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" Ny Interpolationsmethode," af J. J. Astrand.
" Over en classe geometriske Transformationer," af Sophus Lie.
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by the same.
" Om den Gruppe af Substitutioner, der tilhrer ligningen for division
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Cato M. Guldberg.

Some General Theorems relating to Vibrations. By the
Hon. J. W. STEUTT, M.A. (LORD RAYLEIGH).

[Bead June 12th, 1873.]

This paper contains a short account of some general theorems, with
which I have lately become acquainted during the preparation of a
work on Acoustics. As they seem to possess considerable interest,
I take the present opportunity of bringing them before the Society.

SECTION I.

The natural periods of a conservative system, vibrating freely about
a configuration of stable equilibrium, fulfil the stationary condition.

Let the system be referred, in the usual manner, to independent co-
ordinates »/>i, î 2j «̂3> ••• whose origin is taken to correspond with the
configuration of equilibrium. Then, the square of the motion being
neglected, the kinetic and potential energies are expressible in the form

J! } J + [ 1 2 ] M + (1).
+ (2),
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where [11] ..., {11} ... are constants, subject to the condition of
making T and V always positive. For the present purpose, it is con-
venient, though not necessary, to transform the coordinates in the
manner explained in Thomson and Tait's "Natural Philosophy,"
§ 337, so as to reduce T and V to a sum of squares;

T = * [1] f! + * [2] # + (3),

V = *{l}*!+*|2|tf + (4),
where the coefficients are necessarily positive. The natural vibrations
of the system are those represented by the separate variation of the
coordinates <pu <p2, ... ; and the corresponding differential equations
obtained by Lagrange's method are of the form

[ « ] £ + {«}*. = 0 (5),
showing that the period of the natural vibration $, is given by

r. = 2* [•]»+{.}» (6).
Let us now suppose that the system is no longer allowed to choose

its type of vibration, but that an arbitrary type is imposed upon it by
a suitable constraint, leaving only one degree of freedom. Thus, let

fcsAA <p2 = Aid (7),
where Aj, A2, ... are given real coefficients. The expressions for T and

Vbecome T = {|[1] A j + | [ 2 ] Aj + } 6a (8),

V = { * { 1 } A ! + | {2 |A° + } * (9),

whence, if 0 varies as cos pt,

P , = u t A ; + {2fA,a + a 0 )

[l]Ai2 + [2]A^+

This gives the period of the vibration of constrained type; and it is
evident that the period is stationary, when all but one of the coefficients
Ai, A2, ... vanish, that is to say, when the type coincides with one of
those natural to the system.

By means of this theorem we may prove that an increase in the mass
of any part of a vibrating system is attended by a prolongation of all
the natural periods, or at any rate that no period can be diminished.
Suppose the increment of mass to be infinitesimal. After the alter-
ation, the types of vibration will in general be changed; but, by a
suitable constraint, the system may be made to retain any one of tho
former types. If this bo done, it is certain that any vibration which in-
volves a motion of the part whose mass is increased, has its period
prolonged. Only as a particular case (as, for example, when a load is
placed at the nodo of a vibrating string) can the period remain un-
changed. Tho theorem now allows us to assert that the removal of
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the constraint, and the consequent change of type, can only affect the
period by a quantity of the second order ; and that therefore^ in the
limit, the free period cannot be less than before the change. By inte-
gration we infer that a finite increase of mass must prolong the period
of every vibration which involves a motion of the part affected, and
that in no case can any period be diminished ; but in order to see the
correspondence of the two sets of periods, it may be necessary to sup-
pose the alteration made by steps. The converse of this and cor-
responding theorems relating to an alteration in the potential energy
of a system will now be obvious.

A very useful application of the principle may be made to the ap-
proximate calculation of the natural periods of a system whose consti-
tution, though complicated, is but slightly different from one of a much
simpler nature. The main difficulty of the general problem consists in
the determination of the free types, which may involve the solution of
a difficult differential equation. We now see that an approximate
knowledge of the type may be sufficient for practical purposes, and
that, in the class of cases referred to, the adoption of the type natural
to the approximate simpler system in the calculation of T and V will
entail an error of the second order only in the final result.

