

4, A+1./)Brpy
F 11
3/<f

(13)

4 ’ ’ !
“+ W ay oy

+ L, 1 0 O

B (.«+3+3,f),3,c 3
stitifisa Mo Ly 10

0 —~M, L, 1
44, us a o ...|=0; (14)
L, 1 0 o0
—"'Z‘Il L3 1 O
0 —M, L, 1

together with a similar equation, in which u, is replaced by w,.
In the same manner as before these reduce to

+1+1f A— <<+1+1/f)3 4
" "o__ (1+1 f),BM __L ” (5+3+3 f),B A”
AoBot4, A7 = [ Hit1 T T N GR IR , 4:|H.

For the free oscillations, the right-hand members disappear, and there
remains a pair of simultaneous transcendental equations which determine
f and the ratio 4,/4,. There will be a double infinity of free periods.
Equations (10a) and (100) complete the solution by determining all the
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coefficients 4 in terms of 4, which is left arbitrary. In the case of the
forced oscillations, (15) determine 4, and 4, uniquely, and the solution is
completed again in the same manner.

If one boundary be the equator itself, say uy = 0, we see from (9) that
all the quantities a,, excepting aj, are zero; and

£2
u'1’=—-fi=—iz'.
s Vi

For such a basin, the period equations will be (14), and

4, 0 0 0 ...|+4, -1 0 0 ..|=0 (16
Ly, 1 0 .. L, 1 0
—M, L, 1 .. —M, Lg 1

From (14) and (16) it is at once clear that 4, = 0, and
Ay =0. 17

Hence there is only a single system of free periods, and the corresponding
oscillations are symmetrical. Equation (17) is precisely that already given
for the free periods in Case (i) above. The effect of the boundary at the
equator is, then, to cut out the asymmetrical system of oscillations.

Numerical examples have been worked out for two cases: a narrow
basin bounded by circles of latitude 80° and 14° 30’, wholly on one side of
the equator ; and one bounded by circles of latitude 80° and —14° 30,
including the equator. From these a fair idea may be obtained of the
effect of such boundaries in modifying the tides ; and a comparison with the
equilibrium and complete ocean theories can be made without involving
hopelessly complex arithmetical work.

8. Tides of the First Specues.

In the general solution worked out in § 2, it was assumed that the
tide-produecing potential contained only one term, and we took it to be B,.
In the case of the tides of the first species, however, the potential is
H,(x*—4%), and hence two terms, B, and B,, appear. The general method,
with the two quantities B, becomes very complicated ; but a slight modi-
fication, applicable to the first species only, will enable us to simplify it.
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In equations (2) and (3), put s = 0. We then find

—2
¥ [( 7 ) du
dn

]+B(s '+&) =0, (18)

o an/(A—p? dg’
and = = da (19)

If we now assume, in the vicinity of u = 0,

1
= = 5’ I TN 2
= du .50 " (20)

and substitute 1n (18), we find

¢ = Dbl o T oy g g
(21)
and the general relation hetween the coefficients is
2
At A (n(ll?—f;— 1) -—1) —'n(nIB-{— 1) Aws=— ;l-/?-l B (22)
This holds for all values of »# except » == 0, when the relation is
A4,4+8D = — 8B,. {28)

Since we are excluding the possibilities u = 41, the boundary condi-
tions are, from (19),

ZAd.u = and Z4,u;=0

If we use the notation of § 2, but note that now

_ Bt _— B8
L”—(n—}-l)(n+2) 1 and J[”_(11+3)(-7z+4)’

and form the determinants as before, we find

Ay Al AgAf = ﬁ; Hy\;

. (24)
and AIA'{—i—AoAﬁ = Lg— H,A3y [

For the free oscillations we reject the right-hand members of (24), and
solve the pair of simultaneous transcendental equations for f and 4,/A,.
1t hardly seems possible to do this with any satisfaction. When we deal
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with the narrow basin (u; = 4, x; = 1), the values of f are very large,
and even a rough approximation is difficult to obtain. In the other
example chosen, however, (u; = %, ny = — 1), the values of f are smaller
and some idea of their order of value may be obtained by rejecting the
fourth and higher powers of u;, and the third and higher powers of w,.

