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1. The object of the following paper is to investigate the properties
of the determinants which arise in the theory of elimination when
conducted according to the methods of Bezout, and, in particular, to
find a simple expression for the resultant. The equations are supposed
homogeneous, of different orders, and general, that is, complete in all
their terms with unconnected literal coefficients.

Cayley* has given (without proof) an extremely general expression
for the resultant of n equations in the form B/Bl/... /Bn.it or
BB%... /J9jD8..., where D is any non-vanishing determinant of the
complete matrix corresponding to the function 0, Sx +... + Gn 8n of
order tn (c/. §3 below), and Blt B3, ..., D,,_2 are other determinants.
The simpler, but less general, expression for the resultant found
below is D/A, where B is a determinant selected arbitrarily in
accordance with a certain rule (§ 6a) from the same matrix, and A is
a minor of B.

For three equations it can be verified that the two results B/Bt and
D/A are the same; Bt and A are not, however, composed entirely of
the same elements for the same B, but each is independent of the
elements in which they differ. To verify the identity of the two
results for more than three equations would be difficult, and of little
use. The advantage of the simpler form D/A lies in the fact that A
can be at once written down from B, whereas Bu B.2, ... are only ob-
tained by a complicated process, which Cayley does not fully explain.

The theory suggested by Cayley has been developed in considerable
detail by K. Bes.f He discusses at length the case of three equa-
tions, from which he infers the result for n equations. He does not
prove that B, Bv ... can be so chosen that no one of them vanishes
identically; and he is scarcely justified in describing his method as
a new process, since it does not appear to differ in any essential
feature from that of Cayley.

• The method is described generally in the Camb. and Dub. Math. Jour., Vol. in.,
1848, p. 116, and is explained more in detail in Salmon's Higher Algebra (4th edition,
1885), p. 87.

t ' ' Theorie generale de l'Elimination, d'apres la methods Bezout, suivant un
nouveau procede," Verhandelingen der KoninkUjlce Akadenue van Wvtenschappcn tc
Amsterdam (Sectie 1), Deel vi., No. 7, 1899, 8vo, pp. 1—121.
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H. Laurent* has also given a supposed explicit expression for the
resultant, but an incorrect one.

The resultant of n general equations may be defined as an integral
function of the coefficients, without repeated factors, whose vanish-
ing is the necessary and sufficient condition that the equations should
have a common solution. In the case of n equations containing

* "L'Elimination," Seientia,I'fiy8.-Math.,'No. 7,1900, pp. 1-75. This monograph,
although curious and interesting, is rendered practically valueless in what relates
to equations in Reveral unknowns by its unreliable methods and conclusions. The
resultant is nowhere defined and is regarded as an indefinite fractional expression.
The following are some of the principal omissions and errors :—

(1) The proof (§15) of the theorem that, when two (non-homogeneous) poly-
nomials in two variables are given as moduli, one variable can be expressed as an
integral function of the other is incomplete, since two general assumptions are
made proofs of which are not supplied.

(2) The proof (§ 16) that the s-eliminant C of three equations in x, y, z of orders
m, n, p is of- order mnp in z is faulty, since the author's method for expressing C
leads to a fraction instead of an integral function of s. The same error appears
still more prominently in § 17.

(3) The proof (§ 18) of Bezout's reduced form of a given polynomial with respect
to other given polynomials as moduli completely fails when it passes beyond reduc-
tion in one variable.

(4) The statement (§ 20) that n 2 /n / [the author uses D for J\ cf. § 10 (14) of this
paper] is a determinant with all its elements to the left of the diagonal zero is an
eiTor, but an unimportant one, since it breaks up into a product of determinants in
the diagonal. The statement that tf/nJ depends only on the coefficients of the
terms of highest order in the several equations is correct, but the proof is lacking.
The author's proof of the same result in the Nouv. Ann. de Math., Series 3,
Vol. ii., 1883, p. 147, is not valid. In the same place, p. 149, he is in error in
stating that fl cannot vanish unless the equations have a double solution, from
which he deduces incorrect conclusions. Again, in § 20 of the monograph, the
author states that n"/llJ is independent of the roots of the equations. He does not
explain what the statement means; but it is certainly untrue. If it were true,
then the ratio of n to any other expression fl' formed in like manner would also
be independent of the roots, which can easily be tested and found incorrect for the
case of a linear and a quadratic equation in two unknowns. Netto, in referring
to Laurent, says that O9/n/is a constant, without further explanation (Encyklopddie
d. Math. Wiss., Teili., Band i., Heft 3, 1899, p. 274). It would seem that both
writers have been misled by an assumed, but false, analogy with an equation in a
single unknown.

(5) In § 23 IB contained the so-called explicit expression for the resultant referred
to above; but the author is in error in supposing this expression "independant des
ay," and in supposing it to be the resultant, or to contain the resultant as a factor.

(6) In § 26 the author implies that in order to calculate the resultant of n homo-
geneous equations in n unknowns it is of advantage to make the orders equal by
multiplying the equations of inferior order by powers of the same unknown, over-
looking the fact that, if two of the equations have a common factor, the resultant
vanishes identically. Multiplying by powers of different unknowns is also of no
advantage.

In contrast with the abo\e we may mention § 19, which gives a proof of Jacobi's
theorem, and §22, which proves that, if the vanishing points (or solutions) of n given
polynomials/in n variables are distinct, finite, and complete, then any polynomial
which vanishes at all these points is of the form 2<fc/i i.e., vanishes identically with
respect to the/ 's as moduli.
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more than n unknowns the resultant of elimination of (n—1) of
the unknowns is called the eliminant in the remaining unknowns.
The most usual form of expression for the resultant is by means of
the Poisson product. Select any one of the equations (7 = 0; solve
the remaining (n—1) equations, after putting one of the unknowns x
equal to 1; substitute all the solutions in 0, and take the product
IIO; then the numerator B of IIC (when reduced to its lowest terms)
is the resultant of the equations. B is an integral function of the
coefficients, being the numerator of a symmetric function of the
roots of the (n—1) equations; and the vanishing of B is a necessary
and sufficient condition that the n equations have a common solution.
The degree of B in the coefficients of any one of the equations is equal
to the product of the orders of the remaining equations, and the weight
of every term in B is equal to the product of the orders of all the
equations. The denominator of the Poisson product is the m-th power
of the resultant of the (n — 1) equations when x = 0, m being the
order of 0. B is independent of the particular choice of the unknown
x and the equation 0 = 0;* this also follows from § 4 and (18) of § 10
in this paper. B is non-factorisable.f Thus B satisfies all the con-
ditions required by the definition of the resultant. In this paper the
resultant is regarded from a different point of view, viz., as a factor
of a determinant; but it is identified with B by means of its pro-
perties, and also actually identified in § 10 (18).

' 2. NOTATION.—Let .Oj'(), Of1, ..., OT, or Gv Gi} ..., On, be n given
homogeneous general polynomials in n variables xli a?2,..., xm of orders
m,, m2, ..., mn respectively.

Let Or denote the value of 0? (r = 1, 2,..., n) when xuuxi+i, ...,a:n

are all zero ; so that Cy} is a homogeneous polynomial in I variables
a?,, »„ .. . , Xi.

We imagine a correspondence to exist between the variables
xl, xit ..., x,t and the polynomials O,, Oa,..., Gn respectively. Thus we
may, if we like, regard 0> as a polynomial in xr whose coefficients are
polynomials in xu ..., xr.u xr+u ..., as,,.

A polynomial containing no arguments x*lxaa... #*" divisible by
#"'• is said to be reduced in x{; if, further, it contains no arguments

• Hadamard, " M6moire sur l'Elimination," Aeta Math., Vol. xx., 1897, p. 201.
t Netto, Algebra, Bd. i., 1896, p. 169, and Bd. a., 1898, p. 79.
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divisible by aĵ "9, it is said to be reduced in x1 and x%\ and so on. When
the variables are not specified, a reduced argument or polynomial
means one which is reduced in all the variables.

In the function fl,S(0) + <7aS
(1)+C8S

(2'+... of order t, it is to be
understood that 8l0) is a general polynomial of order t—TO,, with all
its coefficients at disposal, #(l) a general polynomial of order t—m9

reduced in xu 8m a general polynomial of order t—ms reduced in
xvx3, and so on. In the function Gp S

(0) + Oq 8[i) + Or 8
{i) +..., where

Cpj Oq, Or, ... ai*e chosen from Gu G3, ..., 0,,, it is supposed that 8{l) is
reduced in xp, S{2) in xp, xq, and so on; so that the significance of
S(l\ $(2), ... depends on the order in which (7,, G%, ... appear in the
constituent terms of the function.