To illustrate this question, we may take a case not without interest
of its own—namely, the transverse motion of a stretched string of
nearly, but not quite, uniform longitudinal density. If the uniformity
were exact, the type of the sth component vibration would be

, • snx ,.., N
?/ = 0,sin— (U) ,

where I is the length, x the distance of any particle from one end, and
y the transverse displacement. In accordance with the plan proposed,
we are to calculate the period for the variable string on the supposition
that (11) is also applicable to it. We find

T = \'fi f'p sin2~dx

f ' ^ s ^ } (12),8m^
% Po I

if p = po-f Ap, Ap being small.

For the potential energy we have (T, being the tension) the usual
expression

Hence, if the solution be
( ^ ) (14),
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the period r, is given by

As might be expected, the effect of an alteration of density vanishes at
the nodes, and is a maximum midway between them.

A similar method applies to a great variety of problems, and gives
the means of calculating the coiTection due to the necessary deviation
of any actual system, on which experiments can be made, from the ideal
simplicity assumed in theory.

Another point of importance with reference to this application has
yet to be noticed. It appears from (10) that the period of the vibra-
tion corresponding to any hypothetical type is included between the
greatest and least of the periods natural to the system. In the case of
systems like strings and plates, which are treated as capable of con-
tinuous deformation, there is no least natural period; but we may still
assert that the period calculated from any hypothetical type cannot
exceed that belonging to the gravest normal type. When, therefore,
the object is to estimate the longest natural period of a system by
calculations founded on an assumed type, we have, a priori, the assu-
rance that the result will come out too small. For example, the value
for ru given in (15), is certainly less than the truth, while the error is
of the second order in Ap.

In the choice of a hypothetical type, judgment must be used, the
object being to approach the truth as nearly as can be done without too
great a sacrifice of simplicity. The type for a string heavily weighted
at any point might suitably be taken from the extreme case of an
infinite load, that is to say, the two parts of the string might be sup-
posed to be straight. Even with a uniform unloaded string, the result
of the above hypothesis is not so very far from the truth. Taking

y=mz cos pt from ar=O to x = —, we find, for the whole string,
2

19T
whence ^ = ±±±1 (16).

pi

The correct result for a uniform string is

so that the period calculated from the assumed type is too small in the
ratio of * : - /I2 or-907 : 1.

A much closer approximation would be obtained by the assumption
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of a parabolic form

' — ^ - T ) <18>-
Proceeding in the same way as before, we should find a period too
short in the ratio n- : \/lO, or '9936 : 1. In order that the natural type
should be parabolic, the density of the string would have to vary as
(P—4s$)~\ being thus a minimum in the middle, and becoming infinite
at- either end.

The gravest tone of a square plate is obtained when the type of
vibration is such that the nodal lines form a cross passing through the
centre of the plate, and parallel to the edges. The next type in order
of importance gives the diagonals for the nodal lines. Chladni found
experimentally that the interval between the two tones was about a
fifth. It so happens that the second kind of vibration can be com-
pletely treated theoretically, being referable to the simpler case of the
vibration of bars ; but the first has not hitherto been successfully at-
tacked. I find that if we assume for the type of vibration

z =xy cos pt (19)>
the nodal lines being taken for axes of a? and y, the boundary condi-
tions are satisfied, and the calculated period comes out greater than that
corresponding to the diagonal position of the nodal lines in the ratio of
1*87 : 1. Since this ratio is certainly too small, Chladni's result is
about what might have been expected from theoretical considerations.

Before leaving the subject of natural vibrations, I wish to direct the
attention of mathematicians to a point which does not appear to have
been sufficiently considered: I refer to the expansion of arbitrary
functions in series of others of specified types. The best known ex-
ample of such expansions is that generally called after Fourier, in
which an arbitrary periodic function is analysed into a series of har-
monics, whose periods are sub-multiples of that of the given function.
It is well known that the difficulty of the question is confined to the
proof of the possibility of the expansion; if this be assumed, the deter-
mination of the coefficients is easy enough. What I wish now to draw
attention to is, that in this, and an immense variety of similar cases,
the possibility of the expansion may be inferred from physical consi-
derations.

