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and therefore X= 18(';65 +8+43 = 206,
Y = 203,

agreeing with the values cnlculated independently.

The Qenesis of the Double Gamma Functions. By E. W. Barngs,
B.A., Fellow of Trinity College, Cambridge. Rcceived
December 5th, 1899. Communicated December 14th, 1899,

1. The following paper is the natural sequence of resnlts obtained
in two previons papers. '

The * Theory of the Gamma Function "’ * contained a discussion of
the function defined by the formula

1 2 { z\ -
. . . = II (1 _*) m}
e I'(z4+1) mal + m ¢ ’
and it is evident that the expression on the right-hand side of this
cquality may he regarded as the positive halt of the product ex-
pression for sin wz; we may, in fact, term it the ‘ halb-sinus’ with
Betti.+

Again, in the ¢ Theory of the @ Function,”} it was shown that

G(z) =z H:]I' { (1 + - E—-—) e-ﬁ;*'z(m:m):‘} ,

" m+n
where » () is o qnadratic function of z.

If now we can associate with the letter m, each time that it occurs
in this product, a complex constant r which is not real and negative,
we shall obtain a product which may be regarded as the positivo
quarter of the product expression for Weierstrass’s function o (2), and
which will be therefore a natural extension of the I' function.

* Messenger of Mathematies, Vol XX1x., pp. 64 et seq.
t Klein (quoting Botti), Ueber dic hypergeometrische Function (1894), p. 126,
¥ Quarterly Journal of Mathematics, Vol, xxx1., pp. 264 et scq.
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Such a product we call a double gamma function G (s | 7). Ttis
such that by suitable choice of the associated exponential factor, it
satisfies the difference equation

fa+) =T ()7 ().

It is evident that, when r = 1, the function reduces tothe G function
Q(z).

The existence of such functions has been surmised by Mdray*
and indicated by Pincherle,t while Alexeiewsky} appears to have
investigated some of their properties. The first two have not
considered in detail any of the properties of these functions; and the
last, so far as his resnlts arc accessible to me, does not appear to
have entered into the essentials of the theory. He makes, for
example, no mention of the gamma modular constants C(r) and D ().
The present notation was adopted before I had seen Alexeiewsky’s
paper, and his function H (z, a) would be written @ (z | r) in the
notation of this paper. ,

As indicated iu the title, I only consider in the present paper the
genesis of the double gamma functions. Several different product
expressions are given for G (z|7); the ganmma modular constants
are shown to be transcendental functions of r; it is shown that
G (z | 7) satisfies the two difference equations :

f(z41) =T (—j-)f(zj,

flatr) = (2n) 7 T (2) f ™

and, finally, the connexion is indicated between these functions,
Appell’s generalization of the Kulerian functions, and the theta
functions.

In a subsequent paper I propose to give in complete detail a
gymmetric theory of double gamma functions, in which r is replaced
by parameters , and wy, as in the theory of elliptic functions.

¢ Mdéray, L' Analyse Infinitesimale, Deuxidmo Partie, concluding pages.

+ Pincherle, Comptes Rendus, Tome cvi., p. 266.

t Alexeiowsky, Ann. de U’Imp. Univ. de Charkow, 1889, as quoted in the
Jahrbueh siber die Foytschyitte der Mathematik, Vol. xx1r., p. 439. A synopsis of
this paper appears in the Leipzig Berichte, 1894, Vol. xLvr., pp. 268-295.
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2. We will first take the product
G(z|7)=4de' 0 181 { ( + —'—-»«) e'ﬁ%‘fﬁﬁﬁ)‘},

w mr4n
in which r is any constant, real or complex, which is.not real and
negative, and in which a and b are functions of r only.

We notice that each term of the product is of Weierstrass’s form,
and that, by Eisenstein's theorem, the product is absolutely con-
vergent.

