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In treating tho problem of an elastic solid in equilibrium under
given volume- and surface-forces, some of the advantages of a direct
determination of tho stress arc so obvious that it is surprising more
attention has not been given to this mode of attack. G. B. Airy,* in
1862, gave a solution of tho statical equations of stress in two dimen-
sions in terms of a function which is called by Maxwell "Airy's
function of stress in two dimensions." Airy did not consider the
differential equation satisfied by his function. This arises from sub-
stituting in the identical Htrain-relationf of St. Venant the values of
the strains in terms of the stresses.

Maxwell,X in 1869, supplied this equation in an awkward form,
and extended Airy's method to three dimensions by means of three
functions of stress. Finally, Ibbetson§, in 1886, gave the straight-
forward process for determining the equations satisfied by Maxwell's
functions by substitution in the six identical strain-relations of
St. Venant.

In the present paper I begin with a discussion of plane stress in an
isotropic body under given volume- and surface-forces. Tho problem
is reduced to the determination of a function \\> satisfying y* \f/ = 0
with \f/, and d\f//dn given over the boundary. It is shown that the
stress is independent of tho moduli of elasticity if there is no volume-
force, and if the body is simply-connected, and that the same is true
for a multiply-connected body if the resultant force (not necessarily
the couple) over each boundary separately vanishes. Reference must
hero be made to a statement of Maxwell's at the bottom of p. 201 of
tho paper cited, which, without adequate discussion, partly anticipates
this result, but appears to involve more than one oversight. I have

* Brit. Afusoc. Report, 1862.
t Sco A. E. H . Love, litiixticity, Vol. i., § GG.
% Scientific Tapers, Vol. II., p. 161.
§ J'roc. Lond. Math. Sun., Vol. xvn. Rcferenco should also bo made to Voigt,

Wicdcmann, Aiinakn, xvi., 1882.
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discussed at some length the conditions to be satisfied by ^, in order
that the displacements may be single-valued, as well as the form and
uniqueness of the solution to be obtained for that function.

In the second part of the paper I begin by obtaining the equations
of stress in three dimensions, in a form analogous to" the ordinary
equations of displacement. It is not advantageous to introduce
Maxwell's functions of stress, at any rate for the applications I have
in view. Here,'again, I have considered the surface-conditions to be
satisfied by the stresses in order that the displacements deduced may
be single-valued.

In the last part of the paper the stress-equations are applied to the
theory of plates. A general method of solution for any distribution
of force is given. The essential difference between this and previous
solutions is that no assumption is here made as to the values of the
stresses on planes parallel to the faces of the plate. Instead, it is
shown how to begin by determining the value of the normal pressure
on such planes without considering the boundary-conditions. The
possibility of this rests on the fact, almost intuitive, that any local
normal pressure cannot be transmitted along the plate, except to an
utterly negligible extent, a distance many times the plate's thick-
ness. It is further shown that each of the tangential stresses on
planes parallel to the faces is composed of two terms, one of which
depends on the form of the median plane of the plate, and the other
is determined directly in terms of the applied forces. The other
stresses are then expressed in terms of the curvature and stretch of
the median plane and their rates of change, together with the
quantities already completely determined. Differential equations of
the fourth order are next obtained for the two unknown functions in
terms of which the normal displacement and the stretch of the
median plane are expressed.

Finally, a method of successive approximation is indicated con-
necting the solution here given with the ordinary approximation.
The elastic solid has throughout been supposed isotropic; the method
of extension to anisotropic bodies is perfectly obvious.

Plane Stress.

Under this heading we may, following Maxwell, conveniently treat
two problems : (a) that of a long cylinder with applied forces perpen-
dicular to its length, and the same at corresponding points along its
length; (b) that of a thin plate with applied forces in its plane.
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Case (a).
Adopting the notation of Thomson and Tait's Natural Philosophy

and Love's Elasticity, and taking the axis of z in the direction of the
length of the cylinder, we have here

g = const.,

and u, v functions of x, y only.

The equations of stress become

Px+Uy=Vx,

assuming a force-potential and using suffixes to denote differentiation
whore no doubt can arise as to the meaning.

