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ON THE MODIFICATION OF A TRAIN OF WAVES AS IT
ADVANCES INTO SHALLOW WATER

By W. BurxsipE.

{Received June 23rd, 1914.—Read November 12th, 1914.]

1. In his memoir “ On the Motion of Waves in a Variable Canal of
small Breadth and Depth” (Camb. Phil. Trans., 1838), Green shewed
that if % is the depth of the canal, the height of a wave travelling along
it varies as A~ and the length as 2:. Incidentally Green’s analysis shews
that if the depth varies slowly enough, there is practically no reflection
due to varying depth.

It it be assumed that, as a train of waves advances from deep into
shallow water, the depth varies so slowly that the effect of reflection at
the bottom may be neglected, it is evident that the constancy of the time-
period and of the rate of transmission of energy are sufficient data from
which to determine the change in the height and the length of the waves.
The results thus obtained are markedly different from those in the case
of “long” waves.

2. If B is the amplitude (i.e., half the height from trough to crest) of
a train of waves of length 27/m, and time-period 2= /n, in water of depth
h, the velocity function is

B

¢ = %" cosech m#h cosh m (y — h) cos (mx—ni),

where 1n? = gm tanh mh. Q)

The mean rate of transmission of energy, ¢.e., the mean value of
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In the absence of reflection, the length and amplitude of the waves in
water of depth % is given by the two equations

g°8% 2mh—+sinh 2mh
8n cosh® mh

— constant,

n?—gm tanh mh = 0,

where 27r/n is the constant time-period.
If a is the amplitude in deep water (h = o), and L the wave-length
in deep water,

2
L==4,
2mh-+sinh 2mh 4 i1
and g 2cosh®mh " (u)
) 20-}sinh 20
Now the function —é_%;sh—”éh

is zero when 6 =0, and unity when 6= . It has a single maximum

when 6 tanh 0 = 1.

The corresponding value of 6, to two significant figures, is

60=1.2,
204-s1inh 20 __ | .
and then Sooshi0 1.2,
When mh =1.2, tanh mhA = .88,
. pE g
and, from (@), o .88L.

Hence as the wave-length diminishes with diminishing depth, the ampli-
tude begins by diminishing, and reaches a minimum given by

a
B = Ja.9 = 9lq,
when the depth has so far diminished that the wave-length is .83L.
After this, with diminishing depth the wave-length steadily diminishes,
while the amplitude increases.
The solution of the equation

20+sinh 20 __
2cosh?0 =~ 7



1914.] THE MODIFICATION OF A TRAIN OF WAVES. 138

other than 6@ = o, is 6 = .64,
giving tanh 8 = .56.

Hence, when the wave-length has diminished to .56L, the amplitude
has increased up to the original amplitude. At this stage, the ratio of the
depth to the actual wave-length, viz., mh/27r, is about .1, and the waves
are still far from being ““long” waves in the ordinary sense of the term.

When 8 = 2a, i.e., when the original amplitude is doubled, 8 = .125,
and the ratio of the depth to fhe actnal wave-length is .02 so that the
motion is practically one of “long” waves. Beyond this point Green’s
formula is certainly applicable.

3. The interest these results have depends on how far the
assumption of no reflection is justified. To test this directly in the
hydrodynamical problem would probably be difficult. In the somewhat
analogous problem of the transverse vibrations of a tense cord, Lord
Rayleigh (“ On the Reflection of Vibrations at the Confines of Two Media
between which the Transition i1s Gradual,” Proc. London Math. Soc.,
Ser. 1, Vol. x1, pp. 51-56) has shewn there is sensibly no reflection if
the change of density of the cord is sufficiently slow. If can hardly be
doubted that a similar result is true in the hydrodymamical problem if
the depth changes with sufficient slowness.