We proceed to transform this product into one of different form.
Since we may group the terms of the product as we please, we have

9

G(Z I f) =Acn%‘b2=—‘!’_z_. ﬁ {(1_}___2_) e “wT zm‘f‘}

T mal mr

G- ) R S S s
X 1[ ﬂ ! " e m‘lwn*u"’(m‘rus)’ )

mal nal (1 + 'n‘lT) e_'_:_"_"

(l+z+1nr) .e-“’"-'

and hence, remembering that

1 . { ( z ) -—’}
—_—— e H "
I'(2) e 1+ ml®" S
we ree that

-1 . =

Al tms e S
G(z|r)=A4Ae - p o .
: T (— +1)
T
ﬁ { I‘ (1 +’"1:T) e-':*:ugl _:;-"_;"Tl';) ' % ui:o (T"-;: n)! }
meo LT (l +z+mr)

= A FEC D (2)
T

Xﬁ{ P(1+‘1nf) —yzez § wr_ 2§ - }

— N nel n(nom‘r) 2 ned (m‘rnu‘r‘

L (1+4z+mr)

But, from the product expression

mel

w

A (]

we obtain, if we put
¥ () = L1ogT (@)
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in conformity with Gauss’s notation,
= (et
and, if V@) =L@
’ [1,.’1: v 1

_ 1
\L (1 + 7"/7) "2] (’)TLT + n)’

Thus we may write

P(£) 6| r)= a7 FE D)
T
X inl. {P (-.l_f_qf"_f)_ e”’(l"""’)*'i:vk'(lnnﬂ} )
meo (T (z+1+an)

A form equivalent to this is incorrectly given by Alexeiewsky.
We may conveniently modify this expression slightly.

Since T'(z2+1) = ' (2),

yD=—y and ¢y'(Q) = J(’: ,

we shall have

V(2 —_— (n- 7)7‘)1"("‘_:: . 1... - —Y:’%;%’
l(r)G(ZIT) de p(z+1)e
® { I“(m‘r) _mr e ow(nl]-é—rm+—w‘/(f'll)} ,
met (I (2t mr) z-+mr
and thus
r(£)6@|n =47 09 o T
T

y & ® . P(mr) .yp(m'r)+ .y(un) }
41 T AT
( + ) m.l{l‘(z+mf)e ;

or, finally,

.A e 1Jz+—- 1-" ) z m.{ F(WL_}__ gq,(nw)+—w’(mn}
G@|n= I(z +1)e 7 =1 (T (z24mr)

Tt will be noted that this last product, as all employed in the trans-
formation, is absolutely convergent.
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~ Before we proceed to show that, for suitable ‘values of @ and b, the
function G (z | r) satisfics the difference equation

fe+)=T(2) (),

it is necessary to interpolate two algebraical limit theorems analogous
to those considered in the * Theory of the @ Function,” §§ 6 and 7.

3. We will firat show that, when r is not real and negative,
mLt {z[: @O+d @)+ ... +y (mr)}
1-27

=C@F)+(m+i—ir)logm—m+ o + ,
where O (r) is a definite finite function of r, independent of m.
Unless the contrary is explicitly stated, the logarithms have their
principal values, in which the imaginary part lies between =
As there is no formula to express ¢ (m+17) in terms of ¢ (mr) for
general values of r, we cannot extend the method formerly employed.
We therefore use the Maclaurin sum-formula,*

du, , dn,

T T g e

Su, = C+J-u,dw+%u_._+-,—’;

Put 2, = ¢ (72), and we obtain

1 log T (rm) +3¢ (rm) + 15 ([1 (rm) + ..

£9(e) =0+
Now, provided r be not real and negative, we have, by Stieltjes’
theorem,t when m is very large, the asymptotic equality

log [ (rm) = § log 2r 4 (rm—%) log rm—rm+

Wom "

and therefore the derived asymptotic equalities

1

¢ (rm) = log rm— il T3t B

Vim= Dot

2r2m?

¢ Boole, Finite Differences, §2., P 90.
t ¢ Theory of the Gamma Function,” Part 1v,



1899.] Qenesis of the Double Gamma Functions. 363

Hence we have, when m is very large,

¥ (r)+y (27) + ot (mr)

Vor

—O’+log LR “’logrm+‘log1m+ L

120¢m  4rm ' 12rm
=0 (r)+ (m-}-2 1 ) log rm—m+ jé—r---- + oy
m
where O (7) is o definite function of r independent of m.
From the “ Theory of the G Function,” §6, we see that
C(l)=3

4. We will next show that, when r is not real and negative, and m
is a large positive integer,

f__l

W () +¢ (20) + ... ¢(mr) = D (r)+ :—log m+ 250

+ .5

where D () is a definite function of r independent of n.

