9. In the former figure (Vol. xxil., l.c.) we may mention that a a^{\prime}, $\beta \beta^{\prime}$ intersect on the symmedian line through 0 .
10. Let $p q$ cut $B O, C A$, in $D, E^{\prime} ; q r$ cut $O A, A B$ in E, F^{\prime}; and $r p$ cut $A B, B O$ in F, D^{\prime}.

The points are given thus

$$
\begin{array}{ll}
D, 0, a^{3} b, c\left(a^{2}+b^{2}\right) ; & D^{\prime}, 0, b\left(c^{2}+a^{2}\right), c a^{2} ; \\
E, a\left(b^{2}+c^{2}\right), 0, b^{2} c ; & E^{\prime}, a b^{2}, 0, c\left(a^{2}+b^{2}\right) ; \\
F, c^{2} a, b\left(c^{2}+a^{2}\right), 0 ; & F^{\prime}, a\left(b^{2}+c^{2}\right), b c^{2}, 0 .
\end{array}
$$

Hence we obtain $D E^{2}=a^{4} b^{2} c^{2}\left(b^{2}+c^{2}+2 b c \cos A\right) / \lambda^{4}$;

$$
E E^{\prime}=a^{2} b c^{2} / \lambda^{2}=D^{\prime} F,
$$

i.e., $\quad E E^{\prime \prime} . A O=a^{2} b^{2} c^{2} / \lambda^{3}=F F^{\prime} . A B=D D^{\prime} . B C$.
11. The conic round $D E F D^{\prime} E^{\prime} F^{\prime \prime}$ is

$$
b^{2} c^{2}\left(c^{2}+a^{2}\right)\left(a^{2}+b^{2}\right) a^{2}+\ldots+\ldots=\left(2 a^{4}+\lambda^{2}\right) b c\left(b^{2}+c^{2}\right) \beta \gamma+\ldots+\ldots
$$

12. We see that $A E=b^{3} c^{8} / \lambda^{2}, \quad A F^{\prime}=b^{2} c^{3} / \lambda^{9}$;
hence the hexagon
$D^{\prime} D E^{\prime} E F^{\prime} F^{\prime}=\Delta\left(1-\Sigma a^{4} b^{4} / \lambda^{4}\right)=2 \Delta a^{2} b^{2} c^{8} / \lambda^{4}$.
Also the diagonals pass through the mid-points of $\Omega \Omega^{\prime}$, which is therefore the centre of the conic in § 11 .

Second Memoir on the Fixpansion of certain Infinite Products. By L. J. Rogers. Received April 2nd, 1894. Read April $12 \mathrm{tb}, 1 \mathrm{C} 94$.

1. If $A_{r}(\theta)$ denote the coefficient of $x^{r} /(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{r}\right)$ in the expansion of

$$
1 \div\left(1-2 x \cos \theta+x^{2}\right)\left(1-2 x q \cos \theta+x^{9} q^{9}\right) \ldots
$$

we have seen that the value of $A_{r}(\theta)$ is

$$
\begin{equation*}
2 \cos r \theta+\frac{1-q^{r}}{1-q} 2 \cos (r-2) \theta+\frac{1-q^{r}}{1-q} \frac{1-q^{r-1}}{1-q^{2}} 2 \cos (r-4) \theta+\ldots \tag{1}
\end{equation*}
$$

and that certain series and infinite products have been expanded according to ascending orders of A 's. Now suppose that any such series

$$
a_{0}+a_{1} A_{1}(\theta)+a_{2} A_{2}(\theta)+\ldots
$$

be equivalent to the Fourier series

$$
b_{0}+2 b_{1} \cos \theta+2 b_{7} \cos 2 \theta+\ldots
$$

We obtain, by equating coefficients of cosines of even multiples of θ,

$$
\left.\begin{array}{ll}
a_{0}+a_{3} \frac{1-q^{8}}{1-q}+a_{6} \frac{1-q^{4}}{1-q} \frac{1-q^{8}}{1-q^{6}}+a_{0} \frac{1-q^{6}}{1-q} \frac{1-q^{5}}{1-q^{2}} \frac{1-q^{6}}{1-q^{8}}+\ldots & =b_{0} \\
a_{3}+a_{6} \frac{1-q^{4}}{1-q}+a_{6} \frac{1-q^{6}}{1-q} \frac{1-q^{8}}{1-q^{2}}+a_{8} \frac{1-q^{8}}{1-q} \frac{1-q^{7}}{1-q^{2}} \frac{1-q^{0}}{1-q^{8}}+\ldots & =b_{3} \\
a_{4}+a_{6} \frac{1-q^{6}}{1-q}+a_{8} \frac{1-q^{8}}{1-q} \frac{1-q^{7}}{1-q^{2}}+\ldots & =b_{4} \\
a_{8}+a_{8} \frac{1-q^{8}}{1-q}+\ldots & =b_{0} \\
a_{8}+\ldots & =b_{8} \\
\& c . & \tag{2}
\end{array}\right\}
$$

We may evidently, by multiplying these equations by suitable quantities, obtain a relation connecting the a 's and b 's in the form

$$
a_{0}+a_{1} \lambda+a_{2} \lambda^{2}+\ldots=b_{0}+b_{1} \mu_{1}+b_{2} \mu_{2}+\ldots
$$

