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Some Formule in Blimination. By F. S. Macaoray.
Received and read May 8th, 1902.

1. The object of thefollowing paper is to investigate the properties
of the determinants which arise in the theory of elimination when
conducted according to the methods of Bezout, and, in particular, to
find a simple expression for the resultant. The equations are supposed
homogen'eous, of different orders, and general, that is, complete in all
their terms with unconnected literal coefficients.

Cayley* has given (without proof) an extremely general expression
for the resultant of » equations in the form D/I,/.../D,_, or
DD, ... |D,Dy..., where D is any non-vanishing determinant of the
complete matrix corresponding to the function C,S,+...+0,8S, of
order ¢, (¢f. § 3 below), and D,, D, ..., D,_, are other determinants.
The simpler, but less general, expression for the resultant found
below is D/A, where D is a determinant selected arbitrarily in
accordance with a certain rule (§ 6a) from the same matrix, and A is
a minor of D.

For three equations it can be verified that the two results D/D, and
D/A are the same; D, and A are not, however, composed entirely of
the same elements for the same D, but each is independent of the
elements in which they differ. To verify the identity of the two
results for more than three equations would. be difficult, and of little
‘use. The advantage of the simpler form D/A lies in the fact that A
can be at once written down from D, whereas D,, D,, ... are only ob-

_tained by a complicated process, which Cayley does not fully explain.
- The theory suggested by Cayley hasbeen developed in considerable
detail by K. Bes.t He discusses at length the case of three equa-
tions, from which he infers the result for = equations. He does not
prove that D, Dy, ... can be so chosen that no one of them vanishes
identically; and he is scarcely justified in describing his method as
a new process, since it does not appear to differ in any essential
feature from that of Cayley. )

* The method is described generally in the Camb. and Dub, Math. Jour., Vol. 1.,
1848, p. 116, and isexplained more in detail in Salmon’s Higher dlgebra (4th edition,
1885)
”Eheone générale de I'Elimination, d’aprés la méthode Bezout, suivant un
nouveau procédé,”” Verkandelingen der Koninklijhe Akademie van Ihlenschappcn te
Amsterdam (Sectie 1), Deel v1., No. 7, 1899, 8vo, pp. 1-121.
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H. Launrent* has also given a supposed explicit expression for the
resultant, but an incorrect one,

 The resultant of n general equations may be defined as an integral -

function of the coefficients, without repeated factors, whose vanish-

ing is the necessary and sufficient condition that the equations should

have a common solution.. In the case of n equations containing

¢ «I'Elimination,” Seientia, Phys.- Math.,No. 7,1900, pp. 1-75. Thismonograph,
although ourious and interesting, is rendered. practically valueless in what relates
to equations in several unknowns by its unreliable methods and conclusions. The
resultant is nowhere defined and is regarded as an indefinite fractional expression,
The following are some of the principal omissions and errors :— * '

(1) The proof (§15) of the theorem that, when two (non-homogeneous) poly-
nomialg in two variables are given as moduli, one variable can be expressed as an
integral function of the other is incomplete, since two general assumptions are
made proofs of which are not supplied. .

(2) The proof (§ 16) that the s-eliminant € of three equations in z, y, = of orders
m, n, p is of order mup in z is faulty, since the author’s method for expressing ¢
leads to a fraction instead of an integral function of z. 'The same error appeurs
still more prominently in § 17.

(3) The proof (§ 18) of Bezout's reduced form of a given polynomial with respect
to other given polynomials as moduli completely fails when it passes beyond recfuc-
tion in one variable. '

(4) The statement (§ 20) that 03/11J [the author uses D for J; ¢f. § 10 (14) of this
paper] is a determinant with all its elements to the left of the diagonal zero is an
error, but an unimportant one, since it breaks up into a product of determinants in
the diagonal. The statement that Q2/T11J depends only on the coefficients of the
terms of highest order in the several equations is correct, but the proof is lacking.
The author’s proof of the same result in the Nowv. dnn. de Math., Series 3,
Vol. 1., 1883, p. 147, is not valid. In the same place, p. 149, he is in error in
stating that O cannot vanish unless the equations have a double solution, from
which he deduces incorrect conclusions. Again, in § 20 of the monograph, the
author states that Q2117 is independent of the roots of the equations. He does not
explain what the statement means; but it is certainly untrue. If it were true,
then the ratio of @ to any other expression Q' formed in like manner would also
be independent of the roots, which can easily be tested and found incorrect for the
cuse of a linear and a quadratic equation in two unknowns. Netto, in referring
to Laurent, says that Q3/I1J is a constant, without further explanation ( Encyklopidie
d. Math, Wiss., Teil 1., Band 1., Heft 3, 1899, p. 274). It would seem that both
writers have been misled by an assumed, but false, analogy with an equation in a
single unknown.

(6) In §23 is contained the so-called explicit expression for the resultant referred
to above; but the author is in error in supposing this expression ‘indépendant des
ay,’’ and in supposing it to be the resultant, or to contain the resultant as a factor.

(6) In §26 the author implies that in order to calculate the resultant of » homo-
geneous equations in » unknowns it is of advantage to make the orders equal by
multiplying the equations of inferior order by powers of the same unknown, over-
looking the fact that, if two of the equations have a common factor, the resultant
vanishes identically. Multiplying by powers of different unknowns is also of no
advantage.

In contrast with the above we may mention § 19, which gives a proof of Jacobi’s
theorem, and § 22, which proves that, if the vanishing points (or solutions) of n given
‘polynomials f in % varjables are distinot, finite, and complete, then any polynomial
which vanishes at all these points is of the form X ¢f, i.e., vanishes identically with
respect to the f’s as moduli,
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more than n unknowns the resultant of elimination of (n—1) of
the unknowns is called the eliminant in the remaining unknowns.
The most usual form of expression for the resultant is by means of
the Poisson product. Select any one of the equations 0 = 0; solve
the remaining (rn—1) equations, after putting one of the unknowns =
equal to 1; substitute all the solutions in O, and take the product
II0; then the numerator R of II0 (when reduced to its lowest terms)
isthe resultant of the equations. R is an integral function of the
coefficients, being the numerator of a symmetric function of the
roots of the (n—1) equations; and the vanishing of R is a necessary
and sufficient condition that the » equations have a common solution.
The degree of R in the coefficients of any one of the equations is equal
to the product of the orders of the remaining equations, and the weight
of every term in R is equal to the product of the orders of all the
equations. The denominator of the Poisson product is the m-th power
of the resultant of the (»—1) equations when z =0, m being the
order of 0. R is independent of the particular choice of the unknown
z and the equation 0 = 0;* this also follows from § 4 and (18) of § 10
in this paper. R is non-factorisable.t - Thus R satisfies all the con-
ditions required by the definition of the resultant. In this paper the
resultant is regarded from a different point of view, viz., as a factor
of a determinant ; but it is identified with B by means of its pro-
perties, and also actually identified in § 10 (18).

' 2. Norarion.—Let O, 0", ..., OV, or O, O, ..., 0,, be n given
homogeneous general polynomials in » variables ,, @, ..., @,, of orders
m,, My, ..., m, respectively. '

Let O denote the value of O (r =1,2, ..., n) when @1, 1.1, ..., %
are all zero ; 8o that 0¥ is & homogeneous polynomial in [ variables
Ry By oony Tpe

We imagine a correspondence to exist between the variables
@y, @y, ..., o, and the polynomials C,, C,, ..., 0, respectively. Thus we
may, if we like, regard O, as a polynomial in z, whose coefficients are
polynomials in @, ..., &,_1, @pyry «vry Zye

A polynomial containing no arguments aPz}*...a5* divisible by
2 is said to be reduced in z,; if, further, it contains no arguments-

# Hadamard, ‘¢ Mémoire sur ’Elimination,’’ Adcte Math., Vol. xx., 1897, p. 201.
+ Netto, Algebra, Bd. 1., 1896, p. 169, and Bd. n., 1898, p. 79.
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divisible by &, it is said to be reduced in @; and z,; and so on. When
the variables are not specified, a reduced argument or polynomial
means one which is reduced in all the variables.

In the function C,89+C,8M40;8%+ ... of order £, it is to be
understood that S® is & general polynomial of order t—m,, with all
its coefficients at disposal, S a general polynomial of order t—m
reduced in z, S® a general polynomial of order ¢{—m, reduced in
&, &;, and so on. In the function C,89+0,8"+C,8%+..., where
C,, O, C,, ... ave chosen from 0, C,, ..., C,, it is supposed that S® is’
reduced in ,, S® in =z, x, and so on; so that the significance of
8™, 8®, ... depends on the order in which C,, C,, ... appear in the
constituent terms of the function.

Tueorem.—It is a known theorem* that any polynomial O of order
t can be expressed uniquely in the form

C,89+ 0, 8+ ... + 0,844 8O,

where I ( < n) is the number of the given general polynomials 0, ..., 0.

In order to prove this, we have to show that 89, 8, ..., S® can be
chosen in one and only one way so as to satisfy the identity

0,894 0, 8"+ ...+C, 8"V +8% = C.

