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17. It may be noted that

tAap = ^--B=Cy'P

18. To construct the figure, let DEF be the pedal triangle; then
its sides are l\p, Uq, Ur.

If T)K, EL, FM are the perpendiculars of DEF, then

DK = Iiqr, EL = llrp, FM-Ttpq. (a)

Now \ = 4RII (sin 4 ) / 2 (qr),

DK+EL+FM'

Hence the sides of a/3y, a'fi'y' (i.e., A. Rp, A,.i2g, \.Rr) are known.

[ I am indebted to a referee for a suggestion which enables me to
considerably simplify the construction, viz.,

By : yfl' : fi'O — cosec 22?: cosec 2A : cosec 20,

i.e., by (a), -EL: FM: DK.]

On Quantitative Substitutional Analysis. By A. YOUNG. Com-
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From any function P of n variables may be obtained n! functions,
not necessarily all different, by permuting the variables in P in all
possible ways ; or, what is the same thing, by operating on 1' with
each of the n ! substitutions of the symmetric group of the variables.
It frequently happens that between these functions linear relations
with constant-coefficients exist; such may be written

(Al

vofi. xxxm.—NO. 744.
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X,, X2,... being numbers positive or negative, integral or fractional,
anl .•,, s3, ... substitutions belonging to the symmetric group of the
variables. The words " substitutional relation " will be used to de-
note a relation such as that just written down; and the expression
"substitufcional equation" will be used for the same relation when P
is an unknown function for which this relation is true.' The simplest
form of such a relation is

which merely implies that P is unaltered by the substitution s.
This iB dealt with in the theory of substitutions. The main object of
the present paper is the discussion of single equations, such as that
written down above, or of simultaneous systems of such equations, with
a view to their solution; further, of the discussion of equations of the
form

(A, + A2sa + V 3 + . . . ) - P = R,

whore \u Xa, ..., s3, ss, ... are defined as above, and 11 is a known
function; these equations are also to bo included in tl.e tevin "sub-
stitutional equations." It will be seen, moreover, that the right-hand
sides of s;ich equations, when a single equation, or else a simultaneous
system, is under consideration, sire subject to restrictions, in. that they
have in general to satisfy certain substitutional relations.

The problem proposed is not a purely hypothetical one. In a
paper on "The Irreducible Concomitants of smy Number of 15inary
Quartics,"* I Wave shown that there is one type of concomitant to
be dismissed for each d• gree ami order ; and that such a type satisfies
certain substitnl.ional equations, the solution of which enables us to
î nd liow many concomitants of that type for a definite number of
quartics are irivducibh , and which these ;• re. The equations were
there discussed, ;md the irreducible system for any number of quartics
was found. Thus, using the nutation of that paper, the invariant typo
degree (i may be written (abedef) ; it satisfies the equations

(abedef) = (bedefa) = (afedch),

(abedef) + (abefde) + (abcefd) + (abedfe) + (abefed) + (ul>cedf) — Ji,

(al-def) + (abfede) + (alrfcd) + (abedfe) + (abecdf) + (abfecd) = U,

where U stands for certain reducible terms, with the form of which

* Froc. Lond. Math, tioc, Vol. xxx., p. 29>).
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we aro not concerned. Tlie other equations satisfied by this type are
u necessary consequence of the four written down.

Later, in a paper on " The Invariant Syzygies of Lowest Degree for
any Number of Quartics,"* I proved that the su Institutional equations
satisfied by the quartic types gave all the syzygied between quartio
concomitants ; but here the form of the reducible terms on the right-
hand sides of the equations had to be included in the discussion. The
equations for invariant types up to and including degree 7 were dis-
cussed, with tho result that no invariant syzygies existed of degree
less than 7, and that the syzygies of degree 7 could all be obtained
J.vom one definite fon.-i. Incidentally, th-j method of discussing the
equations with v view simply to finding the irreducible system was
somewhat improved ; ai d a theorem conneced with snbstitutional
analysis was proved, which has been generalized here, §8.

The term " substitutional expression " is used to denote an expres-
sion of the form

+*8ss + • • • + K 8<.i

where \,, \2, ... are numerical constants (positive or negative) and
s2, ss, ... are substitutions. It is shown, to start with, that the solution
of substitutional equations, so far as rational integral algebraic
functions are concerned, may be made to depend on the finding of
substitutional expressions which satisfy the equations in virtue of the
multiplication to,ble of the group to which all the' substitutions
belong. The first seven paragraphs of this paper are concerned with
Bubstitutional equations; in § 9 some examples aro given.

The second part of the paper has to do with two substitutional
identities,'one of which is proved in § 13, the other in § 15. By
means of relations which are established between substitutional and
polar operations on functions of a definite kind, from the first of
these a proof of Gordon's series is obtained; from the second
Capelli's extension of this series, a theorem due to Peano, and some
corollaries concerning substitutional equations. An account of the
paper which contains Capelli's theorem is also given, § 11, as ther-e
exists a fairly close connexion between the analysis of substitutional
and polar operators. With this connexion § 12 has to do; it is some-
what further developed in that part of § 17 which has to do with
Capelli's theorem.

For convenience, owing to the quantitative use of the symbols, the'

* Froc. Lond. Math. Soc.,Vo\. xxxn. , p. 384.
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substitutions next a function are regarded as operating on it before
those further away, thus

To avoid confusion, as the symbol (abc.) is used in two senses,
viz., as a substitution and as a concomitant type of a quantic, Roman
letters are used when it denotes a substitution, italics when it denotes
a typo. The usual symbols for a group are used in two senses : first,
as a name for the group, and, secondly, to represent the sum of the
substitutions of the group. The following notation is made use of:—

{s} = the sum of the substitutions of the smallest group in-
cluding s.

{8l,si} = the sum of the substitutions of the smallest gronp in-
cluding sy and f3.

{6?i, Q}} = the sum of the substitutions of the smallest group
having Gx and G.2 for sub-groups.

{abc...} = the symmetric group of the letters a, b, c, ....
{abc...}'= the sum of the substitutions of the alternating group of

the letters a,b,c, ..., minus the substitutions of these
.letters which do not belong to the alternating group.

The expx'ession {abc...} is sometimes referred to as "the positive
symmetric group "; while {abc...}' is called " the negative symmetric
group."

The paper has been rewritten and greatly enlai'ged at the request
of the referees ; my thanks are due to them—particularly to Prof.
Burnside—for many valuable criticisms and suggestions.

1. Consider any rational integral algebraic function P of n variables
o,,aa, ...,«,,; its terms may be arranged in sets Pi,l\, ...,Pm, such that
each set contains all those terms of P, and only those, which are ob-
tainable from some particular term by means of substitutions and of
positive or negative numerical factors. And P may be written

P = P x +P 9 +. . .+P t l l .

Now, consider any set Pl; let A^cf-a0? ... a^ be any term of tjhis
set, Ax being a positive or negative numerical coefficient; then

P, = (Al + Aisi+A38i+...) a?*? ... <»,

where Alt A9, ... are numerical, and s8, ,s8, ... substitutions belonging
to the symmetric group of the n valuables. The effects of. substitu-
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tions on P u and consequently all substitutional properties of P u

depend partly on the substitutional operator (./!, +A,s2 + .4s.<f8 + . . .) ,

partly on the substitutional properties of the term a"1 a^1... a*". If
in this term all the indices a,, a9, ..., a,, are different, we obtain by
operating on it with the n\ substitutions of the symmetric group
{a,a2... a,,} of the variables n\ different terms which are connected
by no linear relations with constant coefficients. In this case, then,

a "a"2... a"" has no substitutional properties, and all the Substitu-
tional properties of P, are a consequence of the operator

Suppose next that ĉ  = ct2 = ... = a,. = a, and that a, qr+,, ar+2, ..., a,,
are all different. The substitutional properties of the term

consist solely of the fact that this term belongs to the group

|a,a2 ... a,.}. For there result, by operating on it with the n\ substi-

tutions of the group {a,a3 ... a,,}, --'- diffei-ent terms between which

no linear relations with constant coefficients can exist. The substi-
tutional properties of this term are then identical, with those of

where all the indices of the a's in tt"la*i... a," are different. ' Hence
all the substitutional properties of Pj are, in this case, a consequence
of the operator when we write, as may be done,

p, = > [ ( A + A ^ + ^ ]

whei'e

r!
... ar} =,

the Ji's being constants. In exactly the same way, whatever be the
equalities amongst the indices in the term a*1 a"2... a"", a substitu-
tional operator (B1 + Brsi + B3ss+...) may be obtained, such that

P, = (
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all the substitutional properties of Pj being a consequence of the
operator alone.

Now, owing to the way in which the sets have been chosen, no
substitution can change a term of one set into a term of a different
set; and there can exist no substitutional relation between different
sets. Hence, if P satisfy any substitutional equation

where A,, A2,... are constants, each set must independently satisfy th's
equation. And hence each set possesses all the snbstitutional pro-
perties of P.

Theorem.—Every rational integral algebraic function P of n
i.m

variables may be written in the form P = 2 P,, where P< possesses

all the siibstitutional properties of P, and possibly others as well.
And Pi may be expressed in the form

where A\ , A^ , ... are positive or negative numerical coefficients,
j?8, s8, ... are substitutions belonging to the symmetric group of the
ft variables, and F{ is a rational integral algebraic function of the
variables. Further, the substitutional operator

is such that all the substitutional properties of P< are a direct con-
sequence of it.