Now, since

$$
a_{0}+a_{1} A_{1}(\theta)+\ldots=b_{0}+2 b_{1} \cos \theta+\ldots
$$

and

$$
2 \cos \theta \cdot A_{r-1}(\theta)=A_{r}(\theta)+\left(1-q^{r-1}\right) A_{r-2}(\theta)
$$

(see footnotes on p. 344, Vol. xxiv.), we get, after multiplying by $2 \cos \theta$, which is $A_{1}(\theta)$,

$$
\begin{array}{r}
a_{0} A_{1}(\theta)+a_{1}\left\{A_{9}(\theta)+(1-q)\right\}+a_{9}\left\{A_{3}(\theta)+\left(1-q^{9}\right) A_{1}(\theta)\right\}+\ldots \\
\quad=2 b_{1}+\left(b_{0}+b_{2}\right) \cos \theta+\left(b_{1}+b_{3}\right) \cos 2 \theta+\ldots \quad \ldots \ldots \ldots(\tag{4}
\end{array}
$$

and hence, by (3),

$$
\begin{gathered}
a_{1}(1-q)+\left\{a_{0}+a_{2}\left(1-q^{2}\right)\right\} \lambda+\left\{a_{1}+a_{3}\left(1-q^{3}\right)\right\} \lambda^{2}+\ldots \\
=2 b_{1}+\left(b_{0}+b_{2}\right) \mu_{1}+\left(b_{1}+b_{8}\right) \mu_{2}+\ldots ;
\end{gathered}
$$

$$
\begin{aligned}
& \text { i.e., } \begin{aligned}
& \lambda\left\{a_{0}+a_{1} \lambda+a_{2} \lambda^{2}+\ldots\right\} \\
&+\frac{1}{\lambda}\left\{a_{0}+a_{1} \lambda+a_{3} \lambda^{2}+\ldots\right\}- \frac{1}{\lambda}\left\{a_{0}+a_{1} \lambda q+a_{2} \lambda^{2} q^{2}+\ldots\right\} \\
&=b_{0} \mu_{1}+b_{1}\left(2+\mu_{9}\right)+b_{2}\left(\mu_{1}+\mu_{3}\right)+\ldots .
\end{aligned}
\end{aligned}
$$

If, however, as in Vol. xxiv., p. 337, δ_{λ} denote the operation which turns $f(\lambda)$ into $\frac{f(\lambda)-f(\lambda q)}{\lambda}$, we see that

$$
\left(\lambda+\delta_{\lambda}\right)\left(b_{0}+b_{1} \mu_{1}+b_{8} \mu_{8}+\ldots\right)
$$

is identically the same series in the b 's as

$$
b_{0} \mu_{1}+b_{1}\left(2+\mu_{2}\right)+\ldots
$$

Hence

$$
\left.\begin{array}{rl}
\mu_{1} & =\lambda \tag{5}\\
2+\mu_{g} & =\left(\lambda+\delta_{\lambda}\right) \mu_{1}=\lambda^{2}+1-q \\
\mu_{1}+\mu_{3} & =\left(\lambda+\delta_{\lambda}\right) \mu_{g} \\
\ldots & \cdots
\end{array}\right)
$$

From these equations we may successively obtain the values of μ_{1}, μ_{9}, \ldots, and by substituting in (3), and equating coefficients of powers of λ, we may obtain the values of a_{0}, a_{1}, \ldots It is, moreover, obvious that the terms containing a 's with even suffixes may be equated to those containing b 's with even suffixes.
The actual values of μ_{1}, μ_{2}, \ldots, however, may be best determined by means of the identity

$$
\begin{gather*}
1+\frac{x \mu_{1}}{1-q}+\frac{x^{8} \mu_{3}}{1-q^{2}}+\frac{x^{3} \mu_{3}}{1-q^{3}}+\ldots \\
=1+\frac{x}{1-q}(\lambda-x)+\frac{x^{8}}{1-q^{2}}(\lambda-x)(\lambda-x q) \\
 \tag{6}\\
+\frac{x^{3}}{1-q^{3}}(\lambda-x)(\lambda-x q)\left(\lambda-x q^{2}\right)+\ldots
\end{gather*}
$$

which we will now proceed to establish.
Calling the latter series F, we see that

$$
\begin{equation*}
\delta_{\lambda} F=x+x^{2}(\lambda-x)+x^{8}(\lambda-x)(\lambda-x q)+\ldots \tag{7}
\end{equation*}
$$

since

$$
\delta_{\lambda}(\lambda-x)(\lambda-x q) \ldots\left(\lambda-x q^{n-1}\right)
$$

$$
=\frac{1}{\lambda}\left\{(\lambda-x)(\lambda-x q) \ldots\left(\lambda-x q^{n-1}\right)\right.
$$

$$
\left.-q^{n-1}(\lambda q-x)(\lambda-x)(\lambda-x q) \ldots\left(\lambda-a \cdot q^{n-2}\right)\right\}
$$

$$
=\left(1-q^{\prime \prime}\right)(\lambda-x)(\lambda-x q) \ldots\left(\lambda-x q^{n--3}\right)
$$