THEOREM.—It is a known theorem* that any polynomial 0 of order
t can be expressed uniquely in the form

where I ( ^ n) is the number of the given general polynomials Op,..., Gr.

In order to prove this, we have to show that 8m, 8'1\ ..., S{l) can be
chosen in one and only one way so as to satisfy the identity

= 0.

Equate coefficients of the arguments on the two sides of the identity.
The number of equations is equal to the number of arguments of
order t; this is equal to the number of the unknowns, viz., the
coefficients of S{0\ 8{l\ ..., 8V\ as may be seen by considering the
polynomial

in which each argument of order t comes in once and once only.
Again, the determinant of the coefficients of the unknowns in the
equations is not zero; for, if it were, then the identity ,

Gp S
m+ C3# l>+. . . + OrS'-'-v + SV == 0

could be satisfied without S(0), Sm, ..., 8il) all vanishing identically;

* This theorem is a fundamental one in Be^out's method, and is probably con-
tained in his Theorie generate des Equations Algcbnques (Paris, 1779,, 4to, 471 pp.),
which I have not been able to consult.
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and this is not possible, since the identity

5 * ^ C v = o
cannot be so satisfied. Hence the theorem is proved. In the last
step we make use of the fundamental hypothesis that Ou Cs, ..., Cn

are general, from which we are entitled to assume that, since a certain
function of the coefficients .of Gu Gv ... does not vanish when
0,, C2, ... have the particular values a;"'1, a?™", ..., it cannot vanish for
the actual values of Gt, G2, ... .

From this theorem follows another of special importance, viz., that
a homogeneous polynomial of the form GpS1+CqSa+... + 0r8t can be
expressed uniquely in any one of the standard forms

where Gp>, 0q-, ..., G, are the I polynomials Cp, Gq, ..., Gr taken in any
order we please. For Gp81+GqS2+ ... + Cr8t can clearly be written
in the form

which, by a proper choice of S(o), 8W, ..., S{1~2\ can be made of the
f o r m G

and this can clearly be brought step by step to the form

Similar reasoning leads to the theorem that, if Gt #, + . • • + Gt Sh

of order /, vanishes identically, then

8q = "ic.PSm ( 2 = 1 , 2 , . . . ,Z) ,

where the polynomials SM are of assignable orders, and satisfy the
relations 8pq = — Sqp and Spp — 0. The same result holds if C,, ..., Gt

are any given polynomials, provided that certain functions of the
coefficients do not vanish.

3. NOTATION.—The matrix corresponding to a homogeneous integral
function G1S1 + Gi8a + ... + Gn8n of order t (also called a matrix of the
coefficients of Gu G3, ..., Gn) is formed as follows. Write down
horizontally all the arguments wt, wa, ..., w^ of order t. Multiply Gp

by any argument a> of 8P, and write the coefficients of wC,, under their
corresponding arguments• <ou w2, ..., wM, thus giving a row of the
matrix. Write to the left of the row the coefficient of to in 8,,. ': If
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Xj, \s, ..., \p are all the coefficients of 8V #s, ..., 8M we thus obtain a
matrix with /* columns and p rows, viz.,

W, . . . 0)u

a,,

This (bordered) matrix is a diagrammatic representation of the
function G1S1-\-... +Gn8n) viz., the function is the sum of the pro-
ducts of every element of the matrix by the two corresponding
elements in the border. It represents also the whole coefficient of

pmp
each argument in the function,' viz., the coefficient of w, is 2 Ayapg.

P-I

D (w, t) denotes the determinant whose vanishing is the condition
that the identity

of order t, can be satisfied. Thus D (n, t) is obtained from the
matrix corresponding to C16

I(0)+CJ/S
(1' + ... + CnS

(""1) by omitting the
columns corresponding to arguments contained in S{n\ that is, all
columns corresponding to reduced arguments. We take D (n, t) = 1
when t is less than the least of m,, m8, ..., TU,,.

R(n, t) denotes the H.C.F. of the n\ determinants formed in a
similar way to D (n, t) when (7,, <73, ..., On are arranged in any order.
B (n, t) = B (n, t) when t is less than the sum of the least two of
m,, ?n2, ..., mn; otherwise E (n, t) < D (n, t).

B (Z, t), I ^ n, is the determinant whose vanishing is the condition
that the identity

of order ,̂ can be satisfied. Here Z is the number, of the variables
(§ 2), and also the number of the given polynomials 0. R(l, t)
denotes the H.C.P. of the II determinants like B (Z, £)•

We take tn to stand for m1-{-mi+ ,.i-\-mn—w+1, and tt for
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THEOREM*—The resultant of 0v' Gv-..., CH is B (n, tn). .
The matrix from which B.(n, tu) is obtained* viz.,

a,s
a82

is the determinant B (w, £,,.) itself; for fchere are no reduced argu-
ments of order tn (since the reduced argument of highest order is
ajWi-i aĵ n-i #> x™

n~l which is of order £,,—1), and consequently there
are no columns to be omitted. It is then evident that 'JD;(w, £„)
vanishes if the equations

a,! u>! + aI2 w3 + ... + oj,, w,, = 0,,

t(oli = 0,

can be satisfied. But these equations are satisfied, when the resultant
vanishes, by giving to wx, w3, ..., w,, tne values which they have for
the common solution of the equations 0, = 0, C9 = 0, ..., Gn = 0.
Hence the resultant is a factor of D (n, tn), and of all the n\ determ-
inants like. D (n, tn) ; therefore it is a factor of their H.C.F., viz.,
B («, £„)'. Also B (n, tn) is of the same degree as the resultant in
the coefficients of each of the polynomials Cv G2,... Cn (proved in § 4).
Hence J? (n, t,,) is the resultant.

4. THEOREM.—The degree of B (n, t) in the coefficients of Gr is
equal to the number of arguments of order t—mr which are reduced
in all the variables except xr, i.e., it is equal to the coefficient of x*

in D. — .
\—xnr >'-> 1 —a?
Let B' (w, t) be the determinant like D (n, t) for a different order

of the polynomials, viz., for the order Gh ..., Gp) Gg, Cr.
B' (n, t) is a determinant of the matrix corresponding to

Hence the degree of B* (n, t) in the coefficients of Cr is equal to the
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number of arguments in /8(""1) of order t—mr. But B (w, t) is a factor
of B' (n, t), and therefore cannot contain the coefficients of Cr to a
higher degree than the number of arguments of order t—mr reduced
in all the variables except xr. '

Now the polynomial Ox 8
{0) + O%<S(1) + . .{+0n8( n- l ) is represented by

... K
a,, als ... \au

and (§ 2) this can be brought identically to the form

which is represented by

K
K

K >

wt . . . w.

Ct|2 • • • ^i<»

C^22 • • • ^2t»

fcp2 • « . a p /«

JCX6IIC6 2 p^ar ^~" ^ A— Ctm. yT *"*" I , 2 , • • • • tt).

Taking any p values, for r, it follows that the ratio of any determinant

in the first matrix to the corresponding determinant in the second is

. j derived from the

identical expression of AJ, Â , ..., Â  as linear functions of An A,, ..., \p.
In particular, we have

D (n, t) _ /A'\
D'(n,t) - \\)'

. "We examine then how the quantities A' are expressed as linear
functions of the quantities, A, or, what comes to the same thing, how

is changed to the form
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The first step is to write I. in the form

i n . c, (s ( ' -1 )+ors
t m) +...+o, (s'9-i}+o,.8"{"-2))

..+a os"- 1 ' - cvs"(0) -... -cqs"[n-2)),
equate the co-factors of Gr in II. and III. We thus have

This identity determines uniquely all the coefficients of JS"(0), ..., 8"(n~v,
S**'1* in terms of the coefficients X in /S(|-1), by § 2. The coefficients
X' in 8/(n~^ are therefore linear functions of the coefficients X in 8^'^,
and the coefficients of the expressions for these quantities X' in terms
of the quantities X are fractional functions of the coefficients of
Ci, ..., Gpy Gg, i.e., they are independent of the coefficients of Gr.

The next step is to change the co-factor of Oq in III., keeping the
co-factor of Gr unchanged, and requires the identity

to be satisfied, JSM"~2) being already determined from the first step.
From this we see that the coefficients X' in S'[n~2) are linear, functions
of the coefficients X in 8^'^ and S{'~}), and that the denominators of
the coefficients of the expressions for these quantities X' in terms of the
quantities X are independent of the coefficients of Gr. This last property
clearly holds for all the quantities X' when expressed in terms of the

quantities X. Hence the denominator of ( * j is independent of the
coefficients of Gr.