For example, take the form

P = fa—fa + ̂ axa2-^dUa—3«X + | « X ;
then P, = fa—fa — % {aaa8}' a,2 = £ {aaas}' {a,a3} az

— I [ 1 — (a2 a8) + (a, as) — (a, a2as) ] at,

P3 = 3ajas—£aja8— Sdfy+faal

— [3— £ (a^a,,) — 3 (a,a,) + | (a,a.)] a]at,

Here P, P,, P3 all satisfy the equation

{a,as}P = 0;
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also Pj satisfies the equation

{a,aaas}' lJ
l = 0.

Again, if the substitutional pi-operties of P are completely summed
up by saying that P belongs to the group G of order p, it is sufficient
and more convenient to write

tliis being, as it is easy to verify, the necessary and sufficient condi-
tion that P may belong to the group G of order p.

Corollary. — Every rational integral algebra'c solution P of a

»:nS!e equation ( X i + A j , i + V ] + . . . ) P = 0>

where \,, \.2, ... are constants, and s2, s3, ... substitutions belonging
to the symmetric group of the variables, of which P is supposed to
be a function, or of a simultaneous system of such equations, may be
obtained in the form

where A", A(>\ ... are constants, and-F< is a rational integral algebraic
function of the variables, the substitutional operator of each term
being such that

in virtue of the multiplication table of the group.
For P may be written in the form

where P , = (A™ + A? s% +...) Ft,

all the substitutional properties of P< being consequences of the
operator, and, further, where P{ possesses all the substitutional
properties of P, and hence is a solution of the equation, or system of
equations, of which we are supposing P to be a solution. But, since
every substitutional property of P, is a consequence of the operator

4 " 4 O ! I + •••), it follows that

2. The applications of our theory at present required are entirely
to functions rational integral algebraic in the variables. Consequently,
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we may restrict ourselves to the discussion of such functions, and will
throughout this paper tacitly assume that the functions considered
are of this nature. Nevertheless, should the theorem of the preceding
article be true for any kind of function—as seems to me probable—
no restrictions as to the nature of the functions considered would be
necessary.

In consequence of the corollary just proved, it follows that in order
to obtain the solutions of a system of equations of the form

(AI + A2Sa + A8S8+...)P = 0

it is only necessary to discover the substitutioual expressions

( ^ + V + ^ )
which are such that

(X, + A252+X8s8+ ...)(A1+Ais.2+Assi+ ...)== 0,

in virtue of the multiplication table of the group. The solution is
then a matter of relations between substitutional operators only. We
may then proceed thus : Take the sum of all the substitutions of the
group concerned with arbitrary coefficients ; for brevity we write
this S. Then expand the various expressions

(X1 + \is2+...) 8

obtained by substituting S for P in the various equations of the
simultaneous system, and in the results equate the coefficient of each
substitution to zero. A system of simultaneous linear equations is
thus obtained for the arbitrary constants in 8. As a rule, all the
arbitrary constants cannot be definitely determined; but the result of
solving these linear equations and substituting their values in S will
be expressible in the form

where Oj is an arbitrary constant and Sj is a substitutional expression
containing no arbitrary constant, which is' such that the result of
substituting Sj for P in each of the substitutional equations is zero, in
virtue of the multiplication table of the group. Every solution may
then be written in the form

P = l[SCj,t8j] Ft = S
» j J

where Oj,i is a definite constant

and Fi and P are functions of the nature under discussion.
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An expression in terms of which every solution can be expressed,
such as 2/S $j, we call the complete solution of the system of equa-
tions. It will be seen later on that this is not always unique.

It is well to remark that it is not necessary to take, S equal to the
sum of all the substitutions of the symmetric group of the variables
with arbitraiy coefficients. It is sufficient that S should contain all
the substitutions of the smallest group 0 which contains all those
substitutions which actually occur in the expressions of our equations.
For, if 0 — l + s2+ ... +«p, it is well known that it is possible to obtain
a table ,

such that every substitution of the symmetric group is contained once,
and only once, in the table; and, further, that the result of multi-
plying on the left-hand side any substitution in this table by one of
the substitutions in G changes it to another substitution in the same
horizontal line. Hence, if 8 be the sum of all the substitutions of the
symmetric group with arbitrary coefficients, the substitutional equa-
tions only give relations between the constants in the same horizontal
line, and the relations for the various lines are the same.

As an example, consider the equation

{(abcd)}P = 0

8 = At + As (abed) + At (ac) (bd) + At (adeb).

Equating the coefficients in {(abed)} S to zero, we obtain

i a 4
Hence
8 = —Ai-Ai-Ai+Ai (abcd) + At (abcd)3-M4 (abed)8

And the complete solution is

3. Consider now a single equation, or a system of equations, of the

form [A, + X,s2 + A8sa + ... ] P = If,,

where, as before, X,, A,, ... are constants, ss, s3, ... substitutions, andB
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is a given rational integral algebraic function of the variables. It is,
in the first place, to be noticed that the above equation in general
implies a restriction on J?, viz., that R can be wHtten in the form
[A, + \2.¥24-...] F, and, as a consequence, satisfies certain substitutional
equations. Thus, if A, + A2s2-{- ... = Q the sum of the substitutions of
a group, 12 mufit belong to the group G. Let Px be any solution of the
equations ; then, if P2 be another solution,

[*, + * ,*+. . ] ( P , - P , ) = 0.

Hence, as in linear differential equations, the work of solution may be
divided into two parts. First, any particular solution P, is found;
and then—what corresponds to the complementary function—the
complete solution Q of the system

The complete solution—that is, the solution in terms of which every
other can be expressed—is then

It will be seen later on, in the applications made to the quadratic and
quartic invariants, that, in general, B is subject to more conditions
than that implied by

when a simultaneous system of such equations is under discussion.

4. It may happen that the only solution of an equation

+ . . . ] P = 0 (I-)
is P = 0. Let G be the group of the substitutions which appear in this
equation; then, if s be any substitution of G,

Operating, then, on (I.) with each of the p substitutions of G, where
p is the order of G, we obtain p linear equations with constant co-
efficients between the p quantities

P „ p

regarded as independent variables. The necessary and sufficient con-
dition that there may be a solution other than zero is then expressed
by the vanishing of a determinant of p columns and rows.

If G
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the sn.m of the substitutions of a group G of order p, the complete
solution of (I.) is of the form

where G (A^-\-Aisi+ ... +Al>sp) = 0.

This gives Al+Ai+...+Ap = 0.

lience

Now, let o-,, o-j, ..., o-,,, be any substitutions of G which are not all
contained in one of its sub-groups, and hence are sufficient to
generate G, Then every substitution s of G can be expressed in the
form

. ...<r

where ri, r2,..., r* are some of the numbers 1, ?, ..., m, not necessarily
all different. Bat

where « = ar,, ... "",. ,

and 1 ence

= (<Tr!-l) < .., err4+(orPa-l.) (T̂  ... 0"^+ ... + ( ^ - 1 )

= (<r,-l) N, + (o-,~l) S,+ ... + (o-w-l) Sw,

where S1} /5>,,, ..., 8m are substitutional (.xpresbions, some of which
•nay be xero, or merely numerical.

Hence

= (or1-l)'i ' I + (<r8-l)2l,+ ... + (orw-l) T,lt,

wlu-'re Ty, 7j, ..., Tm ;ire substitutional expressions containing the
arbitrary constants A.., A3, ..., yJp.

Moreover G{a- — 1) = 0 ;

lience tliu complelu solution of the equation

GP = 0
;nay be written

Flt F%, ..., Fm being arbitrary functions.
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Similarly, the complete solution of the equation ,

GP = R,

R necessarily belonging to the group 0, is

for - GB = R,
P

and consequently - is a particular solution.

If, for instance, 0 = {a,a3... a,,},

any one of the three following expressions may be taken as the
complete solution:—

J}'JP,+ {a8a3}' F,+ ... + {a,,_,a,,}'2'1,,,

— (a,a,a8 ....a,,)] F%:

an illustration of the remark already made, that it would be found
that the complete solution was not always unique.

It follows from the above that the solution of

may be written P = P, + Pi}

where (?, P, = 0 and. G3P2 = 0.

For we may choose substitutions <r,, a2, ..., ah which generate (?„ and
substitutions trh+u <rA+2, ..., am Avhich generate (?.,; these substitutions
will then together generate {(•?„ G2}. The solution of

{QUG%}P = O
may then be written

where Pl = (<rx-1) F, +... + (ah-1) FA

and P2 = K+ 1- l) i ? T / .+ i+. . . + ( a m - l

and consequently (3,Pj = 0 and (?9P8 = 0.
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5. When all the substitutions are powers of a single substitution
the equations are easy to solve. Consider a single equation, the most
general of its kind,

<p (s) P = (A0+Als+Ais
2+... + An.ls

lt-i) P = 0,

where 8 is a substitution of order n.

We require to find the most general expression

which is such that f (s) i/r (s) = 0.

Now 0 (x) \p (x) only vanishes when </> (a;) = 0, or when ip (a;) = 0.
Neither of these cases need be discussed here; then the product
<f> (s) ij/ (s) must vanish solely in consequence of the equation

sn = 1.