Again,

$$
\delta_{x} F=\{\lambda-x(1+q)\}+x(\lambda-x q)\left\{\lambda-x\left(1+q^{2}\right)\right\}
$$

$$
+x^{2}(\lambda-x q)\left(\lambda-x q^{2}\right)\left\{\lambda-x\left(1+q^{3}\right)\right\}+\ldots
$$

as is easily seen, and this

$$
\begin{align*}
=(\lambda-x q) & +x(\lambda-x q)\left(\lambda-x q^{q}\right)+x^{2}(\lambda-x q)\left(\lambda-x q^{2}\right)\left(\lambda-x q^{8}\right)+\ldots \\
& -x-x^{3}(\lambda-x q)-x^{s}(\lambda-x q)\left(\lambda-x q^{2}\right)-\ldots \quad \ldots \ldots \ldots . . \tag{8}
\end{align*}
$$

while, by (2),

$$
\begin{align*}
\delta_{x} \delta_{\lambda} F=1+x & (\lambda-x)+x^{2}(\lambda-x)(\lambda-x q)+\ldots \\
& -q-x q(\lambda-x q)-x^{2} q^{2}(\lambda-x q)\left(\lambda-x q^{2}\right)-\ldots \tag{9}
\end{align*}
$$

Now $x(\lambda-x) \delta_{z} F=x(\lambda-x)(\lambda-x q)+2^{2}(\lambda-x)(\lambda-x q)\left(\lambda-x q^{2}\right)+\ldots$

$$
-x^{2}(\lambda-x)-x^{3}(\lambda-x)(\lambda-x q)-\ldots,
$$

and, since $\delta_{x} F$ may also be written in the form

$$
\begin{gathered}
(\lambda-x)+x(\lambda-x)(\lambda-x q)+x^{2}(\lambda-x)(\lambda-x q)\left(\lambda-x q^{8}\right)+\ldots \\
-x q-x^{3} q^{2}(\lambda-x q)-x^{8} q^{8}(\lambda-x q)\left(\lambda-x q^{2}\right)-\ldots
\end{gathered}
$$

we see that

$$
\begin{align*}
\left(1-\lambda x+x^{2}\right) \delta_{x} F= & (\lambda-x) \\
& +x^{2}(\lambda-x)+x^{8}(\lambda-x)(\lambda-x q)+\ldots \\
& -x q-x^{3} q^{2}(\lambda-x q)-x^{3} q^{8}(\lambda-x q)\left(\lambda-x q^{2}\right)-\ldots, \tag{10}
\end{align*}
$$

which, by (9), $=\lambda-2 x+x \delta_{x} \delta_{\lambda} F$
If, then, F be arranged in powers of x in the form

$$
1+\frac{m_{1}}{1-q}+\frac{x^{9} m_{9}}{1-q^{9}}+\ldots
$$

we see that

$$
\delta_{x} F=m_{1}+m_{\mathrm{y}} x+m_{\mathrm{s}} x^{2}+\ldots,
$$

and (10) becomes

$$
\begin{aligned}
&\left(1+x^{2}\right)\left(m_{1}+m_{2} x+m_{\mathrm{s}} x^{2}+\ldots\right) \\
&=\lambda-2 x+x\left(\lambda+\delta_{\lambda}\right)\left(m_{1}+m_{9} x+m_{3} x^{3}+\ldots\right)
\end{aligned}
$$

Equating coefficients of powers of x, we get

$$
\begin{aligned}
& m_{1}=\lambda, \\
& 2+m_{9}=\left(\lambda+\delta_{\lambda}\right) m_{11} \\
& m_{1}+m_{3}=\left(\lambda+\delta_{\lambda}\right) m_{91} \\
& \cdots \quad \cdots \quad \cdots \\
& \cdots
\end{aligned}
$$

so that the m 's are derived from one another in precisely the same way as the μ 's in (5), and are therefore identical.

Hence the trath of (6) is established.
If we write q_{n} as an abbreviation for $1-q^{\prime \prime}$, we may easily observe the formation of the coefficients.

In fact, since $\quad(\lambda-x)(\lambda-x q) \ldots\left(\lambda-x q^{n-1}\right)$

$$
=\lambda^{n}-\frac{q_{x}}{q_{2}} \lambda^{n-1} x+q \frac{q_{n} q_{n-1}}{q_{1} q_{2}} \lambda^{n-2} x^{8}-q^{8} \frac{q_{n} q_{n-1} q_{n-2}}{q_{1} q_{3} q_{3}} \lambda^{n-3} x^{s}+\ldots
$$

we get, from (6), $\quad a_{0}+a_{1} \lambda+a_{t} \lambda^{2}+\ldots$

$$
\begin{aligned}
& =b_{0}+q_{1} b_{1}\left\{\frac{\lambda}{q_{1}}\right\}+q_{2} b_{9}\left\{\frac{\lambda^{3}}{q_{9}}-\frac{1}{q_{1}}\right\} \\
& +q_{2} b_{3}\left\{\frac{\lambda^{3}}{q_{3}}-\frac{\lambda}{q_{2}} \frac{q_{9}}{q_{1}}\right\} \\
& +q_{6} b_{4}\left\{\frac{\lambda^{4}}{q_{4}}-\frac{\lambda^{2}}{q_{3}} \frac{q_{3}}{q_{1}}+q \frac{1}{q_{3}}\right\} \\
& +q_{5} b_{5}\left\{\frac{\lambda^{5}}{q_{5}}-\frac{\lambda^{8}}{q_{4}} \frac{q_{4}}{q_{1}}+q \frac{\lambda}{q_{8}} \frac{q_{5}}{q_{1}}\right\} \\
& +q_{0} b_{0}\left\{\frac{\lambda^{0}}{q_{0}}-\frac{\lambda^{4}}{q_{5}} \frac{q_{5}}{q_{1}}+q \frac{\lambda^{3}}{q_{4}} \frac{q_{0} q_{5}}{q_{1} q_{3}}-q^{3} \frac{1}{q_{3}}\right\} \\
& +\ldots,
\end{aligned}
$$