D (n, t) is therefore divisible by all the factors of D' (», t) which
contain the coefficients of G,.; and similarly each one of the n!
determinants like D {n, t) is divisible by the same factors. Hence
B (n, t) is divisible by the same factors, and therefore B (n, t) is of
the degree stated above in the coefficients of Gr. The degree of
iS («, t) in all the coefficients combined is equal to the coefficient

of x m 2 x n — .
l-xmp 1—0

It easily follows that the degree of B (n, tlt) in the coefficients of
Cr is Hm/m,.. This completes the pi'oof that B («, tn) is the resultant.

The continued ratio of the determinants of the first matrix above
is the same aB for any one of the n! matrices formed in a similar way
when G-i, 02, ..., Gn are arranged in any order, and is equal to the
continued ratio of the H.O.F.'s of'the sets of n\ cbrresponding de-
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terminants. Hence, since R (n, t) is the H.C.F. of the set corre-
sponding to D (n, £), it follows that all the determinants of the first
matrix are divisible by D (n, 0 / R (n, *)• Also 0, S(0) + . . . + (?„ S{n-»
can be changed, identically to Gx8t + ... + C,,£,„ where 8U ..., 8n con-
tain any the same number p of arguments in all as Sm, ..., /S""1',
provided only that the determinants of the matrix corresponding to
G18l+ ... + 0,,8n do not all vanish identically. Hence, since corre-
sponding determinants will still remain proportional, it follows that
the determinants of the matrix corresponding to C71/S,+ ... + G.Sf,
will have a common factor of the same degree as D(n, t)/R(n, t)
in the coefficients of all the polynomials 0lt Git ..., 0,, combined.
Similar results hold for the matrices corresponding to

11-" and C, £,+ .

5. THEOREM.—To prove that, neglecting sign,

D(n,t)_D(n-l,t) D(n-l,t-l) D(n-l,t-mn+l)
R(n,t) R(n—l,t) R(n—l,t—l) '" B(w-1, t^

X D (n— 1, t—mn) D (n—1, t-mn—1) ...D (n—1,1).

JB (w, <) is a factor of D (n, t), and the remaining factors of B (n, t)
are independent of the coefficients of Gn (§ 4). Let a,, be the co-
efficient of x™n in (7,,, and r the number of arguments in S{n'1] (of

order t—mn) which are severally used as multipliers of Gn in forming
the r rows which correspond to Gn in D(n, t). The element a,,
appears in all these r rows of D (n, t), and occupies the columns
corresponding to the arguments of x^'.S1"'^, the only columns absent
from D (w, t) being those which correspond to reduced arguments
(§3), or arguments comprised in S{"}. The remaining columns of
D (n, t) are those corresponding to all arguments of order t which are
not comprised in x> 8{n~X) + 8{n), i.e., #"-». Hence the coefficient of

, ar
n in the expansion of D (w, t) is the determinant whose vanishing is

the condition that the identity

of order t, can be satisfied. To find this determinant, assume the
identity satisfied, and put rc,, = 0; then Gq becomes Ĉ ""1*, and if S(9)

becomes 8'®, we have the identity
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of order t. Hence either D (n-1, t) = 0, or S'i0), 8>m 'S'ln-n all
Vanish identically. In the latter case, S(0\ S(X), ...., S{n~'l) are all
divisible by xn, and on dividing it out we have the identity

of order t—1. Hence D (n— 1, t—1) = 0, or a similar identity holds
of order t—2. I t follows that the determinant sought is

"if D(n—1, t—p).
p.O

p.t-i

Hence D («, *) = ar
n U JD (w—1, t—p) +... .

We next find the coefficient of ar
n in R (n, t). Consider the determ-

inant like D (n, t) when the order of Gt, G2, ..., Gn is changed to
G,t, Gx, ..., O,,_i, that is, the determinant whose vanishing is the
condition that the identity

of order t, can be satisfied. The element an appears in all the / rows
corresponding to Gn, and occupies the columns corresponding to the
arguments of <BW" $(O) ; hence, on expanding, the coefficient of a£ is
the determinant whose vanishing is the condition that the identity

of order t, can be satisfied. The coefficient of afa is therefore

n D{n-\,t-p),

by a similar proof to the above. Keeping now Gn fixed, while the
order of Gu G3, ..., Gn.t is altered in all possible ways, the H.O.F. of
the coefficients of a% in the several expansions is

J > = T O n - l

n R(n-1, t—p).
p=0

This is the coefficient of <, in R (w, t) ; for it is easily seen to be of
the same degree as R (n, t) in the coefficients of (7,, ..., (7,,_i. Hence

p=m,,-l
i2(M,O = < n E(n—l, t-p) + ....

Also the ratio of D (n, t) to R (w, i) is equal to the ratio of their first
terms when expanded in this way; thus we have the theorem. When

'5* '» R(n,t) = R(n,tn) = a™i"m»-*R(n-l,tn_{)m»+.... .
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6. THEOREM.—R (n, i) is the quotient of J) (n, t) by the minor of
D (w, t) obtained by omitting the columns corresponding to all argu-
ments reduced in (n— 1) of the variables x1, xif ..., xn, and the rows
corresponding to Or (r = 1, 2, ..., n— 1) for all multipliers reduced in

The resultant R (n, tn) of Gv C» ..., On is consequently the quotient
of D (w, £„) by the corresponding minor of D (n, tn).

Iiet A (w, t) denote the minor of D (n, t) mentioned above. To
prove the theorem, viz., to prove that A (w, t) = D (w, t)/R (n, t), it
will be sufficient (§5) to show that

•" P=mn-1 p=t-l
A (n, 0 = n A (n -1 , *-/>) n D (n -1 , «-;>),

and to verify that

A (2, <)=D (2 ,0 /8 (2 ,9 .

A (w, 0 i8 the determinant whose vanishing is the condition
that the identity

of order t, can be satisfied; where S(0) is a polynomial whose argu-
ments are non-reduced in at least one of the variables n'a, xt, ..., a?n;
2(1J a polynomial whose arguments are reduced in â , but non-reduced
in at least one of the variables a:,, ...,x,t; and similarly for S(2),..., 5(rt"2)

(Me last consequently divisible by xm") ; and finally 2 a polynomial
whose arguments are reduced in at least n —1 of the variables. The
number of coefficients in 2(0), 5(1), ..., 2(""2) is equal to the number of
the equations they have to satisfy, and A (n, t) is not identically zero.
This is seen by considering the polynomial

in which every argument of order t occurs once and once only
(c/.§2).

Putting xn = 0, and writing 2' for the value each 2 then takes, we
see that identity I. becomes

-3 ) _

* I t is to be remembered that the multipliers of Cr are aleo reduced in xlt..., xr.v
The columns to be omitted are tho^e which contain the elements alt a3, ..., a,, in the

omitted rows, wheite ar is the coefficient of x r in ($,. . ; .
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of -order tr Hence' A(n-1, t) = 0, or 2/(0), 2"'\ ..., 2/f'"3), 2' all
vanish identically. In the latter case xn divides out of each 2 in I.,
and we have
II.

of order £—1. Since II. is obtained by dividing xn out of I., the
part played by x™n in I. is now taken by a:™""1; so that in II., for any
argument to be reduced or non-reduced in xn means that it is non-
divisible or divisible by OJ™11"1.

Putting xn =̂ 0 in II., we see that A(n— 1, t—1) = 0, or else
identity I. still holds with t, xmn changed to t—2, xm"~2. Proceeding
in this way, we find that

&(n, t) = A(n-1 , t) A(n—1,*-1) ... A (n—1, *-mn+l) A',
where A' is the determinant whose vanishing is the condition that
identity I. holds when i, xm» are changed to t—mn, a&. Thus each 2
is now necessarily non-reduced in xni and consequently 2(r) takes the
form 8{ri; while 2 is reduced in a?,, xit ..., xn.u and takes the form
£(»-!). Hence identity I. becomes

of order t—mn. Hence (§5)
p=t-i

A'— H D(w—1, t—p),
p=mn

which proves the theorem.
Thus definite expressions have now been found for R (n, t)t R (n, tn),

viz., R(n,t) = D(n,t)/b(n,t), R(nttn)=D(n,tn)/&(n,tH).

