
1877.] On Progressive Waves. 21

On Progressive Waves. By Lord RAYLEIGH, M.A.> F.tt .S.

v. 8, 1877.]

It has often been remarked that, when a group of waves advances
into still water, the velocity of the group is less ttan that of the indi-
vidual waves of which it is composed; the waves appear to advance
through the group, dying away as they approach its anterior limit.
This phenomenon was, I believe, first explained by Stokes, who re-
garded the group as" formed by the superposition of two infinite trains
of waves, of eqiial amplitudes and of nearly equal wave-lengths, ad-
vancing in the game direction. My attention was called to the subject
about two years since by Mr. Fronde, and the snme explanation then
occurred to me independently.* In my book on the " Theory of
Sound" (§ lyi ) , I have considered the question more generally, and
have shewn that, if V be the velocity of propagation of any kind of
waves whose wave-length is X, and K = 27r\~1, then U, the velocity of
a group composed of a great number of waves, and moving into an un-
disturbed part of the medium, is expressed by

or, as we may also write it,

d l o g K K '

Thus,if 7ocX", U=(l-v)V (3).
In fact, if the two infinite trains be represented by cos «:(7/—x)

and cos x\V't—a;), their resultant is represented by
cos K (Vt—x) + cos Kr(y't -x),

which is equal to

• Another phenomenon, also montioned to me by Mr. Fronde, admits of a similar
explanation. A steam launch moving quickly through Iho water is accompauiod by
a peculiar system of diverging waves, of which the most striking feattiro is the
obliquity of the lino containing the greatest elevations of succe».sivo waves to the
wave-fronts. This wave pattern may bo explained by the superposition of two (or
more) infinite trains of waves, of slightly differing wave-lengths, whose directions
and velocities of propagation are so related in each caso that tluro is m> change of
position relatively to tho boat. The mode of composition will be best understood by
drawing on paper two sets of parallel and equidistant lines, subject to the abovo
condition, to represent the crests of tho component trains. In the rase of two trains
of slightly different wave-lengths, it may be proved that the tangent of the angle
between the lino of maxima and tlio wave-fronts is half the tangent ol the anglo
•between the wave-fronts and the boat's course.
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If *'— *> V — V be small, we have a train of waves whose amplitude
varies slowly from one point to another between the limits 0 and 2,
forming a series of groups separated from one another by regions com-
paratively free from disturbance. The position at time t of the middle
of that group, which was initially at the origin, is given by

•which shews that the velocity of the group is (SV—KV) -f- (K'-K).

In the limit, when the number of waves in each group is indefinitely
great, this result coincides with (1).

The following particular cases are worth notice, and are here tabu-
lated for convenience of comparison : —

Foe X, U = 0, Reynolds' disconnected pendulums.
Tec X*, U = £ V, Deep*water gravity waves.
Toe X°, U Hz V, Aerial waves, &c.
Tec A~*t U =e f T, Capillary water waves.
Toe X"1, U = 2T, Flexural waves.

The capillary water waves are those whose wave-length is so small
that the force of restitution due to capillarity largely exceeds that due
to gravity. Their theory has been given by Thomson (Phil. Mag.,
Nov. 1871). The flexural waves, for which U=2Vt are those cor-
responding to the bending of an elastic rod or plate ("Theory of
Bound," § 191).

In a paper read at the Plymouth meeting of the British Association
(afterwards printed in "Nature," Aug. 23, 1877), Prof. Osborne
Reynolds gave a dynamical explanation of the fact that a group of
dt'ep-water waves advances with only half the rapidity of the indi-
vidual waves. It appears that the energy propagated across any point,
when a train of waves is passing, is only one-half of the energy neces-
sary to supply the waves which pass in the same time, so that, if the
train of waves be limited, it is impossible that its front can be propa-
gated with the full velocity of the waves, because this would imply the
acquisition of more energy than can in fact be supplied. Prof. Reynolds
did not contemplate the cases where more energy is propagated than
corresponds to the waves passing in the same time; but his argument,
applied conversely to the results already given, shews that such cases
must exist. The ratio of the energy propagated to that of the passing
waves is U : V; thus the energy propagated in the unit time is U : V
of that existing in a length T, or JJ times that existing in the unit
length. Accordingly