These equations are satisfied quite generally by

U = - * „ ,

where \\> is Airy's function of stress.

Write e = P+Q+li = (3X+2/0(c+/+flr).

Since P+ Q = 2 (A + /")(e+/) +2\g,

we have e = ?\+ 2* (P + Q) + const.

. The strain-relation*

becomes P
3A. + 2/i Ty

r\Y* X7 xl/ "̂ ^7 tf^~ ' . i ^7 i ^̂  \1/ I • 2 T^^ 7 ^ Q

that is, (\ + 2/x) V t̂/r = - 2/iV2
r, V,

where ^ s ^ + ^ . .

• Lovo'e Elasticity, Vol. i., §66.
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We may now drop the suffix, since the coordinate z no longer appears,
and write the equation for v/>,

(1)

Case (6).

We adopt for the present the ordinary approximation, viz.: taking
the axis of z normal to the plate, we put

so that 0 = P + Q .

The stress-equations are solved as in Case (a) and the strain-relation,
which is equivalent to

P + Q V e W

as before, now becomes

7- g—^Vi (O+27) = 0,

thatis

or, dropping the suffixes, the equation for \p is now
ilF. (2)

Conditions for \J/ in a Multiply-connected Body.

In these equations xf/ is not in general single-valued if the body is
not singly-connected. The second and higher derivatives of \ft must
always be single-valued if V is so, since the stresses must be so.
Further, tp must be such that the displacements are single-valued.

Since u^ — ev,

we have uv = owv+ {eydx+ (cv—fx) dy]. .
Jo

The strain-relation makes the integral vanish for a complete reducible
circuit; but we must have in addition

\°{evdx+(cu-fx)dy} = 0 (3)
Jo

or each independent irreducible circuit.
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Since uv+vx—c is single-valued, the condition (3) will ensure
that vx is single-valued, and hence no further conditions are required
for the first derivatives of the displacements. We have still to ex-
press the conditions that u, v may be single-valued. We must have

f° (uxdx+uvdy) = 0
Jo

f°and (vxdx + vvdy) = 0
Jo

for each irreducible circuit.

Now I uzdx = [»***]„ — xdus = — I aj (exdx + evdy)
Jo Jo Jo

and uvdy = [yuv]°o — yduv = — \ y {etdx + (cv—fx) % } ,
Jo Jo Jo

the condition (3) being supposed satisfied.

Hence [(»ea + yey) dx+ {xev + y(cv-fx)} dyl = 0 , (4)
Jo

and, similarly,

f° [ {y/*+* fe-O} A»+(«f.+«fr) «fy] = o. (5)
Jo

We proceed to express these equations in terms of \\>.
In Case (a), 2/ie = P - * 8

oAf2f»

or 4/i (A+/*) e = (A + 2/i)(P + Q)-2 (\+/i) Q + const.,

and, similarly,

4,u (\ + , i ) / = (A+2yu)(P+Q)-2(X+,i)P+const.

Hence equation (3) becomes
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that is

where ds is an element of arc of the boundary of a section z const.,
dn an element of normal to that boundary.

Since \pKI) is single-valued, this reduces to

(vV) *+2p| ^da = 0, (6)

which may also be written

dn '

or, again, (A + 2/i) ;--d«= -~-ds,
jodn ]odn

in which form it is a simple deduction from the displacement-equations

viz., we deduce (X+2fi) ~
an

and, integrating around a boundary and remembering that vr is single-
valued, the equation at once follows.

If there is no volume-force,

f° d$
ds = 0

dn
over each boundary.

The existence of the corresponding equation

fdS = O
dn

over each bounding surface in a three-dimensional solid under no
volume-force may here be noted. I t is of importance in connexion
with solutions in which a determination of 6 is the first step. For
example, in the problem of the stress of a cylindrical or a spherical
boiler under uniform pressure it shows at once that 6 is constant.
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The equation (4) becomes

or

and, similarly, equation (5) becomes

In Oase (6), 2^e = P ~ ^ - (P+ Q),

or 2/* (3\ + 2/i) e = 2 (X+/U)(P + Q)-(3X+2/x) Q
and 2/x(3X+2Ai)/= 2(X+Ai)(P+Q)-(3X+2^)P,

so that the appropriate equations in this case are derived from those
of Gd8e (a) by substituting for X according to the equation

X' _ X
3A'+2/i

that is, putting X+2/n = 4 u fX
A

The meanings of [^*]°, ["AvJo w^^ appear from the next section.

