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‘On the Oalculation of the most Probable Values of Frequency-
Constants, for Data arranged according to Equidistant
Divisions of a Scale. By W. F. Suerearo, M.A., LL.M.
Read March 10th, 1898. Received, in revised form, May
10th, 1898.

I. GeneraL ForMuLk.
1. Let z=f(2)

be the equation to a curve which lies wholly on the positive side of
the axis of , and extends continuously from the ordinate z, = f(2,)
to the ordinate z, = f(w,), and which is subject to the further con-
dition that f(x) is single-valued between 2z = @, and @ = z,. Let the
range x,—a, be divided into p equal segments, each equal to A, by
points whose absciss® are x,, @5, ..., ,.1, 50 that

z, =ay+rh;
let the ordinates to the curve from the points of division be z, 2, ...,
Zp-1y BO that 2, =f(:v,) ;
and let A, denote the area between two consecutive ordinates z,_,
and z,, the curve, and the base z = 0, so that

4,= ]': f (@) de.

r-1
For the mathematical treatment of statistics we require a
convenient formula for calculating, approximately, the value of

' j £ (2) ¢ (3) dz, where—
zo

(i.) ¢ (=) is a known function of a, which is single-valued, finite,
and continuous from z =2, to = 2,; and
(ii.) the form of f () is unknown, but either
(a) the values of the isolated ordinates z, = f (%), = = f (1}), ...,
z, = f (x,) are known, or
(b) the values of the successive areas

A,=r'f(x)¢u, A,:f’f(x)d.v, A,=E’ F@)de

o5 X
are known.
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2. The Euler-Maclaurin formula

_ B du, | B, du, 1)*
21 dz 4 dd M

may be made to meet both these cases. For the first case we have at

once

[u, dz = C+Zu,—ju,

i@ e@
£ @) $() 47 () §(0) + b F @) $ @) T3 @) 6 (a2)

-[ {g; nd B h“:;% o }f(z) @] @

T =1

= 329 (2) +2,¢ (%) + ... +2,0 ¢ (2,.1) + 32,9 (z,)
+o7 (A =34 +334% —..) f (=) 9 (=)
+15 (A —3A"+ 388~ ) f () ¢ (2,), (22)
the second set of differences A’, A” A%, ... being accented to show that
they are taken backwards, 7.e., from z = z, towards z = ,
For the second case we write

Flo)= r” £(2) da,

so that F () denotes the whole area of the curve lying beyond the
ordinate z = f(2). Then
F(z,) =A,+4,+4;,+...+4, \
Fz) = A;+4,+...+4,
B T T 3)
F(z,.) = 4,
F(z,) = 0 )
so that F(z) is a function for which the isolated values F(z,),
F(z,),..., F(z,) are known. By integration by parts,

(1@ o @do = Fa) om) ' F@r@a @
7 I

# Here Xu, denotes the sum up to and including ».. If X is used as equivalent
to A-!, Zu, is the sum up to and including u._;, and we must replace —ju. by
+ Ju..

. 1 For instance, let F (z) denote the proportion of individuals alive at age 2 for
every oue alive at age 7, ; then f(2)dz will denote the proportion-who die between
ages «—4dr and 2 + {dr, If o

¢ (2) = P(1+i)=(=%),
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and therefore
1 (%
i@ e@as
1

I F(zy) ¢ () +3F (@) ¢ () +F(z,) ¢ @) +... +F (z,.) ¢" (2,-1)
B,, d By & , =
R GLE L S IOTIO)
“'F (%) 9 (@) +1 F (z) 0 (mo) +F (2,) ¢ (z,) +.. +F(mp-l) ¢ (2,-1)
+n (A=A +3308° —...) F'(z,) ¢ (2,)
+35 (A—1A%413A%— ) F(=,) ¢' (=,). (54)

3. The formule (24) and (5A) are sufficient, but they involve the
calculation of successive differences. In the cases which we have

specially in view the curve z = f(z) touches the base z = 0, to a very
high order of contact, at the extreme points z =x,and z =2, In

such a case f (z,) and f (2,) and their first few differential coefficients
are zero. Hence the expression given by the square brackets in (2)
is negligible, and we have, approaimately,

% [f (2) ¢ (@) dz = 32,0 (@) + 29 (@) + o 42,10 (Bp-1) + 22,0 (2,).

. (28)
Also the first' few differential coefficients of F(z,) and F(,) are

zero, and Pa,) =0

but F(x,) is not zero. Hence the expression given by the square
brackets in (5) is negligible, except as to the part involving F(z,).
Taking this out, we have, approximately,

1 [f() $(2) do

= 3F(2) ¢' (2) + F (2)) ¢ (@) + ... + F (2,11) ¢' (2,-1)
+ T F@) {4 @+ PR E) - TR @)+ ] Gn)

f(z) ¢(2) dz will be the present value of a reversion of value P, due on the
% .
death of a person aged r,, interest being reckoned at 100i per cent. per annum,
while j. F(2) ¢ (z) dz will be the present value of a continuous annuity at the
Zo

rate of P per annum, payable to a person of that age, and (4) shows that

(present value of reversion) = P—log, (1+i) . (present value of annuity),
which is a well-known formula.

24 2
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the expression omitted from the right-hand side being

B,.d By, d ,
[F(m) {‘é} nd Bl } ¢ (@)

_ (B2 _Byps & } N " (5
{Z!hda: 2t F(“)'P(“‘)Jx:% (50)

The formula (2n) is convenient for calculation, but (58) is
obviously inconvenient, on account of its unsymmetrical form. Our

. X,
object is thevefore to obtain a general formula for j ’ f (=) ¢ (x) de,
%

which shall be better suited for these particular cases.