Another way of expressing the rule for obtaining A (n, t) from
D (n, t) is the following:—A (w, i) is the determinant formed by the
elements of D (», t) occurring in all the columns corresponding to
arguments non-reduced in two or more variables, and all the rows
corresponding to Gr(r = 1, 2, ..., n -1) for multipliers non-reduced
in one or more variables leaving xf out of account.

*6a. A more general way of forming an expression for the resultant
of Cv 02,..., C» is the following:—Form the complete matrix

* This section was added in a revision of the paper, June 17th, 1902. It supplies
a further proof of the theorem of j 6. , . ' •
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(having more rows than columns) corresponding to the function
•0, flf, + 0, $ + . . . + 0B Sn of order tn = 1 + 2 (m-1) . Call he rows
which make up D (w, tn), that is, the rows corresponding to

the primary rows, and the rest the supplementary rows. Select any
2jt of the primary rows, of which fir correspond to Ort where

ixrmr = Urn (r = 1, 2, ..., n);

and add to them any supplementary rows, so as to form a determ-
inant of the complete matrix which does not vanish identically. Then
the resultant is the quotient of this determinant by the minor obtained
from it by omitting the 2/A rows, and the columns which contain the
elements ĉ , Oj, ..., a,, in the 2ft rows, where a, is the coefficient of xmr

in Or. Observe that there is oue element a,, a2, ..., a,, in each row
and each column of the complete set of primary rows.

The theorem is also true for R (n, t), when /x,, uv ..., fin are given
their proper values ; but for this case the proof given below requires
amplification in one or two details.

Let pn pif ..., pn denote the numbers of the arguments of order tn

of the form x^w(0\ asj*8 o»(l), ..., aJW-1* respectively, so that 2p is

the number of columns of the matrix, and p,, = /*„. Let /SjJ) denote a
polynomial, and w ĵ an argument, which is reduced in the first p and
last q of the variables a;,, aja, ..., xn.

The complete set of supplementary rows forms a matrix of rank
2 (/o—/*), which is the number of supplementary rows in any one of
the determinants above; for the matrix corresponds to

+ ^ (0, sg1..)+oX-*>+••• < V

which contains S(p—/*) parameters only. The number of para-
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meters, for example, in the second bracket of the last line equals the
number of arguments in the function

of order tn—m2, that is, the total number of arguments wn) of order
tn—wa less the number in asg'*iS{,V_2)+JS(oj, or S^.a), which equals
Pa-Sa-

lience, if two determinants are chosen having the same primary
rows, but different supplementary rows, then the determinants in one
set of supplementary rows will be proportional to those in the other
(§ 4), and the two original determinants will be in the same pro-
portion. The theorem is therefore true for any set of supplementary
rows, if it is true for one set.

The proof of the remaining part of the theorem will be sufficiently
indicated by taking n — 5. Consider the determinant!) arranged
in columns and rows as in the following diagram :—

fit rows

/*2 rows

H3 rows

a/2) C

H4 rows

M(-gj)iow.

m4 (3) />

P3—^«8 rows

<"(-f?,Oi.-gPW
Pa—Ha rows

o) P l 7 o f i r T (o)

P! columns

. * .

p2 columns

A

A . Aa

p3 columns

A

A

p4 columns

A

A

A

A

TOL. XXXT.—NO. 7 9 1 .
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The In primary rows correspond to 0jiSf())+0aS
(1)+...

whei"e 8{r~i] (r = 1, 2, 3, 4, 5) is an incomplete polynomial containing
any /ur arguments d/1""1*. The 2 (p—ft) supplementary rows are
chosen in a particular way, each of the arguments w[̂  in the diagram
being given all the values of which it is capable. The elements to
the right of the dotted line are all zeros. Dr (r = 1, 2, 3, 4) is the
determinant mai*ked in the diagram by writing D,. at the four corners.
Ar (r = 1, 2, 3, 4) is the determinant marked in the diagram on the
supposition that the /ur columns containing the element ar in the
primary rows are omitted. Let 22 be the resultant of 0u 0a, ..., 0B,
and Br (r = 1, 2, 3, 4) the resultant of Cy+i, ..., 05 when a?,, ...,xr are
made zero, so that Bt = aB. Then Dr is divisible by JB"ll"'"r. We
shall prove this for the case r = 2, by the method of §§ 4, 5.

Let O,flJ)+O4Sy) + O8Sj) be the function whose matrix has Da

for a determinant, S™, &?\ S*2) being the sums of the multipliers
of 08, 04, 08 in Da affected with arbitrary coefficients X. We shall
be able to compare D2 with a standard determinant of a similar type
by bringing Ot&? + Oi&?+Ot&® to a standard form, viz., the
function Ca/S^ + Ô /SJJj + OB£(<>). with respect to the arguments to
which the columns of Da correspond. These are the arguments of
the type *;"'o><2>, x'^u>{3\ x™*u>w, or o>(2), or aĵ wgj, aŝ w™, »™»«jj, from
which we see that the standard function contains just the necessary
number of parameters. Now the following identities, regarding the
funotions on fche left hand as the unknowns,

(1) SfttffffZ^ $ V

(3) Sg
can be satisfied in succession uniquely, and on multiplying by
08, GA, (76, and adding, it is seen that the required transformation has
been effected.

From (1), (2), (3) we see that the parameters \ ' of Sgj, Spj, flft
when expressed in terms of the arbitrary parameters X of S^\ S{?\ 8%\
contain the coefficients of Os only in the numerator. Hence the
determinant Da contains all the factors of the standard determinant
corresponding to CfS^ + CtS^ + C^Sfu] which involve the coefficients
of C8 (§4). Now the standard determinant, which comes from
equating to zero all terms in GiS

{^)+Ci8{ii)+C6S
(^) containing
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XVXT (f'i == >̂ 1> •••» TOi~l > a4 = 0, 1, ..., m2—1), breaks up intom,m3

determinant factors of the type B (3, t), each of which is divisible

by L\. The determinant D2 is therefore divisible by it"'1"1'; and

similarly Dr is divisible by II™1 "m>.

Again, B2 and ltl'''"' are each of degree /i3 in the coefficients of Ga,

while the coefficient of a£3 in D3 is A3JD3, and in 1C'"'* is l{gtM*'"a (§ 5) .

hence *V A £

From this, and similar results, we have

therefore . . ii! =

This proves the theorem for the case n = 5, and in a similar way it
follows generally.

7. The problem of dividing out the extraneous factor A («, tu) from
•̂  (w> £»)> 8 0 a s ^° bring the resultant 12 (n, tH) to an integral form,
appears to be a more difficult one than that of merely finding the
extraneous factor. Any series of operations for finding the integral
form of B (», t,,) would probably be very long and complicated.

A slight reduction in the magnitude of the extraneous factor is
obtained as follows. Taking m1 ^ m3... ^ m,,, the coefficient a, of
a?j"' in 0x raised to the power («ia-f... 4-OT,I_,),,_1/(?I—1)! divides out of
both D(n, tn) and A(w, t,,) at sight. This is not, however, the whole
power of at that divides D (n, tn) unless m,, m2, ..., m,, are all equal.
Among the multipliers of Gx we may omit all those divisible by x"n.
This will result in a diminution of (ma +... +•»&„-i),,_i/(»—1) ! in the
number of rows of B (n, tn), and the same diminution in the number'
of columns, viz., the columns corresponding to all arguments divisible
by x? -*m". The extraneous factor in the reduced determinant B' is a
minor of B'. To obtain it we omit all the rows and columns in B'
which had to be omitted in D (w, tn) and which appear in 7)'. Those
not appearing in B' are the rows corresponding to Cl for multipliers
Ki'"<ii, and the columns corresponding to arguments ic"""*"w, where w
is any argument of order tn—m,—mu reduced in xit'xa, ...,xn. We
must then omit some other rows and columns of B' in place of those

c 2
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which have disappeared. They may be chosen in several ways. We
may, for example, choose the rows corresponding to U-^ for multipliers
aji" aar2

aw', where w' is the value that w takes when xl and a;3 are
interchanged; for it can be proved that each of these rows simply
supplies a factor a, to the minor A (n, tn) of D (n, /„). Since w is not
divisible by X}', to is not divisible by a1',"', and x"n~m*x£aw' is not
divisible by re"'", and so is a multiplier for Gx in D'. The extra
columns to be omitted from D' are those corresponding to the argu-
ments x/ ' x^ w .