Hence <p (x) \f/ (x) = (&"—1) x (»)•

To find if/, we then obtain the H.C.F. of a;"—1 and <j> (x), say </», (x) ;
then

Now, if a is not a root of x" — 1 = 0,

any function Q may be written in the form

& — a J

for Q. = {—""0. = (s"

Hence, if <f> (a:) = ^, (x)(x—a1)(a; — a.,) ... (a —a,.),

any solution P of the equation may be written

= rti] r _j I .̂
L<i>i (.-)J L(s—aj)(s —cu) ... (s —a, ) J

where it is to be understood that the expression is equivalent
6 "to =—' : , when a is not equal to unity.

i-a1;
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It has been tacitly assumed that 0 (s) has no squared factor which
is also a factor of s"— 1; if such should occur, we may remove it by
adding to y (s) a multiple of «"—1, which is in actual value zero,
and then proceed as before. If 0 ($) has no common factor with
$"—1, thenP = 0.

To find a particular solution of

<p (s) P = B.

The restriction imposed on B by this equation is

--~~*R = 0.

Hence B = </>, (s) B ' .

!f there is no difficulty in finding B' from this, the particular solution

p _ *i_(«) %>
</> ( •* )

may bo taken.
If thu form of B' is not at once obvious, the particular solution

may be found thus :—

0, (s) 0, («) = f: (fi) </>, («) + ^ («" — 1) =

where s"—1 and <(>2 (s) have no common factor. Then

( \ i / \ T% , f \ T) . /
•̂J (p IS) JL SS O| IS) -Lit ^^ u)| iS

and
Lf (s)

is a solution.
The extension to any set of simultaneous equations involving only

powers of s is obvious.
Also it may be seen, in the same way, that the solution of any set

of Abelian equations is a matter only of algebra.
• Single equations which are not merely formed by the sum of the

substitutions of a group, and in which the substitutions are not all
contained in an Abelian group, may frequently be solved with the
help of the solutions in these two cases. Thus, the solution of the

equation {ab} [1 + (abed) + ( abcd ) v ]P-B

—which occurs in the reduction of the quartic invariant types—is

P - A [ 1 - 2 (abed) + (abcd)2+ (abed)8] f-|-
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and 11 must satisfy the equation

{ab}'B=0.

6; Consider now two simultaneous equations

{«}P = 0, {<r}P=:0.

Then, if so- == r,, o-s == ra,

• • a •-]

CTj = r2<r, rx = «r9 cr.

Hence, if m be the order of Tlt

r;» = or^tr-1 = 1,

and the orders of rl and r8 must be identical.

Also the expression (1—o-) {r,} = («—1) {r2} <r.

Hence P = (l-<r) { r ,}^

is a solution of the equations.

Unfortunately this is not always the complete solution, for suppose
that « • • H -i

ear = crs, fi== 1, <r = ' 1 ;

then the complete solution may be written

P = ( l - . ) ( l - o - ) if;
but the expression (I—<r) {r,} vanishes identically, for {r,} is here
equal to {8,0*}.

Again, whenever the substitutions s, a- are pemiutable, the solution

P = ( l - < r ) { r 1 } F ,

in addition to satisfying the two equations

{S}P = 0, {<r}P = 0,

belongs to the group {r,}, which is not in general the case with the
complete solution p _ n_a\n_s\F

However, whenever s2 = 1 = o-2,

the complete solution may be written

P = (1-<X){T 1 }* ' ,

for {«, <r} = {<7, r,} = {a} {r,},

since r,a = 8 = orf1.
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Hence we may write S = 2 (1 + Aa<r) Bar
a
v

and find £, so that {s} H = 0 and {a} S = 0.

The second equation gives Aa = — 1.

Hence 8 = (l-<r)(0o+2?Ir1+.. . + /.'„,.,/;-')

The equation {*} $ = 0

then gives 7J0 = 7i, — ... = J?,M.,.

Hence the complete solution is as stated.

A solution of any number of equations

{«,M' = 0, K } P = 0 , ..., K } P = 0

may then 'he seen u> be

If each of the substitutions «„ î , ...,«„ is of order 2, this is the com-
plete solution. For it can be written in the form

P = (1 - . , ) E,

where E is a rational integral algebraic function of the variables,

and by what we have seen above E must belong to the group {s.,s,}, if

{*2}P=0.

Hence Ji/must belong to the smallest group containing ^s^Sji,, ...,.•.•„.*>', •

7. i t fre«iucntly happens that a function is given as belonging to n
certain group, besides satisfying certain substitutional equations.
Thus, the invariant typo degree 5 of a quartic belongs to the group
{(abode), (a<j)(bd)}, and satisfies the equation

{abo}I. = 2f,

the other equations which it satisfies being consequences of these
facts. Further, in the case of irreducible invariants, we really only
require to find tho number of invariants of the form 75 in terms of
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which the rest can be linearly expressed. In respect to this, we shall
prove that:

If M be the number of arbitrary constants in the most general sub-
stitutional expression Sx, which may contain all the n! substitutions
of the symmetric group of the n variables under consideration, which
satisfies the equations

$, and G2 being groups of orders rx and ra respectively, and if N be
the number of arbitrary constants in the most general substitutional
expression 82 which satisfies the equations

then M-N=n\ fi---L].

Consider 8U and suppose that at first all the coefficients are arbitrary.
Let A, be the .coefficient of 8; then the equation

gives —'- equations of the form

0, (I.)

and in no two of these equations does the same coefficient occur.
Now, if <r be any substitution of O3, it follows that, since $, has G3 for
a factor,

Aa. = A..

n\
Owing to this, there are only — different coefficients; and, if this be

taken into account, the equations (I.) are not all independent. Let
T = 0 be any relation between these equations written out in full;
then this is an identity solely on account of the equations Aaa = A,.
Hence, if substitutions applied to T be supposed to operate on the
suffixes of the ^l's, we have the equation

And, further, from the form of equations (I.),

for T— 0 is a relation between different equations (I.). If, then, T'
VOL. xxxui.—NO. 745. i
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be what T becomes when for each A, we write «, T will Batisfy the
n! ..

equations for 8t. Hence, for every relation between the equations

to determine the — unknown constants in Sly there is an ex-

pression of exactly the same form which satisfies the equations for Sv

Conversely, every solution of the equations for S% will give such a
relation between the equations for the unknown constants in 8V

Hence the number of independent relations between the equations
(I.) is N; consequently, the number of arbitrary constants left in Si
when all the equations are satisfied is

and therefore M—N — n! (— ).
\ r, r, /

Further, the number of those functions obtained from P by per-
muting the n variables, in terms of which the n! possible functions
thus obtained from P may be linearly expressed when P belongs to
the crrouij Oq and satisfies

is equal to if, the number of arbitrary constants in the most general
substitutional expression 8X for which

For, if P, be the function obtained from P by operating on it with the
substitution .?, exactly the same linear equations exist between the
functions P, as between the coefficients A, in Sv Hence the number
of linearly independent functions P, is the same as the number of
arbitrary coefficients in 8V

8. If a function P satisfy each of the equations

P ^ O , {axa8}P = 0, ..., {aian}P = O,

it is merely changed in sign when operated upon by any transposition
of the letters a,, a,, ..., a,,. The complete solution of these equations
is then

P = {a,a,...a,,} F.
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The function P is an alternating function, and may be written, as is
well known,

P = J
where A is the product of the squares of the differences of the letters

, if P is of degree less than n—1 in any one letter, it must be
zero. Hence also, if Q be any rational integral function of degree
<u — 1 in each of its variables a8, Oj, ..., a,,, it satisfies the equation

In this connection should be mentioned the following propositions
already given for the quartic in my paper " On the Invariant Syzygies
of Lowest Degree for any Number of Binary Quartics," viz.,

If P be a rational integral function homogeneous and linear in the
coefficients of m binary w-ics,

being greater than w-f 1, then

{A">A(2>...A<n+a>}'P=:0, (i.)

.. A ' - ' ^ ' P = | A^A™ ... A**" | P,, (ii.)

m ... A(H)}'P * | ii<'UW ... ̂ (n)Q | , (iii.)

where a substitution (A(o) Alrt) operating on P is regarded as inter-
changing (a) and (/3) in all the indices in P ; in fact it interchanges
the position's held by the coefficients of the two quantics

in P ; or else it may be regarded as an abbreviation for

And | A{l)Am... A{n*l> \ is the determinant of n+1 rows and
columns formed by the coefficients of the n -f 1 quantics concerned ;
| A{l)Aw ... AWQ | is the same determinant with functions Qo>Qi> •••» Q>»
of the coefficients of the quantics represented by A{"*1), it((l+a), ..., Aim)

of the same character as P, substituted for the coefficients i4o'l+1>»
.4i"+1), ..., il|,"+1); and Pj is a funotion, having the same oharaoter as

l 2
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P, of the coefficients of the quantics represented by A(n*2) ... A<m). To
prove (i.) we observe that F may be written in the form

each of the suffixes r,, r2, ..., rn«.2 is one of the n + 1 numbers

0, 1, 2, ..., n; hence in any case two suffixes must be equal, and

consequently {A«»A»... A*"«}'P = 0.