4. Let &, &, ..., & be the absciss® of the middle points of the bases
of the areas A4,, 4,, ..., 4,, so that

ér = é (zr-l+mr)'

X,
We wish to obtain the value of j ' f (@) ¢ (z) dz in the form)|
%o
24,0 (E)+2 [0 () )72,

where ¢,(2) is a function of z which can be derived from ¢ (x), and
@y (2) 1s an expression which can be derived from f(z) and ¢ (=), and
which may be disregarded when f(z) and its first few differential
coeflicients are zero. We must therefore express

|. r@e@a=(" reropEroa
r-1 -lh

in the form

Fh f&+6)d8.9,(E)+h [0, @] 1T
" r-1

in other words, we must find such a value for ¢, (£) that
2@=(" ser0eer0u-[" jErnm0®  ©
ST -ih

may be capable of being expressed in the form
b { g (+5R)—9: (€M)}, (7)

where ¢,(§) contains only f(¢) and ¢(¢) and their successive
differential coeficients.
Now, in order that ® (§) may be expressible in the form (7), it is
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‘necessary and sufficient (subject to certain conditions as to conver-
gence) that ®(£)dé should be an exact differential. It is necessary,
for if we expand (7) in ascending powers of - we have only
differential coefficients of ¢, (§). And it is sufficient, for if <b($) is
equal to h¥'(£) we can obkusly choose the coeflicients C,, C,, ...

as to make it equal to

{2 (E+11) = (61} +0, (¥ (+30)—" (6—ih)} 31"
+ 0y [ (€4 40— (6 30)} Gh)+

The values of these coefficients can be obtained most simply by the
method of operators, which shows that

8

M (§) = gy TRy (o

sinh 1A p73

= {¥ (E+3n) -V (¢—3h)}
P, g N ’ 1 11)8
2! {¥" (E+3R) =V (§—1h) } (3R)

+ %’; {97 (4+3R) =0 (6= 3B) } (3R)"

— (8
where P, P,, ... are the coefficients in the expansion
0 _4_ ﬂ 12 Pyge 9
sinh 0 1 + 6 )
8o that P, = (2"—2)B,. (10)

We consider that we are only dealing with cases in which the series
(8) is initially convergent.

Now let us assume that

d
2n(@® =y (1h35) 0. an
Then if we denote }h dif operating on f(¢) by D,, and 1h % operating
on ¢ (£) by D,, ®(£) is equal to
i h Dl 2 1
(AR _ShBy my}r@o e, a2
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In order that ¢ (f) dé may be an exact diiferentia.i, it is clearly
necessary that (12) may be capable of being written in the form

(D, +D;) x(D,, D;)F(8) $(8), (13)

where x (D,, D;) is a function conté,ining only positive integral
powers (including the power 0) of D, and D,. It will be seen that

'P( D) =

satisfies these conditions, For

8l nhD,

sinh (D, +D;) sinhD, D,
D,+D, D, sinh D,

can be expanded so0 as to include only positive integral powers of D,

and Dy; and it vanishes when D,+D; =0, so that D,+ D, is a
factor. Hence we have

j'” F(E+8) ¢ (E+6).40
FTY

=["ser0 @ foO-Froan + T @an'-.. ]
i

+h {33 (5+30) - 95 E—1R) }, (14)

where
#® =4{ 537, Droms Db (v Dy ) O ©

=12 { (oth DFDi- 555 ) = (oth D= ) F @ 0160
Since 10coth 30 =1+ 'o* ?o‘+_..., (15)

this reduces to

n@O=F@ (BBl le@

Bi,d By, @ ,
_{ hds 4:";{# }F(i)cp(f)- (16)

Substituting in (14), writing § = &, &, ..., £, successively, and adding
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together the p equations so obtained, we have, finally,
|1
rep ”
=Fafo@-Ranry o+ Iane -}
1 B, d B ds ' .
+[F@{B Dl s 1ee)
_ {_3_1 ha'i —ii B } F(w)qf(w)]z;:. a7

This result can be verified by comparing it with (58) and (5c).
To give the expression in square brackets explicitly in terms of f(z)
and ¢ (z) and their derived functions, we write, for convenience,

Br
=2 (18)
sud w find that rpf(z)?’(w)dx
%o
=34 {¢ ) — 5% (3n)'e” (g,)+ By ()t (6) .
s [ { &y @@+ Err @ 1@

;

3
1895w Drgr i+ Y 9 @) = R @)

3

3

1

21

gl{ffw () — Q’h*¢"'(z)+ Q* {9 (o) = .. } HF7 @)

b L {95 Bigr )+ i (e —... | 177 @)
+&c.]z_zf’, 9)

T=1,

where

28858

Pl=%v P9='1"1" PB=%1 1)4=‘l‘1‘s'51') Py= "33 --'}. (20)

5
Ql;ili" G=1i» G=%+n U=3io &=1in

5. The value of ¢, (£) might have been obtained without using the
symbolic method, as follows.
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Let us assume that
$ () =9+ 2,( 7)'¢"(5)+7;'-! ER)' " () +....

(The odd differential coefficients are omitted, since it is clear that
¢, (£) is not altered by changing 1k into —1k). Expand f (£+86) and
¢ (£+6) in ascending powers of § by Taylor's theorem, substitute in
(6), and perform the integrations ; then substitute for ¢, (£) from the
above expression, and arrange the result in a series proceeding by
ascending powers of A. The successive coeflicients will contain pro-
ducts as follows : —

co. A% co. b co. M7

F@® e’ (8), F(& () FBO"®), -
F@® @, FE®”@), FE¢E), -
@@, e -

& ¢ @), e, -

fEe"E, ..