For the forced oscillations, 4; and 4, ave determined from (24). It is
to be noted that the determinants required are readily found from the
recurrence relation

AT’L == M’:_‘Lﬂ /,'+-.’+f1[n. Al

Afterwards (22) and (28) enable us to find D and the remaining coeflicients
4 ; and, finally, the value of {, = §’+E, is determined trom (21).

(i) Zonal Ocean bounded by Cireles of Latitude 14°30" and 80°.

The following values of the first (and lowest) frequency were obtained
by the method just indicated. They must be regarded as very rough
approximations indeed.

It ; o [ dd’a® ot . .

is to be noted that 3f (—- 7 m) is independent of m, and as
M is not involved in the approximation we are using, these values of the
frequencies are obtained without reference to the votation. This in itself,
however, will not greatly vitiate the results, as the effect of the rotation
is known to be small in low latitudes, reducing to zero at the equator.

The value we obtain is 8f? = 54. Hence
B= 5, 10, 20, 40;
Depth = 58,080, 29,040, 14,520, 7,260 fees;

o o . oe opr .
j(_%)_ 33, 28, 16, 12

As an example of a forced tide we take the case of the lunar fortnightly,
for which f? = *00133.

The expressions for the lunar fortnightly tides in the same ocean are
the following; each expression is to be multiplied by the factor cos (a¢+e).

B =5; depth = 58,080 feet :
{/Hy = — 146 —0002u+ 1'000u>+0518u>—'1 82u+0810u° 4 157ub
4081747+ 0946u5+0273u°+"0869u' ... .
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B8 =10; depth = 29,040 feet :
.(‘«"Ho = — 146 —"0005u 41001 4% 4+"104u*—365u+'06214° +318u°
+0799u"+"1437u2 40737+ 15984 ... .
B = 20; depth = 14,520 feet :
{Hy = — 146 —"0009u+ 1'002u> 4 20T — 725t + 1211 4%+ 629u°
+°286u "+ 1045452292 42680 ... .
8 = 40; depth = 7,260 feet :
{Hy = — 147 —'0017Tu+ 10042 4"417u* — 1"456u* + 24645+ 1°885u°
+ 77020 — 418 +-782u’4"458u10 ... .

(i) Zonal Ocean bounded by Circles of Latitude 80° and —14°80'.
The approximate frequency equation is
Bf = 14'8.

Hence we have the following rongh values of the lowest frequencies for
the different depths :
B = 5, 10, 20, 40;
Depth = 58,080, 29,040, 14,520, 7,260 feet;

* T — . o . ol
f(=5)= 17, 12 8, 60

It is at once obvious that there is no possibility of synehronism of the
lunar fortnightly tide with any of the free tides.

Expressions for the lunar fortnightly tides in the same zonal ocean
the series must each be multiplied by the factor cos(sé-+e).

8 =5; depth = 58,080 feet :
¢ Hy= — 061940001+ 1°0002u* —"01714* —0779u' —"0102u”
+2264° — 01081+ 1605 —"009u® + 1481 ... .

B = 10; depth = 29,040 feet :
(Hy=— ‘0613400011 + 1°0004> — 0386 u® —155u* — 0202u”
+ 4495 — 02797+ 802u% —025Tu’+°306u'° ... .
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8= 20; depth = 14,520 feet :
¢/ Hy = — 0601400024 + 100074 —"0655u% — *802u* — 0389’
+911u8—074Tu"+ 54668 —0724u°+688u1° ... .

8= 40; depth = 7,260 feet :
{H, = — 057840005+ 10014 —"128p® — 581 u* —"0718u°
+1°8445 — 228474 "TI6uS — 281 p0+1°72u10 ... .

4. Tides of Second Species.

In preparing the formule for these, we must bear in mind that the
general formule previously given must be modified by the transference of
the tide-producing terms into the odd, instead of the even coefficients.