Equate coefficients of the arguments on the two sides of the identity.
The number of equations is equal to the number of arguments of
order ¢; this is equal to the number of the unknowns, viz., the
coefficients of S©, 8%, ..., S as may be seen by considering the
polynomial

IH m,

2P SO+ 27 S(”+ cHalr SN g0,

in which each argument of order fcomes in once and once only.
Again, the determinant of the coefficients of the unknowns in the
equations is not zero; for, if it were, then the identity

C,894C,8"+... 40,84+ 89=0

could be satisfied ﬁrithout S®, §M, ..., 8® all vanishing identically;

" # This theorem is & fundamental one in Bezout’s method, and is probably con-
tained in his Zhéorie genér ale des Equations Algébrigues (Pms, 1779, 4to, 471 pp.),
which I have not been able to consult.
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and this is not possible, since the identity
2" 8O+ SV . a7 SN 4 80 = 0

cannot be so satisfied. Hence the theorem is proved. In the last
step we make use of the fundamental hypothesis that C,, C,, ..., C,
are general, from which we are entitled to assume that, since a certain
function of the coefficients of C,, Oy, ... does not vanish when
Cy, Oy, ... have the particular values ", 2, ..., it cannot vanish for
the actual values of C,, C,, ... . A

From this theorem follows another of special importance, viz., that
a homogeneous polynomial of the form C,8,+0,S;+... + 0,S; can be
expressed uniquely in any one of the standard forms

Cp SO+ Cy 8 + ... + 0, 8,

where C,., O, ..., C, are the ! polynomials C,, C,, ..., C, taken in any
order we pleage. For C,8,+C,S;+...4+C,S, can clearly be written
in the form ‘

C,S$i+0,8+...+ 0, (8i+C, 89+ 0. 8M+...),

w.hich, by a proper choice of S®, S, ..., §%-%, can be made of the
form Oy Si4+ Oy St ... + 0 8-
and this can clearly be brought step by step to the form

0,89+ C, S+ ...+ C. 8¢V,

Similar reasoning leads to the theorem that, if C,8,+...+CS,
of order ¢, vanishes identically, then

. pal
8= 3 CSn (g=12 ., 1),

where the polynomials S, are of assignable orders, and satisfy the

- relations S,, = — S, and S,, = 0. The same result holds if C,, ..., C,
are any given polynomials, provided that certain functions of the
coefficients do not vanish. '

3. NorarioN.—The matrix corresponding to & homogeneous integral
fanction C, S, + C, 8, +... + 0,8, of order ¢ (also called a matrix of the
coefficients of C,, Oy, ..., 0,) is formed as follows. Write down
horizontally all the arguments w,, w,, ..., @, of order ¢&. Multiply C,
by any argument « of S,, and write the coefficients of wC, under their
corresponding arguments. w, @, ..., w,, thus giving a row of the
matrix. Write to the left of the row the coefficient ‘of w .in 8, If
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AL Ay oy A, are all the coefficients of S, S, ..., S, we thus obtain a
matrix with u columns and p rows, viz.,

W Wy .. O

A ey gy oy,

A | oy oy . o

A ey e, .G,

This (bordered) matrix is a diagrammatic representation of the
function C,8,+...+0C,S,, viz.,, the function is the sum of the pro-
ducts of every element of the matrix by the two corresponding
elements in the border. It represents also the whole coefficient of

M . . e . > 3 rer
each argnment in the function, viz., the coefficient of w, is 3 A a,,.
‘pul

D (n, t) denotes the determinant whose vanishing is the condition
that the identity

0,894 C,80+ ... + 0, 80D = 8¢,

of order #, can be satisfied. Thus D (n, t) is obtained from the
matrix corresponding to C,8%+ 0,8%+ ...+ 0,8*-" by omitting the
columns corresponding to arguments contained in S™, that is, all
columns corresponding to reduced arguments. We take D (n, £) =1
when ¢ is less than the least of m,, m,, ..., m,.

R (n, t) denotes the H.C.F. of the n! determinants formed in a
similar way to D (n, t) when O,, C,, ..., 0, are arranged in any order.
R (n,t) = D(n,t) when ¢t is less than the sum of the least two of
My, My, ..., M, ; otherwise R (n, £) < D (n, ).

D(,¢t),1 < n,is the determinant whose vanishing is the condition
that the identity

G:f) S(0>+ Og)s(l +ot 0‘(‘) S(’-l) — S(l),

of order £, can be satisfied. "Here ! is the number, of the variables
(§ 2), and also the number of the given polynomials C. R (i, %)
denotes the H.C.F. of the !! determinants like D (I, ¢).

We take ¢, to stand for m,+my+...+m,—n+1, and ¢ for
Myt ... +my—14+ 1.
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TreorEM,—The resultant of 0y, Cy,:..., Cy is R (n,t,).
The matrix from which D (%, ¢,) is obtained, viz.,

W Wy .. ow,

A ey ey ),
A | G Gag .. Gay
. .i..

(3 ap'l an'l ‘.J’wu

is the determinant D (=, t,) itsglf; for there are no reduced argu-
ments of order ¢, (since the reduced argument of highest order is
m;"l"l :v’;“‘l ... a™~1 which is of order t,—1), and consequently there
are no columns-to be omitted. - It 'is then evident that D(n, t,)
vanishes if the equa.tlons l

ay v+ apuyt .. +a1»"’,. = 0

Q0+ Byt ...+ @y 0, ._O

aaw+ a0+ ... +a”w,, =0

can be satisfied. But these equations are satisfied, when the resultant
vanishes, by giving to w,, w,, ..., w, the values which they have for
the common solution of the equatmns =0 0,=0, ..., C,=0.
Hence the resultant is a factor of D (n, ¢,), and of all the »! determ-
inants like D (n,t,) ; therefore it is a factor of their H.C.F., viz.,
R(n, t.). Also R (n,t,) is of the same degree as the resultant in
the coefficients of each of the polynomials C,, C;, ... C, (proved in § 4).
Hence R (n, t,) is the resultant.

4. TaeorEM.—The degree of R (n, t) in the coefficients of C, is
equal to the number of arguments of order ¢—m, which are reduced
in all the variables except z,, z.e., it is equal to the coefficient of '

b LU
1 —g™ »=1 l1—2 '

" Let D’ (n, t) be the determinant like D (n, t) for a: d1ﬂ:'erent order
of the polynomials, viz., for the order C,, ..., C,, O, C..
D’ (n, t) is a determinant of the matrix correspondmg to

C‘ S(O) +...+ Cq S(u- -2) + C' S(n-l)'
Hence the degree of D’ (n, t) in the coefficients of C, is equal to the

in




10 Dr. F. 8. Macaulay on [May 8,

number of arguments in §®-V-of order t—m,. But R (n, t) is a factor
of D' (n, t), and therefore cannot contain the coefficients of C, to &
}ngher degree than the number of arguments of order t—m, reduced
in all the variables except @,

Now the polynomial 0, S®+ 0,8V + .. +0' S®-Y ig represented by

' i
w0 Wy O,

Al o ay e,
A | ag ay .oay,

Al ayas .. q

gnd (§2) this can be brought identically to the form
01 Sl(o)+ . + 0,1 S'[n-'))+ 0'. Sl(ﬂ-l),

which is represented by

W Wy .. W

N | d an ... @
x; a‘;l a;Z see a‘;;n

’ v T,
Ap a, @3 ... @

Hence péph,,ap.. = pip)\,',a,,’, (r=12, .., p).
p=l p=1 .

Taking any p values for », it follows that the ratio of any determinant
in the first matrix to the corresponding determinant in the second is
equal to the transformation determinant ()): ) derived from the
identical expression of A[, A}, ..., A, as linear functions of A, Ay, ..., A,.
In particular, we have )

D(n, ) _ (X)

D(n, t) : A/

We examine then how the qu&ptities A\’ are expressed as linear
functions of the quantities A, or, what comes to the same thing, how
L C,8®+C,8V+...+C,Sm=n
is changed to the form
II. S+ ... + 0, 8"+ C, S"" -n,
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The first step is td write L. in the fbr_m
III, O} (S(t-l)+ Gr Sn(u)) +.o+ Oq (S{q-l)_l_ G,- Su(u-2))

. + Cr (S(r-—l)_ O‘ SH(O) - —Cq Su(u-z)), .

and equa;i;e the co-factors of C, in II. and III. We thus have

C‘ S//(O)_I_ " + Cq S//(vl-2)+ S/\u—l) _— S(r-l).