@ -

The first coefficient will involve «,, the second «, and x,, and so on.
Hence the values of «,, &, ..., can be chosen successively so that each
term in the expansion of ® (£) d¢ in ascending powers of & shall be

an exact differential. The #™ term, divided by 2 (lh)"'“ is

{or (=T FO e O+ gk 1)'f A

+ 1 1 (1_ %+1Ku_l)f”(e)¢(h-2)(£)+"‘

"2l (2n—2)! 3
1 1y 2041\ ,
"'+(2n-2)!§(1 1" 5) 9@

tami T Os @ L

Let us choose «, so as to make this the differential of
,l __1~ (2n-1) l 1 (2n=2)
it @i/ O O+0 g s OO+

ot Ouvs gy 1™ O @
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Differentiating this last expression, and equating coefficients,

1— 2n+1 kK, = 2_” C,

1 .
1 = 01 + gn'_— Cg,
1_27&;1“‘"-1:09 +2n3—.2 Ga’
1 g ‘t% " = O’m 9+ (/2:a—h
1 = Gg,._l--

Eliminating, and remembering that

_2n 20 (2n—1) 2n!2n-—1)...1= 1) =
-7+ 713 ~+t e, = A-hT=0,

we find that

1 & X Ky

T @Dl T @m—Di T @) Tt @y

Now let Q6) = 1+é‘l, 6+ 21!0'4-....

Then the above relation shows i;hat
Q (6) .sinh 6 = 6,

and therefore Q) = m ,

which agrees with (14).

6. In the general formula (17) or (19) the expressions to be summed
are given in terms of &, &, ..., £,, the absciss® of the middle points of
the bases of the compartments 4, 4,, ..., 4,. If preferred, we can
use o, 2, ..., ¥, For

0y
dt
#u(6) = - ?®)
sinh A &
h é—
= = e G+ +o(G-im}, (e1y
sinh k —

di
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and therefors

["r@ 0@
zo

=T A+a.0) {o@)— D9 @)+ DIy @) -}

wreg-trdse Jee
21 da;__i!'hs'i_ A}F’(w)cp(w)] : (22)

where 4, and 4,,, are each zero.

II. ArpricaTioN T0 CALCULATION OF Sz™.*

7. When an attribute common to & number of individuals is
capable of exact measurement, and of representation by a linear
magnitude z, whose variation is continuous, the result of a classi-
fication of the individuals according to this attribute is generally
given in the form of a table showing the numbers which fall into
.consecutive classes corresponding to equal increments of z, e.g.,

(A) Weights of 5,552 Englishmen.+

Weight. Number. . Weight. Number.

90 1bs. to 100 1bs. 2 180 1bs. to 190 lbs. 304
100 1bs. to 110 lbs. 26 1190 Ibs. o 200 bs. 174
110 Ibs. to 120 Ibs. 183 200 Ibs, to 210 lbs. 75
120 Ibs. to 130 1bs. - 338 210 Ibs. to 220 Ibs. 62
130 Ibs. to 140 Ibs. 694 220 Ibs: to 230 bs. 33
140 Ibs. to 150 Ibs. 1,240 230 Ibs. to 240 Jbs. 10
150 Ibs. to 160 Ibs. 1,075 240 Ibs. to 250 1bs. 9
160 1bs. to 170 Ibs. 881 250 Ibs. to 260 Ibs, 3
170 lbs. to 180 bs. 492 260 1bs. to 270 lbs. 1

* Some of the results of this section have been stated, without proof, in & paper
‘printed in the Journal of the Royal Statistical Society (September, 1897, p. 698).

+ Report of the British Association, 1883, p. 257.
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(B) Ezamination Marks of 1,000 Sandhurst Candidates. *

Mark. Number. Mark. Number.
Oto 99 15 500 to 599 221
100 to 199 54 600 to 699 115
200 to 299 131 700 to 799 31
300 to 399 - 227 800 to 899 3
400 to 499 203 ‘900 to 999 0

From the statistical point of view we are not concerned with. par-
ticular individuals. We regard them-—on grounds which need not be
discussed here—as having been obtained by random selection from an
indefinitely great community ; and we investigate the distribution of
the values of z in this hypothetical community. Any such distri-
bution can be expressed in terms of the mean values of z, 2%, 2° ... for
the community, which we may denote by [z], [2%], [2*], ...; and
therefore the problem is to determine, from the data, the most
probable combination of values of [2], [2*], [2*], ... .

To do this, when the data take the form of a table such as (A) or
(B), we adopt the same process as if we knew the exact value of z for
each of the observed individuals. We postulate an indefinite number
of communities with different laws of distribution df , and there-
fore with different values of [2], [2®], [2*], ... ; we suppose that from
each of these communities & random selection of » individuals is made
N times, where n is the number of individuals actually observed, and
N is an indefinitely great number ; and from this double aggregate
of sets of » individuals, we pick out those sets in which the numbers
in the consecutive classes are the same as in the actual data, and con-
sider how the different values of [z], [#*],[2*], ... are distributed in
these particular cases.

8. Let the range of values of #, in the original community, be
from =z, to z, this' range being divided into p segments, each
equal to k; and let the actual data consist of a table giving numbers
Ty, Mgy .. W, in the corresponding p classes; where n, + 3+ ... +m,=n.

* These are the marks in English Composition (a few candidates being omitted)
at the examinations in November, 1894, and June, 1895. The table must not be
taken as giving the law of distribution of the marks at either examination
separately.
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‘We assume that the data show that both the variation of = and the
frequency of the variation may be regarded as continuous; t.e., that
the true figure of fréquency of x may be regarded as bounded by a
continuous curve. Let the equation to this unknown curve be

2= (),

and let the areas between the successive ordinates f(x,), f(2,), ..., f (%),
where z, = 2,+zh, be 4,, 4,, ..., 4, the total area of the curve being
A. Then our fundamental postulate is that there are an indefinite
number of forms of f(z), or, rather, of f(x) +4; and we have to con-
sider the result of a random selection of » individuals when f(z) A4
has any particular form, and thence to determine the distribution of
the different values of

[z"]) = rp f(z)a"de + A4,
E

when the random selection gives numbers: %, ng, ..., n, in the
p classes.