If in the quantities of (9) we put s = 1, and take the tide-producing
potential as containing one term only B;, = H,, we find, n place of (10a)
and (10b), after putting H; = «4,.

Ay Lo+, =0)
—A0A10+A2L2+A4 = 0 ’ (25a)
4, (L4 55) + 4, =0
1
A, (—Ml 3'1‘403) FLgdg+ A, =0 25b)
— Ay M, 4+ Lyds4d, =0

7

The bvundary condition (7) also becomes
Za,d, = — §BH,u?; (26)

. ' —1/f*n a=1 BA+1/f) i
where  w. = TEETNAFIH Y TiFetnaF1pM

In place of equations (15), we find

: , 3 13
A A4, A = H, ( 75“1+ 2‘1 AL— 145 A)

P 9 w13 P
it a,ar=m, (- Ly Bar— 18 u)
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These equations are treated in precisely the same manner as those of the
first species.

For the forced tides, we have taken as typical the luni-solar diurnal
for which f is rigorously 3. The numerical work is also simplified

thereby. It is to be noticed that equations (25a) and (25b) are then satis-
fied by putting

Adg=mdy=Ad,=...=d; =4, =...=0, and «x=—1;
for then both L1+§l‘4c and Ml-}-’B ;4(1)3 equal zero. Hence there is a
solution Y= — Ay = — Hyu,
or ¢ =2/(1—ph) = — Hiu/(1—ud);
and (=¢+E=

This is Laplace’s celebrated theorem that the luni-solar diurnal tide is
evanescent when the ocean is of uniform depth and covers the whole
globe. It is to be noted, however, that the condition (26) is not satisfied
by this solution.

For the free periods we reject the right-hand side of (27) and eliminate
Adg and 4,. The result is

A0AT—ALAD = 0.
The complicated way in which f enters into each of these determinants
makes it hopeless to attempt to find even rough values of the free periods.
As shown later on, all that can be done is to ascertain approximately those

critical depths at which a free mode coincides with a selected forced mode.
The forced tides are, however, not so difficult to obtain.

(i) Zonal Ocean bounded by Circles of Latitude 30° and 14720,

Luni-solar diurnal tides; each expression must be multiplied by the
factor cos (oct+ ¢+¢).
B = 5; depth = 58,080 feet :
(Hy =[—T726—999u>—148u*— 168’ — 17 5u*—182u'"+...
+T56u—"15T5u+ 202"+ 1706 +185u" ... [ 4/(1 — ud).
B =10; depth = 29,040 feet :
(JHy =[—'5845—"488u2—1"49u* —1'546° — 18208 — 1°9Tul0 4 . .
+°858u—858u’+"5310u° 4 389u"+417u" ... ] A/ (1 — ¥,
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B = 20; depth = 14,520 feet :
O H, = [~ 411420663 — 1'68u* — 1046 — 175" — 1-98u 10+ ..
+°661u— 55313+ 84845 +322u7+6084? ... ] /(1 — .

B = 40; depth = 7,260 feet :
E/H, = [— 26447984 — 2 20u' +228u’ — 1-98u° — 1610+ ...
+395u —689u®+ 1"19u° —0415u"+ 8884 ... | /(1 —ud.

(i Zonal Ocean bounded by Circles of Latitude 80° and —14°80'.

Luni-solar diurnal tides: each expression must be multiplied by
the factor cos (ot4¢p-+e).
8 = 5; depth 58,080 fect :
(H, =[—133—183u2—2T2u* — 3" 24u5— 8 456" — 859004 ..
41094 —229u° 4 810"+ 1816 +4-155u ... ] /(1 —ud).

B8 =10; depth 29,040 feet :
G H, = [— 241 — 1814 —"569u' — 5956° — 699" — 7590 ...
4+ 1°184u — 498847030’ +470u"+542u° ... ] /(1 —p?).