The Stresses at the Boundary.

With the usual notation,

IP+mU =F,

lU+mQ = 0,

where I = dy/ds, m = — dx/ds,

and F, G are the x, y components of the external stress.
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Hence* *

and 0«_£(,.)_7*

so that $m*s-
Jo (9)

o

where a, /3 are constants.

We may therefore write

*, = Jf+A
where Jff, IT are known functions for each boundary, and a, /? are un-
known constants, different of course, in general, for each boundary.
Hence

(10)

ds ds ds ds

where y is another unknown constant to be determined for each
boundary.

If the body is singly-connected, the values of o, /8, y for the single
boundary do not affect the result, for the addition of a solution

if,z=-ax-/3y-y,

which does not affect the stresses, makes the constants disappear.
The same is no longer true if the body is multiply-connected. We
must then apply the equations (6), (7), (8) to determine the three
constants corresponding to each boundary. Of course, the three con-
stants corresponding to one of the boundaries are still arbitrary.

It appears from equations (9) that, if there is no volume force,

f°
= — Ods,

Jo

= I Fds,
Jo

Cf. Maxwell, loc. eit., p. 193. Maxwell's process is, I think, erroneous.
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so that the quantities on the left are the resultant forces in the
directions of the two axes, on the boundary considered. If these
resultants vanish for each boundaxy, the function i}/ is detei'mined by
the following conditions :—

Vty = 0 throughout, (11)

\j/ = | (Hdx+Kdy)+ax+py + '

\ (12)
dij/ rrdy -ry-dx . dy ndx
- — = ±L ~ it — + o -j p -
an as ds ds ds

at each point of each boundary, and

— (v" y) ds =s 0
A an

(13)

for each boundary.

Form of Solution.

If the constants a, /?, y are fixed,, the equations (11), (12) will
determine \p uniquely. The properties of the solutions of such equa-
tions have been discussed by Mathieu* in connexion with other
problems. Mathieu considers only singly-connected regions or single-
valued functions, but we can easily extend his result in the present
connexion. If ifru \f/3 are two solutions, <f> =z \f/l~\f/% will satisfy
\7*<£ s= 0 and make <f> — 0, d<f>/dn = 0 over the boundaiies. The
function <£ is therefore a single-valued functionf in the region, and
Mathieu's proof shows that <j> = 0, or that the two assumed solutions
are identical. The solution having been obtained with arbitrary con-
stants a, /3, y, their actual values are found by substituting the
solution in equations (6), (7), (8), or, in the particular case above,
in.equations (13). Now the moduli of elasticity do not appear in

• Journal dc Math., T. xnr., 2mo eer., 1869, p. 391.
t Make the region simply-connected by cross-cuts. The first derivatives of <p

have the same value (zero) at an end of a cross-cut on its two sides, and the second
derivatives are single-valued; therefore the first derivatives have the same values
on the two sides along the whole cross-cut. Similarly, <p itself is the same on tho
two sides of the cross-cut.
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equations (13). Hence the stresses are independent of the moduli, pro-
vided the resultant force on each boundary vanishes. This condition is,
of course, always satisfied where there is only a single boundary, so
that the stresses are always independent of the moduli in this case.
It must be remembered that we have assumed the absence of volume-
force.

Supposing, now, that the resultant forces on the boundaries do not
vanish, we can add any convenient type of stress over the boundaries
to reduce the resultants to zero, so that, if there are n boundaries,
the function t/r will be of the form

where \j/v i/f2, ...f i/o»-3 involve the moduli of elasticity and depend
only on the form of the body and the types of stress added, not on the
given distribution of surface stress, while c,, cit ..., cin^2 are constants
depending only on the magnitudes of the resultant forces on the
boundaries. Finally, \f/ is independent of the moduli. We can
proceed further in this direction. Add any («—1) convenient types
of stress which reduce the couples on the boundaries also to zero.
We may then write

iff = C,l/r,+ .

where ij/" is now single-valued, and \\tin-\... i/'au-j are functions
depending on the types of stress chosen and independent of the
moduli. To prove this it is only necessary to show that, if the forces
on each boundary equilibrate, if/ is single-valued. Now, since in this
case

= f 2̂ 1 =
Jo

fn tf/v are single-valued. And

dK

= f
J

= 0,

° (Gx-Fy) ds
o
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since the couple of the stresses on s vanishes. Hence if/ is single*
valued in this case.