A greater reduction in the magnitude of the extraneous factor is

suggested by a method of Sylvester's.* Taking m, ^ m2... ^ mn and

then any argument in 0^ or 0a .., or 0n is of higher order than
^oj-i oa-i x°-n- t a n ( j therefore divisible by a;*1 or xa% ... or a£"; so

that we can write

0r = X\ A,.-\-x-> B,.-\-...-\-xn"Kr (?• =: 1, 2 , ..., ?t),

where ^4r, ..., ^ r are polynomials. The number of solutions of the
equation 2 (a — 1) = m^—1 in positive integral values of au ..., a,,,
excluding zei'os, is equal to the number of arguments of order
tfy—1; which is also the number of reduced arguments of order
tn—mu as may be seen by dividing any argument of order ml — 1 into
a?™1"1 *̂*"1 ...a*™""1. There are therefore the same number of poly-
nomials 2±ilJ50 ... K of order tn—wi^ as of reduced arguments of
order tn—mv taking only one set of polynomials A, B, ..., K for each
solution of the equation 2 (a—1) = m,—1. The determinant D'
corresponding to these polynomials and the function

of order tf,,—?^, will have the resultant R (n, tn) as a factor. The
proof that D' does not vanish identically, provided that only one
polynomial 2 ± AB ... K is chosen for each solution of

S ( a - l ) = m l - l ,

is somewhat complicated, and we omit it. It is clear that D' is
divisible by the common factor of the determinants of the matrix

* Salmon's Higher Algebra, 1885, p. 86,' and Camb. and Dub. Math. Jour.,
Vol. VII., 1852, p. 68.
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corresponding to Of
1jS

(O)+...+C/,,/S("-1); hence (end of §4) B' is
divisible by A (n, £„—mj). Also the quotient is of the same degree
as B (n, tn) in the coefficients of Gv Gv ..., Gn, and is therefore
identical with R(n, tn). Thus the extraneous factor in D' is
A (w, tn—mj, which is obtainable from B' by the same rule (end of
§ 6) as A (n, t,t) from D (w, tn).

This method has the greatest effect in reducing the extraneous
factor when m,, wg, ..., m,, are all equal. When n = 3 and
mj = ra2 = m3, it gets rid of the extraneous factor altogether; and

when n = 3 and m, < m% ̂  ?%, it i-educes the extraneous factor to
a, raised to the power

of which «i to the power ^ (mi—vil)(mi—ml—l) can be divided out,
leaving a^ to the power ^ (mi—ml)(ma—m1 — l) as an extraneous
factor which does not divide out at sight.

8, We add a further list of formulae without entering into details
of proof. The formulae of the present article are proved by methods
that have been already employed. Tn §§9, 10 some indications are
given as to how the results are obtained.

(1) B (n, t)-B{n-l,t)B (n, t—1), when t > tH,

(2) B («, t) = 'ii' B (I, f,)Pl, when t > tm

where

(t*-ti+i\ 0

n-l-ll \n-l-2l \n-l-S/

[ta-t\ I tH-t \ ( t,-t \ (tn-t\

\n-ii \n-i-\i Aw-z-2/ \ i /

( ) denoting the coefficient of a?r in (1+a;)'; tn—t in the last row of

the determinant is a negative number.
(3) B (», t) = B (n, t,,), wlien t > tH.

B (», tH) is a prime, i.e., non-factorisable (Netto, I.e., p. 5). It is also
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probable that B (n, t) is a prime for all values of t when mv ?n2,..., mn

are all equal. When m,, m2, ..., wn are not all equal it is probable
that B (», t) has only one factor containing the coefficients of all the
0"s. in this case, if m,[ is not less than any other m, the factor is
the numerator of

B(n,t) II B(n—l,t-p)
I j> = 0

when reduced to its lowest terms.
If m, is less than any other m, then the coefficient of a;'"1 in (7, is a

factor of B (n, t) when

t = «ij+ (?»,—m1—1) + ... + (m,,—ml—1) = tn—(n—l)ml;

for GiXx."'""' ... x',""~">l~ is of the form S(n} when this coefficient of
6'i vanishes.

If w.,, ..., in,, are equal and less than any other m, then the determ-
inant of the coefficients of the highest powers of ;eu aj2, ..., x, in
Gv 02, ..., Gr is a factor of 12 (n, t) when

£ = ml + (inr^1 — inl — \)-{•... + (m,,—1/^-1) = £„ — (n— 1) «i, + (r—1) ;

for (\iG1+... +K0r) as"^*1 '"'' ... x""'"1' can be made of the form
S(ll) when this determinant vanishes.

Let D (I, i)'n) denote the determinant whose vanishing is the con-
dition that 0;n)8m + 0<Il) S(l) + ... + O^JSP-" + Sm can be made identically
zero ; so that J9 (?i, <)<H) is the same as D (», <). Then (ii > I)

(4) D (I, 0('° = -D (2, 0(""l) -D (i, «-l)( l"

Thus JD (I, tyn) is independent of the coefficients of all terms in
Gv 0s, ..., Gi which contain any variable other than .r,, aj2, ..., xt.

Let B (I, t){n) be the H.C.F. of the Z! determinants similar to
D (Z, 00 0 for the l\ different permutations of Cu G.» ..., Gi. Then (n>l)

(5) B (I, t)M - R (I, 0("

p-0

P-0
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By induction we have (re 2 I)

the case for n — I having been already proved (§ 5).
From (6) we have

(7) D (n, t)-B (n, t) B (»— 1, t - m , ) w R(n-2, £—m,,.,)"" •••

from which D («, £) is expressed in prime factors when the ra's are
all equal, by (5) and (3).

The number of different prime factors involved in all the ex-
pressions B{1, t)(n) is l-{-t1 + ti+... +£,,_i when m,, w3, ..., m,, are in
ascending order of magnitude; in other cases it is equal to or less
than this number.

9. From identities of the type MGI — o>Ct of order t, by writing Ct

in full on the left hand, and solving for the arguments, we obtain

(8) B (n, 0 w, = DqlUi+ .

where &>,, ..., w,. are the arguments of order t reduced in all the
variables, and wq (q>r) is any non-reduced argument. Dqp is a con-
traction for D (n, i)qp, and may be regarded as being obtained from
D (re, t) by replacing the column corresponding to o>q by the column
corresponding to wp out of the same matrix, and then altering the
sign. Identity (8) is written

(9) D (n, 0 w, ="S Bqi)(op (mod 0u Cv ..., C)-

Dividing out the common factor B (re, t)/B (re, <), we have

(10) B (re, 0 to, = "2 E?pa,,, (mod 0v C» ..., On),

where ii,,, JB,2, ..., .R,,. are integral functions of the coefficients.
Formulae (9), (10) are unique, since there is only one expression for
wq of the kind given.

In a similar way we have

(11) » (I, t)W»,="%'Dqp<op (mod 0v G2, ..., 0t),

where wu a>v ..., wr are all the arguments of order t reduced in
xv x2, ..., xt, and wq is any non-reduced argument involving only
xu x2, ..., xt. This equation may be multiplied by any argument
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involving only ;ci4l, ..., xn, leaving the JB's unchanged, but increasing
the order of the arguments.

10. NOTATION.—We proceed to give some formulae involving the
roots of Gv Gv ..., C,,_i. For this purpose it is convenient to take
xn = 1, and regard Gv G2, ..., GH_\ as non-homogeneous polynomials
in a?j, x2, ..., a?,,.,. We can reinsert xn whenever we please. Let /x be
the total number of arguments WJ, w2, ..., ŵ  of order «* t (or of
order t when xn is reinserted), r the number of arguments reduced
(in x1, xi, ..., £B,,_i) of order ^ t, viz., w,, ..., wr in ascending order
(so that w, = 1), r the number of arguments reduced of order
«S t—m«, viz., Wj, ws, ..., w,,, and p (=m, . . . m,,.,) the number of

vanishing points common to 0,, G2, ..., C,,.j. When £ < tn.t—1 then
r <p, and when t ^ i,,_i — 1 then r = p. Select the p points in any
order, calling them the 1st, 2nd, ..., p-th points. Let (?,„• denote the
value of (7,,, and (opi the value of <u,,, at the z-th point (p = 1, 2, ..., /x ;
• = 1,2, ...,p).

The matrix corresponding to GlSl+ ...+ Gn_i S,,_i, where /Sn ..., /S,,_i
are complete (or. incomplete) polynomials of orders t—wiu t—in^ &c.,
is of rank p.—r, i.e., any sub-determinant of the matx*ix containing
more than fi—r rows and columns is identically zero. For the
identical vanishing of (7,(8,+ ... -\-Cn.\Sn.} requires /* equations of
which only/i—r are independent, since G181 + ... -f-C,,_ij8,,_, can be
brought to a form GlS

{a)+... + Gn.iS
{n'2) involving only fi—r para-

meters.
Similarly, the matrix corresponding to G^ +... + GnSn is of rank

fx—r+r'; r—r is the number of arguments of order t reduced in all
the variables when xn is reinserted.