where the coefficients in the bracketed series are formed on the analogy of those appearing in the development of $2 \cos n \theta$ in powers of $2 \cos \theta$, and q occurs in the $r^{\text {th }}$ term of any series raised to the $\frac{1}{3}(r-1)(r-2)^{\text {ih }}$ power.

Equating the several powers of λ, we see that

$$
\begin{equation*}
a_{0}=b_{0}-(1+q) b_{2}+q\left(1+q^{2}\right) b_{4}-q^{8}\left(1+q^{8}\right) b_{0}+\ldots \tag{12}
\end{equation*}
$$

the general term being

$$
(-1)^{r} q^{i r(r-1)}\left(1+q^{r}\right) b_{2 r}
$$

while $(1-q) a_{1}=(1-q) b_{1}-\left(1-q^{8}\right) b_{3}+q\left(1-q^{0}\right) b_{6}-q^{8}\left(1-q^{7}\right) b_{7}-\ldots$, the general term being

$$
(-1)^{r} q^{1 r(r-1)}\left(1-q^{2 r+1}\right) b_{2 r+1} \cdots \ldots \ldots \ldots \ldots \ldots \ldots . .(13)
$$

Similarly, series may be obtained for a_{3}, a_{3}, \ldots in terms of the b 's, bat for our present investigations it will not be necessary to quote them here.

Either of these relations gives us a method of expanding the square of the infinite product $(1-q)\left(1-q^{8}\right)\left(1-q^{8}\right) \ldots$ in powers of q.
For from the identity which gives $1 \div \theta\left(\frac{2 K \theta}{\pi}\right)$ as a series of partial fractions, which, on changing $q^{9}, 2 \theta$ into q, θ, becomes

$$
\begin{aligned}
& \frac{\Pi\left[1-q^{n}\right]^{2}}{\Pi\left[1-2 q^{n+1} \cos \theta+q^{3 n-1}\right]} \\
& =\frac{1-q}{1-2 q^{4} \cos \theta+q}-\frac{q\left(1-q^{3}\right)}{1-2 q^{3} \cos \theta+q^{3}}+\frac{q^{3}\left(1-q^{5}\right)}{1-2 q^{4} \cos \theta+q^{8}}-\ldots \\
& =\left(1-q+q^{3}-q^{6}+\ldots\right) \\
& +2 q^{1} \cos \theta\left(1-q \cdot q+q^{3} \cdot q^{9}-q^{6} \cdot q^{3}+\ldots\right) \\
& +2 q \cos 2 \theta\left(1-q \cdot q^{2}+q^{3} \cdot q^{4}-q^{6} \cdot q^{6}+\ldots\right) \\
& \quad+\ldots
\end{aligned}
$$

we get, from (13),

$$
\begin{aligned}
\amalg\left[1-q^{1}\right]^{5}= & (1-q)\left(1-q^{3}+q^{5}-q^{9}+\ldots\right) \\
& -q\left(1-q^{8}\right)\left(1-q^{4}+q^{6}-q^{15}+\ldots\right) \\
& +q^{8}\left(1-q^{5}\right)\left(1-q^{6}+q^{13}-q^{92}+\ldots\right) \\
& -q^{6}\left(1-q^{7}\right)\left(1-q^{8}+q^{17}-q^{17}+\ldots\right) \\
& +\ldots .
\end{aligned}
$$

Multiplying out the binomial factors on the right-hand side, and arranging the series in two blocks, it will be found that horizontal and vertical series are equal in pairs, starting from a series of terms running parallel to the diagonals of the blocks, so that

$$
\begin{aligned}
\text { II }\left[1-q^{11}\right]^{3}= & 1-2 q+2 q^{3}-2 q^{0}+\ldots \\
& -q^{9}\left(1-2 q^{3}+2 q^{7}-2 q^{19}+\ldots\right) \\
& +q^{4}\left(1-2 q^{4}+2 q^{0}-2 q^{13}+\ldots\right) \\
& -q^{10}\left(1-2 q^{3}+2 q^{11}-2 q^{18}+\ldots\right) \\
& +q^{14}\left(1-2 q^{6}+2 q^{13}+2 q^{21}+\ldots\right) \\
& -\ldots,
\end{aligned}
$$

where the indices in the terms outside the brackets are of the form $n(3 n \pm 1)$, while those in the bracketed series form series whose differences are in arithmetic progression.
2. The series on the right-hand side of $\S 1$, (6) can, in the cases where $\lambda=1$ or where $\lambda=q^{4}$, be very easily arranged according to powers of x, by means of a functional equation which it satisfies.