For (ii.) we write P = 2,A^A™ ... A^F,

and here it is possible for the suffixes to be all different; if this is so,

{A"'A^ ... A!"*"}'A™ A* ... 4 ^

and therefoi'6

Pv

As regards (iii.) we write

and distinguish the following cases :—first, terms B' in which two of
the suffixes are equal; then terms ll0 in which the suffixes r,, >a, ..., r,,
are the numbers 1, 2, ..., n in some order; then terms JB, in which
the suffixes are the numbers 0, 2, 3, ..., n in some order, and so on;
finally, terms Ra in which the suffixes are 0, 1, 2, ..., n— 1 in some
order. Now operate with {A(1)A(2)... A""}'; then

l(>)

The other terms are found in the same way; so that, taking the sum,
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0. As an example, consider the invariants of any number of binary
quadratics , ,.,

a;, &;, ... .

The possible invariant forms are

(ab)\ (ab)(bc)(ca), (ab)(bc)(cd)(da), ...;

then {be} (a&)(6c) (erf) = (ab)(bc)(cd)-(ac)(bc)(bd) =-(6c)2(arf);
so that, if b, c be any pair of consecutive letters in an invariant J,
{be} I is reducible.

Again,

{bd}' (ab)(bc)(cd)(de) = (ab) (be)(cd)(de) - (ad) (do)(cb) (be)

= (bc)(cd)(db)(ae).

Similarly, any other interchange of letters may be dealt with. The
number of irreducible invariants I of any degree n is equal to the
number of linearly independent functions obtained from the function
P by permuting the letters which it contains, when P satisfies the
equations

{ab}P = 0, {bc}P = 0, ..., {ac}'P = 0, ...,

and, in fact, all the equations which I satisfies, with the right-hand
side of each replaced by zero [Ibeingsupposed = (ab)(bc)(cd)...(ha)].

If n, the degree of I, be greater than 3, then by the last article

{abed}'1 = 0.

Since {ab} P = 0, {be} P = 0, ..., {ha} P = 0,

P = {abc.. .h}'^=-- {abc...h}'P = 0,

and 7 is reducible when n > 3. If the actual solution of the equations
for I be carried out, it will be found that in general the expressions
on the right-hand side have to satisfy relations ; these relations will
be the syzygies degree n for the quadratic invariant types. In regard
to these equations, it should be noticed that in each separate equation
for quadratic types, of the form

where It is a given reducible expression, it is obviously true that It
possesses the substitutional properties involved in the operator on the
left. . The syzygies arise from the fact that I satisfies more than
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one equation of this kind. Hence U is subject, owing to the system
of equations, to more conditions than those implied by the operator
on the left-hand side. Exactly the same remark applies to the
equations for quartic invariant types of degree greater than 6.
The equations in their complete form for degree 7 are given in my
paper, " On the Invariant Syzygies of Lowest Degree for any
Number of Binary Quartics," already quoted.

As has been pointed out at the commencement of this paper, the
invariants of any number of quartics give another illustration of sub-
Rtitutional equations. Thus, the invariant type (abcde), degree 5,
satisfies the equation

{abc} (abcde) = i?,

and is of group {(abode), (be)(cd)}. It has been shown that there
are only six independent irreducible forms (abcde). If, now, the
theorem of § 7 be applied, we find that, if M be the number of the
functions obtained from [abcde] by interchanging the variables in
terms of which all the functions obtained by every possible inter-
change can be linearly expressed, where [abcde'] is defined as being
of group {abc} and as satisfying the equation

{(abcde), (be)(cd)} [abcde] = 0

then M-6 = 5! ( $ - & ) = 8

and M = 14.

10. In what follows repeated use will be made of the symmetric
group; it is convenient, then, to note that the sum of its substitutions
may be factorized in a variety of ways. For instance,

{a,a,... a,,} = {(a,a,... a,,)} {a,aj... an.,}

= {a,a,} Ont

where On is the alternating group of the n letters.
Now, any purely formal relation between functions of substitutions

will still hold good if the sign of every transposition be changed,
Hence the negative symmetric group may be factorized in the same
way, thus

... a,,}' = [1—(a1an)-(asa,,) —... — (a,,_iaB)] {^a, ...&„.,}'.
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Again, the product of a group by itself is the group multiplied by a
constant factor equal to its order. The product of a group by a sub-
group is equal to the whole group multiplied by the order of the sub-
group ; for, if 0 be the whole group, and 8 a substitution belonging
to the sub-group #„ then

Q G

Again, if {a^ag. . . a,,} be any positive symmetric group, and
{a,a9b8... bm}' a negative symmetric group,

{a1a3as... an} {a,a9b8... bm}'

=s {axa9a8... a,,} ( a ^ ) [ — (a,a9) {a^jbj. . . bm}']

= — {a,asa8... a,,} {a,a8b8... bm}' = 0.

Let 8 [a,b,bj... bOT] be any substitutional expression affecting the
letters au bu &2, ..., 6m, and only these; then

{aaa8... a,,} S f a ^ b , . . . bm] = ^ [ a j b , ^ ...bm] {aaas... a.,}.

Hence {a^j . . . an} 8 [aibjb9... bm] {a^ j . . . a,,}

(a1a8)H-(a1a8
<)+... + (a,a,,)] {a9a8... a,,} 8 [ a ^ b , ... bm}

X {a,a, ... a,,}

[a1bib9... bm] {a,a9... a,,}

= ( n - 1 ) ! [8 [ajbtbj... bm] + S [ajbjb,... bm] + ... + S [a,,6,... bm]]

xfajaj. . . a,,} ;
or, as may be proved in the same way,

= (n-1)! {a,a,... a»} [8 [a,b,... b ^ + SCa,^ ... bm]+...

11. As certain results, due in the first place to Capelli, are to be
obtained in this paper by means of substitutional analysis, some
account of the remarkable paper, "Sur les Operations dans la Th6orie
des Formes Alg6briques," * in which they occur, is given here. In
this paper Capelli considers functions rational, integral, algebraic,

• Math. Ann., Bd. xxxvn,, pp. 1-37.
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of n sets of variables

«!, ttj, . . . , «„„

tliere being m variables in each set, and homogeneous in the variables
of each set. Such a function is written

f(x, y, ..., u).

He regards the polar opei'ation

as fundamental, and proceeds in the first section to develop a theory
of operations which can be expressed as rational integral functions

with constant coefficients of operations of this kind, and proves that,
if by A be understood some operation which can be thus expressed,
every function/(a;, y, ...,«) of the above sets of variables which is
homogeneous and of degree a,- in. the variables whose index is i, for
all values of i from 1 up to m, can be obtained in the form

J ^« / , y , • # . , I™} — u « ' y . . . U ,

there being the same number of sets expressed in the term on which
A operates as there are variables in each set, A depending on the
form of/.

His second section is devoted to the discussion of an operation H
defined as follows :—

dx oy ou
If w = n, JI — \ xy

if m>n, H — 2 | x
i

is w<n, H=. 0,

duin

where | xy ... u \ is the determinant formed by the variables, and
I P ) *")

— - — . . . - - , which is the determinant formed by the first
ox oy ou

differential operators with respect to the variables, is Cayley's
operator fi.

It is shown that If may be expressed in terms of the operators
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D,̂ , and the form of this expression is found ; further, it is proved
that H is commutative with all rational integral functions of the
operators D,r It is then proved that, if a function f(x, y, z, ..., t, u)
of the kind considered, of n sets of variables, there being n variables
in each set, is annihilated by eacli of Drv, J)yz, ..., Dtu, it is equal to a
power of | xyz... tu | multiplied by a function of the same nature of
the sets y, z, ..., t, n, which is annihilated by Dv., ..., Dtll.

In the third section it is proved that, if two functions of the same
number of sets of variables, rational, integral, and homogeneous in
the variables of each set, are obtainable from each other by means of
a permutation of the sets, they are also obtainable from, each other by
means of the operators DriJ. In other words, an operator which is a
rational, integral function of the operators Dxy may be always found
which will have the same effect on f(x, y, ..., u) as any given sub-
stitution operating on this function. In view of the importance of
tin's theorem in connection with the present subject, I quote Capelli's
illustration. Let f(x, ?/, z) be any rational, integral function of the
variables

Z/n

homogeneous and of degrees X, /x, v respectively in the variables of
the three sets. Let

fell ? 2 > • • • > 4"m»

Vli "Oil • • • > Vm,

4 I J S2> • • • » £ m

be three new sets of variables, independent of each other and of the
original sets; then

/(*, 1, 0 = r p , - , D^DlD:(f(x, y, z),
A: fxl vl

and f(y, z,x) = -J_1)$,I£ .%/(*, V, 0;
A! /A. V\

hence f(y, ztx) = (^y—r^j) ^ ^ ^ " ^ ^ ^ / ( a ; , y, z).

By means of the methods laid down in the first section of Capelli's
paper, it is possible to reduce this to the form A/ (a, y, z), where the
operators of which A is a function only affect the seta x, y, z.
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In this section it is also proved that the condition t h a t / should be
expressible as a sum of terms each of which is derivable by operations
of the kind considered from functions of a smaller number of sets of
variables than that contained in / is

In § 4 the following important theorem is proved :
If/(a;, y, ..., w) is a rational, integral function offsets of variables,

there being n variables in each set, which is homogeneous in the
variables of each set, then

f(x, y, ...,u) = 2 | xy...u | ". A,. <£, (y, z, ..., M),
ft*

where &(</, *, •••, u) = iPlf^ ... l A . f f / ;

the 2 extending to all positive integral solutions of

where p is the degree of / in a, and where A< is a rational integral
function with constant coefficients of operators of the form D^, the
form of which depends only on the degrees in which the variables
occur in / ; and, further, the coefficients of different powers of
| sry...u | are unique. The last section is devoted to an extension of

certain of the results to any analytic function.