On putting u, = ¢’ (r2) in the Maclaurin sum formula, we have
at once

V() +¢ @)+ ...+ (mr)
=D (r)+ % ¥ ('ni'r)+%t[/'(mr)+ 1"—24/" (mr)+ e s

Hence, using the asymptotic equalities, -
_ 1 1
v (rm) = l_og T Orm T120m T

(rm)———+2r‘m +e ,

we find

¥ (D +y @) +.. .+ (mr)

- o1 D TS S
=D+ T log rm 2r’m+'"+2'rm+ 4rtnd
._.'D(‘r)+—logrm+2,1

On making 7 = 1, we see that -
o D(1)=1+y.
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5. The forms 0 (r) and D (r) will enter into the theory of double
gamma functions from whatever side we may approach it. From the
value which D (r) assumes when r= 1, it might be anticipated that
this function cannot be expressed in finite form or in terms of
elementary transcendents. We proceed to show that this is actually
the case; by an analogous process the same theorem mlght be proved
to hold with regard to ( (7).

Suppose that m and = are large positive integers, and that
-7:: is very small, and consider the function

3% 1

1
20 1,20 (1,749, )%

the accent denoting that the term in the summation for which
"= 0} is to be omitted.
7, =
‘We have seen that
¥y (l4+mr) = L =3 1 3 L

..,.1 (m,-r+n,)‘ mat (myr4n)? " wa (T tntn)?t’

and hence
" 1
bR S o
2 gy = ¥ Q) =y At mr +n),

so that, by the asymptotic equality used in §3,

1

" 1 .
14+mr+n +

n=1 (myr4n,)? =v (1+m,‘r) -

=¢u+mo—%+%#+m,

since m, is small compared with m. Thus

52 ey
"="§rza§?*lé.%'+"f fyasmn-Lalsde ]
=Tl bt m{¢mﬁ—_+() }
=%+D(r)+ 1 ;r_%lﬁ'
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Now
=23 3 (m—'l,lﬁ +2 3 % (——-71%74-_71152
—m%l (_’m%’_ "'2":‘ %’

as a graphical representation of the terms of the series will readily
show.

Hence, when m and n are large positive integers, and r is any
complex quantity,

" n 1
-3 1D
My=-m nm—-y (m1"+nl)'

s 1 r—1 m+1
2{D(r)+—6~+710grm—2 - }

m n

2r'm n

{D(—r)+—--llog(r )+ e ’“+1+...}

= 2 {DO+D(-n}+ T (1-L)= 2

T
+terms which vanish when m and % become infinite.

The upper or lower sign must be taken as R (ir) is positive or
negative. Now,. by a theorem* due.to Forsyth, when m and

n become infinite, 2% being small,
n

s 5 1 = E _ "
Lt,,,..z.,.. .,,?-,. (—_“‘K‘+_): { Va 1 (1+k )}
™

# Forsyth, ¢ Some Doubly Infinite. ‘Converging Series,’’ Quarterly Journal of
Mathematics, Vol. xx1., p. 263.
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in the usual notation of elliptic functions. Hence, if

r=X
- K
g0 that R (ir) is negative,
i ,
D()+D(=r) == 2 =T 4 T +2ER=3K (1+47),

an expression which is usually called a modular function of r, and
which does not in general admit of representation in finite form by
elementary transcendents.

We propose then to call J(r) and D (r) double gamma modular
functions of 7.

We shall subsequently express equivalent symmetncal functions
as definite integrals.

6. We are now in a position to prove that, for suitable values of
the r-functions o and b, ‘

G(z-i-i | )= P( z_) Gz | 7).
B T .
We have established in §2 that, if
a = a-—-71",
g

i
b'=b+7!67-—,

—_—

G(z | r) - ,_'A___, ea:.:_‘b;;r_'_‘. © I‘(mr) w(nw)-};—:w'(mf)} ‘

Tf‘(z) wer (T (Z + 'lnf)
Hence
G(z+1|7) _ - leﬂ; i It { 21 e“"'"’z"—"* \mr)}
Gz T) z- mel ( 24+mr
a . —-h&(m‘r)va—'ily(mf)
_ 1 el e 1 e _
z me] (1+-Z-_) 8-’777': mr
B mr
a b 1
—_ _l.e ‘—-(22:'—“) (._z_. +1 e’—;
z T

