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'On the Sum of the Products of r different Terms of a Series.
By J. Haumonp, B.A,

(Read February 10th, 1876.]

Let @, a), @5, ... form a series, and let C, (ay, ay ... a,.;) denote
the sum of the products of » different terms, taken from the first n
terms of this series.

Then

Cr (ao, ah coe Qyayy a’n) = Cr (a'o: ay .. a’n-l) + a’:_tCr-l (“0) ayy - a’n—l)-
Or, 'Writing ¢ (n, 7) instead of C. (ay,.ay, ... @u_y1),
p(n+1,7) = ¢ (n, 1)+ a.¢(a, r—1).
This gives ¢ (n,r) =Za,¢ (n,r~1)
= 3a,2a,¢ (a, r—2)

where 2 means summation with respect to », and each 3 operates on
everything that follows it.

Continuing this process, we obtain

o (n, ¥) = 2a, Za, o Za, ¢ (n. 1);

there being r—1 operations, each expressed by Za,, performed on
¢ (n,1) in succession; 2a, meaning that its subject of operation is to
be multiplied by @, and then summed with respect to n.

This result may be written

¢ (n,7) = (Za,) "¢ (m1).

But ¢ (n,1) = ata+at i+ = 3a,.
Thus ’ P (0, 7) = (23,) cevrvieerririnrereiiinnnne (I

¢ (n,7) or (2a,)” is not the same as C, (ag, @y, ... @,_,) except in
- the case where ench of the r arbitrary constants, implied in the r sum.
mations, is properly determined.
Let these constants be ¢, ¢, ... ¢,.
Then Cl (av, By eos a,.-,) = 2“.'*‘61-
Multiplying by a, and summing with respect to =,
CH (a(h Qyy ..o an-l).= (2"’..)2'{'012&“-}-61.
Proceeding in this manner, the final result is
C, (an ... au_y) = (Z0,) +6 (2a,) '+ (Sa) "+ ... +¢ »..;(‘.’.).
The constants may now be found from the conditions that
Ci(ay @, «ec @) =0 when 0 =0,
C; (an a1y ... @p)) =0 when s =00r1,
C,(ap ay ... a,.)) =0 when n=0,1,2, ... r~=1,
12
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We have
Ci (a0 @1y oo @n)) = ¢ (0, 1) +0;
C, (any ayy ... ayt) = ¢ (1, 2) + 19 (ny 1) ¢,
Cs (ag, ayy ... @p)) = ¢ (n, 3) +o,qp(n 2)+c,<p (1) +¢ 3.

C, (ap, ayy ... a,,_.) = (n, 'r) +cl¢ (n, r-—l) +c,¢ (n, 'r—2) +... +o
In each of the equations (3) put #=0 and solve for ¢,.

Then 1 . (=)e,
1 0 0 = |¢(0,1) 1 0
¢ (0,1) 1 0 .. $(0,2) ¢(0,1) 1 “
$(0,2) ¢(0,1) 1 $(0,3) ¢(0,2) ¢(0,1) ...
. rro.ws e fmws -
or e =(=)"1]¢(,1) 1 0 R IR ) B

$(0,2) (01 1 ..
8(0,3) 9(0,2) $(0,1) .

T TOWS -

Again, in the first equation, put n=0; in the second, n=1; in the
third, #=2, and so on; and ,solve for e,.
Then, as before,

a=(=y|¢(01) 1 0 oo | erereerenenens (B).
¢(1,2). ¢(1,1) 1
(2,8 ¢(2,2) 9(21)

7 rows
From (4) and (5) we obtain the identity
¢(0,1) 1 0 . |=l¢0,1) . 1. 0 o

$(0,2) ¢ 1 .| [e2) sy 1 .
203 902 ¢OD .| [¢@3) 2@ 9@ ..

Since, in order that the left-hand members of (3) may vanish, in the
first equation # must be put =0; in the second, O or 1; in the third,
0,1, or 2, and 80 on; there are | r equations to find the r quantities
€y €35 ... €,y and therefore |» —# identical relatlons between the other
guantities.