Let $\quad F(\mu, x)=1+\frac{\mu}{1-q}(\lambda-x)+\frac{\mu^{2}}{1-q^{2}}(\lambda-x)(\lambda-x q)+\ldots$.
Then

$$
\begin{gather*}
\quad F(\mu, x)-F(\mu q, x) \\
=\mu(\lambda-x)+\mu^{2}(\lambda-x)(\lambda-x q)+\ldots \\
=\mu(\lambda-x)+\mu(\lambda-x)\{F(\mu, x q)-F(\mu q, x q)\} \tag{1}
\end{gather*}
$$

Moreover

$$
\mu x\left\{F(\mu q, x)-F\left(\mu q^{2}, x\right)\right\}
$$

$$
=\mu^{9} q x(\lambda-x)+\mu^{8} q^{9} x(\lambda-x)(\lambda-x q)+\ldots
$$

$$
=-\mu^{2}(\lambda-q x)(\lambda-x)-\mu^{8}\left(\lambda-q^{2} x\right)(\lambda-x)(\lambda-x q)-\ldots
$$

$$
+\mu^{2} \lambda(\lambda-x)+\mu^{5} \lambda(\lambda-x)(\lambda-x q)+\ldots
$$

$$
\begin{equation*}
=\mu(\lambda-x)-(1-\mu \lambda)\{F(\mu, x)-F(\mu q, x)\} \tag{2}
\end{equation*}
$$

Again,

$$
\begin{equation*}
F(\mu, x q)-F(\mu, x)=\mu x+\mu x\{F(\mu, x q)-F(\mu q, x q)\} \tag{3}
\end{equation*}
$$

i.e., $\quad F(\mu, x q)(1-\mu x)=F(\mu, x)-\mu x F^{\prime}(\mu q, x q)+\mu x$.

By the help of (1), (2), and (3), we may eliminate all the functions except $F^{\prime}(\mu, x), F(\mu q, x q)$, and $F\left(\mu q^{2}, x q^{2}\right)$, and obtain the equation

$$
\begin{align*}
& \frac{1-\mu \lambda}{1-\mu x}\{F(\mu, x)-F(\mu q, x q)+\mu x\} \\
& +\mu^{9} x q^{9} \frac{\lambda-x q}{1-\mu x q^{2}}\left\{F(\mu q, x q)-F\left(\mu q^{2}, x q^{2}\right)+\mu x q^{2}\right\} \\
& \quad=\mu\left(1-\mu x q^{2}\right)(\lambda-x q) \ldots \tag{4}
\end{align*}
$$

Let $\mu=x$, and write $F(x)$ for $F(x, x)$. Then

$$
\begin{gathered}
\frac{1-\lambda x}{1-x^{2}}\left\{F(x)-F(x q)+x^{2}\right\}+x^{3} q^{2} \frac{\lambda-x q}{1-x^{3} q^{6}}\left\{F(x q)-F\left(x q^{2}\right)+x^{2} q^{2}\right\} \\
=x\left(1-x^{3} q^{8}\right)(\lambda-x q) .
\end{gathered}
$$

Let $\lambda=1$, and write $\psi(x)$ for $\frac{F(x)-F(x q)+x^{2}}{1+x}$, so that

$$
\psi(x)+x^{3} q^{2} \psi(x q)=x-x^{2} q-x^{3} q^{8}+x^{4} q^{8} .
$$

From this relation we easily get

$$
\begin{equation*}
\psi(x)=x-x^{3} q-x^{8} q^{8}+x^{5} q^{5}+x^{8} q^{7}-x^{8} q^{18}-x^{0} q^{15}+\ldots \tag{5}
\end{equation*}
$$

a series which is worthy of notice for its resemblance to the expansion of $\Pi_{1}^{\infty}\left[1-q^{n}\right]$ in powers of q.

Substituting for $\psi(x)$ and multiplying up, we get

$$
F(x)-F(x q)=x-x^{3} q-x^{3}\left(q+q^{3}\right)-x^{4} q^{2}+x^{3} q^{5}+x^{0}\left(q^{5}+q^{7}\right)+\ldots
$$

and, finally,
$F(x)=1+\frac{x}{1-q}-\frac{q x^{2}}{1-q^{9}}-\frac{\left(q+q^{9}\right) x^{3}}{1-q^{8}}-\frac{q^{9} x^{4}}{1-q^{4}}+\frac{q^{5} x^{5}}{1-q^{5}}+\frac{\left(q^{5}+q^{7}\right) x^{6}}{-q^{6}}+\ldots$
Hence, by § 1, (6), $\quad a_{0}+a_{1}+a_{3}+\ldots$

$$
\begin{equation*}
=b_{0}+b_{1}-q b_{8}-\left(q+q^{9}\right) b_{3}-q^{9} b_{4}+q^{5} b_{5}+\left(q^{8}+q^{7}\right) b_{0}+q^{7} b_{7}-q^{10} b_{8}-\ldots \tag{6}
\end{equation*}
$$

The formation of these coefficients is sufficiently obvious. The coefficient of $b_{3 n}$ is $(-1)^{n}\left\{q^{i n(3 n-1)}+q^{i n(3 n+1)}\right\}$, while that of $b_{8 n-1}$ is $(-1)^{n} q^{q n(3 n-1)}$, and that of $b_{3_{n+1}}$ is $(-1)^{n} q^{4 n(3 n+1)}$. Moreover we may, of course, equate the series of terms with even suffixes to each other, and those with odd.