-, s ™ 2241
x Lt {m T e E 3 [w(n)o—rwrf)]}

I
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and thus
GGt _ 1 el
z T
T (T) Gz | r) |
x Lt L PR P a4 m'%}

{(-zw;n

x Lt {ec(‘l‘)o(un‘—};) log T -m4(s44) (D(7T)+§ log fm']} ,

on using the limits which have been investigated in §§38 and 4.
Hence

"o

G(Z+l l-—-r).— — _f:r__j‘ C(T)+4D(T)+ :—10:“:‘-05 [D(ﬂ"g;f]’
r(£)eein O
T .

and thus we shall have for @ (# | 7) the difference equation |
P
G(e+1|r)=T (7) Gz | v)

provided we choose o’ and b’ 8o that
D)+, +L1ogr=0

and OO+HIDEO+E + L = dlog (2er)

and thus we must ta.ké

__T—
2
b =—rlogr—2"D(r);

log (277) +3 log r—70 (r),

’
a =

or, finally, a= -é— log (21'1'1') +3logr —7_0 (r) +7yr,
. ."_i‘_i
b= —rlogr—r’D(r)— 5
We have now, by § 2, 7

:l wiz?
G (5 | 7) = A2 grom-2mee-tE
T

s
.

Ole
0
=

X(21rr)i 75;1::': n i {(l+ —%) e

mold ne0

Ny~
-

where Q = mr+n.
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When r = 1, we have, using the values .of 0 (1) and D (1) given
in §§ 3 and 4, vespectively,

e =7—%+%]0g21r,
("
b —‘ ( b +1+7)’
and hence, when r = 1, we have
G(z|1) =4z (2#);_,,“"”' £ (Se1ey)

X ﬁ l?i’ { (1+ 2 )e man 1(lu+n)‘}
me) w0 m-+n

an expression which agrees with that previonsly found for @ (2).

As a corollary, note that we have incidentally proved that

i { 1 ewtu-m"-t—‘q. (-nr)} =7 (_z__ +1) th PCMHE D)
z+mr r (2nx)} *

m=l
7. We now proceed to determine the constant A by assigning the

condition that .
Gljr)=1L

We have, from § 2,

('("I ) = :/1___ o P 2er 2 i { I‘(mr) (,-“m)'s;-wm)}

T (2) war LT (zFmr)

and it has just been seen in § 6 that

: T

—log 2nr+}logr—1 0 (1),

[ 3]

V=~rlogr—r"D(r).
Hence, if we make z=1, and assign the condition @(1|r) =1,
we find -
1=4 ei;i':r.i It {__1_ ¥ (M) +ky (mT) } .
T mal L MT

But, if we put z = 0 in the corollury to § 6, we have

i {.1_ e () +iY (miT) } =..1_emuom
mr @)t

mel

We thus find 4 = 1.
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8. It is possible to give a thivd produet expression-for G (z | r).
To obtain this expression we tako the formula of § 2,

Zap = RO T PQU
G (z | ™) = erm 2 lU[ ﬁl_ { (1+ E—) e 'l!"'*'t"l(luf+|l)"} )
mr

T omeh nao +n
where (§ 6) a = ; log 8ar+ L logr+yr— O (1),

2.9
=—r]ogr—r"D(r)—1-r(-}'—.

and we write it in the form

=

G|r) =" i s <1+ i") e‘f."z',.--}
n

T wus=l (

Z4+n
k.l el l+ -.:.1;‘--- IIIT s z £?
LR PPN -
x 1I 1l __ZIL c . emT mTen 2(ueTa),
n-0 mal 1 7 -

0

’
L. g mT
wmr

uy we may obviously do, since cach term is of Weierstrass's form ;
and now we have

3 =¥
GE|r)= e"’:-w'f*‘ Zogv L gl
T

T (1+ 35) Y
T v :w: 2

X II ————’_'—— C ms.l("l'f-m'!irl;)’ :l' y::;l (Fr_]u—u!
n=0 T (1+ ~+_N)
T
But, if, s usual, vz = {‘I‘; log I' (2),
. d? 1

v e = Llogrea,
. )\ _ ® T _:L)
we have v (1+ T ) =r+ ,..}:1 (n-f-mr, m/’

- 3
(1 71,) - 3 T _,
4 ( + T mz.n (n+mr)?