3 = 20; depth 14,520 feet :
¢ H, =[—"1964"0980u>—844u'* —"169us — 828" —350u'% 4 ...
+ 17472 — 1°28u3+ 1765 + 628w+ 1°2044° ... ] /(1 ~ ).

3 =40; depth 7,260 feet :
$Hy = [ — 2584 TT4u2—2'15u* 30548 —1°904u* — 150" ...
+ 2914 — 486+ 8" T4u® — 50267+ 5'964° ... ] 4/ (1 —u?).

5. Tides of Third Species.

The formul® already found, viz., (10a), (10b), (13) and (15), are ready
for use in the case of the third species, if we put s = 2. Only one term
appears in the tide-producing potential, viz., B, = H,. The procedure is
in every case precisely the same as before.

As a typical example of a forced tide of this species I have worked out
the luni-solar semi-diurnal tide for the two oceans selected. For this tide
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J is rigorously unity. The other semi-diurnal tides have values of f not
differing much from this.

As in the case of the tides of the second species, it was found im-
possible to obtain even a rough estimate of the free periods.

(i) Zonal Ocean bounded by Circles of Latitude 30° and 14° 80'.

Luni-solar semi-diurnal tide; each expression must be multiplied by
the factor cos (ot+2¢+e).
B = 5; depth = 58,080 feet :
§/H, = ['849—2'58u’—2'53u' —8-76u° — 4°80u® — 58610+ . .
4258 +2°95u3 4+ 4 T4u’+ 6106+ 74640 ...] (1—ud).

B8 =10 ; depth = 29,040 feet :
$/H, =[—554—1'89u2—2'50u* —8'61u5— 4 59— 56104 ..
—'811u—"104u>—"868u5—488u"— 545u° ... (1 — ud).

B =20; depth = 14,520 feet :
C/H, =[—0042—2 7142 —1"40u* — 28100 —267u" — 845u™+ ...
+668u— 8903+ 1-566°+ 76907+ 1-30u° ... ] (1 —pd).
B = 40; depth = 7,260 feet :
$H, = [—"080+4249u>—4'35u* +2:20° — 2'89ub— 1-02u04- ..
4147 —6'8TuP+8'85u° — 5981 -+ 1-81u° ...] (1 — ).

(ii) Zonal Ocean bounded by Circles of Latitude 30° and —14° 80'.

Luni-solar semi-diurnal tides; each expression must be multiplied by
the factor cos (ct42¢-+¢).
B = 5; depth = 58,080 feet :
(I Hy =[—852—4T6u*—889u*—12'15u°—15'59u®—19'08u'— ..
—1'51u—1"T6u—2'83u°—8 74— 4674 ... [ (L—pud).
8 =10; depth = 29,040 feet :
(Hy = [—509—198u®—2°50u* —8:666" — 464’ — 56T 4-...
+-215u+0718u°+42510°+-299u"4"877u? ... ] (1 —u?).
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B =20; depth = 14,520 feet :
GHy =[—18184973u>—6'06u*+528u’— 201945434910+ ...
+114p— 1523+ 11468+ 5006+ 456 ... ] (1 —u?).
B = 40; depth = 7,260 feet :
(iHy =[— 048 —2'28u%+-088ut —4'45u% — 2 4Tu®—4-89u '+ ...
+148u—6'91u2+839u" —6°02u"+ 1°82u° A=

6. Discussion of Results.

(i) The fortnightly tide.

We shall compare the numerical values of the tide-heights found in
the preceding sections with the theory of an ocean wholly covering the
globe,* and with the ‘‘ corrected equilibrium ”’ theory. For the latter we
proceed to find the correction to be applied for such a zonal ocean as we
are diseussing, of which the boundaries are u, and u;. The complete ox-
pression for the ¢ equilibrium ”* tide is

¢ = Hyu>—3) cos(oot+e)+C.

But over the whole zone we must have
|J¢as =o,

where dS is an element of surface.
On performing the integration we find

_ 1,

C=—73 (3 Fmgpy i —1) cos (74 £+ ¢p).

The entries in the table are caleulated from these expressions.