If C,(ay o ... a,.;) be expressed in the form (Za,)’, where each
summation is performed between certain limits, these limits are, for
the first summation, from 0 to n; for the second, from 0 to » or from
1 to n; for the third, from 0 to #, from 1 to #, or from 2 to n; and
80 on.
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Thus, C, (@, a, ... a,.,) may be found in |r different ways by
taking different limits of snmmatlon but the results will be in every
case identical.

The most convenient limits are from 0 to » for each summation.

For example,

”
Cl.(a'o; 1y eos an-l) = Za.,.,
Ci(an @, ... @y) = (Ea..)’ Za..ZaM

n ”

Ca (ao’ Ay e a,._,) = (oxa,,.)’ = ‘Ea,. (oza")’E ’2@" (%’.a,.)’

n n n n . n n n n

= 2a,20,20a, = (Za,)' 2a, = 2a,3a,Za,.
[] 1 0 1 ) 3 1 )

Corresponding to the determination of ¢, in (4), we have
C. (a5 @y ... Gp.p) = (%a,.)' T () H

this is the most convenient form.
And, corresponding to the determination of ¢, in (5),

C.(ay @, ... a,,) = Ea,,, Ea,.. . %a,. vervsreesnnns (7).

In the case where ¢ (w0, 7) =0 for all values of , or, what is the
same thing, where C, (ay, 4y, ... 6,) tends to a finite limit for all values
of r, we have, from (3),

a =0 (ay ay ... @)
= Cl(aoi d‘l) . auo)
63 =03 (G @y vor @) T wevreeeernnernrnnennnan ().

¢, = C, (d, @ - )

Hence ¢, is a constant with respect to # only; <.e., it is not indepen-
dent of 7 or of the form of a,, aq, ay, ..., a8 i8 also evident from either
(4) or (5).

In the most simple case, when a, = a”,

¢(n,1) = Za, ==

_ " 2_ a2n - azn
#2) = @) = 2 =y @@=

Y cos vee XY

e a'l .
¢ (n, 7) = (Za")" = (a—1) (&*-1) ... (a’—1) '
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and, from (3),
C.(l,aa,...a"Y)=¢(n,7r)+ap(nr=1)+ap(n,r—2)+ .. +e
+A an(r l)+A an(r-2)+ +A'
(a-1) (¢*~1) ... (a"=1)

The constants A, A, ... A, are found from the condition that
C.(,ad...a"H)=0 when n=0,1,..r-1, and the final
result is (@—1)( w, 1)

g . el " - a"—a a*—a""
C.(,ad, .0 = @1y @=1) . (@=1y 9).

The term independent of n i8 c,.

Thus,

aloso wes #(r=1)

o =(-) (a—1) (a’-1) ... (a'—1)

rir-1)
2

—_ (=Y a
=(=) (a—1) (a*=1) ... (a"=1)’
To verify (4) and (5), put r=2,

@
Then 6= @=D (@=1 1);
and
s@1L 1 | _ | 1 )
$(0,2) ¢(0,1) - a—1
11
(a—1) (a*~1) a-1
_ 1 -1 _ @
T (@=1 (a=1)(a*~1)  (a=1)(a’-1)’
p(O) 1 1 .
?(1:2) ¢(111) - ~a—1
a a
(6-1)(a*-1) a-1

-8 o’ = .2
(a—-1) («=1)(@-1)  (a-1)(a*-1)"
In (6), put a,=a" and r=2. Then
C.(,a,..aY
o aa"—1

= (§ a")y = 3Zq"
o [']

a—1
— a™ __a 1 + 1
(a—1)(a’*=1) (a=1)* (a—1)(a’-1) (a—1)
=2"=a"(a+1)+a
~(a-1) (a’~-1)
= (a"=1) (a —a).

@-1) (@=1) °
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In (7), put @, =a" and r=2, Then
Cz (1, @y ... "-')

- a* __a a’ + a
@ D@D~ @G- @-D @D G-Iy
— (a"=1) (a"—a) ‘
@=D @=1) a8 before.
In (9), put n =00, and suppose a to be fractional.
Then the limit of C, (1, a, 4 ... a*') when » is infinite is

rir-1)
a 2

== (a-1)(a*-1) ... (@~-1)
which agrees with (8).