VOL. XXXI.—No, 702. 2 4



370 My, E. W, Barnes on the [Dec. L4,

and hence
1 R

G (z | r) = c“'z’oﬁ% o (;) PRLAAST
r ( 1+ 1—‘-) . .
WS B D RN 00)
nad (1+ f_’f-_l_b)
We may slightly modify this expression by writing

2

G |r) = & (A.;':-,)'% ;‘flbi) 1 . e-:«w(mz’:‘ i
T (z) T (1-.- 2)
.

I‘(i)
i 2 G ()
| o (Ey) o
T

and now, since y(A)=—y,
=
Y ="
and G(z+1|r)=r(f—)a(z|r),
-

we obtain, finally,

GG+l |7 =¢ TR0 i j P(n) (&) e Evm
e

which yields, on substituting the values ¢ and b,

GG+l|r) = (211'1’)'—; o e {rt-emp g {o-m-po}

I"”)
X "—“‘—k_:_ a':'“'("v")’f;’:*'(:')
ne p(i..-?f

)

9. Recapitulating the resnlts which have now been obtained, we
see that a solution of

fE+) =T (%) 7, M
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with the condition F)=1,
i8 given by

Gz |r) = ()i 7 ¢ Lok T AEam) 2
.

X 1‘?0 -[“i, { (1+ 2 ) e-‘"?.O_’l‘z(lll:Qll)"} 5
m nal ’Inr+n

where C (7) and D (7) arve certain donble gamma modular constants.
The general solution of the difference equation (1) is
G (z ] r) x I (),
where I" (¢**) is any function of z simply periodic of period unity.

The function & (z | r) may also be expressed as an infinite product
of gamma functions of arguments differing by multiples of r in the
form '

—eem-2pm 1
T (2)
fi {__If_@:l_ gremey vem )
meat LT (z4mr) . )

and again as an infinite product of gamma functions of arguments

A(z|7)= @rr)ire e

differing by multiples of —}:— in the form
Gl [ = @ 75 ¢ brremb g { oemni)

r ('1{) H 27 n
T/ gEvomeiv($)

xI{ 277 4 .
nal r (a_‘f‘:'_b)
r

We might at this stage obtain the fivst terms of the value to which
G (z] ) tends, as z tends to real positive infinity, employing a
method similar to that used in the theory of the ¢ function,
§§3 and 4. The results of such an investigation would, however, be
incomplete, and it'is thevefore more convenient to employ the more
powerful methods which will subsequently be adopted.

10. It is now possible for us to prove the fundamentally importaut.

theorem _
T-~1
CGar|r)=@m)7F 310 GE)A (]| 1),
2B 2
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- —_— - 1
where 7ot = plrtrb) loRT

the principal value of the logarithm being taken. Thig thecorem
might be expected @ priori; for we have seen that @G (z | 7) satisfics
the difference equation

Ge+lIn=T()ae]n,

and we have also scen that (Y (z | 7) can be expressed as products of
factors essentindly cluwacterized by T (Z__*_-‘{L-) and T (z4mr) re-

spectively.  And the former type bears the same relation to the
second dilference equation as does the latter type to the difference
equation which we proceed to investigate.

Take the formula

) . 1 wEET T
(z4r 1) = o (7::) e LN
% it {___ T (mr) o uw.(mr)o'ﬂ'. .;.(mf,}

mel (T ( +T+’MLT) '

and write it in the form

W2y T gy ITT
T mw e 2

G (z+7 | T)=~1 ¢
-

x ],Jt 1’]' g [N (7n,r) ‘y(mﬂo w’(mr)}
paw mal I‘(z+mr)

» . »
T X ymmetEXT T Yy
'e Tlt ¢ mel 2 m=l

nee I'(z4p+1r)
T'hen we shall have

et T s’: ¢ (mryer 24T 'v W (nT)

"-b":’A e m=1 2 m-l

I ) = 8“ I { . . }’
T(z+p+17)

ﬁ_(..
()@
and, with the proviso that 7 be not real and negative, which holds

throughout the present investigation, the last written limit may be-
put in the form

pem

- 7_’_”' eIzt 2387
T 07((7) PT 4T l)(r)( )'r,¢ z + 2 _ 1 TC(T)QT?’—;—TD(T)
@Y Grrprry e | = @) © :
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Wo have therefore
G(atr J__r_)‘_ —_1_ eb'l;o.m%’. sTemiTE D
T(z)G(z]r) (2m) ’
and, on utilizing the values of ¢’ and )’ given in § 6, we find, finally,
53R, =
the result stated.