This identity determines uniquely all the coefficients of S, 8,
8"V in terms of the coefficients A in S¢-V, by §2. The coefficients
X' in 8" are therefore linear functions of the coefficients A in S-1,
and the coefficients of the expressions for these quantities A" in terms
of the quantities A are fractional functions of the coefficients of
Cy ..., Cy O, t.e., they are independent of the coefficients of C,. :

The next step is to change the co-factor of O, in IIL., keeping the
co-factor of C, unchanged, and requires the identity

O;S"I(o) + . + Cp S”'("":”'+ S,(..—a) — S(q-l)+ Or Su(n—a)

to be satisfied, S”""" being already determined from the first step.
From this we see that the coefficients A in 8"~ are linear functions
of the coefficients A in 8@~V and S*-", ahd that the denominators of
the coefficients of the expressions for these quantities N’ in terms of the
quantities N are independent of the coeffictents of C,. This last property
clearly holds for all the quantities A’ when expressed in terms of the

quantities \. Hence the denominator of ();) is independent of the
coefficients of C,.

D (n, t) is therefore divisible by all the factors of D’ (n, t) which
contain the coefficients of C,; and similarly each one of the x!
determinants like D (n,t) is divisible by the same factors. Hence
R (n, t) is divisible by the same factors, and therefore R (n, f) is of
the degree stated above in the coefficients of C,.. The degree of
R (n,t) in all the coefficients combined is equal to the coefficient

z1"-‘, R l_wm‘,
]_-a;’"’pxn 1—z .

It easily follows that the degree of R (n, t,).in the coefficients of
C, is OIm/m,. This completes the proof that R (u,,) is the resultant.

The continued ratio of the determinants of the first matrix above
is the same as for any one of the n! matrices formed in a similar way -
when C,, C,, ..., C, are arranged in any order, and is equal to the
continued ratio of the H.C.F.’s of the séts of n! corresponding de-

of o' in 3
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terminants. Hence, since E(n,t) is the H.C.F. of the set corre-
sponding to D (#, t), it follows that all the determinants of the first
matrix are divisible by D(n, t)/RB(n, t). Also C,8"+...4+0,8""
can be changed identically to C, S, + ...+ C,8,, where §,, ..., S, con-
tain any the same number p of arguments in all as 8¢, ..., §™1,
provided only that the determinants of the matrix corresponding to
0,8,+...4 0.8, -do not all vanish identically. Hence, since corre-
sponding determinants will still remain proportional, it follows that
the determinants of the matrix corresponding to C,8,+...+0C,S,
will have a common factor of the same degree as D(n, t)/ R (n, ¢)
in the coefficients of all the polynomials O, C,, ..., C, combined.
Similar results hold for the matrices corresponding to

C,894 ...+ 0,84 and C,8,+...+ 0,8,

" 5. TueoreM.—To prove that, neglecting sign,

D@t _ D=1 D(r—=1t-1) D®m—=1t—m,+1)
R(n,t)  R(n—1,t) R(n—1,t—1) " R(n—1,t=m,+1)

x D (n—1,t—m,) D (n—1, t—m,—1)...D (n—1,1).

- R (n, t) is a factor of D (n, ¢), and the remaining factors of D (n,t)
are independent of the coefﬁcients. of C, (§4). Let a, be the co-
efficient of & in C,, and 7 the number of arguments in S"-V (of

oi:der t—m,) which are severally used as multipliers of C, in forming
the  rows which correspond to 0, in D(n, t). The element a,
appears in all these » rows of D (7, ), and occupiés the columns

corresponding to the arguments of z7» S“~", the only columns absent

from D (n,t) being those which correspond to reduced arguments
(§3), or arguments comprised in S™. The remaining columns of
D (n, t) are those corresponding to all arguments of order ¢ which are

not comprised in mr” S04 8™ ge., S®-Y, Hence the coefficient of

.a;, in the expansion of D (%, t) is the determinant whose vanishing is
the condition that the identity

_ 0,894+ C, 8V +... 4+ 0,_, 8" = St-1,
of order ¢, can be satisfied. To find this determinant, assume the

identity satisfied, and put @, = 0; then C, becomes C’f,"_”, and if S@
becomes S'?, we have the identity '

qvl-l) SI(O)+ 0:"—” S'[I)+ . + Cz:x-ll)sl(n-Z) - SIDI—‘I)‘
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of order t. Hence either D (n—1,¢) =0, or 8@, &V, ..., 8"V all
vanish identically. In the latter case, 8, 8%, ..., §"-" are all
divisible by 2, and on dividing it out we have the identity

01 S(O) + 02 S +.ot Ou-l Sn-2 = S(n-l),

of order t—1. Hence D (n—1, t—1) =0, or a similar identity holds
of order £—2. It follows that the determinant sought is

pmt-1
II D (n—1, t—p).
p=0
wt-1
Hence D (n, ¢t) = a, pIIo D (n—1, t—p)+....
p=0

We next find the coefficient of af) in R(»,t). Consider the determ-
inant like D (n, t) when the order of C,, C,, ..., C, is changed to
C,, 0, ..., 0, that is, the determinant whose vanishing is the
condition that the identity

.89+ C,8V+... + 0,81 = 8§,

of order ¢, can be satisfied. The element a, appears in all the +* rows

corresponding to C,, and occupies the columns corresponding to the

arguments of #™ S©; hence, on expanding, the coefficient of af is

the determinant whose vanishing is the condition that the identity
0,8V ... + 0,0, 8070 = 8™ 42l 8O,

of order £, can be satisfied. The coeficient of a is therefore

p=m, -1
I D(n—1, t—p),
=0

by a similar proof to the above. Keeping now C, fized, while the
order of Cy, C,, ..., C,_, is altered in all possible ways, the H.C.F. of
the coefficients of a in the several expansions is

p=my,~1

O R(n-1,t—p).
=0

This is the coefficient of af, in R (n, £) ; for it is easily seen'to be of
the same degree as R (n, ¢) in the coefficients of 0, ..., 0,_1. Hence
o p=m,—1 .
R (n, t) = aj Ho R(n—1,t—p)+...:.
p=0..
Also the ratio of D (n, t) to R (n, t) is equal to the ratio of their first
terms when expanded in this way ; thus we have the theorem. When

t=1t,

R(n,t) = R(n,t.)=ap "™ 'R(n—1,4,.)""+ ...
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6. THEOREM.—R (n, t) is the quotient of D (n, ¢) by the minor of
D (n, t) obtained by omitting the columns corresponding to all argu-
ments reduced in (n—1) of the variables =, =, ..., 2,, and the rows
corresponding to C, (r = 1, 2, ..., n—1) for all multipliers reduced in
Bpyty voey Tps*

The resultant B (n, ¢,) of C,, C,, ..., C, is consequently the quotient
of D (=, t,) by the corresponding minor of D (n, ¢,).

Let A (m,t) denote the minor of D (=, t) mentioned above. To
prove the theorem, viz., to prove that A (n,t) = D (n, t)/R (n, t), it
will be sufficient (§ 5) to show that

p=m,-1

A(n,t) = pl_'_Io A (n—1, t—p)

p=t—1
I D(n—1, t—p),
p=my,
and to verify that
A(2,t)=D(&t)/R( ).

Now A (n, t) is the determinant whose vanishing is the condition
that the identity

I C,394+ 03" +...+ 0,32 = 3,

of order ¢, can be satisfied; where 3 is a polynomial whose argu-
ments are non-reduced in at least one of the variables ay, 2, ..., @,
3™ g polynomial whose arguments are reduced in ,, but non-reduced
in at least one of the variables =, ..., z;; and similarly for 3@, .,,, 302
(the last consequently divisible by a7»); and finally' 3 a polynomial
whose arguments are reduced in at least n—1 of the variables. The
number of coefficients in 3@, 3, ..., 3= g equal to the number of

the equations they have to satisfy, and A (n,t) is not identically zero.
This is seen by considering the polynomial

2™ 50 4o SV 4. 4ol 3004,

in which every argument of order ¢ occurs once and once only
(. §2).

Putting @, = 0, and writing 3 for the value each 3 then takes, we
see that identity I. becomes

O-iﬂ—l)zf(o)_*_ogu-l)zp(l)_*_ . + OS:'._QI)E'("_S) = EI’

* It is to be remembered that the multipliers of C, are also reduced in z,, ..., 2,_;.
The columns to be omitted are those which contain the elements ay, ay, ..., @, in the

omitted rows, where q, is the coefficient of x:"’ in C,.
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of ‘ordér t. Hence' A (n~1,8) =0, or I 3 .., 3" ¥ all
vanish identically. In the latter case x, divides out of each 3 in I,
and we have _
II, 0,394 C;30+,,.40,,3¢0 =3
of order t—1. Since IL is obtained by dividing z, out of L, the
part played by 7= in L. is now taken by 7 ~1; so thatin II,, for any
argument to be reduced or non-reduced in z, means that it is non-
divisible or: divisible by an

‘Putting #, =0 in IL, we see that A(n—1, t—l) 0, or else
1dent\ty I still holds with ¢, 27’» changed to t—2, 2 =2, Proceedmg
in this way, we find that

A(n,t)=A®m-1,t)a(n=-1,t~-1) ... A (n—1, t—m,+1) &',
where A’is the determinant whose vanishing is the condition that
identity I. holds when ¢, a::n are changed to t—m,, 2. Thus each 3
is now necessarily non-reduced in z,, and consequently 3 takes the
form S*; while = is reduced in ®,, m, ..., #,.,, and takes the form
8®-Y, Hence identity I. becomes
C,894+ 0,8V +.,.+ 0, 8- = St ..

of order t—m,. Hence (§ 5)

r=t-1

A'= 0O D(n-1, t—p),
p=m,
which proves the theorem.
Thus definite expressions have now been found for R (, t), R (2, t,),

viz.,, B (n, t)y=D(n,t)/A(n,t), R(n,t,)=D(n,t) A(n,t).