Introduction of Curvilinear Coordinates.

For application to curved boundaries the expressions for the
stresses in curvilinear coordinates are required. These may be
readily obtained as follows. We have seen that the components of
stress, in the directions of the axes, across any element of arc ds, are

F— d

ds

O —£(«.

giving for the stress normal to the arc

d /dy , , dx
. ds \ds ds

where K is the curvature of the arc and dn is an element of normal
to it, in the direction opposite to that in which the curvatui'e is
measured.

The tangential stress is

, , dx d . . v dy d

_ d (dx . dy

d
= — — I —X. I - J - K X-,

ds \dn) ds '

Introducing orthogonal curvilinears, so that

ds = hfdtj,

dn = hx d$,
1 ^ 9
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these expressions give

P =

For example,

1

K

K
1

at once for the corresponding <

drf /}* drj

d il/ 1' dJit

dg h d£

dfy 1 dhj
d$dt] K* h drj

in plane polars,

F V df? +

dr,

dip

d$

1
r

+ •

dxj/

dr

J_

1

] _

>

dh2

; dF

elements

%

# •

of stress

(14)

^*'

dr V r

and the general form of solution for a cylindrical shell is

. + (Axr+Bxr~l + B[6r + Gy+Dxr logr) cos6

sinfl

+ 1 (Ani* + BHr-"+ OMr-a+DBr-* ') cos nd
2

+ % (J?,,r"+ F»r-"+ Gni***+HHr"n*'i) sin nd.
a

I will conclude this part of the paper by remarking that Betti's
" Reciprocal Theorems "* here take the form of generalized Green
theorems for if/, some of which are given by Mathieu.f The particular
caso of a circular boundary would, I think, repay a detailed treat-
ment.J

Stress Equations in Three Dimensions.

Writing the displacement equations in the form
ft* = -X, &c, (15)

• Love, Elasticity, Vol. x., ch. viii. t foe. cit.
% See Borchardt, "Uebor Deformationen. elasticher isotroper Korper," &o.,

Berlin Monatsbei-ichte, 1873 ; Hertz, Miscellaneous Papers, p. 261.
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we have (\+2/i) V*d = - (X.+ Yu+Zt)

= — A, say.

Since P = A8+2fte,

Differentiating (15) with respect to x,

(X+fO *»+**•• = - * .

therefore V8P+2 (A+/i) $„ = - 2 X x ~ A \ / ( \ + 2 / * ) ,

or

similarly, V9Q-|-K0VI/ = - 2 r v - v A , (16)

V'E + KQ;^-2Zs—vA.

where K = 2 (A+/i)/(3X+2/i),

Equations (16) involve

. (17)

Again, from (15),

2 (\+/4) 09,+/»vl K+«.) = - 2v-r.,

that is, Vil/S+KO,,, = — ZV—Y,

similarly, V ' T + K G ^ -XZ-ZX \ , (18)

J
We proceed to show that equations (16) and (18), together with

(19)

imply the existence of the identical strain-relations. Take first the
t y p e *„„+/« = <V (20)

From (19), we have

^ Q - B x . = 2Z.~ A,
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so that (20) becomes

2nevv+2tifxx+Pxx+Qvu-Ba = 2Zt- A,

or Pw+O«

or V8

which, using (16), becomes

so that (20) becomes V3Q = - (2^

which is (17).

Take now the second type of strain-relation

2evt + axr = b,v + ctx, ' (21)

or iV-H , + &, = 2^+ Vlz.
Now, from (19),

Txu 4- U,, + Sn+8» + ^ + QV3 = - Zy- Yt,

so that (21) becomes

P ^ - ( I - K ) e^+v'flf+Q^+B^ = - ^ , - Yt,

that is . ^"iS + KG^rs-Z,—IT,,

which is one of equations (18).