In (9), put @ =¢Y-, Then
C, (1, ou/-—l, 820»/-_1 e(n-l)u/ﬁ)

. nO . n—1 n—r41

_smg sm—2—0 s 8in 5 06.._’;!'“,3

- sinﬂsine \sin’—’-‘2 ‘
5 )

DBut C, (1’ eof-—l’ ezu’-_l’ . e(nq)u/'-'f)

= S{cos(a+B+ ... r terms) 6 + +/—1 sin (a+B+ ... r terms) 6},
the sum of all terms of the form A
cos (a4+B+ ...)0 + v —=1sin(a+8+ ...)6,
where a, 5, ... are any r different terms of the series 0, 1, 2, ..., n—1.
With this notation,
Scos(a+p+...)0
sin nf sin 2= 1 0 ... 8in %’—”—1 0

=_2 2 cos =1 ¢ voeeee (10);

sin %smﬂ ... 8In lfg 2
and
Ssin(a+8+ ..
sin nd sunﬂ 1 0 ... sin 1L—"'——-'—'-—l 0
= 2 B 2 sin =10 11).
= 510 e

sin b sin 0 .,, sin —
.2 2

Let (z) denoto a given rational and integral function of =, of the
order m ; and write a, = (n) a”.
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Then

(1) = Z(n)a" =_1f“ —1 )
1—-%_ A
l—a
_ al3 a® R | 1
¢(n,2)...[2‘.(n)a]’_ l—a.l—a’ l_iA(n)'l_,_a_A(u),
: " 1—-d l—a
i "8 — a™ ., 1 .
¢(”’8)—[2(n)a'] - l1—a¢.1—¢% 1—¢° I—LA(”)
1-a®
x —r— ). —L (@,
—)a™ 1 1
¢(ﬂ,7‘)—-1 a l_aa l_ar.l LA(n 1 ar—l- A(-’"’)""
l—a 1 —a
— () ......(12);
“1— 8 A
l-a

where, in the expressions on the right hand, A refers to # [viz.,
A(n) = (n+1)— (n) a8 usua.]], the fractional symbols represent series

1 - =1+ —A+ ——_—-A’+ &c., and where each power of
1—-%'A l—a (I—ey

1—a
A operates upon everything that follows it.

For instance, in the second formula, if to simplify (r) = n+1 so

a‘m

that A(n) =1, A’(n) = 0, then omitting the factor o g the
remaining factor on the right hand is -
2 e
(1+1 A+ ),A)n+I(1+——1_aA)n+'1’.
that is,
at 3 a .
(l+ +(l a) A )n-}-l (n+l+-——1_a)
= (H (1 o ) (AT + 77112
= AaFl4afl. L = wfl4+atl. 2
"1 l—a
a : a
= ( 4 "+i ) +iZp (s )
— a G‘
+( (n+1 +m ) +('1—__ 22 2
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Referring to (3) and (4), we see that, in the general case,
Cr(an @y e tp)) = 9 (m,7) ¢ (n,7=1) ¢(n, 1'—2) . 1)..(13).
¢ (0,1) 1 0 .0
$(0,2) ¢(0,1) 1 .0
$0,7) O r=1) ¢(0,7-2) ... 1
When a,=n+1. a®,
G, 2 ..00"") =] ¢(n,1) 1

$(0,1) 1
C.(1, 22, ...ma™") = | ¢(n,2) ¢(n,1) 1
¢(0,1) 1 0 '
19(0,2) ¢(0,1) 1
a® @ -
where # D) =—1Z (FT+12),

PO = T
O (32 2o S (2n+3+ )+(12T";,-,}.

Hence ¢(0,1)= i—a (1+ 1_.@) - A-ae)?

a a? o 2q*
{1+1—a+ rea(3+y) + a—a ’}

9(0,2) =

1
I—a)d-a)

= (l—a)l(l—a,’) (” =t 1?-; ) (” 1 ’a )
_ 1l14a+2a
= =0 (1=a)"

C: (1, 2a, ... na™') = (T_—I_W 1 -a (n+1 + —a,)

= ﬁ—l_a? A—n+1a*+na™) ......... @14),
which is easily verified.