Again, in (4), let $\lambda=q^{4}$, so that

$$
\lambda-x q=q^{i}(1-\lambda x) .
$$

Then, in a manner similar to the above, we may show

$$
\begin{equation*}
F(x)=1+\frac{x q^{4}}{1-q}-\frac{x^{8}}{1-q^{4}}-\frac{q^{4}\left(1+q^{2}\right) x^{3}}{1-q^{8}}-\frac{q^{4} x^{4}}{1-q^{4}}+\frac{q^{4} x^{5}}{1-q^{5}}+\frac{q^{4}\left(1+q^{4}\right) x^{6}}{1-q^{6}}+\ldots \tag{8}
\end{equation*}
$$

so that, by (1), $\quad a_{0}+q^{4} a_{1}+q a_{9}+\ldots$
$=b_{0}+q^{4} b_{1}-b_{9}-q^{4}\left(1+q^{2}\right) b_{5}-q^{4} b_{4}+q^{4} b_{5}+q^{4}\left(1+q^{4}\right) b_{6}+q^{7} b_{7}-q^{8} b_{8}-\ldots$
The series of alternate terms giving

$$
\begin{gather*}
a_{0}+q a_{9}+q^{2} a_{4}+\ldots \\
=b_{0}-b_{3}-q^{4} b_{4}+q^{4}\left(1+q^{4}\right) b_{0}-q^{8} b_{8}-q^{20} b_{10}+q^{20}\left(1+q^{8}\right) b_{18}-\ldots \tag{9}
\end{gather*}
$$

is of special interest, as will be seen later.
The coefficient of $b_{6 n}$ is $q^{2 n(3 n-1)}+q^{2 n(3 n+1)}$, while that of $b_{6_{n-2}}$ and $b_{\text {en }+2}$ are respectively $-q^{2 n(3 n-1)}$ and $-q^{2 n(3 n+1)}$.
3. Closely analogous to the results obtained in the preceding sections are those derived from the coefficients of $x^{r} /\left(1-q^{r}\right)$! in the expansion of

$$
\left(1+2 x q \cos \theta+x^{2} q^{2}\right)\left(1+2 x q^{2} \cos \theta+x^{2} q^{4}\right) \ldots
$$

which in Vol. xxiv., p. 352, was denoted by $B_{r}(\theta)$.

If the q series $\quad a_{0}+a_{1} B_{1}(\theta)+a_{1} B_{2}(\theta)+\ldots$
be equivalent to the same Fourier series

$$
b_{0}+2 b_{1} \cos \theta+2 b_{2} \cos 2 \theta+\ldots
$$

we have, as in § 1 , (2),

$$
\left.\begin{array}{lll}
a_{0}+a_{4} q^{1+1} \frac{q_{8}}{q_{1}}+a_{4} q^{8+3} \frac{q_{4} q_{8}}{q_{1} q_{2}}+a_{0} q^{6+8} \frac{q_{6} q_{5} q_{4}}{q_{1} q_{2} q_{8}}+\ldots & =b_{0} \\
a_{2} q^{8}+a_{4} q^{8+1} \frac{q_{4}}{q_{1}}+a_{0} q^{10+8} \frac{q_{6} q_{5}}{q_{1} q_{2}}+\ldots & =b_{9} \\
a_{4} q^{10}+a_{8} q^{16+1} \frac{q_{0}}{q_{1}}+a_{8} q^{21+8} \frac{q_{8} q_{7}}{q_{1} q_{9}}+\ldots & =b_{4} \tag{1}\\
a_{0} q^{n}+a_{3} q^{29+1} \frac{q_{8}}{q_{1}}+\ldots & =b_{6} \\
a_{8} q^{88}+\ldots & & =
\end{array}\right\}
$$

whence a_{0}, a_{9}, \ldots may be expressed in terms of the b's. However, it is easy to see, from the formation of the indices of the powers of q which occur in the coefficient, that if by § $1,(2)$, we obtain a relation

$$
m_{0} a_{0}+m_{9} a_{3}+m_{4} a_{4}+\ldots=n_{0} b_{0}+n_{3} b_{2}+n_{4} b_{4}+\ldots
$$

then, from (l) above, we get

$$
\begin{align*}
& m_{0} a_{0}+m_{3} q^{9} a_{9}+m_{\Delta} q^{3} a_{4}+m_{0} q^{19} a_{0}+\ldots \\
&=n_{0} b_{0}+n_{9} q^{-1} b_{9}+n_{4} q^{-4} b_{4}+n_{0} q^{-0} b_{0}+\ldots \tag{2}
\end{align*}
$$

while, in a similar manner, if

$$
m_{1} a_{1}+m_{3} a_{3}+\ldots=n_{1} b_{1}+n_{3} b_{3}+\ldots
$$

then

$$
m_{1} q a_{1}+m_{3} q^{4} a_{3}+m_{5} q^{0} a_{5}+\ldots=n_{1} b_{1}+n_{3} q^{-2} b_{3}+n_{5} q^{-8} b_{5}+n_{7} q^{-12} b_{7}+\ldots
$$