12. In what follows substitutions are taken as the fundamental
operators, instead of Capelli's operators Dry. Functions / ( a , &,..., k)
are considered which are rational, integral, homogeneous, and linear
in each of n sets of variables

ttj, Oj, . . . i £(,„,

6,, 6,, ..., &„„

/C j , W j , . . . , Ac,,,,

there being m variables in each set. The letters a, 6, ..., k are
employed, as the applications considered are mainly to concomitant
types of quantice. The restriction that / is to be linear in the
variables of each set does not in reality restrict the generality of the
results obtained; for, if F(a, 6,..., k) be a funotion rational, integral,
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homogeneous, and of degrees a, /? , . . . , K in the variables of the
different sets, we may obtain a function / , such that

/ (o< 'U« ...,oW, 6«, ...,&«>, .... #*)

1
a . JJ . . . . K .

and consider, instead of i*T, the function

...D. , } F ( a , 6 , ...,&),

For, if we write

a — ct — . . . — u, u — . . . — v, . . . , K — . . . — K,

this becomes F once more. There is a fairly close connexion be-
tween the theory of substitutional and of polar operators. Thus
any function / (a, 6, ..., k) of n sets of variables, there being
m variables in each set, which is homogeneous and linear in the
variables of each set, and homogeneous and of degree a< in the
variables whose index is i, for all values of i from 1 up to m, may be
expressed in the form

f(a,b, ...ffc) = " M I »

where S is a substitutional operator with constant coefficients. This
follows at once from § 1; for there is only one kind of term which
can occnr here.

The operator H may be expi'essed as a substitutional operator
thus:—We first suppose that H is to operate on a function homo-
geneous and linear in the variables of each of n sets, there being
« variables in each set; then

But in this case

For, if Aa.b^ ... kim be any term of / , the effect of both operators is
zero, unless all the indices are different, and, if this is so, both
operators give A \ ab ... k \ as the result, the rule for determining
the sign being the same in each case.

ab .

a_
da

..k |

a
db'"

d_
da

a
dk

a
dl'

f—

d
' dk

{ab .



124 Mr. A. Young on [Nov. 8,

If / is still linear in the variables of each set, but the number of
valuables in a set is m, greater than the number n of sets, then II is
still equivalent to {ab...k}', for, if Aa^bt ... kim be any term of/, then

{ab... k}Aaibil...ku

a a • a

[j\%h-\t\ r
h

A%-h

r
for all terms of the 2, except the one first quoted, give zero when
operating on the term chosen.

Tf m<w, II = 0, and {sib ... k } ' / = 0; for every term of / must
contain at least two variables with the same indices.

Now consider any function F homogeneous but no longer linear in
the variables of each set, having u sets and in variables in each set.
Then we form from F a function / , as shown above, such that we
may consider, instead of F,

} {b(1> ... b™} ...P = -.— *•—

Then, if H (1) {i, (t) be what II becomes when we write in it the sets

a{x\ bl}\ ..., k{i) instead of the sets a, 6, ..., 1c, HFbecomes

2 H
o,=l pi=\

this last expression being = HF when we write

But H ) (, ( O P = {aW ) b{f>i'.

as we have already seen ; hence in this case

is the equivalent of JET.

2 {
Pi, —I Ki
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Now, in the substitutional equivalent of ./Tit is assumed that there
is a substitutional operator

of definite form applied to the operand. The same operator may
then be attached to this equivalent of H, without affecting the result
except as regards a constant. Hence we may write

R = ^fW~^% t * " ' ^ - ^ K K 1 1 . » aw}{b(l> ...b""}...{k">...kW}

For {a« ... a«} {a«b« ... k^} ' {a(1)... aw}

(a(1) a<2)) + (a(I) a(3)) + . . . 4- (a(1> a") ]

x"{a« ... aw} {a(1>b<" ... k<"}' {a"> ... aw}

= ( « - l ) ! a a * {a^b™ ...k(1)} {a(1)... a w } .
tt^=i

Capelli has shown in the general case how a substitution may be
expressed in terms of polar operatoi'S ; in the case of functions homo-
geneous and linear in the variables of each set, the effect of a trans-
position may be obtained thus,

DbaD<lbf (o, b, c, ...) = Dbaf(b, b, c, ...) = {ab}/(o, 6, c, . . . ) ;

hence (ab)/(a , 6, c, ...) = (DbaDob—l)f(a, b, c, . . .) .

Any other substitution operating o n / may be expressed as a product
of transpositions, and so as a function of polar operators. The con-
verse theorem is also true ;' for let Dllb be a polar operator, operating
on a function F of degree a in the variables of the set a, and ($ in
those of the set b; then we consider instead of F the function P
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defined as above. The effect of the operator Bab on F is the same
as that of

on P. For each of the sets a(1), a(8), ..., a(o) in P is in reality equi.
valent to a, and each of the sets 6(1),fel2), ... equivalent to 6. Since P
does not contain few+1),

the right-hand side being no longer a function of a(1).

Now, P is symmetric in the sets am, ..., a(o); hence the function
(a'2)b(*+10 P i s the same as (a("b("+1») P, except that a(1) and a« are
interchanged; hence the function BnbF is equivalent to

which does not contain the set a(o). In this the new set b{/3tli may be
replaced by the old set ala) by operating with (a(a)bl*+1)), and the
result becomes

where now aM is to be regarded as equivalent to h.

13. If TO(0= S j a . b J ' i a . b J ' . . . {aob.}' {b,bf... bH1} <S

and/3>0, Tai()= -S'l^bJ'ja^bJ'. . . {aoba}'{a,,.^, ... a,,b, ... bm\ S,

where S = {a,a2... a,(} {h^ ... bm},

^ ' i e U -*U,0 = = -"Oi" ' O . H ' t ' - ^ l , » - l •* 1 , 1 1 - 1 + ••• + - ^ H , O •*f»,0»

if m <t n; but, if ?>i<«, the series must stop with A,,liH.mTmi,;.,ui and
the coefficients A are given by

The theorem to be established is purely formal,- an identity
between certain substitutional expressions.

When u<h<n — j3-fl, the expression

jS^bJ ' f a jb j} ' ... {aabo}' W i ) { a , , . ^ , . . . anb,b.3... hm]S

= S'CaAbOl^a/J'la^,}'... {a.b.J'ja,,^,, ... a,,^^ ... bH(} 8,

for it is well known that, if s be any substitution, (aAb,) s (aAb,) is
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the same as that substitution obtained from 8 by the interchange
of ah and b, ; and hence, if U be any substitutional expression,

the expression obtained from U by the interchange of ah and 6,; and

Now, no one of the factors {a2b4}'... {aabo}'{a,,.^i ... a ^ b , . . . bm}
contains either of the letters ax or ah ; hence

,) {a,aA}'{a,b,}'... {aobo}' {a,,.^,... aMb,b,... bm} S

= 8 (aAb,) {aab2}'... {&aha}'{&lt_fftl ... a ^ b , . . . ^ ^

= 0 ;

for {aja/J'iajaj,... a,,} = 0;

and therefore

S {aibj ' {a^bj}'... {aaba}' (aftb^ {a,,.^^ ... a,,b,bs... bm} 8 = 0.

Hence

2'.., = 8 KbJ' l^b,} ' . . . {a.bJ'K.^,. . . a^^b,... b,,.} 8

b e f o r e TO(, =

... a , , ^ ^ ... &,„} fif

bo +,) + ... + (a , ,^ + 1

{an.a+2... anb,bj ... b,,,} 8

(m-a){a1,.^1bII+1}'+(m

{a,,_ff+2... a,,b,b8 ...b,,,} 8

L
m + 0 - a + i °'*+1 m + / ? - a + l O+1

By repeated application of this formula, we obtain

TO+1 m + 1 '
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except when i>m, in which case the series ends with Amti_mTm>i.m ;
i being supposed to be not greater than n, and the .4's being numerical
coefficients.

To find these coefficients a recurrence formula is obtained by pro-
ceeding from the last line written down a step further. The co-
efficient of Tjti.j+x in this will be

It follows from this that, if

— /«+/3\ m! (m + l+fl—a)
-[ ft ) — T ~

when a<aj , and also when a = ê  so long as ft<ftx, it is true when
a = a, and /3 = /3,. Hence, on this hypothesis it is true whenever
a<a , + l. But this form of Aatfl\8 correct, as it is easy to verify,
when a = 0, and also when ft — 0 and a<n+l. Hence it is true
always when a<?* + l. And the theorem is proved.