The matrix of the roots, viz.,

is of rank r when r<p, or *<*„_,—1; for 8{0\ 8m, ..., »S("-2) can be so
chosen that Gx S

m + ... + Cfl_, £('"2) reduces to a polynomial containing
only r + 1 arguments arbitrarily assigned, and this polynomial
vanishes at any r + 1 of the p points.

Select fi—r rows of the matrix corresponding to CxSx + ... + C>,-iS,,_i
so as to form a matrix of the coefficients the determinants of which
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do not all vanish identically. These /x—r rows cannot be chosen
arbitrarily. Also select (arbitrarily) r rows of the matrix of the
roots, viz., the first r rows; for these correspond to any r of the
p points. The two resulting matrices are " corresponding," i.e.,
the sum of the products of corresponding elements of any row in
the first and any row in the second vanishes. Hence (neglecting
sign) the ratio of any determinant of the first to the corresponding
or complementary determinant of the second is constant.* This is
expressed in the form

2 rfc

where D (wPi, tolh, ..., wp ) is the determinant obtained from the matrix
of the coefficients containing fx.—r rows by omitting the columns
corresponding to wPi, ..., wp .

NOTATION.—Let O stand for the determinant %±wnwii... wpp (the
t'-th row wUi ..., tapi corresponding to the z'-th point), where <olf ..., wp

are all the arguments reduced (in xv x%, ..., xn_^), and w1 = 1,
wp = x'"' ... a^""1 ; also let ilfi be the co-factor of wpi in O, / the
Jacobian of Cv C2, ..., C,,_x, and Jt the value of «7 at the i-th of the

p points. Then 2 —^=0 when o>p is of less order than J", viz.,

^n-i—1 (Jacob?s theoremt). Hence it follows that

(13)

.
omitting a numerical factor in the right-hand expression.

Dividing each element of the t-tla row in fl by J, (i = 1, 2, ..., p),
and multiplying by O, the product Q?/HJ breaks up into tn.x detei'm-
inant factors in the diagonal [c/. p. 4, footnote (4)]. These can be
evaluated and the p-th, counting from either end, is found to be

B (n—1, ^,,-i—p)R(n—1,p—1)

* Gordan-Kerschensteiner, Vorlesungen fiber Tnvariantcntheoiie, Bd. i., 1885,
pp. 95 and 110. The result also follows by cross-multiplication.

t Jacobi proves the theorem for two equations, Crelle, Jour. f. Math., Vol. xiv.,
1835, p. 281, and states it to be true for three equations, Vol. xv., p. 306 ; also
Werke, 1881, &c, Vol. m. , pp. 285, 352. Clebsch proves the general theorem,
Crelle, Jour.f. Math., Vol. LXII I . ,1864 , p. 224, and also Laurent, " L'Elimination,"
Scientia, Phys.-Math., No. 7, 1900, p . 38. . . . . . . .
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except for a numerical factor. Hence

(14) «1 = 13 (wjriiA-jz-i)^la

n ^ ECn-M,,.,)'-1 '
omitting a numerical factor.

In a similar way a more general result may be obtained. Let any
r' of the p points be chosen, where r' is the number of reduced argu-
ments of order < t'. The number of the remaining r" points is
equal to the number of reduced arguments of order ^ t", where
t'+t"~ tn_x—2. Let Cl\ O" be the values of the determinant
2±wn

w22... w,.,. when t is taken equal to t' and t", and the points
selected are the r' and r" points respectively, and / ' , J" the products
of the / ' s for the r' and r" points. Then, omitting a numerical factor,

«" /r r- -T

This includes (13) and (14).
If D (n, t) is multiplied by S±o)nw22... w,;,., the product is found

to be equal to D (n—1, £)(I>) multiplied by the determinant

Hence

(16)

p - 0

This may also be generalized. Let D be the matiix formed.from
any fx — r+r rows of the matrix corresponding to C, 5i + . • • + Cn Sny

there being only / rows containing the coefficients of C,,, viz., those
obtained by multiplying Cn by (opi, w ,̂ ..., wjy. Let B (w/v+1, ..., t»Pr)
be the determinant formed from D by omitting the columns corre-
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sponding to Wjy+1, ..., <"Pl., and D' the matrix formed from D by
omitting the r rows corresponding to Gn. Then

!>' (w7j, ..., w,r) S ± W7,l wft2 • • • w,/rr

with the sufficient condition that neither numerator nor denominator
on the left hand vanishes.

From (16) and (17) we have, when t £ tn, so that r = r' = p,

and

[To express any integral symmetric function of the roots in terms
of the coefficients the following method may be .adopted. Let tot, be
any argument, of order t. Eliminate xv sc.z, ..., xH_x from the n—1
given equations and the additional equation Cn = a—wp = 0, obtain-
ing the determinant form D (71, t,t) = 0, where vin = t, an = a,
tH = tn.x + t—1. The multipliers of G,, in D (n, i,,) are the reduced
arguments w< (i = 1, 2, ..., p). ExpandD (n, tH) in powers of a (§ 5).
The result to two terms is

a"D ( n - 1 , g W - a ' - ' s ' Dpi+ ... = 0,

where Dpi is a determinant of the matrix to which D (»—1, £-)(") be-,
longs, obtained by replacing the column corresponding to wpw, in
D (n—1, £,,){ll) by the column corresponding to w,-and changing the
sign. DPi is zero if there is no column ŵ w, in D (n — 1, 2,,)(H), i.e., if
oipW; is a reduced argument. The roots of the equation in a are the
p values of <op ; hence we have

(19) D(n-1, QV *»* = *&*.

When the factor common to both sides of (19) is divided out,
B («—1, #,,.1)' 2iopi is expressed as an integral function of the co-
efficients (§5). The other symmetric functions are expressible in
terms of the functions 2,cipi; e.g., %<t>piu><ij = 2wp,x2w9,-—2 (w;)wg),-,
and B^n—lftn^y^WpitOgj is integral in the coefficients if t is the
order of the higher of the two arguments «;,, ws.—October 8th, 1902. ]
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On Groups in which every two Conjugate Operations are Per-

mutable. By W. BURNSIDE. Received and read May 8fch,

1902.

In a paper published in the Quarterly Journal of Mathematics
(1902), " On an Unsettled Question in the Theory of Discontinuous
Groups," I have determined the order of a group with given
generating operations when subject to the condition that the order
of every operation shall be 3. If P and Q are any two operations
of such a group, the relations

= 1, (PQa)8 =

lead at once to P.QPQ-1. Q?PQ~2 - 1

and P.QiPQ-

so that P and QPQ'1 are permutable. The condition that every
operation is of order 3 involves therefore that every two conjugate
operations are permutable.

In the present paper I have considered the general problem thus
presented ; viz., the nature of a group generated by a finite number
of operations when every two conjugate operations of the group are
permutable. It will be seen that the general problem is closely con-
nected with the more special one above referred to. When no
further limitation is imposed on the operations, it is found that every
operation of the group is given once and only once by a form

P*Qy... &,

where P, Q, ..., B are a finite number of operations belonging to the
group; and of the indices x, y, z, ... a certain number take all values
from — oo to + oo, while the remainder take the values 0, 1, 2.

The sufficient and necessary conditions that the group shall be of
finite order are that the generating operations be of finite order.
When this is the case, the group is the direct product of groups
whose orders are powers of primes. In general for such a group the
commutator of any two operations is a self-conjugate operation;
but the case in which the order is a power of 3 is, as might be
expected, exceptional.
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1. In dealing with groups in which every two conjugate operations
are permutable, the following notation will be used.

If Pa, P b , P c , •••

are any operations of such a group, the result of transforming Pn by
Pb will be written PnPab, so that

Similarly,

and so on.
Further, the notation

P"1

•* a

will

p;xpai

v:xpabi
3-ipnftoj

\ = Pab-

° — P .
• e ~~~ •*• aba

3 = P

be extended so that

PabcPde PabcPde = = P(abe)[de)'

The use of brackets in the suffixes will prevent any ambiguity ; thus
P(abcd)t is the same as Pabede', but these are not necessarily the same
as Pa{bede) or P{nb){cde). From the definition of Pab it follows that

Pba — Pb Pa PbPa — Pab • .