Another way of expressing the rule for obtaining A (n, t) from
D (n, t) is the following :—A (n, t) is the determinant formed by the
elements of D (n,t) occurring in all the columns corresponding to
arguments non-reduced in two or more variables, and all the rows
corresponding to C,(r=1, 2, ..., % —1) for multipliers non-reduced
in one or more variables leaving z, out of account.

*6a. A moreé general way of forming tin expression for the Tesultant
of C,,0,,...,0, is the following: — Form the complete matrix

* This section was added in a revision of the paper, June 17th, 1902. It supplies
o further proof of the theorem of § 6.
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(having more rows than columns) corresponding to the function
C,8,+Cy8;+...4 0,8, of order ¢, =1+3(m—1). Call he rows
which make up D (#, ¢,), that is, the rows corresponding to

0,89+ 0, SV ... +0,80,

the primary rows, and the rest the supplementary rows. Select any
3u of the primary rows, of which u, correspond to C,, where

pem,=Tm (r=1,2, .., 7");

and add to them any supplementary rows, so as to form a determ-
inant of the complete matrix which does not vanish identically. Then
the resultantis the quotient of this determinant by the minor obtained
from it by omitting the 3y rows, and the columns which contain the
elements a,, aj, ..., a, in the Su rows, where a, is the coefficient of w;"'

in O,. Observe that there is one element @, a, ..., a, in each row
and each column of the complete set of primary rows.
The theorem is also true for B (=, t), when p, u,, ..., g, are given

their proper values; but for this case the proof ‘given below requires
amplification in one or two details.

Let p,, py, ..., pu denote the numbers of the arguments of order ¢,
of the form m:" W9, 2w, ., alnw® ) respectively, so that Sp is

the number of columns of the matrix, and p, = u,. Let S‘(’;} denote a

polynomial, and "‘EZ; an argument, which is reduced in the first p and
last q of the variables z,, z,, ..., z,.

. The complete set of supplementary rows forms & matrix of rank
3 (p—p), which is the number of supplementary rows in any one of
the determinants above; for the matrix corresponds to

Oy a1 8) + Oy (2" S+, 8) + ...+ C, (2" S+ S+ ... +a:;":-1‘ )
= 21" (CoSu-n+ CySp-5+ ...+ CuSp) + 257 (0yStu-9y+ ... + 0uSi0)) + ...

+a™1 (C,8)
= Cy (@ 8()-0) + Cy (B S0y + 2280 ) + ...

o 0,, (a:’l"' Sgg;-l—a,m S;z{.{. +m My 1 SE"]‘)"))
= “"Tl (Cy S%ﬁ)-z) +0; S}ﬂ’_s, +...+0C, S}ﬁ{)
+'1712M (Cs Sf,l.) y+C bE,‘.) g+...+0C, S(o)) 4+ .. +w’"n -1(0, Sﬁ:}")),

which contains 2 (p—p) parameters only. The number of para-
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meters, for example, in the second Bracket of the last line equals the
number of arguments in the function

(1) (1) (1)
w;ns S(,,_3)+w;’“ 8-+ ... +-'13r" S

of order £,—m,, that is, the total number of arguments o™ of order
t.—m, less the number in S0 ,+ S, or S, which equals
Py— My ‘

Hence, if two determinants are chosen having the same primary
rows, but different supplementary rows, then the determinants in one
set of supplementary rows will be proportional to those in the other
(§ 4), and the two original determinants will be in the same pro-
portion. The theorem is therefore true for any set of supplementary
rows, if it is true for one set.

The proof of the remaining part of the theorem will be sufficiently
indicated ‘by taking n = 5. Consider the determinant D arranged
in columns and rows as in the following diagram :—

py columne | p; columns | ps columns | p; columns [p;( = ug) cols,
",y my (1) my (2) m,  (3) mg  (4)
T 'w T, w r,w Z 'w Ty w
f) TOWS
wC)
g TOWS D, D,
LN,
p3 YOWs D, Dy
o® Cs
g TOWS Dy D;
o™ A
#5 (= ps) TOWS D, D,
¢ |
s N
Pa— py TOWS i
wm, (3)
_z‘ @) Cs ) N D
p3—pg TOWS s \
" (2; (2) 3 :
73" () Co (o) Cs) D, - D,
Pa— pg TOWS
g ¢ (1) 1) (1) B
23" (w0 Car 0y Cor @iy ) D, D,
P1— My TOWS a
0 0 0; 0) R 1 i
" (@) Cay wip)Cay 01:Cy, wlo)C) |

YOL. XXXV.—N0. 791. c
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The 3p primary rows correspond to 0,84 C,8M+...+0,8®
where 8¢~V (r =1, 2, 3, 4, 5) is an incomplete polynomial containing
any p, arguments oY, The 3 (p—p) supplementary rows are
chosen in a particular way, each of the arguments w in the diagram
being given all the values of which it is capable. The elements to
the right of the dotted line are all zeros. D, (r =1, 2, 3,4) is the
determinant marked in the diagram by writing D, at the four corners.
A, (r=1,2,3, 4) is the determinant marked in the diagram on the
supposition that the u, columns containing the element a, in the
primary rows are omitted. Let E be the resultant of C,, 0, ..., G,
and R, (» =1, 2, 3, 4) the resultant of C,,,, ..., U; when z,, ..., 2, are
made zero, so that B, =a; Then D, is divisible by R,*"™. We
shall prove this for the case » = 2, by the method of §§ 4, 5.

Let 0;8P+C,8%+ 0;8” be the function whose matrix has D,
for a determinant, S, S%, S¥ being the sums of the multipliers
of G, O,, Oy in D, affected with arbitrary coefficients A. We shall
be able to compare D, with a standard determinant of a similar €ype
by bringing O S(”+0.Sm+0 S to a standdrd form, viz., the
function 0,85+ 0,85+ C; 8, with respect to the arguments to
which the columns of D, correspond. These are the arguments of
the type z)w®, 2%w®, al'sw, or w®, or 2wl 27 o), afswll, from
which we see that the standard function contains just the necessary
number of parameters. Now the following identities, regarding the
functions on the left hand as the unknowns,

(V) S+ 085 +0,88 + (@8, +28) = 87,
@) Si+085" + @S +2"8") = 87 +0,8,
3 So +(@" 8y +a" 8™ = 840,88+ C, S,

can be satisfied in succession uniquely, and on multiplying by
a,, C,, C,, and adding, it is seen that the required transformation has
been effected.

From (1), (2), (3) we see that the parameters ' of S&, S, St
when expressed in terms of the arbitrary parameters A of S, S¥, S®,
contain the coefficients of C; only in the numerator. Hence the
determinant D, contains all the factors of the standard determinant
corresponding to ¢, S+ C, 85+ 0,8l which involve the coefficients
of O, (§4). Now the standard determinant, which comes from
equating to zero all terms in CyS8(+C,Si+ 0, Sy containing
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a::’a:;’ (,=0,1,..,m—1; ¢,=0,1, ..., my—1), breaks up into m,m,
determinant factors of the type I (8, t), each of which ‘is divisible

)y

by I}, The determinant D, is therefore divisible by I,*"™; and
similarly D, is divisible by B,

Again, D, and B,"" are each of degree p, in the coefficients of Cj,
while the coefticient of «}* in D, is A; Dy, and in I)*™ is Iiy*"™" (§ 5) ;

hence

Dy _ A,
TI):'.'_,. iy R:;A,m.,m, M
From this, and similar results, we have
D= 4, 1% = 8,4, 'l)".. = A,4,4 -,,?,?,,,- = 8;4;848 “.%I.T
R Rl. -Rz'l' R;,"’ R‘,n.a
='A, A? Al
therefore R = D/A A AA,.

This proves the theorem for the case » = 5, and in a similar way it
follows generally.

7. The problem of dividing out the extraneous factor & (n, t,) from
D (n,t,), so as to bring the resultant I (n,#,) to an intégral form,
appears to be a more difficult one than that of merely finding the
extraneous factor. Any series of operations for finding the integral
form of R (m, t,) would probably be very long and complicated.

A slight reduction in the magnitude of the extraneous factor is

obtained as follows. Taking m, < m,... € m,, the coefficient a, of

2, in O, raised to the power (my+ ... + m,_;).../(n—1)! divides out of
both D (=, t,) and A (=, ¢,) at sight. This is not, however, the whole
power of ¢, that divides D (», ,) unless m,, my, ..., m, are all equal.