4. By the results obtained in § 1 it is obvious that, if conditions for convergency are satisfied, any cosine-series in θ may be expanded uniquely in the form

$$
a_{0}+a_{1} A_{1}(\theta)+a_{3} A_{3}(\theta)+\ldots .
$$

Let us therefore expand the product

$$
\left(1+2 \lambda q \cos \theta+\lambda^{2} q^{2}\right)\left(1+2 \lambda q^{2} \cos \theta+\lambda^{2} q^{4}\right) \ldots
$$

in this form.
Now it has been seen in Vol. xxiv., p. 345, that, if

$$
f(\theta)=C_{0}+C_{1} A_{1}(\theta)+C_{2} A_{9}(\theta)+\ldots
$$

1894.] Expansion of certain Infinite Products. 327
and

$$
\frac{f(\theta)}{P(\lambda)}=K_{0}+K_{1} A_{1}(\theta)+K_{9} A_{9}(\theta)+\ldots
$$

where

$$
P(\lambda)=\left(1-2 \lambda \cos \theta+\lambda^{2}\right)\left(1-2 \lambda q \cos \theta+\lambda^{2} q^{2}\right) \ldots,
$$

then

$$
K_{0}+K_{1} x+K_{1} x^{2}+\ldots=\frac{1}{(x \lambda)} \frac{1}{(x \delta)}\left(C_{0}+C_{1} \lambda+\ldots\right),
$$

where δ operates only on the λ 's not contained in the C 's; or, since.

$$
\frac{1}{\left(x \delta_{\lambda}\right)} \phi(\lambda)=\frac{1}{\left(\lambda \delta_{x}\right)} \phi(x),
$$

we may write this relation in the form

$$
K_{0}+K_{1} x+K_{2} x^{2}+\ldots=\frac{1}{(\lambda x)} \frac{1}{\left(\lambda \delta_{z}\right)}\left(O_{0}+O_{1} x+O_{2} x^{2}+\ldots\right)
$$

where the $O_{0}^{\prime} \mathrm{s}$ are independent of x.
Hence $\quad C_{0}+O_{1} x+C_{2} x^{2}+\ldots=\left(\lambda \delta_{x}\right)(\lambda x)\left(K_{0}+K_{1} x+\ldots\right)$.
If, then,

$$
P(\lambda)=O_{0}+O_{1} A_{1}(\theta)+\ldots,
$$

we have $\quad C_{0}+C_{1} x+C_{9} x^{9}+\ldots=\left(\lambda \delta_{x}\right)(\lambda x)$,
because $\quad K_{0}+K_{1} A_{1}(\theta)+\ldots=1$.
Now
$\left(\lambda \delta_{x}\right)(\lambda x)$
$=\left\{1-\frac{\lambda \delta_{x}}{1-q}+\frac{q \lambda^{2} \delta_{x}^{2}}{(1-q)\left(1-q^{2}\right)}-\cdots\right\}\left\{1-\frac{\lambda x}{1-q}+\frac{q \lambda^{2} x^{2}}{(1-q)\left(1-q^{2}\right)}-\cdots\right\}$,
and since

$$
\delta_{x} x^{r}=\left(1-q^{r}\right) x^{r-1}
$$

by definition, we see that the coefficient of x^{r} is the series

$$
\begin{equation*}
(-1)^{r} \frac{q^{i r(r-1)} \lambda^{r}}{\left(1-q^{r}\right)!} \Sigma \frac{\lambda^{2 f} q^{r+c}((-1))}{\left(1-q^{r}\right)!} \tag{1}
\end{equation*}
$$

where

$$
s=0,1,2, \ldots .
$$

Changing λ in $-\lambda q$, we have

$$
\left(1+2 \lambda q \cos \theta+\lambda^{2} q^{2}\right)\left(1+2 \lambda q^{2} \cos \theta+\lambda^{3} q^{4}\right) \ldots
$$

$$
\begin{align*}
& =1+\frac{\lambda^{3} q^{2}}{1-q}+\frac{\lambda^{4} q^{6}}{(1-q)\left(1-q^{4}\right)}+\frac{\lambda^{6} q^{11}}{(1-q)\left(1-q^{3}\right)\left(1-q^{6}\right)}+\ldots \\
& +\frac{q \lambda}{1-q} A_{1}(\theta)\left\{1+\frac{\lambda^{3} q_{-}^{3}}{1-q}+\frac{\lambda^{4} q^{8}}{(1-q)\left(1-q^{3}\right)}+\ldots\right\} \\
& +\frac{q^{3} \lambda^{3}}{(1-q)\left(1-q^{2}\right)} A_{2}(\theta)\left\{1+\frac{\lambda^{3} q^{4}}{1-q}+\ldots\right\} \\
& +\ldots \tag{2}
\end{align*}
$$

Moreover, if we write $\chi\left(\lambda^{\boldsymbol{l}}\right)$ for the series

$$
1+\frac{\lambda^{3} q^{2}}{1-q}+\frac{\lambda^{4} q^{0}}{(1-q)\left(1-q^{2}\right)}+\ldots
$$

which is the coefficient of $A_{0}(\theta)$, we can write this expansion in the form

$$
\begin{align*}
x\left(\lambda^{3}\right)+\frac{q \lambda A_{1}(\theta)}{1-q} \chi\left(\lambda^{3} q\right) & +\frac{q^{8} \lambda^{3} A_{2}(\theta)}{(1-q)\left(1-q^{9}\right)} \chi\left(\lambda^{3} q^{4}\right) \\
& +\frac{q^{0} \lambda^{3} A_{8}(\theta)}{(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right)} x\left(\lambda^{8} q^{8}\right)+\ldots \tag{3}
\end{align*}
$$