The strain-relations are therefore satisfied, and conversely they
lead by a revei'sal of the above proofs to the stress-equations
obtained. Hence the complete stress-equations are

,, = - X,-Zx,

, , = - YX-XV,

VOL. xxxi.—NO. 686.
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where 9 = P+Q+J2.

Of course similar equations can be obtained for anisotropio bodies.

As in the case of plane-stress, the satisfaction of the strain-relations
does not ensure that the displacements and their first derivatives are
single-valued in the case of a multiply-connected solid. The addi-
tional conditions are obtained as in two dimensions. We have

duv = evdx + (cv—fx) dy + \ (c,+by—a,) dz.

Hence for each irreducible circuit

l {evdx+(cy-fx) dy+\ (c.+ &v-ax) &} =f0.
Jo

There are two similar conditions derived from a consideration of v,
and wx.

Further du = um dx + uv dy + ut dz.

Hence I {ux dx 4- uv dy + a, dz) = 0
Jo

for each irreducible circuit. This is equivalent to

I (xduai+yduv+zdut) = 0,
Jo

if the conditions already obtained are satisfied. Hence

.) dx+ {a:ev + y (cv—/,) -f \z (c. + hy—ax)} dy

+ {xet+%y (cg + bv-at) +z (K-gr)} dz"] = 0.

There are two similar equations derived from v and u:

We have therefore six conditions which can be at once expressed
as utress-conditions by substitution for the strains.

Theory of Plates.

Lot the faces of the plate be z = ± h, and suppose at first that it
extends to infinity in all directions. We may then find the stresses
in the plate in the following manner. From the equations

we obtain V42J = - 2V%->V2A + (y+1) Au, (22)
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remembering that 2v+l = x , CT^>

so that (

Over the faces z — ± h we have 22, #, 21 given; let them be JET, F, 0
over « = ht and JET', JF1', G' over z——h. Since, throughout the plate,

we have IZ, = — Z—Tr— 8V,

also known over « = =fc A.

Now JB is completely determined by (22) when B and dB/dz are
given over the faces of the plate, and its value can be Written down,
e.g., by means of Fourier-integrals. But, without entering into the
different ways of obtaining the solution, we may now assume B
known. This is the fundamental point of the present theory. It
may be noted that, if there is no volume-force, or if, more generally,

-2V2ZS-*V*A + (v +1) Azz - 0 (23)

throughout, the stress 12 is independent of the moduli of elasticity.
If (23) holds and if B and —Z—TX — 8V vanish over the faces, then
B =s 0 throughout, and these are the necessary and sufficient conditions
that B may vanish throughout the plate, a point about which there has
been so much discussion.

Taking now nQlt = — 2Z,—vA—V*R,

we have KG = — f* (" (2ZS + vA+V2B) dz% + Kz0Qt + KQ^ (24)
Jo Jo

where 09t, 60 are the values of 6,, 6 at (as, y, 0). Also

and therefore V*0X = — (2v +1) Ax,

so that V^9, = - (2v +1) A s - G,ss

= - - 1 A.+ ^-Z^ —
K K K

Hence K V ^ 0 9 , = 202£S-0A, + (v-2/?=)0, (25)
I 2



116 Mr. J . H. Michell tin the [April 13,

and, similarly, K < , 9 0 = 20£,-A0+(VlJK)0. (26)

Further VS+K0V, = - Yt- Zv;

therefore V (v',6') + « (<,e) y 3 '= - < , (Yl + ^ J ;

so that V'(VIVS) = A w -2^ S I -V f JB^-V^(Y. + Z,)> (27)

and, since vlvS is known over z = ± ft, being [obtained by differentia-
tion of the known values of S> equation (27) determines V^S through-
out tue plate. Also

and KQV.S = — 2Zvt—vAv-

so that 8m = - V'v^s + My-HV2BV- Ytl

and therefore 8tzt is known throughout the plate. Hence

say,

where JP = ^l + Bh + (7/t2 + 8' (h),

F= A-BH + Ch* +S'(-h)

nvc known, giving

Bh = | {F-F'-8'(h) + S'(-h)}

and A + Ch* = i {i^+.P'-8'(h)-S'(-h)},

so that we may write

where S" is known, but a- is an unknown function of a1, y.