The operation Pab may be regarded as the product of Ptt~ and
Pb

lPaPb; or as that of P~xPb
xPa and Pb. Hence, since every opera-

tion is permutable with its conjugates, Pab is permutable with both
Pa and Pb.

Now, from Pb
xPaPb = PaPab and Pb

lPnbPb = Pab,

it follows that P'b
yPaPl = PaPlb,

and Pl'KPb1 = PlPZ,

or p;'p-b"px
oP'i=PZ.

Since Pab is the product of ?„"' and Pb
lPaPb, it follows that Pabc,

Pn*crf> ••• are products of powers of operations which are conjugate
to Pn. Similarly, Pabcli may be expressed as products of powers of
operations which are conjugate to Pb (or to Pn or to Prf). Hence

Pabrda = 1>

Pabcdb = 1>

& C .

Again, Pabc and Pod can.both be represented aB products of powers of
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operations which are conjugate to Pa. They are therefore permutable,
a n d p _ i

Hence, generally, P<nw...x*...)toA...)... = 1,

if in the multiple suffix any simple suffix occurs more than once.
Since Pab is permutable with both Pn and P6, every substitution of

the sub-group generated by Pa and Pb can be represented in the form

p* pv p«
•*rarbjrab-

I n fac t P"aP
v
bP

z
abP

x
a Pb P~ab = P*a* Pa Pv

bPaPb
vPy

b
v Pab

T>»+«' rj-^v py+y* p ^ * '
— -^ a "ab •*» 1 ab

Let Pe be any operation which does not belong to this sub-gproup.
Then . ,

P P P — P P

>:lp;lpa =

and therefore P~b Pc Pab =

Pa PbLnPePa Pb Pa = 1 ePeb Pcba

Now Pe(rf) = P;,i;

hence PnheP«aPcaH = 1,

or, since Pr6o = P6; ' ,

PabrPbcaPcab = 1 - ( i)

Again, since PnP6 and P'e
xPaP,,Pc ( = PaP^PhP^) are conjugate,

they are permntable. Hence

PaPacPbPbc = = Pfc P« \PaPacPbPbc) P«Pb

= Pb \PaPacPbPbaPbcPbca) Pb

— Pa Pah J- ac Pacb Pb Pba Pbr Pbca •

But Pn, Pab, Pan Pneb ai'e all permutable, as also are P6, P^, P6e, Pben.

Hence P^^P.P^ = PnPo r PaebPahPhaPbcaPbPbe,

or PflrtP6fn = l. (ii)

If Pc belongs to the sub-group generated by P o and P t , the relations
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(i) and (ii) become identities. They are therefore true in any case,
and for any permutation of the suffixes. Now, (ii) may be written

p p
-*• bca ~~~ -*• cnftj

o r Paeb — Pcba.

Hence from (i) and (ii) together it follows that

Pabc = -fftea = = Peab — -*acb = = Pcba = Pbae } C^V

and -PL = 1- (iv)

The relations (iii) are equivalent to the statement that when any
permutation of the suffixes is effected in the symbol Pabe the operation
represented is unaltered or changed into its inverse, according as the
permutation is an even one or an odd one. Since

p _ Z> T>'* — P""1

rab...dtf — Jr(ab...d)<f — Jr(ab...d)fe — r ab ...dj* >

this statement may clearly be extended at once to any such symbol
as P,,b...*./• Again,

p _ p- 1 _ p-1 _ p(-»r+1

where r is the number of suffixes in the set z, j , ..., k. Hence

p _ p
m)((/...*) — r'...'"</••* >

and thus any symbol P{ )( )#.. can be replaced by one in which there
are no brackets in the suffix.

From the relation (iv) it follows that any symbol with three or
more letters in its suffix is an operation of order 3, or else is the
identical operation. Further, since

P3 — 1

may be written P'JP;xPlbPe - 1,

the cube of every P with two letters in the suffix (i.e., the dube of
the commutator of any two operations) is a self-conjugate operation
of the group. Again, 3

Pabc = 1

may be written PnVP~*PabPl = 1.

Hence the cube of every operation of the group is permutable with
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every operation whose suffix contains two or more letters ; i.e., with
every operation of the derived group.

2. Let P,, P3, ..., Pn

be n independent operations which generate a group G, and suppose
that the only conditions to which they are subject are that every two
conjugate operations of G are permutable.

The product of any two operations of the form

P , P a . . . P , , P 1 9 P j 8 . . . Pn-l,«Pi28 ••• Pl23...n> ( v )

where every P with a multiple suffix occurs once, whiie the P's are
written in a definite sequence, is another operation of the same form.
In fact, from the preceding paragraph,

P -V p* pV

aiaa...ar
 r bjb*...b, J-ala3...ar

_ p* p(-Up+IW
— -*6,6a...6, irblb*..,btala3...ar >

so that the multiplication can be actually carried out, and in the
result the P's can be re-arranged in the original sequence. Hence
with suitably chosen indices every operation of G can be represented
in the form (v.).

To specify all distinct operations of the group it remains to show
under what conditions a symbol of the form (v) represents the
identical operation. As the basis of an induction it will be assumed
that when thei'e are n— 1 generating operations the conditions are
that (a) the index of each P with a single or double suffix is zero,
and (/3) the index of each P with a triple or higher suffix is zero or a
multiple of 3.

If to the conditions defining G we add

P, = 1.

a new group is defined, which is simply isomorphic with G/H, where
H is the self-conjugate sub-group of G generated by P, and its con-
jugate operations. The latter is an Abelian group, and cannot there-
fore be identical with G.

Now P, = 1

involves P18 = 1 , P,, = 1, ...,

"123 = = •••>

Hence G/H is simply isomorphic with the group generated by
P2, Ps, ..., P n ; and this sub-group of G can therefore . have no
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operation, except identity, in common with H. Suppose now that
pa pb pc pd -pe pf pg pA pi ,

J. 1 a . j . . . J. n j . ) 2 x j j i 2 S . . . j . o _ l > f , X m . . . J. 2 8 4 . . . J - .

By preceding processes the factors on. the left may be rearranged so
that all the P's containing 1 in the suffix come at the end, the indices
of the remaining P's being unaltered. Hence

•pb pe pt pg pi pa pd' ptf pft'
•* 8 • • * • * n - r 2 3 • " •* » - l » ' « - r 2 M • " — " r l - r 1 8 ^ 1 3 " • ^ 1 8 3 •*• "

Now the operation on the right belongs to H, and that on the left to
{Pa, P3, ..., P,,}. Hence each must be the identical operation, and
therefore by the assumption made

& = . . . = c = / = . . . = 0 = 0,

i = ... = 0, or a multiple of 3.
Similar series of results follow by considering the self-conjugate

sub-groups arising respectively from the suppositions

Pa = l, or P8 = l, . . . .

Hence an operation of the form (v) can only represent the identical
operation, in a group generated by n operations, when the indices of
all the P's with less than n symbols in the suffix satisfy the assumed
conditions. But when this is so the operation reduces to P"^...,,.
If m is neither zero nor a multiple of 3,

Pm... ii = 1| and Piss...,, = 1

involve Pi23...» = 1»

which would constitute an additional limitation on the group, not
contained in the oi'iginal conditions. Hence m must be zero or a
multiple of 3 ; and the induction is completed.

Finally, therefore, every operation of G is given once, and once
only, by the form (v), if the indices of the P's with a single or double
suffix take all values from —oo to +oo, while the indices of the P's
with a triple or higher suffix take all values from 0 to 2.

3. So far it has been supposed that the only limitation on the
group considered is that every two conjugate operations- are per-
mutable- The group under these conditions necessarily contains
operations whose order is not finite. It will still have this property
under a variety of further limitations. For instance, the condition

YOL. XXXV.—NO. 7 9 2 . D
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implies that every P with a multiple suffix in which 1, 2, and 3 occur
is the identical operation. The generality of the group is thus re-
duced ; but it still contains operations whose order is not finite.

From the form giving the operations of the group it is clear that,
if the order of every operation of the group is finite, the group is one
of finite order. Moreover, the necessary and sufficient conditions for
this are that each one of the generating operations should be of finite
order. That these conditions are necessary is clear from the
form (v). To show that they are sufficient, it is only necessary to
notice that, if Pj is of finite order m, P12 is of finite order, equal to or
a factor of m.

Suppose now that 0 is of finite order, and consider the operation
S'^T^STof G. As the product of 8~l and T^STits order must be
equal to or a factor of that of 8.. Similarly its order is equal to or a
factor of that of T. Hence, if the orders of S and T are relatively

or 8 and T are permutable. Since any two operations of G whose
orders are relatively prime are permutable, 0 must be the direct
product of a number of groups, the order of each of which is the
power of a prime. In dealing with groups of finite order with the
property considered, it is therefore sufficient to suppose the order to
be p", where p is a prime.