To fix our ideas, let us consider the small vibrations of a uniform
string stretched between two fixed points. We know, from the general
theory, that the whole motion, whatever it may be, can be analysed
into a series of harmonic functions of the time, representing component
vibrations, each of which can exist by itself. If we can discover these
normal types, we shall be in a position to represent the most general
possible vibration by combining them, each with arbitrary amplitude
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and phase. The nature of the normal types is given by the solution of
the differential equation

0
whence ib appears that they are expressed by

. 7TX . 2iTX . SvX n

y = sin —, y = sin — , y = sin — , &c.

We infer that the most general position which the string can assume
is capable of representation by a series of the form

. . irx , . . 2vxA1sm— + Ajsm-y- + ,

which is a particular case of Fourier's theorem. There would be no
difficulty in proving it in its most general form.

So far the string has been supposed uniform. But we have only to
introduce a variable density, or even a single load at one point of the
string, in order completely to alter the expansion whose possibility may
be inferred from dynamical theory. It is evident that corresponding
to any system, whether string, bar, membrane, plate, or what not,
there is an appropriate expansion for an arbitrary function of one or
more variables. Thus the expansion in La Place's series may be
proved by considering the motion of a thin layer of gas between two
concentric spherical surfaces, the expansion in Bessel's functions from
the vibrations of a circular membrane, or of the air contained within a
rigid cylinder, &o. When the difficulty of a direct analytical proof of
even these simple cases is considered, the advantage of the physical
point of view will be admitted.

The method of definite integration (or summation, if the system have
only finite freedom), by which the constants are determined to suit
arbitrary initial circumstances, is well known, and has been applied to
a great variety of problems, dealing not only with vibrations, but with
other physical questions such as the conduction of heat; but I have
never seen the reason of its success distinctly stated. It may be said
to depend on the characteristic property of the normal coordinates,
namely, their power of expressing the energy of the system as a sum
of squares only. In the case of a string, for example, we have

irxx , , 2
y = 0i sin— + ^ s m —

where $i, .̂ 2 are the normal coordinates. The expression for the
energy is

^ftfdx, or L.fldx[f1Bm7^+j>isux^+ ] ' .
If by the solution of the differential equation, or otherwise, we have
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assured ourselves as to the nature of the normal types, we may assume,
without further proof, that the products of the coordinates will dis-
appear from the expression for the energy,—in the above instance, that

. rnx . snx j
sin —— sin — dx

I I
will vanish, if r and s be different.

SECTION II.

The Dissipation Function.

The original equation of motion of a system in rectangular coordi-
nates, as obtained at once by an application of the Principle of Virtual
Velocities, is

2m (xlx+yly + zSz) = 2 (X&B+YSy+Z$z) (21).

When transformed to independent coordinates, and restricted so as to
give the equations of vibratory motion in their simplest form, this

becomes — l^?-) = * i &c (22),
7 * 1 - 1 1 / \ / '

where ¥>ityi + '*a<tya+ ... is the transformation of 2 (X$x+YSy + Z$z),
denoting the work done on the system by the applied forces during
the hypothetical displacement.

If we separate from ¥ the forces which depend only on the position
of the system, we obtain

, x,, i 77- = ^ ' & c (23>-
at *CMfv au>i

The principal object of the present section is to show that another
group of forces may be advantageously treated in a similar manner.

The forces referred to are those which vary in direct proportion to
the component velocities of the parts of the system. It is well known
that friction, and other sources of dissipation, may be usefully repre-
sented as following this law approximately; and even when the true
law is different, the principal features of the case will be brought out.
The effect of such forces will be to introduce into the original equation

terms of the form 2 (KXa?&B+*„?/&/ + *, z$z) (24),

where KX, KV, KZ are the coefficients of friction, parallel to the axes, for
the particle xyz. The transformation to tho independent coordinates is
effected in a similar manner to that of

2m (x Sx -f y Sy + z dz),

and gives —r-n/^H—^6^2+ >
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where F = |S (^aja+vy if+r, «2)

, & + (25).
F, it will be observed, is, like T and V, a necessarily positive qua-
dratic function of the coordinates, and represents the rate at which
energy is dissipated.