G (1, 20, ... na™") = {¢ (0,1)]"—¢(0,2)—¢(0,1).¢ (2, 1)+ ¢ (v, 2)
—_1  1+a+24 __a a )
T (Q=a)* (A—a)(1-a’)® (1—-a) —a

aﬁn

tooa=a

pry a 20! }
x{'n+ +n'+i—1-—a,+ (2n+3+ )+(1 )

(s,
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—  2a+ad*+a’
= T A e

ar a 207 1+a+2d'°}
taood—a {“ +n ( it o)t (—ay?

(n+1 na)

{2a+a’+a,"—n+1 a"—2n+8.a"*'—3a"**
+ﬁ a'l+8+nan+l+n+1’ 2n+—ﬂ a*!

— 224+ n—2. " —n.a"* 4 n.n—1. aﬁyu(} ;

_ 1
= 0= =y

e.g., when n=2, this is
1
2 Y93—-92a%—6a 68— 8
20 = =2y =y { a— 2a*—6a®+ 6a*+ 6a’— 61— 2a7 + 24 }
the truth of which is evident.
When = is infinite and a fractional,

C, (1, 20, ... na™l) = ﬁ%ﬁg—%’? revrreenenns (15).

This result is trne approximately whenever na" is small enough to bo
neglected.
When =10, a=14, the result obtained from (15) is
*241,620,824,554,538 ...,
the correct valne of C;(1, 2a, ... 10a®) being
*241,620,823,030,380,9.

It may be noticed that the term independent of n in (14) is
1
(1—a)?
pendent of # in-the expression for C, (1, 2a, ... na"') is the limit of
that expression when a is fractional and » infinite; and generally,

since we have, from (12),
¢ (n, 1) = (a")"F(n),
where F(z) is a rational integral function of #, when a is
fractional, ¢ (0,7) =0 for all values of r, and the limit of
C,[(0), (1) a, ... (n—=1)a*"] =¢,, the term in its expression inde-
pendent of x.
The general term of ¢ (», 7) obtained from (12) by expansion is

(l—-a)({fg; .(1—a) (1 o ) (n) ( ) 1 (n)..
...... (1%; A) (n)

*r (n) A¥e-1(n) ... A% (n).

= 1+4+2a+84’+ ... ad inf. by expansion; that the term inde-

(__)r antat 2ot .tk

(A—ayst T (L—ayetl (L=a)e *]
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Now :
A' ’w,,‘v,. = A' u’_' . vn‘+wA'—l unf] . A’U,,+ 9%—22 A’-’ u:ui . A, ‘vu + &0.
Hence, putting = =x«,, %,= (n), and writing for shortness
NG (n) = (n)x,’ A",—l (n_’_])\ = (ﬁn-{-l)‘f_l,

A""—2 (n+2) = (n+2)"'_2, &0-,
wo have

AR' ("’) Uy = (”')K, U + &, (n+1)n'—l Ao,
+ _‘r_(lxr_2;l)(n+2)"'_2 A2‘0u + &c' ;

end substituting for v,, A" (n) A"-2(n) ... A" (n),
the general term of this expression is

Lee (n+1,..)

| lr—| Kp— lr~l

Ak"‘H"‘(n) A2 (n) ... A" (n).

x=?

Continuing this process, the general term of ¢ (n, r) is found to be

(=) a M+ 0y + 2034 .00 + 70, 'L .
(1—a)"l+1 (l—a’)"f"l . (1—a )x,.+ T [ | x,— U,
\ ot v &g tle ua_ﬂ
Lr_al kpatla—lg L__a Kpatl_s—l_y A=
X (71+l,-|)x _l (n+l -2),‘ l+l (“+l '3)K ’+ ' g
...... (’Il+l|)"’+ ‘2"! . (ﬂ)"l +i
Now put an+h=q
n+th—-h=4
K5+l — la =4

Kr. l+lr l"lr 2

€ ~l,_, =1

| II

bl “

-
—

Then L
L

= 4K,
= 4yt y—K—K,
La=utut ... +o 4 —n—K— .. —K_,
utut ...+, = +H+ L K
and the general term of ¢ (n,7) becomes
=) afhtmt gt tra, lhta |btes . Loty

(Q=a)+T(1—a?)atl  (1—a7)*+! I_l_'Li‘Uﬁl_'i s Lo
X (”)‘: ('n+l1),z (n+l2),a (n?}-l,_,),r vee e (16).
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The complete expression of which (16) is the general term is found
by giving each of the quantities ¢, 4, ... ¢, &, Ky, ... x, all possible
values [&, &, ... I,.; being given in terms of ¢, 4, ... ¢, and x, Ky, ... %],
and adding the resalts. ‘

Each of these quantities is either zero or a positive integer; and since
(n) is a rational integral function of # of degree m, the greatest value
of any one of the quantities ¢, ¢, ... ¢, i8 m.