Energy propagated in unit time : Energy contained (on an average)

in unit length . = d(jeV) : d*, by (1).
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As an example, I will take the case of small irrotational waves in
water of finite depth L* If z be measured downwards from the surface,
and the elevation (/t) of the wave be denoted by

h = 11 cos (nt— KX) (4),

in which n = KT7", the corresponding velocity-potential (<f>) is

sin (nt-Kx) (6).
6 — 6

This value of <f> satisfies the general differential equation for irrota-

tional motion (V s * = 0), makes the vertical velocity -$• zero when
dl« = I, and — when z = 0. The velocity of propagation is given by
at

We may now calculate the energy contained in a length as, which is
supposed to include so great a number of waves that fractional parts
mny be left out of account.

For the potential energy we have

x (7).

For the kinetic energy,

by (1) and (6). If, in accordance with the argument advanced at the
end of this paper, the equality of F, and T be assumed, the value of
the velocity of propagation follows from the present expressions. The
whole energy in the waves occupying a length x is therefore (for onch

unit of breadth) Vx + T = I'jpH*. as (9),

H denoting the maximum elevation.

We have next to calculate the energy propagated in time t across a
plane for which x is constant, or, in other words, the work (W) that
must be done in order to sustain the motion of the plane (considered
as a flexible lamina) in the face of the fluid pressures acting upon the
front of it. The variable part of the pressure (fy), at depth z, is
given by " • • .

* ety T,TTe€(I-l) + e- ( I- | ) , . xip = — p -2- = — nVH -t,
1—=Ml— cos (nt—KX),

• Prof. Reynolds considers the trochoidal wave of Kankiue and Froude, which
involves molecular rotation.



24 Lord Raylcigh on [Nov. 8,

while for the horizontal velocity

- i =r KVE — p ; COS (nt—KX) ;

dec tfl—e-*1 v '

eothat W=^pfjzdt=\gPm.Vt\\+^-^\ (10),

on integration. From the value of V in (6) it may be proved that

and it is thus verified that the value of W for a nnit time

d (KV) „ . . . . ..
= —-= X energy m unit length.

ctic

As an example of the direct calculation of U, we may take the case
of waves moving under the joint influence of gravity and cohesion.

It is proved by Thomson that

Z (11),

where T is the cohesive tension. Hence

When «: is small, the surface tension is negligible, and then TJz=.\V\
but when, on the contrary, K is large, U= %V, as has already been
Btated. When 7Vf = g, TJ-=V. This corresponds to the minimum
velocity of propagation investigated by Thomson.

Although the argument from interference groups seems satisfactory,
an independent investigation is desirable of the relation between
energy existing and energy propagated. For some time I was at a loss
for a method applicable to all kinds of waves, not seeing in particular
why the comparison of energies should introduce the consideration of
a variation of wave-length. The following investigation, in which the
increment of wave-length is imaginary, may perhaps be considered to
meet, the want:—

Let us suppose that the motion of every part of the medium is
resisted by a force of very small magnitude proportional to the mass
and to the velocity of the part, the effect of which will be that waves
generated at the origin gradually die away as x increases. The motion,
which in the absence of friction would be represented by cos (nt—KZ),
nnder the influence of friction is represented by e'1* cos(n< — <ra>)j
where ^ is a small positive coefficient. In strictness the value of K is
also altered by the friction; but the alteration is of the second order as
regards the frictional forces, and may be omitted under the circum-
stances here supposed. The energy of the waves per unit length at
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any stage of degradation is proportional to the square of the amplitude,
and thus the whole energy on the positive side of the origin is to the
energy of so much of the waves at their greatest value, i. e., at the