The above investigation refers to forces proportional to the absolute
velocities ; but it is equally important to include such as depend on the
relative velocities of the parts of a system, and this fortunately can be
done without any increase of complication. For example, if a force
acts on the particle Xi proportional to xt —a^, there must be at the same
moment, by the law of action and reaction, an equal and opposite foi'ce
acting on a*,. The additional terms in the fundamental equation will

be of the form K fa—as,,) 8xx + K (X2—xy) 8x2,

which may be written

K(ZI—X.A) 3(JB1—a?8) = tyj —r J $fa—^)* f + »

and so on for any number of pairs of mutually influencing particles.
The only effect is the addition of new terms to F, which still appears
in the form (25).*

The existence of the function F does not seem to have been recog-
nised hitherto, and indeed is expressly denied in the excellent
"Acoustics" of the late Prof. Donkin (p. 101). We shall see that its
existence implies certain relations between the coefficients in the
generalized equations of motion, which carry with them important
consequences.

Lagrange's equation, after the separation from SP of the forces pro-
portional to the displacements and velocities, whether absolute or

relative, becomes —(—JH—r- \ =
dt \d^' cty cty

where T = * [11] # + + [12]

On substitution, we obtain a system of equations, which may be
written:

1 1 ^ + 1 2 ^ + 1 3 ^ + =

+ 33^3+ =

* The differences reforrcd to in tho text may of course pass into differential co-
efficients in the case of a continuous body.
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where a coefficient Buch as rs is an abbreviation for the quadratic

operator [rs] —̂  + (rs) — + j rs \.

It is to be carefully noticed that since [rs] = [sr~}, (rs) = (sr),
\rs\ = \sr\, it follows that rs = sr.

The small vibrations of a system free from dissipative influences can
always be analysed into a series of normal components, each of which
is similar in character to that of a system possessing but one degree of
freedom. It is, in general, otherwise with the vibrations of a dissipa-
tive system. These may, indeed, be analysed into components of the
quasi-harmonic type (Thomson and Tait, § 343) ; but these last are
different in chai'acter from the vibration of a simple dissipative system.
For instance, the system, supposed to be animated by one component,
does not pass simultaneously through the configuration of equilibrium.
The reason of the difference will appear at once. When there is no
friction, a suitable transformation of coordinates will always reduce T
and V to a sum of squares, and the equations of motion become

the same as for a simple system. The presence of friction will not
interfere with the reduction of T and V ; but the transformation proper
for them will not in general suit also the requirements of F. The
equation can then only be reduced to the form

+ | l l * = *i (29),

and not to the simple form expressing the vibration of a system of one
degree of freedom,

[ l ] f c + ( l ) * » + | l | * i = » i (30).

We may, however, choose which two of the three functions we shall
reduce, and the selection would vary according to circumstances.

Cases, however, arise in which, owing to the special character of the
system, the same transformation of coordinates will reduce all three
functions to a sum of squares, and then the motion possesses an excep-
tional simplicity. Under this head the most important are probably
when F is of the same form as T or V. In the problem of the string,
if we assume a direct retarding force proportional to the velocity, we
have F proportional to T; if the dissipation is due to viscosity, we
might have F proportional to V. The same exceptional reduction is
possible when F is a linear function of T and V, or when T is itself of
the same form as V. In any of these cases the equations of motion for
each component are of the same form as for a dissipative system with
one degree of freedom, and the elementary types are characterised by
the fact that the whole system passes simultaneously through the con-
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figuration of equilibrium. It appears that the law of friction usually
assumed for a string is of an exceptional character, and leads to results
of, in some respects, delusive simplicity.

SECTION III.

The present section is devoted to the proof and illustration of a
very important law of a reciprocal character, connecting the forces and
motions of any two types. Particular cases of it have been noticed by
previous writers; but the general theorem is, I believe, new, and in-
deed could not be proved without the results of the preceding section.

The following partial statement will convey an idea of its nature :—
Let a periodic force ¥ „ equal to A, cospt, act on a system either

conservative, or subject to dissipation represented by the function F,
giving the forced vibration \jsr = KA., COS (pt—e), where K is the coeffi-
cient of amplitude, and e the retardation of phase. The theorem
asserts that if the system be acted on by the force ¥ r = A, cos pt, the
corresponding forced motion of type 8 will be

\p, — tcAr cos (pt—e).

The solution of the general equations (28) may be expressed in the form

d.