14. As has been pointed out, the theorem just proved is merely a
substitutional identity. If the two sides of the identity be made to
operate on the same function, the results must be equal. This
operand may be taken to be any function of m+n variables

«» a2, ..., am 6,, 62, ..., bm;

or else any function of m+n sets of variables.

n, it

a n,U

a Bubstitution (a,bj) interchanging two sets, just as in §§ 10 and 11
a substitution on £he functions there discussed interchanged two
sets. In this case, as has been seen in § 11, when the operand F is
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linear and homogeneous in the variables of each set, the expression
{a,b,}' is equivalent to Haitbt, where

(1) Let us take for operand

F = a l r a i x ... a n r b l v b h . . . h l l t y ,

where the factors of F are binary symbolical factors, thus

Then 2'o,o-P={a1a,...a,,}{blb,...brt,}{b1...b/;,}{al...a,,}{bl...bm}2'1

Denote by D and A polar operators, such that, 0 being homogeneous
and of order n in xx, xt, and homogeneous and of order TO in y,, y2,
then -

n 1 / 3fy 38r/> \also let

these being the operators used by Clebsch (Binaren Formen, pp. 13,
14, et seq.).

Then D**1 = axaix ... a,,xfeIx62jj... 6^,

and the effect of operating with A'" on this function is to change it
to the sum of all possible terms obtained from D'"F by writing y for
x in in of its factors, divided by their number. But this is the
same as

{ a a a b V M * « a \ h b

Hence

T0,n2?1={a1...an}{bI...bm}{al...a,,bl...bm}{a1...a/,}{bl...bm}^

= (n\y (m!)2 (m + n)! &'nirF.
VOL. XXXIII.—NO. 7 4 6 . K



130 Mr. A. Young on [Nov. 8,

Again,

QF — — 2 2 (aibJ)alr...ai.haU}T...alubli/...bj_ivbj.lv...bmv',

and Dm-ltoF = — 2 2 (a.6,) alx...a,-.,,a1+lxa,,^Jx ... &,.»,, &,•!,...b,»x.

And A'"'1D'"'1JiFis equal to the sum of all possible terms obtained
by substituting y for x in m—1 of the factors of each term of

divided by their number

...art} {b,bs...bm}(albi) {aJ...a,,b2

Hence

+ ( ? i - 1 ) a I a 6 V { a 2 . . . a n b 2 . . . b M ) } aix...a((,.l)taHyb^...b,,,v]

= n! m! ?)iS (a, &,) (.ay) { a8 . . . a,, b 3 . . . b,,,} a3x... altx fca ... bm

= (xy) (n\)2 (m\y (m + n-2)\ »tA
I"-IJD"-1nF.

Proceeding in the same way,

(m—h)\ (n — h}\ ~< , i \
= * -~-} 2 (a,6,)

in I ill
in I ill

. . . a u b h ^ . . . l m ,



1900.] Quaniitative Substitutional Analysis. 131

And hence

= n! m! S {^ b , } ' . . . {&hbh}'

where P contains the product a{xbix for some value of i between 1 and
h inclusive, and hence is annihilated by the product {a^ ,} ' . . . {aftbA}';
therefore

i! ml — ™j~- 8 (a ,^) . . . (akbh) {aA+1... a(, b/ lO ... b,,,}

= (xyf (n\y (m!)2 (m+n-2h)l r™--, &m-hI)l"-hnh

\m — h)\

and hence AM.„ Th< ,,.hF

n\ m! (m + l+n — 2h), ,s3 / ,,.,, o t N , m!. ,v ln\ m! (m + l+n — 2h), ,s3 / ,,.,, o t N ,

= (n!)2(m!)8 ^ . / . i^Z __ {xyf X"-hD'n-hQ.hF.

(w—A)!

\ h

Hence we obtain Gordan's series

=0 fm + n-= 2

if n > m; if «< m, the summation must be taken from h = 0 to

h — n.

(2) Let F as before = ali.a2x...a1I_).&,v62(/...&mi/, where the factors of
F are now ternary symbolical factors, thus

Then TOiOF=(n\f(m\yF,

and To,,,^ = («!
K 2
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just as when the factors of F were binary ; the definition of A and D
being that, if <£ is a function homogeneous and of order n in xlt x.2, .i:8,
and homogeneous and of order m in yu r/2, y8, then

D<f> = - - a?, -• - + x . 2 - - +xs-• - ,
vl

d
x, Ca;3

Let w,, «2, us be three quantities defined by

ul = ^22/8

then afhv—avbr — (abu) ;

and, just as in the former case,

2T
A>,1.AJP=»!m!S{a1b,}'...{a,lbA}'

m!

Let us now suppose that F = a'rb™, and that we may write

a, = a 3 = . . . = aM = a , • o, = Oj = . . . = &,„ = o,

after all the substitutional operations have been performed on F\ then

Th<n-hF= (n!)1 (w!)s m ! (w + n-2fc)! (o6tt)*Am-»JD"-*a"-»6m-*>
(w—h) \ , * v

and, as in the case of Gordan's series, we]obtain

.o (m+n
I h

if n > TO ; if n < w, the summation must be" taken from h — 0 to h = M.
The same series may be established in exactly the same way if a,, b,,
are jp-ary symbolical factors, provided-we write instead of (abu) the
difference axbv — avbx.
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(3) The series furnishes information concerning those functions F
which satisfy the substitutional equations

For in this case TaifiF' = 0, provided /3>0.

Hence

n! (m!)« {a,a2... an} {bjb,... bm} JP = TOiO I?1 = ^ ± l = ~ _ r M J F or = 0

according asm + 1 is or is not greater than n. When n is greater
than m, ( ., ( •>

fa,a,... an,+1} {b,b2...b,,,} F= 0.

15. Let the letters a,, a2, ..., a,, be arranged in any manner in
horizontal rows, so that each row has its first letter in the same
vertical column, its second letter in a second vertical column, and so
on, and so that no row contains more letters than any row above i t ;
then form the substitutional expression

such that T[ is the negative symmetric group of the letters of the
first row, Ti that of the letters of the second row, and so on, T'h being
that of the letters of the last row; and that Ox is the positive
symmetric group of the letters of the first column, C?2 that of the
letters of the second column, and so on, Gk being that of the letters
of the last column (it being understood, in case a row or column con-
tains only one letter, that the positive or negative symmetric group
of a single letter is unity). Then, if 2f

aiI 02l..., aft be the sum of all
expressions S formed as above from all possible tabular arrangements
of the letters, so that there are at letters in the first row, ct2 in the
second, and so on, the n's satisfying

and aj < <t2 <fc a8... <£ aA,

it is possible to uniquely determine numerical coefficients Aau QUlt.,., a/i

so that
x — -*-"<»„ 02^..., a/, - ta, , aj, ..., oA»
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where the 2 extends to all possible positive integral values of
au n2, ..., ah which satisfy the two conditions just laid down, the
number h of a\s not being fixed.

Let us suppose the terms T to be arranged in order, so that
2a,, a2,.... «A will come before TPu h ...., Phl1 if o,</3,, or if a ^ / 3 , , but
a3</32, or if a, = ft, OQ = A ' ..., a<-i = / 3 , - I , but t((</3,.

Consider one of the expressions 8 of which Tait a2i i-i( a/i is the sum,
and the table of letters from which S is formed. Let N be the pro-
duct of the negative symmetric groups of S, and P the product of
its positive symmetric groups, so that

8 = NP.

The degrees of the groups in N are a,, as, ..., aA; the degrees of
the groups in P depend solely on these numbers, as may be seen from
the table, for these groups are formed by the vertical columns in the
table. Thus there are only h rows, so that there cannot be more
than h elements in any column ; in the first a,, columns there are
exactly h elements, since the number of letters nh in the last row is
not greater than that in any row above. Next, there are ah.i—ah

columns containing exactly h—1 elements, and so on. Hence in P
there are first ah groups of degree h, then a,,.i — ah groups of degree
h—1, and so on, there being «t groups altogether.

Let F' be any negative symmetric group which contains a pair of
letters out of some one column in the table for 8; then PV' — 0, for
P contains this pair of letters in a positive symmetric group; and
always, as has been seen in § 10,

{abcd...}{abc'd'...} = 0 .

Again, if V be of degree greater than a,, then it must contain a pair
of letters out of some one column in the table for $, for there are
onljr o, different columns. Hence, if the degree of V is greater
than «,, I T ' = 0.

Now, let #, be one of the expressions of which Tpup2i ,.,tph, is the
sum, where Tpu pSl...(ph, is a term which comes after the term
2'O|, a,,..., ah when these terms are arranged in order; and let

where JV, is the product of tho negative symmetric groups of #„ and
P, that of the positive symmetric groups. Then

PN, = 0.
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For, if /3, >av JVi contains a negative symmetric group V of degree
greater than ax; and hence, as we have seen,

pr = o,
and therefore PNX = 0.

Now, since Tpu p2t.,., Ph, comes after Tau ^ a/t, then /3, > a,; or /?, = «,

and A > « 3 5 oi' A = «i, A = «4, •••, j3*_i = «,_i, but & > a , .

Let N, =r;r' ...r; ,
1 Pi P2 PV'

the degrees of the different groups being equal to their suffixes.
Suppose that (ix = «j, and that T^ contains no pair of letters which
occur in any one column of the table for S (otherwise PNX = 0), and
that/32>o,2. Then f1^ contains one letter belonging to each of the
columns, that is, one letter belonging to each of the f3x = a, groups
of P. We will for the moment suppress all these letters belonging to
r'0i. When this is done,let P become P', 2V, become N',; then P' and
N[ are related in exactly the same way as P and Nx are-. Thus there
are only «., groups in P', and a2 columns in the table which gives P', for
one letter from each group or column has been suppressed, and thus
"i~a2 gi'onps have gone altogether. But all the /32 letters of T^ occur
in the table for P ' ; and, since /32>a2, some one of the o2 columns of P '
must contain more than one of the letters of T'fii; hence

PT;. = o.
But P is obtained from P' by adding «, new letters to its groups ; and
hence, if one of the groups of P' has a pair of letters in common with
r^u, the same is true for P ; and therefore

pr;, = o,
and PNr = 0.