If in the expression contained in square brackets in (17) we re-
place the differential coefficients by differences, and if the resulting
series is initially convergent when

¢ (z) -— wm’
"X ..
we obtain j’ f(z)a™ dz in the form
£
Oy, +Cy Ay + oo+ Cp 4y
Let n, = nd, |4,

8o that =], n3, ..., n, are the numbers (not necessarily integral) that
would fall into the p classes if we made a representative selection of
n individuals. Then

zp
0[] =n f F(2)amda + A
P
is of the form O+ Cans+ ... 4Oy,

By hypothesis, the numbers n,,n,, ...,n, are obtained by random
selection, and they therefore differ from #;, n;, ..., n, by amounts which,
when # is large, are distributed according to the normal law with mean
values zero,and mean squares #; (n—n;)/n, n; (n—n3)[n, ..., n, (n—n.)[n,
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the p distributions being normally correlated. It follows, by the
ordinary methods. of inverse probabability, that,if the a prior: fre-
quency of different values of [2"], in those cases in which A4, 4,, ..., 4.
are nearly proportional to #,,n, ... 7, is continuous, the most probable
value of #=[2"] as deducible from the data is (approximately)
Cn,+0my+ ... +0,n,; and the possible values are distributed
normally about this value with mean square {3Cn,—(30,%,) }—n
Similarly, it may be shown that the different distributions obtained
by giving different values to m are normally correlated ; and it follows
that the most probable combination of values of [z], [2*], [¢*], ... is to
be found by assuming the areas 4,,4,,...,4, of the figure of fre-
quency to be proportional to m,n,,...,n,. It is understood, through-
out, that » is a large number.

Denote the most probable value of [2"] by “[z"]". Then,
writing ¢ (x) =a" in (17), multiplying both sides of the equation
by »/A, and replacing n4,/4 by =, we have
at (]’ = 2, (8P gy e Py A Te ey i )

m 3 m -2 __‘m'! dm-4
{3‘2'( Y ey ey L +}

B d & gds . 3 =1 » " =
R Ea L LAy S Wl TOPH e

where i =1%(z.+2).

To express this in a convenient form, let M, denote the rough value of
Sz for the # individuals, obtained by massing the individuals in each
class at the centre of the range of the class; <.e., by taking every
value of z between =,_, and z, as equal to the arithmetic mean of =,.,
and z,. Thus

M, = '2-: n &
Also let ntn gt tn, = Ny,
80 that N,=n, N,=0;
and let m(Nyzp '+ N,2,"") = 8, m(Ny2) "'+ N,azpl)) = 8,

m (Na“’:._ +Nﬁ-iz;‘-1) =8, ..
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Then, if §,—8,= AS,, S;—8, =48, ..., AS,—AS, = A'S,, ..
(23) becomes

“[wm]" Pl W—)—Mm ,h +WP34_I(—4,)I m-‘h
R ' "l 'll—
—n{%m i alomh. ‘+...}
+rh {A—3ATHISA — SA S0 -} S, (24)

9. The data may be studied by another method, which avoids the
difficulties incident to inverse probability, and is therefore incom-
plete. If we knew the exact value of @ for each of the n individuals,
we should calculate the values of 3z, 32*+-n, 32°+n, ... ; and these
calculated averages would constitute the data for determining the
mean values [2], [2*], [z*],.... When we only know the numbers
7y, Mg, ..., %, - in the p classes, we cannot calculate the value of Sz™
exactly. We may, therefore, leave on one side the question of the
amount of information that the value of 32" gives as to the frequency-
constants of the original community, and ‘consider only what is the -
most probable value of 3z™ itself, on the assumption that the numbers
Ty, My, ...; M- are obtained by random selection from some particular
(unknown) community, and how, on the same asaumptlon, the
different possible .values are distributed about this most probable
value.

Let z=f(»)

be the equation to the curve of frequency in the original community ;

and, as before, let
n, =nd,[A.

Since the numbers %,, g, ..., n, are obtained by random selection, the
difference n, ~ 7, may be regarded as comparable with v'n, (n—n,) /n.
To examine the distribution of possible values of 32", we suppose an
indefinitely great number of. sets of # individuals to be obtained by
random selection, and we pick out the cases in which the numbers in
the p classes are #,,n, ...,7,.. Let 3,.2™ denote the portion of Za
which is due to the n, individuals for which x lies between x,_; and
#,. Then it is clear, from the principles of random selection, that the
distributions of X, 2", 32", ..., 3,2", and of their sum 3z, in the
special cases. considered, are the same as if we made independent
random selections of u,, #y, ..., #, individuals from the p classes of
the original community.
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Let (2™), denote the mean value of 2™ for those individuals in the
original community for which z lies between z,., and z,, 5o that

("), = E:_,f (@) 2" dx + r'- f@)dz = Lr-lf(w) a"dr + A

Then the theory of error shows that, if #, individuals were taken at
random from this particular class, the mean value of 3,z" would be
n, (#"),, and the different values would be distributed about this
mean with mean square %, [ (), — {(2"),}*]. 1t follows from the
last paragraph that the different values of Z2™ are distributed about

rap rap
g mean value 2171,. (™), with mean square ,S,”' [(9:2’"),.— { (a:’”),}’].