origin, as would be contained in the unit of length, as I e*2'** dx : 1,
Jo <

or as (2/x)"1 : 1. The energy transmitted through the origin in the
unit tine is the same as the energy dissipated ; and, if the frictional
force acting on the element of mass m be hmv, where v is the velocity
of the element and h is constant, the energy dissipated in unit time is
hSmv* or 2hT, T being the kinetic energy. Thus, on the assumption
that the kinetic energy is half the whole energy, we find that the
energy transmitted in the unit time is to the greatest energy existing
in the unit length as h : 2/n. It remains to find the connection be-
tween h and /i.

For this purpose it will be convenient to regard cos (lit — KX) as the
real part of e'"'e"l(tX, and to inquire how K is affected, when n is given,
by the introduction of friction. Now the effect of friction is represented
in the differential equations of motion by the substitution of -j-j + h —

^ dt dt
in place of —v or, since the whole motion is proportional to ein\ by

substituting — u*+ihn for — w9. Hence the introduction of friction
corresponds to an alteration of n from n to n — ^ih (the square of h

being neglected^ ; and accordingly K is altered from K to K—hih —.
an

The solution thus becomes e" dn
 6

<("'""r), or, when the imaginary

part is rejected, e rfn cos (nt—KX) ; so that (i = \h-y-, and
dn

h : 2/i = —. The ratio of the energy transmitted in the unit time to
die

the energy existing in the unit length is therefore expressed by
dn d(KV) . , ,
-7- or —;—L, as was to be proved.
die dn

It has often been noticed, in particular cases of progressive waves,
that the potential and kinetic energies are equal; but I do not call to
mind any general treatment of tlie question. The theorem is not
usually true for tho individual parts of the medium,* but must be
understood to refer either to an integral number of wave-lengths, or to
a space so considerable that the outstanding fractional parts of waves
may be left out of account. As an example well adapted to give in-
sight into the question, I will take the case of a uniform stretched
circular membrane (" Theory of Sound," § 200) vibrating with a given

* Aerial waves are an iinportaut exception.
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number of nodal circles and diameters. The fundamental modes are
not quite determinate in consequence of the symmetry, for any dia-
meter may be made nodal. In order to get rid of this indeterminate-
ness, we may suppo e the membrane to carry a small load attached to
it anywhere except on a nodal circle. There are then two definite
fundamental modes, in one of which the load lies on a nodal diameter,
thus producing no effect, and in the other midway between nodal dia-
meters, where it produces a maximum effect ("Theory of Sound,"
§ 208). If vibrations of both modes are going on simultaneously, the
potential and kinetic energies of the whole motion may be calculated
by simple addition of those of the components. Let us now, supposing
the load to diminish without limit, imagine that the vibrations are of
equal amplitude and differ in phase by a quarter of a period. The
result is a progressive wave, whose potential and kinetic energies are
the sums of those of the stationary waves of which it is composed.
For the first component we have F, = E cos* nl, TX = E sin* nt; and
for the second component, F, = E sin* nt, Ts = E cos* nt; so that
Vt + V,=z 2\ f JP, = E, or the potential and kinetic energies of the
progressive wave are equal, being the same as the whole energy of
either of the components. The method of proof here employed appears
to be sufficiently general, though it is rather difficult to express it in
language which is appropriate to all kinds of waves.

Notes on Vortex-Motion, on the Triple Generation of Three-har
Curves, and on the Mass-Centre of an Octahedron. By Prof.
CLIFFORD, F.R.S.

[Redd November 8, 1877.]

On Vortex-Motion.

Let tr be the velocity, and w the rotation, at any point of a moving
substance. It is known that 2o> = Wo; viz., this is equivalent to
the three equations ordinarily written thus :

If, moreover, h be the expansion, or the logarithmic rate of change of
the volume, we have h == — SVo-; viz., this is ^M+^v + S.tfl. Hence
the quaternion q, =—A; + 2w, is simply Vo. The problem solved by