We note that the transcendental donble gamma modular constants
have disappeared from the final equation.

11. We proceed now to find the value of G (r,r), and obtain
Alexciewsky's form of the second differcnce equation for G (z | 7).
Make z = 0 in the expression for @ (z | 7) as a double product, and

we have ~
BECIRINES
zr0 z ) T
and therefore L {GGE|I) ()] = L
z=0 T

Make now z =0 in the i(lerntity

(247 |1) = it (O i
'(z) Gz | ) T (2m) 2,

7-1
and we have rG(r| )= (2m) 7
T-1
so that G |r)=@r)* 74
Substitnte this value, and we have Alexeiewsky’s formula
Qletr|r)=T() (| 7) G-(T;;!«T).
‘We note that, when r=1,
wo have G(r,7) =1,

and the equation just written hecomes

G (z41) =T (z) ().
12. We now see that & (z | r) satisfies fwo difference equations

fe+ly =T (%)@

r
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and Fledr) = @n) T T @) f (2 | 7).

It is this fact which lends to an entircly new conception of double
gamma functions.

For, if we write ¥ (z|r)= ’(]—l; log@(z | 7),

, _ad
¥ (Z | T) - dZ‘II(z I T)’
we shall have for ¥ (z | ) the two difference equations
=Ly(=
fe+l =14 (L) +f ),
ftr) =y (@) +f(z)~logr,
: _ d ST (s
where, as usuai, g lz) = & logI' (),
and for ¥ (2 | r) we have the difference equations
FerD) =@+ Lo r(#)
- at 8\ )
I
fG+r) =f(=)+ e log I'(z).

The symmetry of thesc equations suggests that we write

(l,_l

and take absolutely symmetrical difference equations
fletw) =FfE—4" G| w),
feto) =f@) =4 (] v,

[ where W) = -‘Il—‘;log T, (2| w),
- 1z

in the notation of the ¢ Theovy of the Gamma Function,"] from which
to build up a symmetrical double gamma function. It is on such
lines that I propose to develop the theory of the function in a sub-

sequent paper.

13. Tt is advisable, however, while still retnining the present
notation to connect the double gamma function with certain
functions alvcady introduced into analysis.  With this object in
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view we will consider the function
T@E|r)=G0@E+1]|7)@(—2]| —r).
We have the difference equation
GE+ln=r(%) 6],

and hence we derive

G(—z+1| —r)=T (_f-) G(—z| —1).
Thus T@E+l]|n)=T(] 1),
so that 1'(z | 7) is a function of z simply periodic of period unity.

Take next the second difference equation

G(adr|r)=(2m) 5 4T () G (2 | 7).
We obtain at once ‘

G(=s—r| =1 =@ (=)7HP(=2) G(=3] —n).
Remembering that their principal values are always to be assigned
to the many valned functions involved, we see that

Trr]n_ 1 __ ™ gt
T(z|7)  2r sinm(z+1) '
the upper or lower sign being taken as J2 (ir) is .posibive or negative.
Thercfore T(+r]r)_ 1
T(z|7)  J—gFas’

with the same determination of the signs.
A simply periodic solution (of period unity) of this equation is
fi 1— s F2ni(z+me))
m=0 ¢ 5
and therefore T'(z | r) is inclnded among the functions
P lml 1 pFn(zeme)) ,
(Z) me=0 { ¢ ;
where P (2) is an arbitrary doubly periodic function of z of periods
1 andr.
Now G (z]|r) is an integral transcendental function of z with

zeroes given by
. m=0,1, .., o
2= — (mr+n), { PO

n=0,1, ..., m;
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and therefore 7' Elr)=CQGE+1]|r)G(~z|—=7)
is a transcendental integral function of z with zeroes given by

m=0,1, .., o,

z = — (mr+an), j
_n_-.—oo -1,0,1, .., @

as may be at once scen from a graphical representation of the zeroes
of its factors.