Similarly, T = r (z3 - V) + T'\

where T" is known, but r is an unknown function of x, y.

Substituting these values in

we got • 2<r = - K e v z - Y t - Z v - S ' t ' t -

or, putting « = 0, o- = — ^K ( 0 6 » ) V + ^ ,

where a' is a known function of ar, y.
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Similarly, r = — \K ( 09 ,)«+T' ,

where r is known. Hence

(oer)t,(,'-^) + s'"|

where tf'" = S"+<r' (z>-h2),

T'"-T"+T &*-}?),

and S"', T'" are known.

Now, take the equation

which is the strain-relation

Or, + Gzz = hZT,

expressed in terms of the stresses.

It gives, using equation (24),

where P'z. is known. Hence

P = ( 1 - 3 K ) - | ( 0 9 : ) « + ( 1 - K ) - | ( e ^ + ^ + P ^ P " , (29)

where P"
o Jo

but ol'. and Po are undetermined functions of a.*, y.

Similarly,

the last being derived from the equation

{]i-(i-K)e}xy+utt-stx-T:s = o,

which is the equivalent of the strain-relation

2gX!l+cls—atr—b:>J — 0.

It remains to connect and find differential equations for the un-
knowns A , 90, OPS, Pw OQSI Qo, QUS, Uo.
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Now, first, from the equations

we have

and hence

and therefore 90 = V*, if/ + V+ W+ Rn,

where F, W are known.

Substituting in KV,W90 = 2 0Z.—A0-f (V9J2)O,

we have K$\y\\t — 20Zt—A1)+(yiR)0—KVlv ( F + W+Ro), (30)

which is the differential equation for \p.

Similarly, Px + Uv + Tt - - X,

give (0P.),+ (OUZ)U = - o X s - o r r + K (09,)r,

Hence OPS—K O 9 . = ^w + F',

and therefore (1—2K) O 0 ; = V*rv<p + F '+ >F'+0E,,

where F', IF* are known.

Substituting in the equation

n.-̂ 2 fl = 2 Z — A
* v »y o - 0 " • 0 s

we obtain

oB
5) (31)

or

The unknown functions are now reduced to two functions <f>, \J/ of
jr, y for which the differential equations (30), (31) hold. The
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differential equation for the normal displacement of the median
plane is derived at once*

We have «>« = («,+«),,),-e,.

Hence 2f*wn= 22? , -{P-( l - i t )e} i

and 2/ioWx, = + ^a(oe.)«+2or

Similarly,

2/« „«/„„ = «A« ( 0 e , ) w + 2

Th erefore 2/i «>0 = *AS
 09, + $> + fi

where O is a known function of x, y; a linear function of #, y denoting
a rigid body displacement of the median plane being neglected.

Also

2/.V>0 = *VV%(,e.) + 2 ( 0 T r + , O + ̂ 0 + 7'+ IT

This simplifies very much by use of the equation

which gives 0T^+0S'v
tf + 0Bt + ̂ V2

xv (09.) = -Zr

Hence 2/iV^w, = v'v<^+ F '+ TT'-2Z0

so that <f> = 2/IWO+2/J (v + 1) h%vl,w9+(y + l)h2 (0B. + 2^0) - O ,

and w0 is known in terms of <f> and conversely. The differential
equation for w0 is therefore

This result is more easily obtained from the equation

or K

Putting z = 0, we have

2 /xV> 0 = ( l -2 ic ) 0 e i - 0 I? i -2Z 0 ,

the same equation as before.
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Application to Finite Plates.

If the plate is finite, the equation

with R and Bs given over z = =fc h, does not theoretically completely
determine 12. The problem is of exactly the same nature as that of
the ordinary plate, condenser. The potential between the plates is
not completely determined by V2F=0, with V given over z = ±h.
In each case it or V is practically determined with great accuracy by
the conditions, except for points at a distance less than a small
multiple of the thickness 2h from the edge. The same remark
applies to the determination of Vrl/S and V^T. The above solution
then applies without modification to the finite plate. The edge con-
ditions for <f>, if/ are written down as in the Thomson-Boussinesq
theory, using the principle of equipollent loads, and there is no
occasion to enter on their discussion here.