The argument is exactly the same in the general case

fix — a1} ft2 — a2, ..., /3,-.j = a,_

The letters of each of the groups IV, Y'p , ..., F^ are suppressed, it

being supposed that
pr v v

P I Pa P < - 1

does not vanish. Then, if P and Nx become P' and N[, these products
are related to each other in the same way as P and Nu and the
necessary consequence of /3( > a,- becomes

P'N{ = 0,
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for there is a group in N[ which contains more letters than there are
different columns in the table forP', and hence it must contain a pair
of letters from the same column. Then P and N are obtained from
P' and N[ by adding new letters and new groups ; but the letters in
P ' and Nl are left undisturbed. Honce, if

then PiV, = 0.

Hence, provided Tpltp2t ...tph, comes after To,, a*.... ah» when the terms
are arranged in order,

PN, = 0 ;

and hence P8l = PNXP, = 0,

therefore NP. Tfil, ft ph. = 0,

and Tau att..., a/t Tpu Pi)..., Plt. — ( 2A T P) Tfiu Pt)..., ^ = 0.

Let £„,, fl2i ..„ aA represent the sum of all those substitutions of the
group {a,a, ... a,,} which ai'e formed of h cycles of orders a,, o2, ...,ah

respectively. Then, from the way in which Tau ^ . #i afi is formed,
viz., as the sum of the expressions obtained when the letters in the
table are permuted in any way, but so that the number of letters in
any row or column is unchanged, it follows that 2f

ai> aj,..., ah is a
function of the expressions tpu pit..., p/t, only. That is, if it contains
any one substitution s multiplied by some constant, it contains every
substitution similar to s multiplied by the same constant. Hence

where the \ 's are constants.

Consider the coefficient of the identical substitution in the product

m rp ' •== rp'1

J-au a j , . . . , o A • •*•<»!, euj, . . . , o A — J-au o 2 , . . . , oA*

To obtain it we have to multiply each term As of the first T by the
term \'s~x, involving the inverse substitution, in the second factor.
Hut every substitution is similar to its own inverse, and therefore,
if s is a term of tpitp2l...,/3A,, s"1 is also a term of this expression. It
follows from the form just found for Tau ati „., Oft that the coefficients
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of s and s'1 are the same. Consequently the coefficient of the
identical substitution in Tau a-,,..., ah is

i, A, , . . . , /V'

where fi is the number of different substitutions in the sum

Now, every term of S/AXp,,̂ , ...,/JV is essentially positive, for no
unreal quantities can occur in the formation of T; this coefficient
cannot then be zero. Consequently Tau a,,..., au does not vanish
identically.

We can now prove that no i-elation exists between the 2"s; for,
suppose that one such exists, of which the first term when the T's
are arranged according to their proper order is ATai) aai..., O/>. Multiply
this equation by Taii ^ >#>| a/i; then every term but the first vanishes :
for TT' = 0 if T' comes after T. Hence

\ /Tj2 f\ _
A -*-oi, a2l ..., oA — v >

and therefore, by what we have just proved, \ = 0. Hence Tau a,, .,.,a,(
cannot be the first term, and the relation is impossible.

The expression t*lt ^ .., ah has been defined as the sum of all the
substitutions of the group {a1a2...al,} which are formed of cycles
whose orders are aj, n2,..., ah respectively; if cycles order 1 are taken
into consideration, the condition

may be introduced. Further, the order of the a's in the suffixes of
tau a.j,.... ah is immaterial, so that they may be supposed to be in
descending order of magnitude. Then tau aai ii#> aA thus defined depends
on exactly the same numbers as Tait ^ .,.(a/i; hence there are the same
number of expressions t as expressions T. Moreover, every T can be
expressed in terms of the £'s, and no relation can exist between the
T's alone; so that we have the same number of independent linear
equations as unknown quantities tail „„, ...f ah. It is then possible to
solve; hence in general

talt 03, ..., ah

where fi is numerical; and therefore in particular
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16. For n = 2, 3, 4, the work of finding the coefficients of the
series by direct calculation is not too laborious: the results are

n = 2, 1 = |{ii1a2} + | {a , a 2 } ' ;

1 * 1 1
n = 3, 1 = yj- {a,a2a3} + — 2 {a^J'fa.a,} + ^ {a,a2a8}';

n-4, 1 = - j- { a ^ a ^ } + ~ 2 {a,aa}' {a2a8a4}

+ gg 2 {a,a2}' {asa4}' {a2as} {^aj

+ ^2{a1a2a8}'{a8ai}+—{a,aaa8a4}'.

It is worthy of remark too that, if N be the product of the
negative and P that of the positive symmetric groups of one of the
expressions of which T is the sum, then

T = 2iVP = 2PN.

For T=2NP = \% PNP = 2 PN,

since PNP is equal to a numerical multiple of

(Stf) P,

where 2iV is the sum of the different expressions obtained from N by
operating on N with all the substitutions of P; for it was shown in
§ 10 that, if 8 [ a^b , , . . . bm] is any substitutional expression affecting
the letters a,, 6,, &2, ..., bm,

a,,} S ^ b , ... bm] {^ ... a,,}

the result stated here being an extension of this. In the same way,
PNP is the same multiple of

P

It is easy now to show that, if T and T' be any two different terms
of the sum of § 15, then

T.T' -0.

For, let T = 2 NP, T' - 2 NT;

then, if T comes before T' in the seizes, it has been shown already
t h a t Tr' o
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Suppose, then, that T comes after T'; then

but in this case

NF-0;

hence IT - 0,

whenever T and T are diffei'ent.

Multiply now the series of § 15 by

we then obtain Tait O8l.... Oft = A*u a , a A .Tl l t ^ ... «A-

17. The theorem of § 15, like that of § 13, is purely a substitutional
identity; algebraic theorems may be deduced from it by suitably
choosing the operand.

(1) Capelli's Theorem. — Let the operand be the function
f(au av ..., a,,) of the n sets of variables

homogeneous and linear'in the m variables of each set, such as was
iinder discussion in § 12.

Let {a^j ... aa} be the positive symmetric group of a of the sets;
then . ,

{a^ i . . . ao}/(a1, a2, .... a,,)

may be obtained by means of polar operations only from the function

/ ( a , , au ..., a,, aat l, ao+2, ..., a,,).

For, if Xai,,-, Oj,r8 '••
 aa,roaa»i,ra+i ••• an,ru be any term of f, then

... ao} Xai,ria2|l. ... a^^ .., an>r%i
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where B,v is Capelli's operator

Hence {ftla9... a . } / = DBADfl,.a... Da1«.-D

<v».

And in the same way, if P be the product of /3 positive symmetric
groups no two of which contain the Rame letter, and which between
them contain all the letters ax,aly ..., a,,, groups of degree unity being
taken into account, then Pf is a function which may be obtained by
means of polar operations only from a function / , which contains
only /3 variables, and / , is obtainable by means of polar operations
only from / .

Again, it was shown in § 12 that

{ata3... a .} ' / = Haia.2...aJ.

Hence TrtII ̂ .... aJ = %HaiHH... Ha,t A/

where, if T — % NP,

Hai is that H which affects the letters contained in the negative
symmetric group degree a, of N, Hat that which affects the letters
of the group degree a2, and so on, and where A is the polar opera-
tion corresponding to P the form of which we have shown how to
find.

If it is required to expand a function F (x, y, ..., u) of m sets of
variables, there being in variables in each set, which is homogeneous
but not linear in the variables of the different sets, we may obtain
from this a function

/ (a , , a2, ..., a,,)

homogeneous and linear in the variables of each of n sets, there boing
m variables in each set, such that, when we put

a, = aa = ... = aPt = x, aPi+1 = ... = a^ = y , an = u,

/becomes F\ this was shown in § 12. Now, / may be expanded as
we have just seen; in the result, the variables of .F may be sub-
stituted for those of/, and the expansion becomes that for F. This
expansion is the same as that obtained by Capelli, and quoted in § 10.

For, if a, < m, the function Tai, a.2>.... ahf may be obtained from fx by
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means of polar operators only, where fx is a function of ax sets of
variables, obtained from / by means of polar operators only. If
«,>m, then

J<M. o*. ...,ahj — " •

And, if a, = aa = ... = at = w, aJ+i<m, then Tau ^ ...(aA / gives rise
to a terra | xy ... u \4<pf where 9 is a function obtained from a func-
tion of not more than m—1 variables by means of polar operations
only, which is itself to be obtained by means of polar and ft opera-
tions only from either/ or F. For, in the expression P, where

= 2 P . .Ha, Haj ... Hahf,

there are only a<+1 groups which affect the letters of

where by 0o is understood the O operator which affects the lettera'
contained in Hu.

The expansion might otherwise be obtained, viz., by considering
the function

F = a,,aSr ... a,w«,,*i, ••• «,,.„

where the factors of / are w-ary symbolical factors, and then pro~
ceeding in a similar manner to that in which Gordan's series was.
obtained in § 14.