This is true whatever the value of » may be. When = is large, the
distribution is approximately normal, and the most probable value

rap
of 32" is the same as the mean value 3 #,(z"),, while the actual
) r=l

value may be regarded as differing from this by an amount com-

parable with
v 2 n, [( Qm) _-{(xm)r}i],

i.e., by an amount comparable with

g2 Y {@").}~

n r=1 12

Let 32" denote the most probable value. Then, from (14), with
t‘h.‘.’ same notation as before,

“Ea:"”:répn, (=),
“‘,2. ZI f(é +0)(¢+6)"db
-_r?l nr{f"' Plz—'-(—————)h’f,?' ’+T° 54'( h‘f" L - }

4)v
['uh O g

m!
-—M IZT(_2)M -.h +T—-P,47—(———)—M.,._‘h
[h% (=) ]z x,,
+ 2 "f [h¢, @12 :' 0 (25)
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where

() = { B gt o= By g o ita . ] o)

. {12?: T =- ‘z ]3 j L+ } mha™ " l[ pf(w) dz. (26)

The value of “32™”, as given by (25), and the value of »*“[2™]",
as given by (23) or (24), agree in the terms

m ! n
Mﬂ 4‘P12'(n 2)'1[,,, 2h +T6P14'(q 4)"‘[»:—, T eeey

but the remaining terms are different. The difference, however,

is a linear function of the differences u,—mnj, #,—~ny, ..., n,—n,; and

these are small in comparison with . Hence »‘[«"]” and *Zu™”

may be regarded as substantially the same, the value of either being

given by (24).

10. The formula (24) applies to any distribution which satisties
the condition as to continuity. In the special cases we are considering,
the extreme values g, %, ..., and n,, 7,y ... are very small. We
have then, approximately,

nt [:l}'"] M Ezm ”

! !
= v P -_'”L_—Mm- R + ——m._- m- k=
" 12[('" 2)| 3 T' ’4|(l 4!)| ]
(37)
which gives, as particular cases,

n*[z]” =“3e” =M, )
n*[2']" = “32'” = M,—{;nh?
nt[2¥])” = %322 = My— 1M 1}

>y (28)

n“[a:‘]":“iz“’—M--Mh + b—nh
n [a:AJ IR Tl Ms_%‘B[a" +- LM R
&e.

J
since, of course, M,= =.

This is the most convenient form when we are able to take the
zero at the middle point of une of the divisions of the range, so that
&, &y weey & muy be integral multiples of A. In some cases it may be
desirable to take the zero at a point of division, so that x), z,, 2y, ..., z,
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will be integral multiples of h. Let Mj, Mj, ..., M,, denote the rough

values of 3z, 32 ..., Sa™ obtained by massing i, individuals at a,
4 (m+ny) by, 3 (ny+n) 8t 2y, ..., 45, at . Then, by (22),
n[2]” =“32” = M,
n [wﬂ] R zmi" = M;—énh’
a4 [2)])" = “ 3" = M;—MI}
”1'“ [m‘] » _ zm‘ ” — M;__2M;h?+1_‘l_snhC
24 [@*]" = “3®” = My— 22 MR+ JMI B¢
&c. )

L, (29)

If we use the rough values M,, M,, ... to determine y,, pg, ..., the
mean square, mean cube, ... of the deviation from the mean, and if
the common difference A is the unit of measurement, we have, from
(28), p, being zero,

corrected value of g, = pg—+
= pg— '083

corrected valne of p, = p,— 3y +vis , (30)
= y‘—gp,+‘0‘2916

corrected value of py = py—34p,

the value of u, being unaltered. Similarly, if pj, pg, ... denote the
values of ug, py, ... a8 deduced from M, M;, Mj, ..., we have, from (29),

corrected value of u, = puj—°8
corrected value of g, = p{—2u;+46 } . (31)

corrected value of 1, = py—4u,

11. The following are some numerical examples* showing the
oxtent of the inaccuracy due to dotermining * Zx”, “ Zad”, ... by the
approximate formule (28), instead of by the accurate formula (25).

In the first example the selection is * representative,” the numbers
being exactly proportional to the corresponding arens of the figure of
frequency. The ‘“most probable” values of Zx, X4 ..., and of

* The first two of these illustrations are given in tha papor referred to in note (%)
on . 362. A small error in one of tho values has beon corrected.

VOL. XXIX.—No0. 635. R



370  Mr. W. F. Sheppard on the Calculation of the [March 10,

Moy Mgy ... are in this case obtained by a simple integration, and the
differences between these values and the values given by (28) or (30)
are due solely to the omitted term

= [ @17,

which is equal to the second and third terms in (24). In the second

@

example, taken from Kramp’s table of values of .( e "dt, the selec-
¢

tion is approximately representative, the integer neavest to n; being
taken in each case. The most probable values are found by calcu-
lating each of the mnean values («"), separately, and taking the sum
Sn, (z"),; the differences between these and the values given by (28)
or (30) are due prinoipally to the term

T [e@] 1%,

but partly also to the fractional differences #,—#, occurring in the
last term of (25). The third example is formed from the second by
adding to or subtracting from the number in each class a number
comparable with the * probable error’ of the total number in the
class. It may, therefore, be taken as a typical illustration of the-
amount of error that would occur in an actual case of random selec-
tion. The values of pg, p,, and pg for the community selected being
2, 12, and 1680, the *“probable errors” in p, and p, for a random
selection of 88,622 individuals would be ‘0064 and ‘0888 respectively.
The actual “errors” for the selected values of n,,,, ...,n, are ‘0156
and '1815, so that the example is really an unfavourable one; but the
formule in (30) give the values of g, and p, within ‘0014 and ‘0346
respectively, which is as close an approximation as we could ezpect
to get.