Among the multipliers of C, we may omit all those divisible by ;™.
This will result in a diminution of (my+ ... +m2,.1)n-1/(n—1)! in the
number of rows of D (n, ¢,), and the same dimination in the number-
of columns, viz., the columns corresponding to all arguments divisible

by #;""™. The extraneous factor in the reduced determinant D’ is a
minor of D’. To obtain it we omit all the rows and columns in D’
which had to be omitted in D (=, ¢,) and which appear in 7, Those

not appearing in I are the rows corresponding to C, for multipliers
Ny + M,

z" w, and the columns corresponding to arguments z," " w, where v

is any argument of order ¢,—m,—m, reduced in wm,, @, ..., z,.. We

must then omit some other rows and columns of D’ in place of those
c 2
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which have disappeared. They may be chosen in several ways. We
may, for example, choose the rows corresponding to U, for multipliers
2" "2,"w’, where o' is the value that v takes when #, and =z, are
interchanged ; for it can be proved that each of these rows simply

supplies n factor a, to the minor A (n, ¢,) of D (n,t,). Since w is not

’ W, =y Mg
"

divisible by ", o' is not divisible by «;°, and z)"* "™,"w’ is not
divisible by 2", and so is a multiplier for O; in D’. The extra
columns to be omitted from I’ are those corresponding to the argu-
ments w!]n,un,,—m,w;l,w,. .

A greater reduction in the magnitude of the extraneous factor is

suggested by a method of Sylvester's.* Taking m, < m,... < m, and
(a,—1)+(ay=1)+... 4+ (a,—1) = m—1,

then any argument in O, ot 0, .., or 0, is of higher order than

.'c;‘"la;‘;“_l @ ! and therefore divisible by at or a? ... or al; 80

that we can write

C,=ar' 4,42 B,+...+a" K, (r=1,2, ..,n),

where 4,, ..., K, are polynomials. The number of solutions of the
equation 3 («—1) = m;—1 in positive integral values of a, ..., a,,
excluding zeros, is equal to the number of arguments of order
m,—1; which is also the number of reduced arguments of order
t,—m,, as may be seen by dividing any argument of order m,—1 into
a1 There are therefore the same number of poly-
nomials 34 ABO ... K of oider t,—m, as of reduced arguments of
order t,—m,, taking only one set of polynomials 4, B, ..., K for each
golution of the equation 3 (a—1) =m;—1. The determinant D’
corresponding to these polynomials and the function

0,894 0,8+ ... + 0,8,
of order ¢,—m,, will have the resultant R (, f,) as a factor. The

proof that D’ does not vanish identically, provided that only ome
polynomial 3 3 AB ... K is chosen for each solution of

3 (a—l) =m—1,

is somewhat complicated, and we omit it. It is clear that D’ is
divisible by the common factor of the determinants of the matrix

el a’?"_l.

* Salmon’s’ Higher ldlgebra, 1885, p. 86, and Cambd. and Dub. Math, Jour.,
Vol. vir., 1852, p. 68.
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corresponding to 0,8%+...+(0,87-"; hence (end of §4) D’ 1s
divisible by A (%, t,—m,). Also the quotient is of the same degree
as R (n,t,) in the coefficients of C,, O, ..., C,, and is therefore
identical with R (%, t). Thus the extraneous factor in D’ is
A (n, t,—m,), which is obtainable from D’ by the same rule (end of
§6) as A (n, ¢,) from D (=, ¢,).

. This method has the greatest effect in reducing the extraneous
factor when m,, my, ..., m, are all equal. When »=3 and
my = my = my, it gets rid of the extraneous factor altogether; and
when n=3 and m, < my < my, it reduces the extraneous factor to
a, raised to the power

3 (my—my) (mg—my—1) +§ (me—my) (my—my —1),
of which «, to the power % (m;—m,) (my—m,—1) can be divided out,
leaving a; to the power % (my—m,)(m;—my—1) as an extraneous
factor which does not divide out at sight.

8, We add a further list of formulee without entering into details
of proof. The formulw of the present article are proved by methods
that have been already employed. In §§ 9, 10 some indications are
given as to how the results are obtained.

¢)) D (n, t) =D (n—1,¢) D (n, t—1), when ¢ > ¢,
@) D(n,t) =T D, )™, when ¢ > 4,
where o
B I S S :
(t..—‘-2t.,z) (tu“ltuz) T 0
(o) (o) (o) !
G GRS GRS e (7))

(: ) denoting the coefficient of #* in (1+2)"; t,—¢ in the last row of
- the determinant is a negative number.
3) R(n,t) =R (n t,), when ¢t > ¢,.

L (n,t,)isa px'iu-le, i.e., non-factorisable (Netto, L.c., p. 5). Itis also
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probable that R (n, t) is a prime for all values of ¢ when m,, m,, ..., m,
are all equal. When m,, m,, ..., m, are not all equal it is probable
that I (n, t) has only one factor containing the coeflicients of all the
(’s. In this case, if m, is not less than any other m, the factor is
the numerator of '

pouy, -1

R (n, t)/ I R((n—1,t-p)
p=0 _

when reduced to its lowest terms. .
~ If m, is less than any other m, then the coefticient of z"in Cyisa
factor of I (n, t) when

t = my+ (mg—m,—1) + ... + (m,—m—1) = t,— (n—1) m, ;

my-m,-1 ,m" —-y, -

for C, x &, v " is of the form S™ when this coefficient of
C, vanishes.

If m,, ..., m, ave equal and less than any other m, then the determ-
inant of the coeflicients of the highest powers of @, 2y ..., 2, in
G, O ..., C, is a factor of B (u, t) when

t = m + (m—my—1+ ...+ (n,—my—1) = t,—(n—1) m+ (r—1) ;

for (MGt ... +XC) ™ o™ ™" can be made of the form
8™ when this determinant vanishes.

Let D (2, t)™ denote the determinant whose vanishing is the con-
dition that 0S8+ W SY 4 ... + 0P8+ S¥ can be made identically

zervo ; so that D (n, £)™ is the same as D (n, t). Then (n>1)

4) D )" =D )" D (I, t—1)"

pat-l

= ‘t—— pra=l=lliptn=i-11
D, i)

Thus D (!}, t)™ is independent of the coefficients of all terms in
G, G ..., C, which contain any variable other than wx, x,, ..., @

Let B (, t)™ be the H.C.F. of the I! determinants similar to
D (1, £)™ for the l! different permutations of C,, C,, ..., Ci. Then(n>1)

6 = RELOD =R VR, t—1)®

pai-1

="T R(l, t—p)o-?
pul

st-1

» .
= II R(L t~p)Ptr-t-tpin-i-11
I E(l t~p)
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By induction we have (n = I)

DA™ _ DAL 0"p g 4 4_m)m
©) R o= B (=L, g UL =)
the case for » = I having been already proved (§ 5).
From (6) we have
() D(n,t)=R(nt) R(n—1,t—m,)™ RB(n—2, t—m,.)" ...

. B(1, t—my)™,
from which D (n, t) is expressed in prime factors when the m’s are
all equal, by (5) and (3).

The number of different prime factors involved in all the ex-
pressions D (I, )™ is 14¢,+¢+ ... +¢t,., when m, m,, ..., m, arein

ascending order of magnitude ; in other cases it is equal to or less
than this number.

9. From identities of the type wC, = wC() of order ¢, by writing C,
in full on the left hand, and solving for the arguments, we obtain

(8) D (n,t)w, = Dypw,+ ... + Dypw,+Co 89+ O, SV ... + €, 8-,

where o, ..., v, are the arguments of order ¢ reduced in all the
variables, and w, (¢g>r) is any non-reduced argument. D,,is a con-
traction for D (n, t),,, and may be regarded as being obtained from
D (n, t) by replacing the column corresponding to w, by the column
corresponding to w, out of the same matrix, and then altering the
sign. Identity (8) is written

9) D(nt)w,=3 Dyw, (mod C,, C ..., Cu).
. pal
Dividing out the common factor D (n, t)/E (n, t), we have
(10) R(nt)w, =3 Ryw, (mod Cy Cy ..., Cu),
pal

where R,, Rp, ..., R, are integral functions of the coefficients.
Formulas (9), (10) are unique; since there is only one expression for
w, of the kind given.

In a similar way we have

(1) D, t)(,,)qu"i'-quwP (mod G, Gy, ..., ),
pal
where @, w,, ..., w, are all the arguments of order ¢ reduced in

®yy Ty 0oy T, and w, is any non-reduced argument involving only
Zy, Ty, ..., .. This equation may be multiplied by any argumeut
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involving only .4, ..., #,, leaving the I’s unchanged, but increasing
the order of the arguments.