The nature of the transmission of stress in the plate will perhaps
appear more plainly if we suppose that there is no applied force on
part of it. The solutions for i2, vlvS, vl/11 in that part are then
simply

R= V > = < , T = 0

throughout. Hence

(2 = ( I - 3 K ) - ^ - ( O G S ;

where (1—2K) O 0 , = V^

*ruw0 — 0,
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2 s\. 2

and hence V,,,^ = 2fiVruw0.
Introducing the curvatures «r,, «r2 and the twist r, we have

and hence S = /u 2

^

Similarly for Q, and

Solution.

Taking the unit of length as of the same order as the thickness of.
the plate, if we assume that the rates of variation of the functions
of the forces in the equations and conditions for Jt, Vxy/S, VTVT>
parallel to the plate, are small, we may apply the method of
successive approximations to find those quantities to any order of
accuracy. To keep the algebra within bounds, let us consider the
particular case in which

X = Y = 0, Zz == 0,
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so that the plate is under normal pressures on its faces, and normal
volume force. For a first approximation, we write

and hence in this case —r = 0,
dz*

+ Cz'+Dz*,

where E = A+Bh + Ch*+Dh9,
H^A-Bh+Oh'-Dh*,

Rt(-h) =-Z = B-2

Hence 0 — 0,

2Bh+2Dh* = H-H',

and R = | Cff+IT) + (jEf H ) ( 3 ^ s ) +

This is. the first approximation for R; for a further approximation
we must substitute this value in the terms of V*B previously neglected,
and repeat the above process. Contenting ourselves with the above
value of R, we have

or Vl(V^

Now, 8 = 0,

when z = ± &,

so that Vly 8 + Zv+Rva = 0,

when a = db h.

Hence the equation gives
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throughout, and this is true whenever

so that in this case the trouble of successive approximations is con-
nected with the determination of B alone.

Since T% S,+#„„ = 0,

we have ^ = + 2BVII = - JL {By-H'v) *~jj

neglecting vlyRy.

Hence 8 = A + Bz+CS- -^ {Hv-H'v) «•- ~Zvz\

s o t h a t fi[ = < r ( ^ - f c « ) A ^

and, similarly,

where 2a = - K ^e,),, - ^ , - V^ So

and, similarly, 2r = - « ( o e . ) , + ^

so that « = - I K (O9,), ( ^ - ^

and T = - li

The differential equation for w0 is, therefore, neglecting the second
and higher differential coefficients of the applied forces with respect
to x, y,

or 4 ( + l)Z8V^ 3{2?
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Since

this is the equation which would be obtained according to the
ordinary approximation, 2hZ + H— IT being the normal force per unit
area of plate.

The processes here developed are obviously well suited to the treat-
ment of the problem of Cerutti and Boussinesq, viz., to determine the
stress through an infinite solid, bounded by an infinite plane, on
which the forces are given. As a matter of fact, the processes lead
directly to a potential-solution of the form given by the authors
named, but the present is hardly a fit occasion to give a mere revision
of this famous problem.

'I'he Stress in a Rotating Lamina. By J . H. MICHELL, M.A.
Bead April 13th, 1899. Keceived, in. revised form, Septem-
ber 4th, 1899.

In a paper* recently presented to the Society I have given a.
general theory of plates under any forces. I propose, in the present
note, to apply the theory to the case of a lamina rotating about a
fixed axis perpendicular to its plane. The notation is that of the
paper referred to.

Taking the axis of z normal to the lamina, let tar be the angular
velocity of the lamina, p its density, so that the component forces are

X =

and hence Xr+ Yv = A = 2pvr\

so that V*li = 0.

Since li and dR/dz vanish on the faces z = ± h, supposed free from
stress, it follows that li = 0 throughout the plate (except, of course,
at points close to the edges, as explained in the former paper).

On the Direct Determination of Stress in an Elastic Solid, &c," pp. 100-124.