In each case the “rough” values of M,, M,, ... and the correspond-
ing values of p,,py, p, arve given for comparison, so as to show the
degree of inaccuracy in the even moments py, p, which would be caused
by omitting the corrections afforded by (28) or (30).
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(1.) Ourve of Frequency z o (z+4L)° (53 —=)°.

n = 10"
(Representative Selection.)
z=—4% to -3} ...... 541,231,822
—3} to —2} ...... 18,864,047,410
-2} to -1} ...... - 98,443,459,630
—13to— § ... 216,942,703,570
— 3to 3 ... 278,001,526,318
}to 13 ..... 228994738642
13 to 2} ...... 119,611,449,550
21 to 3} ... 34,697,711410
3L to 4% ... 3,852,951,310
41 to 5% ... 50,180,338
Total e ... 1,000,000,000,000
3r+106| 222+106 | 325+108| Z2f+10° | 325+108
Rough value ............ 115387 [ 1871774 | 827127 | 9429592 | 8085022
Corrected value ......... 115387 | 1788441 | 798281 | 8522872 | 7412577 |-

Most probable value ...|115385|17884621798077 | 8524038 | 7405402

H3 M3 Hy
Rough value ............ 1-85847 | 18227 |9-19204
Corrected value......... 17751318227 | 829197

Most_ probable value... | 177515 | -18207 | 8-29803

(ii.) Curve of Frequency z ox e~1¢-2",
n = 88,622.
(Approximately Representative Selection.)

z=—6} to -5} ...... 2 z= % to 1} ...... 21,005
—5% to —44 ... 37 1} to 2% ...... 11,259
—44 to —3% ...... 355 2% to 3% ...... 3,733
—3% to —21 ...... 2,098 3% to 4% ... 765
—23 to -1} ... 7,670 4% to 5% ... 97
—13to— % ... 17,338 5% to 61 ...... 8

bt T_lz‘ o % oo nve 24!,255
Total ... 88,622

282
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| 33 | 2 | 3 |

Rough value ............... | 17726 188168 | 111560 |1196948 | 1169816
Corrected value.....,...... | 17726 1180783 | 107128} | 1105449 [ 1079434
Most probable value...... 17726180783 107123 |1105535 | 1079202

M ] L)

Rough value ............ |2:08325 | 00074 | 1300394
Corrected value......... | 199992 | -00074 | 11-99148
Most probable value... | 1:99992 | -00068 | 1199250

(iil.) Curve of Frequency g oc e @',

n = 88,622,
(Random ‘Selection.)

z=—6} to =5} ...... i 3fe= 4 tol} ... 20,965
— 5% to —43 ... 31 1} to 2} ... 11,289
—4} to =3} ...... 374 2% to 3} ... 3,783

— 8§ to —2} ... 2,153 3%.t0 4% ... 773
-2} to =1} ...... 7,657 4} to 5% ... 102
13 to—- § ... 17,326 5} to 6} ...... 12

— $to 3. 24154 —
Total ... 88,622

3z 329 z::a” 321 %ab
Rough value ............... | 17798 | 189716 | 113060 |1218440|1216388
Corrected value............ 17798 { 182331 | 108610} | 1126167 | 1124767
Most probable value...... 17795 | 182202 | 108288 |1122875 (1116061
] Hg M
Rough value ............|210040| -00198|13-23706
Corrected value ......... 2:01707| +00198|12-21603

Most probable value ...|2:01563| —-00038 | 12-18146

IT1. Extensiod To Two oR MORE VARIABLES.

12. The method of § 4 can be extended to any number of variables.
The expression
sinh (D,+D,) sinh (Dj+D;) _sinhD, D, simhDj D
D+D, ' Di+D; " D, sinhD," D; siuhD;
can be expanded so as to contain only positive integral powers (in-

cluding the power 0) of D,, Dy, D;, D;, ...; and it venishes when
D, +D,, Di+D,, ... are simultaneously equal to zero. Thus we see
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that J’Mhrﬂkf(z, Y, )2, y,....) dzdy ... (32)
YN B
is equal to o
Y+hh o+ gk ) 'Bl “_—_
[ ey oy anay . 1= B+ ram g ]
P .
x f1-Fran L+ B - --}-..¢(z,n,...)+1e, (33)

where I consists of terms involving the boundary values of f(z, ¥, ...),
¢ (2, y, ...), and their partial differential coeflicients with regard to
@, y, .... Hence, if the values of =z,y, .. range from z =gz, to
x = xy+ph, from y =y, to y = y,+qk, ..., and if f(z,y,...) and its
first few differential coefficients are negligible for the extreme values
of each of the variables z, ¥, ..., we have, approximately,

33 ... r”h r"k...f(x, Yy ) 9 (2, y, ..0) dudy ...

T-3h Ja-tk

t+3h [nedk .
=zz...j j e f @y, ) dady ...

-ih J i

{1—4(11;)*(2,, } {1—_-(;L)ﬂ } (B o),
(34)
the summations being made for the p X ¢ X ... terms corresponding to

the different values of &, », ... .
It will be sufficient to consider the case of two variables. Let D,

and D, denote 5k (-Z% operating on f(z,y) and on ¢(z,y) respectively,
and let D] and D); have a similar meaning for ik ?— Then
dy
sinh (Dy+ D) sinh (Di+1;)
D,+ D, ' Di+ Dy,

sinhD, D, sinh){ D,
D, sinhD,” D sinhl);
4 8inh Dy D, {sinh (Di+Dy) _sinh Dy D; )

D, sinh D, D+ D; D;  sinh D})
+ sinh D] D, { sinh (D,+D,) sinh D, DN, }
Dy sinh D; D, + D, D, sinh D,
{ sinh (D, +D) sinh D D, }
D, +D D, sinhD,
sinh (D{+D;) _sinh )} D, } "
X smhly _th (.
{ T D¥ D Ly sinh 1; (3")
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and therefore ’1, j ! F (2, 9y) ¢ (z,y) dedy

= 22}71’-‘ j::::f:::f (=, y) da:dy { —% %/l-)ﬂ.d_:+...}
x {1—%(%7:)’;: o)
+2%[X(D;,D;).[::::f(m,\y)dm.{ 12’.( WP gt } (&3 J)]" %

+32 [x(@.D). [::f(w pay. {1~ e L a1

+@ (@ yg) =P (20 o) — P (@ Y0) + P (70r %o)s (36)

where
x(Dyy Dy) = g { (coth ey DTITD",) - (coth Dy~ Di’) } , (37)
@ (z,y) = x (D, D) x (D1, D) f(z, y) ¢ (2, y)- (38)