Hence the greatest possible value of x is m, the greatest possible
value of «; is 2m, and so on.

Thus each of the quantities ¢, t;, ... ¢, has all positive integral
values from O to m inclusive.

«, has all positive integral valnes from 0 to m inclusive;
K3 » ) ” ) 0 to 2m ”

K, ” » » 0 to rm I
Those values of 4, &, ... ¢, and &, &, ... , which make any of the
quantities 4, %, ... ,_, -negative are inadmissible and must be rejected,
as also those that do not satisfy the relation
o+t .. e =g+ 45+ . .
For instance, when r=2, the general term of ¢ (n, 2) is
airtatia l ll+‘2 .
A=ayT(—a)" 4 [ (n),, (n+1).,;
and all the possible valaes of «, t, x, x;, ) are found from the follow-
ing table :—

r=2

OHNOHNOFHNOMO|OHOKHOO| s~

=

NHEONFMNONHOHOO(HOFHOOO
NWHEHNWONDNWND|(=DO MO X

: ;{mwmmwwwmwu.—ao et et © O
H wmw»—-»—*»—aooomwmwwoouolg
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Hence

$(49 = {( W 0) (0t

e (n)l (n+ 1)
(n), )+ — (@) (n+1),

)P+ ... } .

ey )
i) (1—a’)

The terms given are those corresponding to m =1.
Since (n+1), = 1+4) A (n)
_ 1(1—1)
= @t 1@t G @t
it follows that ¢ (n,r) is of the form

(l—a) (l(:);)a:" (1—0,') [(n)) (n)l, (n)a, ves (n),,,]'.

For example, in the result given above, put (n+1) = ()+(n),,
(n+1) = () +(n)s, ..

Then . .
o9 = g { W+ @) (), [,—2—‘1’—, =]
4 aﬂ
+ )’ [1 2 —ay T O (l—-a,")]
+ terms mvolvmg (n)g, (), -..
s a+3a? s a*+a’+2at
(T:;)——(l—-_){(”) +(n)(n)l +() W"’..}

(—1_—T’(1—3’3 [(»), (»), (n),, e (D]

The terms given are those corresponding to m = 1.

When a=1, ¢ (n,7) = ©, each element of the determinant (18)
assumes the form- == oo, the value found for C,[(0), (1), ... (n—1)]
is indeterminate, and the foregoing investigation fails.

And generally, when a*=1, where = is any integer from 1 to r
inclusive, ¢ (%, 2), ¢ (n,2+1), ... ¢ (n,7) are all infinite, and
C.[(0), Q)a, ... (n—1)a"'] is indeterminate. '

In the simplest case, when a =1, the general term of
C,[(0), (1), ... (n—1)] may be found by the following method :

It will be shown hereafter that when (%) is expressed in the form

A0+A|?I+Ag Lg_+ wee +Am & N
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and 3*(n) is taken to be
[nF +A (n]7"! + ... + Amm
A"'Lp_ lp+1 T m+p’
the constants of summation all vanish.

In the formula
Eu“ Uy = Un-p - 2’Un - Au’u—ﬁ . E’vn + Aa“n-s . Eavn - &O.,

put u,= (n), and w9,=0C,.,[(0), (D), ... (»r—1)],
so that Zu,v, = C, [(0), (1), ... (n—1)];
then, writing shortly

A(n—2) = (n—2),, A'(n—8) = (n=3),, ...... )

¢, [(0), @) ... (1=D)]
{((n—1)2 - (n—2),2%+ ... + (—)"(n—m—=1), Z"*'}

| X C,1[(0), (1)y - (w=1)]
(=D 2= (=24 . 0a [0, ), . 0=D)

=) B = (20 4 . 4 (=) (nmm—T), 2 3,
since C. [(0), 1), ... (n—1)] = B(n).
The general term of C, [(6),‘(1), ... (n—1)] is therefore
(=) i)y mg 29 ()5 (i) T
oo (=) ! (n—x, -l)"r-!—‘ 2517 (m),
where each  may have any integral value.from 1 to m+1 inclusive.