TasLe 1. Ocean bounded by Circles of Latitude 30° and 14° 30".

B=25 8 =10 B8 =20 g = 40

Tatitudes.

30° 14°13'} 30° 14°30°| 30° 14 30'] 30° 14730

Present Theory .....................] 103 [~-084| -102{--083| -100 |--083| -092 |—-083
Complete Ocean Theory ........ — — [—-020|—"176| — — 021 |—-095
Corrected Equilibrium Theory .. | -104 |—-083| -104|--083| 104 {—-083| 104 |—-083

* Darwin, Proc. Roy. Soe., Vol. xL1 (1886), p. 337. (Calcunlated for 8 = 10 and 40 only.)
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TasLe II.  Ocean bounded by Circles of Latitude 30° and —14°30'.

3=3 B =10 B = 20 B8 =40

Latitudes.

30° 14°80'] 30° 14°30'] B30° 14°30'{ 30° 14°30

Present Theory .......c.covoeiveeni. 184 | <0006 | -153]|-0012| 178 | 0026 | 170 | -0048
Complete Ocean Theory .........| — — =020 |—"176] — — | -021 |—-095
Corrected Equilibrium Theory ... | *1875 | zero | *1875 | zero | 1875 | zero | -1875| zero

(Each figure in the entries to be multiplied by H,.)

The important fact that stands out from these tables is the close
approximation of the  corrected equilibrium * tide to the true dynamical
tide. 'This may also be exhibited analytically as follows.

From equations (1) we find for the tide of first species

- 2 d¢ dE
—4m(f2—,u2)\/(1 M){ }

du  du
(28)
caf _ _ d 2
h T du {u\/(l s )}
From these we find
e FR 2 dE
h /(1 — uffow) g de

dma (Z,u
On integrating,

71
ima

2y a = nl v
uy/ (1— m+5du5du (Y=} = —mjgdwmwb.r

If U be the maximum value of {u| in the zone under consideration,

then - w(f? M) (f __M)
jd"gd“{«/u US"“SMW |

{f. (f—_>1;+ }

Now by the original supposition of infinitely small motions upon which
equations (1) were based, U is a quantity whose square may be neglected.

\
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If then /* and u* be at least of the same order as U, the term we are dis-
cussing may be neglected in comparison with that preceding it. Hence

h

—_y =T |7 ]
g (A=) = = | Elut Bt B

On applying the conditions © =0 at u = u, and u = u,; we have

E‘l = 01
2 J 2 =
and B, = Py p— ngdu.

Finally, by the second of equations (28),
¢=f-—2—{"¢a
- 1 § au.

Ma— I3

This is rigorously the expression for the * corrected equilibrium ™ tide

height.
The term we have neglected was compared with the term.
h 2
4dma uy/ (1 =4

and we tacitly assumed that the fraction ;;ﬁ; was not small enough to

reduce the order of the term. If, however, 2 be reduced greatly in value,
the approximation we have found will be less satisfactory. This is the
explanation of the fact that in the table the agreement of the theories is
less close as G increases, that is, as /it decreases.

(1) Diurnal tide.

The tables give the tide heights at the corresponding latitudes.

Tasre III.  Ocean bounded by Circles of Latitude 80° and 14° 80'.

B8=15 8 =10 8 =20 8 = 40

Latitudes.

30° 14° 30 30° 147 30 30° 14° 30’ 30° 14° 30’

Present Theory...|—9-23H,(— 751 H,| — 364 H,|— ‘396 H,| — - 168 H,| — *240H, | - -045 H,} — " 129 H,

Equilibrium )
‘%[‘.‘ﬁeof;,* } |+ 483H| + <242 H| + -433H [+ *242H,| + ‘433 H,| + ‘242 H, | + 433 Hy| + -242 H,

* The correction to the * equilibvium ' theory in this casc is zevo.

SER. 2. voL. 14. x~o. 1235. Q
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TasLe IV. Ocean bounded by Circles of Latitude 30° and —14° 80'.