The signs of summation in the first term denote, of course, that the
expression is to be summed for each value of £ with each value of 5;
while in the second the summation is for all values of § and in the
third it is for all values of n. These terms, which denote values
along the edges of the area of integration, with the four concluding
terms, which denote values at the corners, can be expanded as in
(19); or they can be expressed in terms of differences, as in'(54) and
(24). They are negligible when f (z,y) and its first few differential

coefficients % ) j—fl, ... vanish for all values of & when y =y, or ¥,

and for all values of y when 2= g, or 2, ; and in these cases we have,
approximately,

er’ypf (z, y) ¢ (z, y) dady

*7" Yo

Erdh (oedk b FL
=22! j f(m,y)dmdy{l—é—}(%h)"—i—?-i-...}

-4h Jn-dk

P] 1 d2 :
X {1—-2—! (ak)gtT”-, } ¢(&n). (39)
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13. Now let the measurements of # and of y for » individuals be
given by a table of double entry, showing for values of 7 from 1 to p,
and for values of s from 1 to ¢, the number of individuals for which
z lies ‘between z,+ (r—1)(2,—=,)/p and a,+7r (z,—=,)/p, and y be-
tween y,+(s—1)(y,—%)/q and yo+s(y,—y)/q. Let “3z"y'" denote
the most probable value of 3z"y* for the # individuals (or n times
the most probable mean value of z™y for the original community),
and let S, denote the rough value of 3z"y* obtained by taking the
values of z and of y for all the individuals in each sub-class to be
the arithmetic means of the values of « and of y respectively which
determine the sub-class. Then, if M, (= S,.0) and N, (= So) denote
the “ rough” values of 3a™ and of 3y’ obtained in this way, we have,
approximately,

“Say” =8,* ]

“3a'y” = Sy—ysNH

“Zay'” = Sy—¥s MK

“Zaly” = Sy—1Suk’

“ 32yt = Sp— Py MoK — 1 Ny B+ pignhtE

“Say” = 8,,—18, 1 ¥ (40)

“Zaty” = Sg—i8ul'+ 5L N A

“ Sty = Syu— 1Sk —Ps MR+ Fe M R

“3My” = Spy— {8y =1 N, 12+ 5 N WK

“ Zwyt” Siu—3858° + g MK .
v &e. J

IV. Tae Seurious Corve oF FrEQUENCY.

z+}h
14. Let%[ f(x)dz be denoted by f, (z). If we call z = f(x)
r~}h

the principal curve, then z = f, (z) may be called the derived curve.

* There is an apparent contradiction in this and similar formule when the value
of y for each individual is equal or very nearly equal (or praportional) to that of .,
i.e , when the distributions of z and of y are very closely correlated ; for the
formula appears to give M, instead of M;—2,43. But, if y were always equal to z,
there would be a discontinuity all along the linc ¥ = z; and therefore the formula,
which is based on the hypothesis of continuity, would not apply at all. When g is
only very nearly equal to z it will be seen that the sets of planes corresponding to
consecutive values of z and y cut the solid of frequency in such & way that the
volumer, which in forming the values of §; are concentrated at points outside the
line y = 2, are appreciable.
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The curves are related in such a way that the ordinate to the latter
curve at any point z = § is proportional to the area of the former
curve comprised between the ordinates at @ = {—4h and = =&+3h.
If these ordinates are MP and M'P’, and if % is relatively small, the
extremity of the ordinate to the derived curve will lie inside the area
formed by the arc PP’ and the chord PP’. Thus the derived curve
lies inside the principal curve where the latter is convex, arnd outside
it where it is concave; any point of intersection of the two curves
being near a point of inflexion of the principal curve.

If 2 = f (=) ranges from x#=uwm, to 2 ==, then z=f,(z) only
ranges from ¢ = z,+3}h to & =x,—3h. But, if z = f(z) touches the
base (z = 0) at its extremities, it may be considered to coincide with
it beyond this range: and z = f, (v) may thus be regarded as extend-
ing from 2 = x,— 3k to x =a,+%h; the curve, like the principal
curve, touching the base at its extremities. We shall only consider
this class of cases. )

Let the areas of the principal curve between the successive ordi-

nates corresponding to =, & = 2+ 7, © = x,+2h, ...,z =2x,+pk,
be 4,, 4,, ..., 4,, Then the ordinates of the derived curve at the
points z=ay—%h, z=w®+%h, .., e =a,~3h, a=gz,+5h are

0, A\/k, Ayh, ..., 4,/h, 0. Hence, from (28), we have, approxi-
mately,

ry+ik
area of derived curve =j fi(@) dz
xo-th
1 A A
=pi4 2 4p
SR

= area of principal curve;

first moment of derived curve
xp+ih
= I fi@)zdy
zo-th
ld

=hi%&+%§+m+%g}

= first moment of principal curve, by (17).

Thus the two curves have the same area and the same mean value
of . From (28) we have as the geuneral formula rclating to the

derived curve, when 4,, 4,, ..., 4, are given,
.1~p+§h, rop
f fHi@) o) de = 2 A,¢(2). (41)
:o..]-h rol
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15. When the result of a random selection of » individuals is to
give numbers 7,7, ...,n, in the successive classes corresponding to
equidistant divisions of the scale of measurement, these numbers are,
except for the ‘“‘errors’” due to random selection, proportional to
the corresponding areas of the figure of frequency in the original
community. In order, therefore, to represent the data graphically,
we should draw & curve such that the areas between the successive
ordinates at the p+1 points of the scale are proportional to n,, n,, ..., 7,
The calculation of the ordinates of this curve, which may be regarded
a8 the true curve of frequency for the # individuals, involves trouble-
some iﬁterpolations; and, to avoid this, statisticians often draw a
curve whose ordinates at the middle points of the divisions of the scale
are proportional to =, n,...,n, This curve may be called the
spurious curve of frequency. It bears the same relation to the true
curve of frequency that the derived curve of § 14 bears to the principal
curve. Thus it has the same area as the true curve, and its central
ordinate starts from the same point on the base, but it is flattened
down so as to be inside the true curve at or about the mean and
outside it at the extremities; and therefore it has a greater mean
square of deviation.