But 1T {l—e;""""""‘} is a transcendental integral function with

2=

exactly these zeroes. And hence P (z) is a doubly peuodlc function
with no zeroes, and is thevefore a constant.

Hence we may write
fi {1.—_0:2-“:”",) }

T(z|r)-l\'i"_'" e
{1

m-l

where K is independent of 2.

Now { (:_L_}

zul

Hence Lt {’1' (= | r)} = l,f,{_f. ,z_}
£=0 =m0l 7 T

il
w —
LS
~—
St
v~
-

II fl_e}' n(~+mT)}
and It K "“’2______ = Lt, K {1-—p+-""'}

=0 I {l_enmmr} z

mel

=1t {:};2#:27'}
1

Ty
Qmer

Thus K= =+

and hence we obtain, finally,

1 lai ]__G:F'.'-,.(;.,,,T)}

TGE|r)==+ " "_’Zf’___,
2mer II {1_(,3:.’::“.1'}

fial

Ir the notation of Appell’s generalized Eulerian functions,* we may

* Appell, ¢ Goneralisation des fonctions Eulériennes,” Math. Aun., Bd. x1x.,
pp. 84-102.
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write this in the form
1=l 0GEI LT

?
cither the upper or the lower signs being taken thronghout as I2 (ir)

i positive or negative, where

— 1T —plri(zemr)
0(z|1,r)—”¥}o{l ¢ }.

The theorem just proved is the natural extension to double gamma
functions of the relation

()T (l-2) = —~

sin zmw

Note that the product
0(z|1,r)= I {1—eme+m}
B =0
is only convergent, provided B («7) is positive and | 7 | < 1, or pro-
vided ¢ (:7) is negative and | 7 | > 1; while T'(z | r) expressed as n

product of two double gamma functions is always convergent pro-
vided r be complex.

14. We may, however, give a single infinite product for 7' (s | 7)
which shall be valid for all complex values of r.

For this purpose we take the expression

1 arl . "?_. o ( I‘Qnr) = (mT)+ = ¥ (m1) }
G = .oe T oem Q[ 4 AL T ,
@] T (z) met (T (z+mr) ¢

where (§ 6) a= ~;—log 2nr 4+ log r—70 (r),
W =—rlogr—r*D(7),
and now, if we write
TGl =T(2)6¢|n6 (= =),
we obtain

"
£ (=1 ¢ [0 ()b (=)
TG|r) =2 AT T mrel=nlegal
CInD =5t s

O L DOMI () tvenssimf wien-ytann )
met {T'(z4m7) T (—z—mr)
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—T
Now PO =00
and hence ¥ (2)—y (—2)=— —:—-—w cot zm,

VEH (=) = o+ =T

ﬂlll 7r/
Thus we obtain

T(Z | r) — L e- [ (T4’ (- 1')]4 ¥ [o (M4 (-T)] -y -~ :m

rz¥ sinzw

o R . izt
X 11 { S]“ ” (" + ’IHT) v eob i ‘znln‘ iy } ’

mal sinTmr

and, on substituting the values of &’ and V', we have, finally,
B 1 2 pomst 2ia?
- B ) D &4 =
T & I T) = ——.1?_. rT et 2 ('r ) T '.'1"121"‘
2? gin 2w

Zaln? mniy

—2[C(T)-C(=T)] - [ DN D(-T)) Sm'lr(7+177r) —nzcotmmres T
Xe 2 1 .
wal sinwmr

an expression for T'(z | 7) valid for all values of r, except those which
are entifely real. The upper or lower sign is to be taken as I¢ (i) is
positive or negative. '

15. T.et us finally consider the relation of the double gamma
functiong to the theta functions.

Kor this purpose we take
S@E|D="TE|)T(E=r]—71)
=G4z ]|7)F(=z| =r) G (=141 | —7) G(—z+1 | 1),
a product of four double gamma functions.