It may easily be proved, by the same method as that given in Boole’s
“Finite Differences” (p. 74, Second Edition), that

k{x+1) .,
2 4

\+1

Sy, v, = u,._.‘ B, — kAU oy 20, + Upopoge 200, — .,

the general term being (—)’ L‘%—A‘vwﬂ_,,, 21 0,.

Thus C [(0), (1), ... (n—1)] consists of & serics of terms of tho form
+lemyely+ +l
(=)erenetet (), |“ (ot T t (n 1= 1)y 01,21
2‘:":"! ( )"*‘ (n—xs).,-l

Proceeding in this manner, the general term of C,[(0), (1), ... (n—l)]
is found to be
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(_)xl tugt. )

|m+h—1 lg+a+4+4—1 ... (r—2) factors
' Tl (b (tnth—1G -

X (B=6) ot - (A= ka—k1— D).t 1 - (A= k=g ,—T—=]3)  s1rcy veceee

.. (r=1) factors B} TEr+wate b ththtodoog o)

+thelhto.+i _ +r-1

Now put o=
G+ h=4q
‘a'l'lz—‘s i

Kr—) + lr~2 =4

and let 1, =u,
I, =4+,
I, =44 444,

Lao=a+a+ ... +4a.

Then the general term of C, [(0), (1), ... (n=1)] becomes

(_)I,_l-l-r-l | Il+z1 1 'Ii+ Zz—l |Ir-2+lr-9 1
Tl Lol o Lo s

I g
X (1=L)y_y (0= ey oo (0=1,_5), ;. 372" ().

Different terms for which ¢, ¢, ... ¢,_, have respectively the same values
differ only in their coefficients, and may be added together. The general
coeflicient of the sum of such terms is found by giving 4,1, ... I,_; all
possible values in the coefficient of the general term, and adding the
results. .
Now, since the least valne of any of the qnanhtws Ky Kgy oee Kp_y 18 1,

the greatest value of [ is ;—1, the greatest value of ; is ¢;—1, and so
on, Thus the coefficient becomes

{1 +I| + Il (III‘£+1 + e b3 terms} {1+Ig + I’ tag-‘-l + seely tel'ms}...

which may easily be shewn equal to
|hte—=l |Lte—=1 = |L—1 | I,—1 | L.—1
Wia=l Thle=l ™ [Lla=1 [Lje=1" Lalea=1

And since there are 7—1 of the quantities 4, ¢, ... ¢,_;, each of which
may have any positive integral value from 1 to m 41 inclusive.
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C.[(0), (1), ... (n—1)] consists of (m+1)""' terms of the form

('_)Ir-l+'—1 |L—1 [L—1 I,.,—1

Ela=T Thla=l ™" Malea=l

X(n—T)_y. (n=T),_y e (0=T,_))( -1 slratl (). (17).
The degree of each of these terms is _
(m—¢.+l) +(m—yu+ 1) +...+ (m—l,'_]+1)+ (m+I,_,+1) = (m+1)r.

The constants of summation, being found from the condition that

C. (o, @y ... #,y)) =0, when #=0, 1, ... r—1; all vanish. For each
term contains a factor of the form Z'r-1*! (n), the least value of I,.,
being r—1; and by hypothesis

_a [k, [
P(m)_AoLE+A, +1+ ..... “

which, when p=r, and for all higher values of p, vanishes when = is
pat=0,1, ... »—1.
For the same reason the constants of summation all vanish when

(1) = A+ A [n+1]+4, fﬁélf by

. o
(n) = Ao+ A, Tn+11+4, [“—Ezl TR
Provided that 2° (n) is taken to be

A [nP+a, 1Py [0t 1)

A ,
pap (A1 | [n2F?
A+ a4 I L3

Let r=2, then the general term of C,[(0), (1), ... (n—1)] is
(=) (n—b) ey - 2201 (0).
Thus G, [(0), (1), ... (n—=1)]
= (n—1)2(n) — (2n—2),2(n) + ... + (—)"(n—m—1)n 2"*}(n)...(18);

this result is a particular case of the well known formula for the sum
of the product of two functions; viz., the functions are (u) and Z(n).
In the case (n) =n+1,