If we deal with the spurious curve instead of with the true curve,
we must apply the formula (41) instead of the corresponding formula
derived from (17). Hence, in order to find the values of pg, s, &c.,
for the spurious curve, we must use the “rough " values M;, M;, My, ...,
without the introduction of the corrections given by (28) or
(30).

The divergence of the spurious curve from the true curve is greater
or less according a8 & is greater or less. The same facts may therefore
be represented by any number of different spurious curves, according
to the unit of measurement we adopt. Thus example (A) of §7
would give as ordinates of the spurious curve, when the unit of
measurement is 10 Ibs. :—

‘Weight. Ordinate.
115 lbs. 133
145 Ibs, 1,240
175 1bs. 492
205 1bs. 75
235 1bs. 10

but, if the unit had becn 30 lbs., the ordinates (reduced in the ratio
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of 1:3) would have been

Weight. Ordinate.
115 Ibs. 166
145 1bs. 1,003
175 1bs. 559
205 1bs. 104
235 1bs. 17

which would have given & very different curve. Moreover,
the results obtained by using the spurious curve are useless
if we require an accurate test of any particular hypothesis. The
arguments which lead us to expect to find a curve of a particular
kind [e.g., in Prof. Karl Pearson’s recent researches, a curve whose
equation is of the form 2o (z—z,)" (:r,,—a:)"] relate to the curve of
frequency itself, not to the spuriouscurve; and, by attempting to fit
a curve of this kind to the spirious curve, we shall obtain incorrect
results.
APPRNDIX.
Moments of a Polygon.

The question of the proper formule to be used for Sz™ has been
incidentally discussed by Prof. Karl Pearson in a recent memoir.*
His method is to draw ordinates proportional to the numbers given
by the observations, and to join the tops of these ordinates by straight
lines, so as to form a polygon. It will be seen that this polygon lies
inside the spurious curve where the latter is convex, and outside it
where it is concave ; and that, when z = f(z) has close contact with
the base at its extremities, the area of the polygon is approximately
equal to that of the curve, and the first moments of the two areas
are also approximately equal. The “mean square of deviation” of
the polygon is, therefore, greater than tha’ of the spurious curve,
which, again, is greater than that of the true curve.

It is interesting, though the result is of no practical value, to obtain
the moments of such a polygon in terms of the areas, instead of
in terms of the ordinates. Let ordinates z, 2y, .y %, be drawn at
points & =, x=wa,, ..., ¢ =um,, the common difference of abscissa
being h, and let the tops of the ordinates be joined so as to
form a polygon. This polygon consists of a series of trapezia of
areas 4,, 4, ..., 4,, where

A = Lh (2 +2).

* Phil. Trans., Vol. cLxxxvr, (1895), A, p. 349.
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The m™ moment of the polygon about 2 =0 is

rap (Or | .
b} J 2z™ d.v.

re=l Ty

Let this be denoted by P,. Then, as Prof. Pearson shows,

Ty
I za™ da
r-<1
— ~ 1 l m+2 742 "4 m+]
(m+1)(m+2) h ( zf-l)(’l‘ "-1)+ ( z r- lz" 1)
. 42)
r= Tr
and this gives 2': I za" da
rel Yoo

g ' m! m-278
._.22 { (2' a:,l+4!———~——!(m_2)!w, 2h +)}

— m! m-178 m! m-374 z=ap
[+ (o= sy ) |, o @

the expression under the sign of summation being only taken once
for the extreme values, instead of twice. The term given by the
square brackets vanishes when z, and z, are both zero.

To express P, in terms of 4,, 4, ..., 4,, we have, from (42),

r" éa:”'da: —_— 1 ( ,Bm+2+z wmoﬂ)
- - (m+1)(m+2) h 2,4 re1%r—1
1 "+ 010
D@D 7 G )
g Gl e, (44)

To adapt the first term of the right-hand side, we use the formula*

M4E " (m+ 2) ! 3 (m + 2) ! M-
(;'/+1) E_y +2'—'El 1 y+‘Eﬂ4’! (m_2)!y -

(m+2) mel__ (m+2) m-1
(45)'

* “On tho Relations between Bernoulli's and Euler's Numbers,”” Quarterly
Journal of Mathematics, 1898, p. 18.
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where E,, E,, ..., T}, T}, ... are the coefficients in the expansions

sechf=1-— D‘zv -+-172
y (46)
tanhf = T, 3' +
If (= % (a-'r-l +wr)$

this gives

nn2 n+2 m+2 g gm m+2 ! 4 gm-2__
=& =BG e+ m, D g
(m+2)| m+l (m+2) 3 m-l
+T11—,'(——'_ﬁ)—,(2’) 53,( l)|(s h)?a,

with a similar equation obtained by changing z, into 2,., and 3k into
— 3k Multiplying these equations by z, and ., respectively, and
adding, substituting in (44),end adding the corresponding expressions
for the other trapezia, we find, the summations being from » =1
to r=p,

Tr
Ej za"dz .
Tray
E +l " E 1 m 17,18 "-2
N IS T G G RAL
T, m! 12,13 =1 — I &yt -3 =
+|—.2.’3 1T m 1)v(2") 453'(m 3)r(“h)”‘” +e. ],, el
(47)
so that, when z,= 0 and 2,= 0,
m-2 -
P, = S48~ WWEAé h’+fs_‘x_4"( EA Py
(48)

which agrees with (27) in the second term, but not in subsequent
terms.