10. Norarion.—We proceed to give some formule involving the
roots of C,, Cy, ..., C,_;. TFor this purpose it is convenient to take
2, =1, and regard C,, C,, ..., C,_; as non-homogeneous polynomials
“in®, @, ..., z,.,. We can reinsert z, whenever we please. Let u be
the total number of arguments wj, w, ..., w, of order <t (or of
order ¢ when @, is reinserted), r the number of arguments reduced
(in 2, @y, ..., #,_y) of order < ¢, viz, w, ..., w, in ascending order
(so that w, =1), »* the number of arguments reduced of order
< t—m,, Viz., @, Wy .., ws, and p(=m,...m, ) the namber of
vanishing points common to C,, C,, ..., C,,.,. When ¢ <¢,_,—1 then
r<p, and when ¢ > ¢,.,—1 then » = p. Select the p points in any -
order, calling them the 1st, 2nd, ..., p-th points. Let C,; denote the
value of C,, and w,; the value of w,, at the ¢-th point (p =1, 2, ..., u;
7:=1’ 2’ ey P)' . ' )

The matrix corresponding to C,8,+... +C,.,8,_;, where S,, ..., S,_;
are complete (or inconiplete) polynomials of orders ¢—m,, t —m,, &c.,
is of rank p—r, ¢.c., any sub-determinant of the matrix containing
moré than u—r rows and columns is identically zero. - For the
identical vanishing of C.8+ ...+ 0,18, requires p equations of
which only u—» are independent, since C,8,+...+C,.18,_, can be
brought to a form C,8“+...4C,.,8"? involving only u—r para-
meters.

Similarly, the matrix corresponding to C,S,+...+C,8, is of rank
p—7+7"; r—7 i the number of arguments of order ¢ reduced in all
the variables when =, is reinserted. ’

The matrix of the roots, viz.,

w“, wn, cery w"l
Wygy Wegy +ovy Wy
(l)lp, 0)2‘, ey wFP
is of rank » when r<p, or t<t,_,—1; for 89, 8V, ..., §®-» can be so

chosen that C, 8+ ...+ C,_, 8" reduces to & polynomial containing
only r+1 arguments arbitrarily assigned, and this polynomial
vanishes at any r+1 of the p points.

Select u —#rows of the matrix corresponding to €, 8;+ ...+ €, 1S,
80 as to form a matrix of the coefficients the determinants of which
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do not all vanish identically. These p—r rows cannot be chosen
arbitrarily. Also select (arbitrarily) r rows of the matrix of the
roots, viz., the first » rows; for these correspond to any r of the
p points. The two resulting matrices are * corresponding,” z.e.,
the sum of the products of corresponding elements of any row in
the first and any row in the second vanishes. Hence (neglecting
gign) the ratio of any determinant of the first to the corresponding
or complementary determinant of the second is constant.* This is
expressed in the form

D (wpy wyy oeey w,,r) D (wg,, W,y -+e5 w,)

2w, W Wy,

(12)

T ke .. We,r ’

where D (w,,, v, ..., w, ) is the determinant obtained from the matrix

of the coefficients containing p—r rows by omitting the columns

corresponding to w,, ..., w, .
Norarion.—Let @ stand for the determinant 3 £ wjwy ... w,, (the

i-th row wy;, ..., w,; corresponding to the :-th point), where w,, R

are all the arguments reduced (in @, @5 ..., -y, and w, =1,

o, =1 m

w,=z ' .. a;ﬂj‘l"-l; also let M; be the co-factor of w, in @, J the
Jacobla,n of C, C’,, vy Cu_y, and J; the value of J at the z-th of the

p points. Then 2 J"'— 0 when w, is of less order than J, viz,
tu1—1 (Jacobi's theowm*). " Hence it follows that

Q — QR (n—1,¢t,,)

" R(n=1,t,,—1)

(13) Mh=.=MJ=
3 —-;— |
omitting & numerical factor in the right-hand expression.

Dividing each element of the ¢-th row in @ by J; =1, 2, ..., p),
and multiplying by @, the product Q%ILJ breaks up into £,., determ-
inant factors in the diagonal [¢f. p. 4, footnote (4)]. These cun be
evaluated and the p-th, counting from either end, is found to be

B (n—1, tyi—p) B (n—1, p—1)
R(n—1,1¢,)

* Gordan-Kerschensteiner, Vorlesungen tiber Invariantentheorie, Bd. 1., 1885,
pp- 95 and 110. The result also follows by cross-multiplication.

1 Jacobi proves the theorem for two equations, Crelle, Jowr. f. Math., Vol. x1v.,
1835, p. 281, and states it to be true for three equations, Vol. xv., p. 306 ; also
Wer lce 1881 &e., Vol. 1., pp. 285, 352. Clebsch proves the geneml thco:em
Crelle, J'our f Math., Vol. Lxu1. '1864,p 224 and n.]so Laurent, “L’Ehmmutwu,”
Sazmtm, Phys. -Matk No. 7, 1900, p- 38.
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except for a numerical factor. Hence

(14) 2 _[BO=d by =T
07 R(n—1, t,,,)"

omitting a numerical factor.

In a gimilar way a more general result may be obtained. Let any
7’ of the.p points be chosen, where 7’ is the number of reduced argu-
ments of order < ¢. The number of the remaining +’ points is
equal to the namber of reduced arguments of order < #”, where
£+t =14,,—2. Let @, Q" be the values of the determinant
St wywy... w, when ¢ is taken equal to ¢ and ¢”, and the points
selected are the +* and »" points respectively, and J', J” the products
of the J’s for the +* and #* points. Then, omitting & numerical factor,

x . & J ?
U9 oy, t’)("’/ [Ja_(n—;, th)'d

N / [ A _:l'
- 1!‘! (n—l, t”)(") -Rl (n—l, tu-l)‘” )

This includes (13) and (14).
If D (n, t) is multiplied by 2 w,wy... w,, the product is found
to be equal to D (n—1, £)* multiplied by the determinant

Wy Cnl e 0 G 0y el 0y

WCh . 0 Cy W1 0

Wy, Cm- oo Wy Clnr Wy g1y oee Wy
Hence
D(n,t B (n,t
(16) D (n(_,'fl )t)(") = pamy,~1 (n’ )
. ’ 1. R(n—1, t—p)

p=0

Y
—Etwy G 0 O 0ppipy oo 0
2 + W) Wyg .00 Wy,

_This may also be generalized. Let D be the matrix formed from
any p—r+1" rows of the matrix corvesponding to C,8,+...4+C,8S,,
there being only +" rows containing the coefficients of C,, viz., those
obtained by multiplying C, by w,, w,, ..., w, . Let D(w,, ,..., )
be the determinant formed from D by omitting the columns ¢orre-
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sponding to w,,,,.;l, cees Wy, and D’ the matrix formed from D by

" omitting the 7’ rows corresponding to C,. Then

(17) D (wp,l...]’ ey Wy, ) ) E :’: W1 Ch .. < Wppr Cnr'wlr,z+,1'+l cos Wpw
D)) T reo o e,
D (w,h, . ""Ir) s + W1 W02 oee W7

with the sufficient condition that neither numerator nor denominator
on the left hand vanishes.

From (16) and (17) we have, when ¢ = ¢,, so that r =+ =,

D(nt) -  R(mt) e
l8 e e H Cm':
( ) D(n—l t)(u) R(n—l £ . l)m" Pt
aid D__ _ZEumtn, g

. =
D (0g ooeywg,) Zdogl...wgp =1

[To express any integral symmetric function of the roots in terms
of the coefficients the following method may be adopted. Let w, be
any argument, of order £. Eliminate =z, ay, ..., #,_, from the n—1
given equations and the additional equation C, = a—w, = 0, obtain-
ing the determinant form D(n,t,) =0, where m, =¢, a,= a,
t, = t,.,+¢t—1. The multipliers of C, in D (n, {,) are the reduced
arguments w; (z =1, 2, ..., p). Expand D (=, ¢,) in powers of a (§ 5).
The result to two terms is '

a’D (n—1, t,.)("’—a" VY Dp.-i- =0,

where D,; is a determinant of the matrix to which D (n—1, £.)® be-.
longs, obtained by replacing the column corresponding to w,w; in
D(n—1,¢,)™ by the column corresponding to w; and changing the
sign. D, 18 zero if there is no column w,w; in D (n—1, £,)"™, Ze., if
w,w; is a reduced argument. The roots of the equation in a are the
p values of w,; hence we have

(19) D (n—1, £,)" Sw, = 3D,

A When the factor common to both sides of (19) is d1v1ded out
R(n-—l tar)’ Ew,,. is expressed as an . mtegm.l function of the co-
efficients (§ 5). .The other symmetric functions’ are expressible in
terms of the functions Sw,; eg., Zw,w; = Zw,;XJw;—32 (w,w,),
and B (n—1,¢, ;) Sw,w, is integral in the coefficients if ¢ is the
order of the higher of the two arguments w,, w,.—October 8th, 1902.]
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On Groups in which every: two Oonjugate Operations are Per-
mutable. By W. Buensipe. Received and read May 8th,
1902.

In a paper published in the Quarterly Journal of Mathematics
(1902), “ On an Unsettled Question in the Theory of Discontinuous
Groups,” I have determined the order of a group with given
generating operations when subject to the condition that the order
of every operation shall be 3. If P and Q are any two operations
of such a group, the relations

P=1 @=1, (PQ’=1 (PQ)’=1
lead at once to P.QPQR'. @ PQ*=1
and P.Q'PQR2.QPQR'=1;

so that P and QPQ"' are permutable. The condition that every
operation is of order 3 involves therefore that every two conjugate
operations are permutable.