' =g [n41P _ [n41]"
02(1,2,.,.15)—1»,[”&] _1.[”&]

_n+l.n.n—1.32+2

24 AL T TN RN (19)‘
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In the case (n) =[n+1)1=2+1+ g[ﬁl]f.
Ci(L, 4, .. )
e [n+1P 2[a+1]")  o—([n+1]', 2[n+1]°
=w {2 - I R
2{[2_+_l]_“+2|'n+1|°}_
. L5 e )’
which reduces to :
Co(l, 4, ... n%) = _ 'n+1 n. An—l 231;;-(*)-1 2u—1.6n+6 (20)'
When =3 the general term becomes
. I ’
(=)= [_II_,Q (n=1L), 1. (n=13), ., . Z0* (n).
Thus, writing down the corresponding terms of C,t(O), D),...(a=1)],
~ and values of 4, ¢;, I, I,
4 t I I, ] i .
1{1f{1}2 (n=1) (n—2) 2(n)
12|18 ]|=2(mn=1)(@—-8),3%)
2| 1]2|8 |- (a-2)@n=8) 2| Q). (n—1)]
2| 2| 2| 4|+ 8m—2)n—4)2() ' when m =1 ...... (21) ;
1181 [4]48(n=1)(@®—4)2x) |=C(0),(),.. ("—1)]
8|1 |38 41+ (n—8)(n—4)2(n) when m =2 ...... (22).
2182 (.5]—6(n—-2)(n—5)2n)
8312185 ]—4(n—8)(n—=>5)2(n)
818181 6]|+10(n—38), (n—6),27(11)-
When r'=4,_the general term becomes
(__))‘.u l_Iﬂ:l ’ . |_18__]'
hje—=1 [T|s—1
X (=1, (n=1L) . (n—1)), . 2""("')
Thus, writing down the correﬂpondmg terms of C‘[(O) 1),...(n—1)],

and values of ¢, 4, «, I, I,, I,
YOL. VIL.—No0. 97. -
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: §|wwwv-wu-an-r-t‘:

(n—1) (n—2) (n—38) 2*(n) )
8 (n—1) (n—2) (n—4),2%(n)
2 (n—1) (n—38),(n—4) 2°(n)

(n—2), (n—3) (n—4) B(n) | _ '
8(n—1) (n—3), (n—5) 2 (n) [ = O‘[(O)'((l_)'l"j
4 (n—2), (n—8) (n—5), () e (n )1
8 (n—2), (n—4), (n—5) 2*(n) when m =

t,,taLI,Ia
1|1]1(2]|3
1/2]1|2|4}—
2l1{1]|8]|4]|—-
1(1{2(8|4}|-
2l2]1(|8|5]+
1{2{2|3|5]+
211|245+
2(212)4/|6

—15 (n—2), (n—4), (n—6), ¥'(n) |

OO ¢ )}

The following results are obtained from formule (18), (21), (22), -
and (23). I have not given proofs of them, as they are obtained, like
(19) and (20), by common algebraical substitution and reduction ; but
I have verified them carefully, and believe them to be free from error :

C.(1,2,..9) =

_n+l.n.n—1.8n+2

24 !

C(1,2,..2) = (n+1)'n? (ZIB—].) (n—2)’

C‘ (1, 2, ..; n) =

n+l.n.n—1.0—2.n—8 .

3 3__ -
6 (157 +150’—10n—8),

C.(1,4,..2%) = ntl.n.n—1.20+1.2n—1.5n+6

35 '

Ci(l,4,...n) ="2Fln.n=1.n—2.2n+1.20—1.20—8

97
X (3571 +91n+ 60).

In the last two formule it is remarkable that
C:(1, 4, ... n’) is divisible by 2n+1.2n—1; ¢.6., by An’. A(n—1)%
Ci(1, 4, ... #*) is divisible by An’.A (n—1)*. A (n—2)%

It is well known that C,(1, 4, ... n’) = M, which is

6

divisible by An®; but I do not know whether similar results hold for
Ci(1,4,...%% ... ornot.