(2) Peano's Theorem.*—Starting from Capelli's theorem, Peano has.
proved the following:—" The complete system of concomitants for-
any number of binary w-ics may be obtained from that for n w-ics by
polarization alone ; with the one possible exception of that invariant
which is the determinant of n +1 rows formed by the coefficients,
of w + 1 w-ics." He then deduced that the number of concomitant,
types of a binary rt-ic is finite; and proceeded to find the types for a
binary cubic, showing that they all give irreducible forms for two.
cubics because the invariant determinant type referred to above is
reducible for the cubic. I have quoted his results for the cubic in
my paper, already referred to, on " The Irreducible Concomitants of
any Number of Binary Quartics." Peano's theorem may be deduced

• Atti di Torino^ t. xvn., p. 580.
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<lirectly from that of § 15:—Let F be a type of a binary m-ic of
degree w, linear in the coefficients of each of n m-ics ; then

If €!,>»»+1, T«If O2,.... ah F = 0; if o, = m + l, T.,, «it.... alt F is the
sum of terms each one of which has for a factor the determinant of
m + 1 rows formed from the coefficients of m + 1 of the m-ics, and is
in consequence reducible. If Oj<r»i + 1, then

where P is the product of a, positive symmetric groups, no two of
which contain a common element, and which between them contain
all the letters a,, a,, .'.., an\ it being possible that one or more of
these groups is of degree unity. In this case PNF is a function
obtained by polarization from a function .F, of only a, sets of
variables, where F\ is a function obtained by polarization from F, as
has been proved already. Hence TOl( O2(..., ah F is reducible, unless F
gives an irreducible concomitant for a, m-ics; for concomitants
obtained by polarization from reducible concomitants are themselves
reducible. Hence, if F is a type of a binary m-ic, which gives no
irreducible concomitant for m m-ics, it is reducible, unless F is the
determinant of ra + 1 rows formed by the coefficients of m + 1 of the
m-ics. Now, if o, = m, then

where T'ai is the negative symmetric group degree a, in each of the
expressions T'ai S{ of which T is the sum. But it has been shown,
§ 8, that, if <t> be a concomitant type of a binary m-ic, and if
{auaif ..., am}' be the negative symmetric group of the letters
a,, aa, ..., a,,,, each letter referring to a different quantic, then

{a,a2...am}'<£= | axa^ ... amQ \ ,

where Q refers to the coefficients of a concomitant type of order m,
viz., (Qo, Qx, ..., Q».$a'n xi)m- Hence, as F^ is a negative symmetric
group degree a1 = m, in this case

And it follows that every rational integral concomitant of any
number of m-ics can be expressed as a sum of terms each of which
is a product of concomitants of types which give irreducible forms
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for w—1 m-ics, and of types of the form
| axa% ... a,,,Q | ,

where (Qo, Qlt ..., Q^x-^, a?3)'" is a co variant type order m. If
| a,, a2, ..., am+1 | is reducible as in the case of the cubic, it follows
at once that | ft,a2... a,,,Q | is reducible; and hence that all types
which give no irreducible form for m—1 m-ics are reducible.

Similar results follow for ternary forms, and, in fact, for forms
with any number of variables. Thus, for types of the ternary m-ie,
wo suppose, as before, that each letter refers to one m-ic, and that
the coefficients of the m-ic a, are

a \ , 1 a\,2 • • • a ) , 4 ( m + l)(m + 2)-

Thus we are dealing in reality with functions of n sets of variables,
there being \ (vn+ l)(ra + 2) variables in each set. Every type
which gives no irreducible concomitant for -| (m + l)(m-\-2) — 1
m-ics is reducible, with the single exception of the determinant of
| ( m + l)(m + 2) rows formed by the coefficients of this number
of m-icH.

Moreover, the proof has nothing to do witli the fact that the func-
tions are invariant; except that none of the operations employed

. destroy the property of in variance. Similar results might be deduced
for other kinds of algebi-aic functions.

Again, if /<'= 0 be a syzygy between types of a binary m-ic, then
every term of VF vanishes when r ' is a negative symmetric group
of degree greater than m+1. Hence, expanding F by the theorem of
§ 15, it follows that every syzygy between types must give at least
one syzygy, when not more than m+1 m-ics are under discussion,
which does not reduce to a mere identity; with the exception of
8yzygies which are wholly due to the fact that

where F' is a negative symmetric group degree greater than m +1,
and Q is any product of m-ic types. For, suppose that F = 0 is a
syzygy which always reduces to an identity when less than ?>i + 2
binary m-ics are under discussion; then, if (ii<m+2, each of the

is identically zero. Further, if a ^ m + 1 , each of the terms
T F

is zero, being the sum of terms such as T'Q mentioned above. Hence
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F, which is = $Aa ^ . Ta, a;,- î is the sum of such terms, and
F — 0 is a syzygy of that nature. As an example of a syzygy of this
nature we have that between quadratic invariant types

[ab] = ao&, + a86o — 2a, 6,,

viz., {bdfh}' tabjcd][ef][gh] = 0.

(3) To find the system of concomitants for r binary m-ics. Let F
be any type, then, if F^i be any negative symmetric group degree
r + 1 , of the letters av a3, ..., a(l,

for there are not more than r different quantics represented by the
letters, so that amongst r + 1 letters at least two must refer to some
one quantic. This is necessary ; it is also sufficient, for

L' — - S - ^ a , , ..., a , , • - l a , , ..., o ; < - * »

and, if «!>?„ Tai ahF = 0;

but, if «, is equal to or less than r, the term is obtainable by
polarization from a concomitant of not more than r wi-ics. Hence
in this case we take the ordinary relations for the type F, coupled
with all possible eqnntions of the form

r;+1F=o.

(4) The complete solution of the simultaneous system of equations

where r'.+l is any negative symmetric group of degree r + 1 , of the
letters a,, a.,, '..., a,,, and there is one equation for every combination
of these letters r + 1 at a time, is

where Gx, G.,, ..., Gv are positive symmetric groups no two of which
have a common letter, but which between them contain all the
n letters, and ./•'' is a function obtained from the iJ's by means of
substitutions alone. This is evidently a solution, for, provided that
W is chosen so that

it satisfies each of the equations. Moreover
TJT '. \ A 'V V

— '"' ° l i <*-ji •••> ° / i • ° n °a> •••! ° A »
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and TaiI ^ ..., a/, F = Rx, if a, > r, where J^ is obtained in a definite
manner from the givon functions li, since TOli a2) t i i | aft = 2 P . N , where

JV contains as a factor a negative symmetric group degree uv And
further, if «, ^ r,, m

1 o a o

where . P = GlGt...G¥t

v being <r - f l , and the groups Gv G2, ..., Gv having the character
laid down above. The solution is then the complete ono, and AVO seo
further that, in each term of the sum ^iQlG.i ... G,f,/is such that it
may be obtained from F by means of the operation of the product N
of certain definite negative symmetric groups.

Conversely, the complete solution of all possible equations of the
form _. _, xv -n -n

GlGi ... G.F— E,
where the groups Gu Gt, ..., Gv are positive symmetric groups, no
two of which contain a common letter, and which between them con-
tain all the letters a,, a2, ..., a,,, is

where IV,i is a negative symmetric group degree r + 1 , and R' a
function obtained from the ii5's by means of substitutions alone ; and,
further, the / for each term may be obtained from F by means of
substitutions alone.

(5) In exactly the same way it may be shown that, if Gr+\ is a
positive symmetric group degree r + 1 , the solution of all possible
equations of the form

Gr+lF = R

is F=%T'lT'a...T',f+R', v < r + l .

(6) Suppose that Gr is the alternating group of certain r letters,
that Gr is the positive symmetric group of the same letters, and
that G\ is the negative symmetric group. Then, if

GrJP=O,

it follows that G[l) F - 0 and Cf? F=0.

For, if a and b are any two letters affected by Gn then

and
VOL. XXXIII.—NO. 747.
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Consider, then, the simultaneous system of equations

where the r letters affected by 0,. are chosen in any manner from the
letters a,, a,, ..., a,,, there being one equation for each combination
of these letters r at a time; then

IP v A m jp
x — **-':laii oa, . . , oA • •* alt Os, . . . , a^^j

and all terms of this expansion vanish in which T possesses either
positive or negative symmetric groups of degree ^ r. Hence, if

-'a,, a,, ...,<xhF

is not zero, nx<r and h<r\ for ĉ  is the degree of the greatest
negative symmetric group, and h that of the greatest positive
symmetric group contained in T. Now

a, < a, < a8 < ... <faA;

and hence n = a, + Oj 4-. •. + °-h It> hax;

and therefore, in order that both h and a, may be <r, we must have

' « > ( r - 1 ) .

If therefore n> (?• —1)*, every term

T F
•*oi, o,, ..., aA J-

is zero, and F itself is zero.

On Group-Characteristics. By W. BURNSIDE.

Received and communicated November 8th, 1900.

In a series of memoirs published in the Berliner Sitzungsberichte
("t)ber Gruppencharaktere," 1896, pp. 985-1021; " Uber die Prhn-
factoren der Gruppendeterminante," 1896, pp. 1343-1382; and
others) Herr Frobenius has developed a theory of group-character-
istics which must have a far-reaching importance in connexion with
•groups of finite order. For Abelian groups, an admirable account
of the theory will*be found in the second volume of Herr "Weber's
Lehrbuch der Algebra. The extension of the theory to non-