The case ^ = 3 evidently stands by itself. Suppose first that p is
not 3. Then Pm is an operation whose order is a power of p. But
in any case it has been Been that

P3 - 1

Hence P,2S = 1,

or the commutator of any two operations of the group is a self-
conjugate operation.
. Every operation of the derived group is therefore a self-conjugate

operation. That this condition is sufficient to ensure that in a group
of order p' every two conjugate operations are permutable is obvious.

If P,, P2, -.., P,,,

of orders p a \ p°*, ..., pa»

(a, 2 a>^ as ... ~s a,,),

are the generating operations of such a group, and if the only condi-
tions beyond the given orders of the generating operations are that
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every two conjugate operations are permutable, the order of P,,, (

is pa\ Every operation of the group will then be given "once by

(r = 1, 2, ..., n; s = 1, 2, ..., n ; r<s),

where x,. takes all values from 0 to pa<r—1 and x,., from 0 to pa'—1.
Hence the order of the group is

When p is equal to 3, the only condition that P with a triple or
higher suffix is subjected to is

PL... = i,
and it is no longer the case that the commutator of any two opera-
tions is a self-conjugate operation. If the group is generated by

p p p

of orders 3°', 3% ..., 3a»

(a, £ at 2s ... £ a,,),

every operation of the group will be represented once in the form (v),

where the index of Pr lies between 0 and 3a'"—1, the index of Pr, (r<s)

lies between 0 and 3°'—1, and all the other indices lie between 0
and 2; both limits included. The order of the group is therefore

In particular, if the order of each of the generating operations is 3,
the order of the group is 2n_1

o

This is the case already referred to in the introduction.

4. Groups of finite order p", of the kind here considered, possess
tfwo general properties in common with Abelian groups. Fii'st, the
totality of the operations of the group whose orders are equal to or
are less than p"y where r is a given integer, constitute a sub-group.
If P, and P2 are any two operations of the group, of orders p°l and
pa" (a, 5 a2), the order of P,2 is equal to or is less thanp"1, Now, by
a repeated use of the formula

D 2
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it follows that (P,P,)* = P^P^*" 1 * .

Hence, if PJ=1 , PJ = 1, Pjf"« = 1,

then (-PiPsi)* = X.

Now, if p > 2, the condition
pi*(*-i) _ -l
•Ms — L

may be replaced by P*,*"1* = 1.

It follows that, if p>2, the order of PiPa is equal to or is less than
the order of Pv The sub-group generated by all the operations
whose orders are equal to or less than pr consists therefore of these
opei^ations and of no others; for the product of any two of these
operations is an operation whose order does not exceed pr.

The case p = 2 clearly forms an exception to the general theorem;
for, if P,, P9 are two non-permutable operations of the group of
order 2, P12 is an operation of order 2. But

PM = (JW,
and Pj P2 is therefore an operation of order 4.

Secondly, the totality of the distinct operations which arise, when
every operation of the group is raised to the power pr, where r is a
given integer, constitute a sub-group. Consider the case in which
p>3, and the group is generated by two operations Pj and Ps. The
operations of the sub-group generated by Pp

v P£, and P,p3 are given
by the form

The p-th power of any operation PjPjPjg is given by the relation,
obtained as above,

/p" p* p« \P pP« •pfb pP0-ial>p(p-V
\jri-rijr\i) — M "r2 •*• 18

Now \ (p—1) is an integer. Hence
•ppx -ppy ppz /pX-pV p= + J(P-l)«/\p.
x i -ra •'is — V.M-*sM3 / '

i.e., every operation of {P[, P^, P 8̂} is the p-th power of an operation
of the group, and the p-th power of every operation of the group is
contained in {PJ,', Fp

v P^}. For more than two generating operations
the proof will proceed on precisely similar lines. The theorem is
therefore true when r = 1. But it must also be true for the resulting
sub-group ; so that it is true generally. The case p = 2 forms again
an exception, since .^ (p—1) is not then an integer. In fact, in this
case {Pj, PJ, P^} will not contain P,8, which is the square of PiP8.
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The case p = 3 requires separate treatment. It may be easily
shown that in this case the cube of any operation of the group when
expressed in the form (v) contains no P with a triple or higher
suffix ; and from this the truth of the theorem immediately follows.

Thursday, June 12th, 1902.

Dr. E. W. HOBSON, F.R.S., President, in the Chair.

Fifteen members present.

The President announced that the " De Morgan medal " for 1902
had been awarded to Prof. A. G. Greenhill.

Mr. A. 0. Porter was admitted into the Society.
The following paper was communicated by Prof. Love :—

Prof. A. W. Conway: " The Principle of Huygens in a Uniaxal
Crystal."

Lieut.-Col. A. Cunningham gave an account of " Some Investiga-
tions concerning the repetition of the Sum-Factor Operation."

The following papers were communicated from the Chair:—
Prof. E. Picard: " Sur un theoreme fondamental dans la

theorie des equations differentielles."
Mr. G. H. Hardy : " Some Arithmetical Theorems."
Prof. M. J. M. Hill: " On a Geometrical Proposition connected

with the Continuation of Power Series."
Mr. J. H. Grace: " Types of Perpetuants."

The following presents were made to the Library :—
11 Educational Times," June, 1902.
"Indian Engineering," Vol. xxxi., No*. 16-20 ; 1902.
"Queen's College, Galway—Calendar for 1901-1902."
Penfield, S. L.—"The Stereographies Projection and its Possibilities from a

Graphical Standpoint," 1901.
Penfield, S. L.—" On the Use of the Stereographic Projection for Geographical

Maps and Sailing Charts," 1902.
"Periodico di Matematica," Serie 2, Vol. rv., Fasc. 6 ; Livorno, 1902.
"Supplemento al Periodico di Matematica," Anno v., Faec. 7; Livoruo, 1902.
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" L'Enseignemont Matheinatique," Annee iv., No. 3 ; 1902.
"Mathematical Gazette," Vol. n. , No. 33, 1902.
Guklberg, A.—"Ueber Integralinvarianten und Integralparameter boi Beriihr-

ungs-Transfonnationsgruppen," 1902.
" Journal de l'Ecolo Polytechnique—Hoinmagerendu a M. le Colonel Mannheim,"

1902.
De Morgan, A.—"Theory of Probabilities" (extract from Encyclopedia Metro-

politana). From Mr. R. Tucker.
Carvallo, E .—" L'Electricit6 " (Scientia, No. 19).
" Mathematical Questions and Solutions from the Educational Times,1' New

Series, Vol. i. ; 1902. ^
D. Ocagne, M. —"Sur quelques Travaux recents relatifs a la Nomographie."

The following exchanges wei'e received :—
Academic Royale de Belgique:—

"Annuaire, 1902," Bruxellcs.
" Bulletin de la Classe des Sciences," Nos. 1-3 ; Bruxelles, 1901-1902.
"Meraoircs Couronnes," Bruxelles, 1901-1902.
"Moraoires," Tome LIV., Fasc. 1-4 ; Bruxellcs, 1900-1901.
"Memoires Couronues et Memokes des Savants Etrangers," Tome LIX., '

Fasc. 1, 2 ; Bruxelles, 1901.

" Proceedings of the Royal Society," Vol. LXX., NOS. 459, 460 ; 1902.
" Reports to the Evolution Committee of the Royal Society" ; 1902.
" 13eibliitter zu den Annalen der Physik und Chemie," Bd. xxvi., No. 5;

Loip/ig, 1902.

" Bulletin do la Societe Matheinatique de France," Tome xxx., Fa6c. 1 ; Paris,
1902.

" Bulletin of the American Matliematical Society," Vol. vin., No. 8;
" Transactions," Vol. in., No. 2 ; New York, 1902.

"Bulletin des Sciences Matheniatiques," Tome xxv., "Contents," 1901;
Tome xxvi., Mars, 1902 ; Paris.

" Auuuli di Matematica," Tomo vn., Fasc. 2, 3 ; Milano, 1902.
" Atti della Reale Accademia dei Lincei—Rendiconti," Sem. 1, Vol. xi.,

Fasc. 8, 9, 10 ; Roma, 1902.
" Sitzungsberichte dcr Kiinigl. Prouss. Akademie der Wissenschaf ten zu Berlin,"

Nos. 1-22 ; 1902.