B=25 8 = 10 B =20 8 =40

Latitudes.

30° |—14°30"1 80° |—14°80 30° |—-14°30'] 30° |-14°30

Present Theory...{—1'30H;|—~1-67H,| + ‘193 H,| — ‘532 H,| + "4T56.H,| ~ ‘524 H)| + ‘843 H,}— 843 H)

E‘,i};fg;‘;},‘m b |4 438~ 2428 4 4338 ~ 2498 + 433~ 242 + 433 |~ 242,

The luni-solar diurnal tide is, as already mentioned, evanescent in the
complete ocean theory.

In Table III, the high magnitudes of the tide heights when 8 = 5 are
due to approximate synchronism. While the complexity of the period
equation makes it almost impossible to get even an approximate idea of
the values of the free periods, yet with a little trouble we may find rough
values of B (or 2) which would cause synchronism between the free oscilla-
tions and the forced oscillations of a given character. So that, if in the
equations [derived from (27)]

dodi+4,A0 = 0)

" " ’ (29)
Ay A+ 4,05 =0

we substifute the suitable values for u; and w,; put f = 3, and take only
the first terms in each determinant, we get an algebraic equation for S.
By this method, great exactness is not attainable, but a sufficient indica-
tion of the position of the critical depths ecan be found.

Corresponding to Table TII, we find 3 = 81, 388.

Corresponding to Table IV, we find 8 = 3'8, 46.

As will be shown presently, the first root is usually too small ; the
second is probably considerably wrong, and is only usetul for showing
that the higher roots indicate depths quite out of the range here con-
sidered. To give greater confidencs to the results, I have worked out the
values of AJAT—AJA] for B =4 and 8=5. The former gives 4515,
and the latter —'2242; showing that the critical depth lies between those
given by B8 = 4 and 5. For the larger basin, the values of the same ex-
prassion for 3 =4 and 8 = 5 are, respectively, 49169 and —1-29289,
Tho critical depth is again between those given by 8 =4 and 8 = 5.
But as the variation of the function between values given by 8 = 4 and 5

* See note on previous page.
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18 much more rapid in the latter than in the former case, the effect of a
small departure from the ecritical depth in the latfer case is to reduce
much more rapidly the height of the tide ; henee in Table IV, for 8 =25,
the heights are not far from normal.

Neither the theory of the ocean completely covering the globe nor the
equilibrium theory offers any useful indication of the correct tide heights.

(iil) Semi-diurnal tide.

TasLe IV. Ocean bounded by Circles of Latitude 30° and 14° 30'.

B =25 B =10 B =20 8 =40

Latitudes.

30° 14° 30 30° 14° 80 30° 14° 30’ 30° 14° 30

Present Theory...| 1:86H, | *348H, |—1-00H,|~ T34 Hyj— 436 H,| — 063 Hy| + -363 Hy| + 361 Ho}
Cmg,f:ﬁgce‘m} 1-25H, | 1-75H, | 5-86H, | 8-56H, |— 445, — 1-56 Hy| + 690 Hy — 1-02.H,,

Equilibri i
‘}[‘ﬁelor‘;}:m} A +TsH,| + -0aH, | « 75H, | + 94K, |+ T5H, |+ 94H, |+ T5H, |+ 94H,

TasLe V. Ocean bounded by Circles of Latitude 80° and —14° 80'.

B =25 8 =10 B =20 8 =40

Latitudes.

30° |—14°30 30° [—14°30| 80° |—-14°30 30° |—14°30

Present Theory...j—4 98 Hy| — 323 Hy| — -837 Hs|— *655 Hy| + 3-36 H,|— 3 61 H;| — 443 Hy| — 429 H,
Comlq’,l}f;gr‘;’,cea“ } 1-95H, | 1-75H, | 5'86H, | 8-56H, |—445H,|—1-56H,] 6'90H, |—1-02H,

[Equilibrium - . . .
Thocrgw } 15H, | coaH, | -75H, | -94H, | T5H,| -94H, | -T5H,| -04H,

The values of 8 roughly indicating critical depths for these tides are,
for the first ocean, 2'2 and 84 ; for the second, 2'8 and 18. These num-
bers account for the higher magnitude of the tides, in Table V, where
B =5 and B8 = 20, than in the other cases.