We have seen that I'(z | r) is a fnnction of z simply periodic of
period unity, and hence the same is trne of S (z | 7). Thus

E(ZIT)=2(Z+1|1.)
Again, we have S(z+r|r)
=G (L4ztr|r) G(=2—r | —=7) G (1+2| —1)C (=2 | 7)
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and hence ,E___(‘Z_'*'LJ_")
3(z|7)
LG +2tr|7) G(=2|7) G(—2=r|—7) G(+z | —7)
GA+zlr) G(r—z|r) G(—z|—1) Gl+z—r|—17)
But we have seen (§10) that

G(Z+ -2+ 12..
G(Z—l)— T () 4 (2r)

and, since their principal values are always assigned to the many
valued functions involved,

G(z| —r7)

Gl—r|=n _p (2) eFt-rebmposni (21r)7—':_l,

the upper or lower sign bemg taken as R (i) is positive or negative.
Hence

S (47 |7) _ I‘(1+z)r"‘(27r) I‘v(—z)(e*"r)""(v%r):t
G T D @na TA4e) (et @n) T

— ei:2.. (z+4)

+7'0:

= —e=

Thus we see that 3 (z|r) satisfies the two difference equations
characteristic of the theta functions

fG+1) =1(2),
f(a+7) = —eti=f(3),
Now it has been shown (§ 13) that

1 'Eo {1_8372 A(ntnl)}

27"”' n { 1 _e;z..m,}

ma=l

TG|n=

From the reduction - just obtained for —2——(5'*;1]—12 we see that the
function ‘ 217
T(+z—r | —=7) =G (z—1+1| —7) G(—2+7|7)
T(| —1) ‘
T(—1| —1)

i8 such that = 1—e*,

u difference relation which can at once be obtained from the relation

T(:|r) _ e

T(E+r|r)
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by merely changing r into —r. For it is evident that such a change
involves the opposite prescription for I (ir).
We may obtain the same result and at the same time a useful
verification of our formulw if we take the difference equations
Tl =r) g ene
TE—r|—r) ~ e
TG—r+1l| =) =T(2—7| —7),
and proceed as in § 13.

We readily find that

_1_ mf:'I‘ {1 _e:k'l-i(:-mv)}

271'1'7' ﬁ {1_e¥‘2nmv}

m=l

T(z—r|—1)==%

for this expression satisfies the requisite functional relations; its
zeroes are given by
m=12, ..,
z= mr+n, .
n =—CD, crey _1! 0’ la seey WO,
just as are those of G (—z+7|7) @(1+2z—7| —r); and each side

1
reduces to =& ;— when z=0.
~TT
‘We now have
e¥Fira ] ,

@wr)? i g {a — Ty}

mal

n =l

Iai {(1._e¥1u-'.-.nur;)(1__et2n(.-.-mv])}
2 (Z I T) = i

Thus, if we put g =e¥*", the upper or lower sign being taken as
E (i) 18 positive or negative, we find

_ e;_‘z""—,,l. ® 1- 2q?m COR 21rz+q"" }
el = (2nr)? :::IEI { (A—g*? )

Assume now that R (ir) is negative; then, with the notation of the
theta functions adopted by Tannery and Molk, we have®

3, (2) = 2q,q'sin zn "1‘?1 {1—2¢™ cos 2zm + 4™},

where =11 {1—g™}.
niel

* Fonctions Llliptiques, Tome 11., p, 252,
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Hence we see that
==l __ %G
b3 (Z I T) - (27”,)2 29:(:(1Q Sinms

— w9 (2)

- CLOM

—12" 3 ()
2rr! 9] (0)’

since* 41 (0) = 2mglqt.

Finally, then, when Il («r) is negative,

mie 3, (2)
2 (log ¢)* 97 (0)’

In this manner we have expressed 3 () as a product of four-
double ganmma functions. And it is now evident that we may build
up all four theta functions by means of the functions G (2| r). And
from quotients of such products of double gamma functions we may
form the Jucobian elliptic functions sn z, eneg, and dn 2.

At this stage we are naturally conducted to the consideration of
the formuation of Weierstrass’s o function, which is in essence a theta
function symmetrical in w, and w,—the two parimeters whose
quotient is r. And such considerations lead to the formation of the
anulogous symmetrical double :gamma function which will be dis--
cussed in a following puper.

S| )=—

The Theorem of Residuation, being a general treatment of the-
Intersections of Plane Curves at Multiple Points. By F. S.
Macavray. Received and read December 14th, 1899.

I.

1. The following paper contains some developments of a theory
which appears to be capable of considerable extension, and which is
founded essentially, both as regards methods and applications, on

® Fonctions Elliptiques, Tome 11., p. 257.