In the present paper I have considered the general problem thus
presented ; viz., the nature of a group generated by a finite number
of operations when every two conjugate operations of the group are
permutable. It will be seen that the general problem is closely con-
nected with the more special one above referred to. When no
further limitation is imposed on the operations, it is found that every
operation of the group is given once and only once by a form

Q.. R,
where P, @, ..., R are a finite number of operations belonging to the
group; and of the indices , ¥, 2, ... & certain number take all values
from —oo to +o0, while the remainder take the values 0, 1, 2.

The sufficient and necessary conditions that the group shall be of
finite order are that the generating operations be of finite order.
When this is the case, the group is the direct product of groups
whose orders are powers of primes. In general for such a group the
commutator of any two operations is a self-conjugate operation;
but the case in which the order is & power of 3 'is, as might be

. expected, exceptional.
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1. In dealing with groups in which every two conjugate operations
are permutable, the following notation will be used.

If P, P, P, ..

" are any operations of such a group, the result of transforming P, by
P, will be written P,P,, so that

P;'P;'P,P, = P,.
Similarly, P P]'PyP, = P,

. P P Py Py = Popes,
and so on.

Further, the notation will be extended so that
n_bl-P ;.lP ase P, de — P (abe)(de)*

The use of brackets in the suffixes will prevent any ambiguity ; thus
Py, 18 the same as P4, ; but these are not necessarily the same
as P,, (bedey OT P(,,b)(“{,). From the definition of -Pnb it follows that

Pba'=Pb-l-P:le-Pa= a-b"
The operation P, may be regarded as the product of 1_’,," and
P'P.P,; or as that of ' P;' P, and' P,. Hence, since every opera-

tion is permutable with its conjugates, P, is permutable with both
P, and P,

Now, from ZP;'P,P,= P,P,, and P;'P,P,= P,

it follows that P;'P,P, = P, P},
and . P,'P.P} = PiP},
~or . P;"Py'P;F,= P3.

Since P, is the product of P;' and P;'P,P,, it follows that P,
Popeds ... are products of powers of operations which are conjugate
to P,. Similarly, P,. may be expressed as products of powers of
operations which are conjugate to P, (or to P, or to P;). Hence

: Pabrdn — 1’
Poyear = 1,

&e.

Again, P, and P, can both be represented as products of powers of
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operations which are conjugate to P,. They are therefore permutable,

and
Plaseyany = 1.

Hence, generally, P yae.yonr. = 1,

if in the multiple suffix any simple suffix occurs more than once.
Since P, is permutable with both P, and P,, every substitution of
the sub-group generated by P, and P, can be represented in the form

PP,
Infact P;PyP,P; PP, =P, P;" PP, P;” " P,”
= P:+z’P;bz’v zn"Pz;:'
= Pzi»z’Pgoy'Pz;:‘-:’y.
Let P, be any operation which does not belong to this sub-group.
Then o X
’ PnPePa =-PcPc_a’
P,P,P.P;'P;' = P.P3' P/ P.y,
P.'P,P.P.P;'P;' P, = P. Py P3u Peus;

and therefore Py P,P,= P.PyP.,
or. Py=P o0 Peas-
Now Py = Poes
hence PuPinP=1,
or, since Py, = Pb-criu
P PoeaPoy = 1. (1)

Again, since P, P, and P;‘P,,P,,P, (= P,P, P,P,) are conjugate,
they are permutable. Hence

P,P,P,P, = P;'P;' (P,P..P,P.) PP,
= P;' (PaPoP,PouPuPra) P,
=P, P,P,P,,P,P,,P, Py,
But P,, P,,,;, P,., P.4 are all permutable, as also are P,, P,, P,, P,,.
Hence P,P,.P,P,,= P,P, P,y PPy, Py, Py Py,
or . P,P,.=1 : (i)
If P, belongs to the sub-group generated by P, and P,, the relations
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(i) and (i1) become identities. They are therefore true in any case,
and for any permutation of the suffixes. Now, (ii) may be written

Pry = Pu,
or P, =P,,.
Hence from (i) and (ii) together it follows that
Py = Poy = Py = Pry = Poy = P;y; (iii)
and P, =1 (iv)

The relations (iii) are equivalent. to the statement that when any
permutation of the suffixes is effected in the symbol P, the operation
represented is unaltered or changed into its inverse, according as the
permutation is an even one or an odd one. Since

— -1

-1
Pab...d.f = -P(ab.ud]q/ = P(nb...d)!o = Lab..des

this statement may clearly be extended at once to any such symbol
as P ab...daf* Again,

-1 _ -1 _ (_l)r-d
P.w...t) = Pw...k). = Pii...k- = P-ij...k [

where r is the number of suffixes in the set 7, J» .-y k. Hence

and thus any symbol P y , can be replaced by one in which there
are no brackets in the suffix.

From the velation (iv) it follows that any symbol with three or
more letters in its suffix is an operation of order 3, or else is the
identical operation. Further, since

P?,M =1
may be written P P]'PyP. =1,

the cube of every P with two letters in the suffix (¢.e., the d¢ube of
the commutator of any two operations) is a self-conjugute operation
of the group. Again,

P :u =1
may be written P, P*P,P.=1.

Hence the cube of every operation of the group is permutable with
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every operation whose suffix contains two or more letters; 7., with
every operation of the derived group.

2. Let P, P, .. P,

be n independent operations which generate a group @, and suppose
that the only conditions to which they are subject are that every two
conjugate operations of G are permutable.

‘The product of any two operations of the form

P‘;-P: “oe -P:aP;‘gP;a P{-l,u-Pgn see P?N...m (V)

where every P with a multiple suffix occurs once, while the P’s are
written in a definite sequence, is another operation of the same form.
In fact, from the preceding paragraph,

-y T
Pa,a,...a,Pb‘b,...b,Pz.a,...a,

_ pz (_l)rvl 2y

= Pb,b,...b, Pa,b,..,b,a,a,...a,. H

so that the multiplication can be actually carried. out, and in the
result the P's can be re-arranged in the original sequence. Hence
with suitably chosen indices every operation of & can be represented
in the form (v.).

To specify all distinct operations of the group it remains to show
under what conditions a symbol of the form (v) represents the
identical operation. As the basis of an induction it will be assumed
that when there are n—1 generating operations the conditions are
that (a) the index of each P with a single or double suffix is zero,
and (B) the index of each P with a triple or higher suffix is zero or a
multiple of 3.

If to the conditions defining G we add

Pl=1’

a new group is defined, which is simply isomorphic with G/H, where
H is the self-conjugate sub-group of G generated by P, and its con-
jugate operations. The latteris an Abelian group, and cannot there-
fore be-identical with G.

Now P =1
involves Py=1 P,=1, ..,
Pyu=1, ...

Hence G/H is simply isomorphic with the group generated by
P, P, ..., P,; and this sub-group of @ can therefore have no
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operation, except identity, in common with H., Suppose now that

PP, ... P,Pa PPl .. Py WPry .. Phy . =1,

187 28 °

By preceding processes the factors on the left may be rearranged so
that all the P’s containing 1 in the suffix come at the end, the indices
of the remaining P’s being unaltered. Hence

P,...P,Py.. P, Py, ..=P PPl .. P

A
Now the operation on the right belongs to H, and that on the left to
{Py, Py, ..., P,}. Hence each must be the identical operation, and
therefore by the assumption made

b=..=c¢=f=. =¢=0,
¢ = ... = 0, or a multiple of 3.

Similar series of results follow by considering the self-conjugate
sub-groups arising respectively from the suppositions

P,=1 or P,=1,

Hence an operation of the form (v) can only represent the identical
operation, in a group generated by n operations, when the indices of
all the P's with less than n symbols in the suffix satisfy the assumed

conditions. But when this is so the operation reduces to Py, .
If m is neither zero nor a multiple of 3,

-P;;.‘L..n = 1: a‘nd P?2B..:l = 1
involve Pposy.w=1,

which would constitute an additional limitation on the group, not
contained in the original conditions. Hence m must be zero or a
multiple of 3 ; and the induction is completed.

Finally, therefore, every operation of G is given once, and once
only, by the form (v), if the indices of the P's with a single or double
suffix take all values from —o to +o0, while the indices of the P’s
with a triple or higher suffix take all values from 0 to 2.

3. So far it has been supposed that the only limitation on the
group considered is that every two conjugate operations. are per-
mutable. The group under these conditions necessarily containg
operations whose order is not finite. It will still have this property
under a variety of further limitations. For instance, the condition

P 123 = 1
VOL. XXXV.—No. 792. D
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implies that every P with a multiple suffix in which 1, 2, and 3 occur
is the identical operation. The generality of the group is thus re-
duced ; but it still contains operations whose order is not finite.

From the form giving the operations of the group it is clear that,
if the order of every operation of the group is finite, the group is one
of finite order. Moreover, the necessary and sufficient conditions for
this are that each one of the generating operations should be of finite
order. That these conditions are necessary is clear from the
form (v). To show that they are sufficient, it is only necessary to
notice that, if P, is of finite order m, P, is of finite order, equal to or
a factor of m.