(31),

where V denotes the determinant

11, 12, 13,
21, 22, 23
31, 32, 33, (32),

and the partial differentiations are made without recognition of the
relations 1? = ri, &c. By the nature of determinants it follows that,

since ^ = ^ r ^
7 7

d.rs d.sr
Thus the component displacement \pr due to a force SP, is given by

(33).

.rs
(34).

If, now, we inquire what the effect of a force Yr will be in producing
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the displacement of type s, we find

V+. = j*=9r (35),
a .sr

so that in virtue of (33) the relation of \j/, to ¥r, in the second case, is
the same as the relation of \pr to "Y, in the first.

Distinguishing the second case by a dash affixed to the corres-
ponding quantities, let us take

where the coefficients A,, Â . may, without loss of generality, be sup-
posed to be real. The solution may be expressed in the form

d-rs

d.sr

(36),

where y is replaced by vp in V and its differentials. Hence by (33)

we see that A ^ r = A,\fj't ; (37),

which is the symbolical expression of the reciprocal theorem with
respect both to amplitude and phase. If ¥ , = ¥„ then will \p', — \jsr;
but it must be remembered that the forces and displacements of different
types are not necessarily comparable. The following statement will,
however, hold good in all cases :—The force Vr does as much work on
the motion due to ¥„ as *$?, does on the motion due to *P'r.

There is an important class of cases to which our principle, general
as is the proof just given, would not at first sight appear to apply.
Among these may be noticed systems in which the cause of the dissi-
pation, or of part of it, is the conduction and radiation of heat. The
dissipation cannot always be represented by a function F, which shall
be the same in form under all circumstances. I am not at present in a
position to discuss this question completely; but there is one con-
sideration which may here be referred to as sufficient to bring a large
additional field within the sweep of the demonstration. Since the in-
vestigation is concerned only with harmonic motions of period (JJ), it
will be sufficient for the establishment of the theorem if the dissipation
function exist for all vibrations of the given period.

A few examples may promote the comprehension of a theorem which,
on account of its extreme generality, may appear vague.

Let A and B be two points of a uniform or variable stretched string.
If a periodic transverse force act at A, the same vibration will be pro-
duced at B as would have ensued at A had the force acted at B.
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In a space occupied by air, let A and B be two sources of disturbance.
The vibration excited at A will have at B the same relative amplitude
and phase as if the places were exchanged. Helmholtz (Crelle, Band
LVII.) has proved this result in the case of a uniform fluid without
friction, in which may be immersed any number of rigid fixed solids ;
but we are now in a position to assert that the reciprocity will not be
interfered with, whatever number of strings, membranes, forks, &c.
may be present, even though they are subject to damping.

The theorem includes the optical law, that if one point can be seen
from a second, the second can also be seen from the first, whatever re-
flections or refractions the light may have to undergo on its passage.

A last example may be taken from electricity. Let there be two
linear conducting circuits A and B, in whose neighbourhood there may
be any number of others (either closed or terminating in condensers),
or solid conducting masses. The theorem asserts that an electro-
motive force acting in A gives the same variable current in B as would
be produced in A if the electromotive force were transferred to B.

Addition to tlie Memoir on Geodesic Lines, in particular those of a
Quadria Surface.* By Prof. CAYLEY.

[Read June \2th, 1873.]

38. In the Memoir above referred to, speaking of the geodesic lines
on the skew hyperboloid, I say (No. 35),—"The geodesic of initial
direction Ml touches at M the oval curve of curvature Ml, and lies
wholly above this curve ; it makes an infinity of convolutions round the
upper part of the hyperboloid, cutting all the oval curves of curvature
for which p has a positive value greater than px (if pt is the value of p
corresponding to the oval curve through M), and ascending to in-
finity." The statement as to the infinity of convolutions is incorrect;
I was led to it by the assumption that the geodesic could not touch
any hyperbolic curve of curvature. The fact is, that it touches at in-
finity (has for asymptotes) in general two hyperbolic curves of curva-
ture ; viz., the geodesic descending from infinity in the direction of a
hyperbolic curve of curvature, so as to touch the oval curve through M,
again ascends to infinity in the direction of a hyperbolic curve of
curvature (the same as the first-mentioned one, or a different curve),

* See pp. 191—211. The articles are numbered consecutively with those of the
original Memoir.