Again, there seems no relationship between the figures given by the
three theories.

# The correction to the ordinary ¢ equilibrium *’ theory is zero in this case.

Q 2
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It is important to notice that the effect of the boundaries on the
diurnal tide (which is zero in the complete ocean theory) is to make it to
correspond in magnitude with the semi-dinrnal and in many cases to
predomiinate. This is fully exhibited in the following table, where we
have taken the ratio H/H, = 4'5.*% The cases of exaggerated tides due
to approximate synchronism are omitted.

Lat. 30°. T.at. 14° 30',
I Semi- Lo Semi-
s Diurnal. diurnal. Diurnal. diurnal.
7
g |g=10{16H, | 1-09H, | 171, | -T3H,
Q<
% |B=20| T6H,| -44H, | 1:02M | -063H,
* |e=40| -20m, | 36H,| -581L | 36H,
T.at. 30°. Lat. —1430".
< .| Semi- N Semi-
= Diurnal. diurnal. Diurnal. diurnal,
o | B=10| ‘8TH,| ‘841, | 24H, | -66H,
<
S |B=20|38H, | 44H, | ssm | 3R,
77

Note on the “ Corrected Equilibrium ™ Theory of the Tides in a
Polar Basin.

In a previous paper (Proceedings, p. 81 of the present volume) I have
worked out the dynamical theory of the tides in a polar basin. In com-
paring the results obtained with the ““ equilibrium results, the uncorrected
forms of the latter were taken. For the tides of the second and third
species the correction is zero, but in the case of those of the first species
the correction makes an important difference.

From p. 228 of the present paper, the corrected form of the long
period ¢ equilibrium  tide is

{=Hy =B —}(uitmustui—1),

where u; and u, are the boundaries of the zone. If this be changed into
a form suitable for use in a polar basin by putting »* =1—4u% and by
taking uy = 1, py =4/(1—»)), the result is

$=H, | G—A =3 1—m)—4/l—);.

* Darwin, Scientific Papers, Vol. 1, pp. 20 and 21 (tides A, and A}).
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We now repeat the tables on p. 62 of the former paper, substituting

the corrected form of the equilibrium tide.

THE DYNAMICAL THEORY OF THE TIDES IN A ZONAL OCEAN.

Boundary v = %, Lat. 75° 30/,

Tide Height at Pole. Tide Height at Boundary.
Dynamical Corrected D ical Corrected
Fhoore ' | Bquilibrium | “Fpe7 04 | Equilibrium
eory. Theory. eory. Theory.
B=25 ‘0306 H, ‘0315H,, ~0307TH, —+0310H,,
8 =10 ‘0298 H,, ‘0315H, —-0305H, —~0310H,,
B=20| -0234H, 03156H, | —'0293H, | —-0310H,
B =40 ‘0260H, ‘0315H, —0270H, | —-0310H,
Boundary v, = 3, Lat. 60°.
Tide Height at Pole. Tide Height at Boundary.
: I Corrected ; . Corrected
‘D%:ﬁ:g:_l:al Equilibrium D),i,rll;:?r;’nl Eqguilibrium
s Theory. . Theory.
B=5 117 H, *198H, —-115H, — 122H,
g=10| -105H, -198H, —-112H, —-122H,
B = 20 -0887H, 1280, —-103H, —-122H,
8 =40| -0668H, ‘128H, ~-0899H, —122H,

[t is noticeable that the ‘ corrected equilibrium ”’ theory gives a fair
approximation to the dynamical theory when the basin is small and the
depth great. The approximation is not so good (for values of v = u) as in
the case of a zonal ocean near the equator. If the maftter be examined
analytically in the same manner as is done on p. 224 of this paper, the
reasons for the less satisfactory approximation become obvious.