Suppose now that @ is of finite order, and consider the operation
S-'T-'STof @ As the product of S-' and T-'ST its order must be
equal to or a factor of that of S.. Similarly its order is equal to or a
factor of that of T. Hence, if the orders of S and T are relatively
prime, ST ST =1,
or S and T are permutable Since any two operations of G whose
orders are relatively prime are permuta,ble, G must be the direct
product of a number of groups, the order of each of which is the
power of a prime. In dealing with groups of finite order with the
property considered, it is therefore sufficient to suppose the order to
be p°, where p is a prime.

The case p = 3 evidently stands by itself. Suppose first that p is

not 3. Then Py, is an operation whose order is a power of p. But
in any case it has been seen that

P, =1
Hence .P,23 =1,
or the commutator of any two operations of the group is a self-
conjugate operation.
Every operation of the derived group is therefore a self-conjugate
operation. That this condition is sufficient to ensure that in a group
of order p* every two conjugate operations are permutable is obvious.

If Pn P21 ey Pm
of orders 2R SN
(0, 2 a3 2 gy... 2 @),

are the generating operations of such a group, and if the only condi-
tions beyond the given orders of the generating operations are that
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every two conjugate operations are permutable, the order of P,, (r<s)
is p™. Every operation of the group will then be given once by
upr me
r 78
(r=12 ..,0;s=12,...,n; r<s),

where z, takes all values from O to p*—1 and z,, from 0 to p™*—1.
Hence the order of the group is

pzfu,
When p is equal to 3, the only condition that P with a triple or
higher suffix is subjected to is

3

e, — 1’

and it is no longer the case that the commutator of any two opera-
tious is a self-conjugate operation. If the group is generated by

-Ph P'_H “eey -Ptn
of orders 3%, 3%, .., 3%
(4,2 a2 ... 2 a,)s

every operation of the group will be represented once in the form (v),
wlere the index of P, lies between 0 and 3*'—1, the index of P,, (r<s)

lies between O and 3™—1, and all the other indices lie between 0
and 2; both limits included. The order of the group is therefore

32rar+2“— 1-4n(n+1)

In particular, if the order of each of the generating operations is 3,
the order of the group is g"-1
This is the case already referred to in the introduction.

4. Groups of finite order p°, of the kind here considered, possess
ﬂvyc; general properties in common with Abelian groups. First, the
totality of the operations of the group whose orders are equal to or
are less than p’, where 7 is a given integer, constitute a sub-group.
If P, and P, are any two operations of the group, of orders p™ and
7* (0, 2 a,), the order of P,; 18 equal to or is less than p*, Now, by
a repeated use of the formula

P;"P;'P, P, = P}

127
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it follows that (P,P))*= PP} P;aiz‘:_"-
Hence, if Pi=1, Pi=1, P:¢V=],
then ' (P, Py)*=1

Now, if p > 2, the condition
pEel=

may be replaced by - P =1

It follows that, if p>2, the order of P, P, is equal to or is less than
the order of P,. The sub-group generated by all the operations
whose orders are equal to or less than p" consists therefore of these
operations and of no others; for the product of any two of these
operations is an operation whose order does not exceed p".

The case p = 2 clearly forms an exception to the general theorem;
tor, if P,, P, are two non-permutable operations of the group of
order 2, P,; is an operation of order 2. But

Py = (P, By)’,
and P, P, is therefore an operation of order 4.

Secondly, the totality of the distinct operations which arise, when
every operation of the group is raised to the power p", where » is a
given integer, constitute a sub-group. Consider the case in which
p>3, and the group is generated by two operations P, and P, The
operations of the sub-group generated by P}, P;, and P}, are given
by the form pEprpr

The p-th power of any operation P}P,P;, is given by the relation,

obtained as above,

( Pu Ph “)p = Ppa Ppb Ppc dabp(p- l‘
Now % (p—1) is an integer. Hence

PYPY Ry = (PP P10y
i.e., every operation of { P}, P;, P4} is the p-th power of an operation
of the group, and the p-th power of every operation of the group is
contained in {P}, P}, P;}. For more than two generating operations
the proof will proceed on precisely similar lines. The theorem is
therefore true when »=1. But it must also be true for the resulting
sub-group; so that it is true generally. The case p =2 forms again
an exception, since .§ (p—1) is not then an integer. In fact, in this
case {P}, P;, P;,} will not contain Py, which is the square of P, P,.
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The case p =3 requires separate treatment, It may be easily
shown that in this case the cube of any operation of the group when
expressed in the form (v) contains no P with a triple or higher
suffix ; and from this the truth of the theorem immediately follows.

Thursday, June 12th, 1902.

Dr. E. W. HOBSON, F.R.S., President, in the Chair.

Fifteen members present.

The President announced thai the * De Morgan medal ” for 1902
had been awarded to Prof. A. G. Greenhill.

Mr. A. C. Porter was admitted into the Society.

The following paper was communicated by Prof, Love :—
Prof. A. W. Conway: “The Principle of Huygens in a Uniaxal
Crystal.”
Lieut.-Col. A. Cunningham gave an account of ‘ Some Investiga-
tions concerning the repetition of the Sum-Factor Operation.”

The following papers were communicated from the Chair:—
Prof. E. Picard: “ Sur un théoréme fondamental dans la
théorie des équations différentielles.”
Mr. G. H. Hardy : “ Some Arithmetical Theorems.”
Prof. M. J. M. Hill: “ On a Geometrical Proposition connected
with the Continuation of Power Series.”
Mr. J. H. Grace: “Types of Perpetuants.”

The following presents were made to the Library :—

¢ Educational Times,’’ June, 1902.

¢¢Indian Engineering,’’ Vol. xxx1,, Nos. 16-20; 1902.

¢ Queen’s College, Galway—Calendar for 1901-1902.”

Penfield, S. L.—*¢The Stereographic Projection and its Possibilities from a
Graphical Standpoint,” 1901.

Penfield, 8. L.—¢ On the Use of the Stereographic Projection for Geographical
Maps and Sailing Charts,”” 1902. ‘

‘¢ Periodico di Matematica,” Serie 2, Vol. 1v., Fasc. 6 ; Livorno, 1902.

¢ Supplemento al Periodico di Matematica,” Aunno v., Fasc. 7; Livorno, 1902,
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¢ I'Enseignement Mathématique,” Année 1v., No. 3; 1902.

‘¢ Mathematical Gazette,”” Vol. 11., No. 33, 1902.

Guldberg, A.—* Ueber Integralinvarianten und Integralparameter bei Beriihr-
ungs-Transformationsgruppen,’” 1902,

¢ Journal de I’Ecole Polytechnique—Hommagerendu i M. le Colonel Mannheim,"’
1902.

De Morgan, A.—*¢ Theory of Probabilities " (extract from Encyclopadia Metro-
politand). From Mr. R. Tucker.

Carvallo, E.—¢‘ L'Electricité *' (Scientia, No. 19).

¢ Mathematical Questions and Solutions from the Educational Times,” New
Serics, Vol. 1. ; 1902.

D. Ocagne, M.—*‘Sur quelques Travaux récents relatifs & la Nomographie.’

wing exchanges were received :—
The follo exch c d

Académic Royuale de Belgique :—
‘¢ Annuaire, 1902,” Bruxelles.
¢ Bulletin de la Classe des Sciences,’”’ Nos. 1-3 ; Bruxelles, 1901-1902,
“ Mémoires Conronnés,”’ Bruxelles, 1901-1902,
‘‘ M¢émoires,”’ Tome L1v., Fusc. 1-4 ; Bruxelles, 1900-1901.
¢ Mémoires Couronnés et Mémoires des Savants Etrangers,”” Tome LIx.,
Fasc. 1, 2; Bruxelles, 1901.
*‘ Proceedings of the Royal Society,”” Vol. Lxx., Nos. 459, 460; 1902.
“ Reports to the Evolution Committes of the Royal Society '’ ; 1902.
¢ Beiblitter zu den Annalen der Physik und Chemie,” Bd. xxvr., No. 5;
Loipzig, 1902.
‘¢ Bulletin de la Société Muthématique de France,” Tome xxx., Fasc. 1; Paris,
1902,
¢ Bulletin  of the American Mathematical Society,” Vol. vmr., No. §;
¢t "Transactions,”” Vol. 11r., No. 2; New York, 1902.
““ Bulletin des Sciences Mathématiques,”” Tome xxv., ‘‘Contents,” 1901;
Tome xxvr., Mars, 1902 ; Paris.
¢ Aunali di Matematica,’’ Tomo vir., Fase. 2, 3; Milano, 1902,
“Atti della Reale Accudemin dei Lincei—Rendicenti,”” Sem. 1, Vol. xi.,
Fasc. 8, 9, 10 ; Roma, 1902.
¢ Sitzungsberichte der Konigl. Preuss. Akademie der Wissenschaften zu Berlin,”’
Nos. 1-22; 1902.