Since C, (av, G, ... @y.r) = (4:: a,.)', C,[(0), (1), ... (r—1)] may bo
found by a repeated use of the Enler-Maclaurin sum formula.
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For example,

C:(L2..0) = (f‘ m)’
= §a1(5+n-3)
=i(gen+g)
=(F+5+5)-z(g+m+5)
"'11&(3; +2n)
o 't —8w—0n _ n+l.n.n—1.8n42
% . 24

Since reading this paper I have re-written it in accordance with some
valuable suggestions, for which I am indebted to Prof. Cayley, and
have added to it considerably.

March 10th, 1876.

W. SPOTTISWOODE, Esq., F.R.S., Vice-President, in the Chair.

Messrs Arthur Cockshott and R. T. Wright were elected, and Messrs,
E. B. Elliott, C. M. Leudesdorf, and J. W. Russell, were admitted into
the Society.

The following communications were made to the Society :—

Prof. Cayley, “On the B1cmsal Sextic, and the Problem of Three-
Bar Motion.”

Prof. Clifford, “ On the Classification of Geometric Algebras.”

Presents received : — )

Extraits de deux lettres adressées 4 D. B. Boncampagni par M. le
Comte Léopold Hugo (extrait des Atti dell’ Accademia Pontificia de’
Nuovi Lincei, 19 Dec., 1875).

. “Sur une classe de points singuliers de sarfaces,” par H. G. Zeuthen
(from the Math. Annalen, ix.), Copenhague, 27 Aoiit, 1873.

Extrait d'une lettre.de M. Ch. Hermite & M. L. Kénigsberger ¢ Sur
le développement des fonctions elliptiques suivant les puissances
croissantes de la variable " (Crelle, 81 vol.)

Lottre de M. Ch. Hermite & M. Borchardt * Sur la foucblon de Jacob
Bernoulli " (Crelle, vol. 79).

Extrait d’une lettre de M. Ch. Hermite &4 M. Borchardt *Sur la

K 2
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transformation des formes guadratiques ternaires en elles-mémes”
(Crelle, 78 vol.)

Extrait d'une lettre da M. Ch. Hermite & M. Borchardt Sur la
réduction des formes quadratiques ternaires” (Crelle, vol. 79).

The same to the same on a property of Bernoulli’s numbers (Crelle,
vol. 81).

“Sur les développements de la fonction F (z) = sn’2 . en’ . dn'z,
ol les exposants sont entiers,” par M. Ch. Hermite (Bihang till K.
Svenska vet Akad. Handlingar. Band 3, No. 10), Stockholm, 1875.

Extrait d’une lettre d6 M. Ch. Hermite de Paris & M. L. Fuchs de
Gottingue * Sur quelques équations différentielles linéaires” (Crello,

vol. 79). (The above p'msented by M. Ch. Hermite.)

“Nouvelles propriétés géométriques de la surface de l'onde qui.
g’interprétent en Optique,” par M. A. Mannheim, 7 Février, 1876.

“Démonstration géometrique d’une relation due & M. Laguerre
(the same, 6 Mars, 1876).

“ Association Frangaise pour l'avancement des Sciences—Congrés de
Nantes, Paris, 1875 ;" containing * Recherches sur la surface de I'onde
(21 Aofit 1875), *“Propriétés des diamétres de la surface de l’onde
et interprétation physique de ces propriétés ” (25 Aoit, 1875).

(The above presented by M. Mannheim.)
Carte de Visite likeness and photograph, from Dr. H. G. Zeuthen.

On Three-Bar Motion. . By Prof. Caviey.
[Read March 10¢h, 1876.]

The discovery by Mr. Roberts of the triple generation of a Three-
Bar Curve, throws a new light on the whole theory, and is a copious
source of further developments.* The present paper gives in its most
simple form the theorem of the triple generation ; it also establishes the
relation between the nodes and foci; and it contains other researches.
I have made on the subject a further investigation, which I give in a
separate paper, *“ On the Bicursal Sextic; but the two papers are inti-
mately related, and shoald be read in connection.

The Three-Bar Curve is derived from the motion of a system of
three bars of given lengths pivoted to each other, and to two fized.

® See his paper * On Three-Bar Motion in Plane Space,” ante, pp. 16—23, which
contains more than I had supposed of the results here arrived at. There is no
question as to Mr. Roberts' priority in all his results,