The function $\chi\left(\lambda^{2}\right)$ also satisfies the relation

$$
\chi\left(\lambda^{2}\right)-\chi\left(\lambda^{2} q\right)=\lambda^{3} q^{2} \chi\left(\lambda^{3} q^{2}\right)
$$

so that

$$
\begin{equation*}
\frac{x\left(\lambda^{3}\right)}{\chi\left(\lambda^{3} q\right)}=\frac{1}{1+} \frac{\lambda^{3} q^{8}}{1+} \frac{\lambda^{3} q^{8}}{1+} \frac{\lambda^{3} q^{4}}{1+} \cdots \tag{4}
\end{equation*}
$$

5. When $\lambda=q^{-1}$, we get some very interesting results. For then the equation §4, (2), gives

$$
\begin{aligned}
& \left(1+2 q^{4} \cos \theta+q\right)\left(1+2 q^{4} \cos \theta+q^{3}\right) \ldots \\
= & 1+\frac{q}{1-q}+\frac{q^{4}}{(1-q)\left(1-q^{3}\right)}+\ldots \\
& +\frac{q^{1} A_{1}(\theta)}{1-q}\left\{1+\frac{q^{3}}{1-q}+\frac{q^{0}}{(1-q)\left(1-q^{3}\right)}+\ldots\right\} \\
& +\ldots \\
= & \phi(q)+\frac{q^{4} A_{1}(\theta)}{1-q} \psi(q)+\ldots, \text { say. }
\end{aligned}
$$

But, by the theory of theta functions, the above product

$$
=\frac{1}{\Pi\left[1-q^{n}\right]}\left(1+2 q^{\frac{k}{2}} \cos \theta+2 q^{2} \cos 2 \theta+2 q^{1} \cos 3 \theta+2 q^{8} \cos 4 \theta+\ldots\right)
$$

Hence, by § 1, (12),

$$
\begin{align*}
& \text { II }\left[1-q^{n}\right] \phi(q)=1-q^{2}(1+q)+q^{0}\left(1+q^{3}\right)-q^{n}\left(1+q^{3}\right)-\ldots \\
& =1-q^{1}\left(q^{-1}+q^{\mathbf{4}}\right)+q^{10}\left(q^{-1}+q^{1}\right)-q^{Y}\left(q^{-\frac{1}{2}}+q^{1}\right)+\ldots \\
& =\Pi\left[1-q^{\text {sn }}\right] \Pi\left[1-q^{\text {an }_{n}^{2}}\right] \text {; } \\
& \text { therefore } \\
& \phi(q)=1 \div(1-q)\left(1-q^{0}\right)\left(1-q^{0}\right)\left(1-q^{0}\right) \ldots \\
& =1 \div \Pi\left[1-q^{s_{n} \pm 1}\right] \text {. } \tag{1}
\end{align*}
$$

Similarly, by § 1, (13),

$$
\begin{aligned}
\text { II }\left[1-q^{n}\right] \psi(q) & =1-q-q^{4}\left(1-q^{8}\right)+q^{18}\left(q-q^{0}\right)-\ldots \\
& =1-q^{4}\left(q^{-4}+q^{4}\right)+\ldots \\
& =\text { II }\left[1-q^{s_{n}}\right] \text { II }\left[1-q^{s_{n} \pm 1}\right] ;
\end{aligned}
$$

therefore

$$
\psi(q)=1 \div \Pi\left[1-q^{a_{n} \pm 2}\right]
$$

Combining these results, we see that

$$
\phi(q) \psi(q)=\frac{\left(1-q^{5}\right)\left(1-q^{10}\right)\left(1-q^{15}\right) \ldots,}{(1-q)\left(1-q^{5}\right)\left(1-q^{3}\right) \ldots},
$$

and that

$$
\begin{aligned}
& \frac{\phi(q)}{\psi(q)}=\frac{1}{1+} \frac{q}{1+} \frac{q^{9}}{1+} \frac{q^{3}}{1+} \ldots=\frac{(1-q)\left(1-q^{9}\right)\left(1-q^{0}\right)\left(1-q^{0}\right) \ldots}{\left(1-q^{2}\right)\left(1-q^{0}\right)\left(1-q^{9}\right)\left(1-q^{9}\right) \ldots} \\
& =(1-q)\left(1+q^{9}\right)\left(1+q^{8}\right)\left(1+q^{7}\right)\left(1+q^{8}\right)\left(1-q^{9}\right)\left(1-q^{11}\right)\left(1+q^{11}\right) \ldots,
\end{aligned}
$$

where the indices in the binomial factors include all numbers whose final digits are $1,2,3,7,8$, or 9 , the first and last being combined with minus signs, and the rest with plus signs.
Similarly,

$$
\frac{\psi(q)}{\phi(q)}=(1+q)\left(1-q^{8}\right)\left(1+q^{4}\right)\left(1+q^{0}\right)\left(1-q^{7}\right)\left(1+q^{0}\right)\left(1+q^{11}\right)\left(1-q^{18}\right) \ldots
$$

6. The series

$$
x(\lambda)=1+\frac{\lambda q^{q}}{1-q}+\frac{\lambda^{2} q^{0}}{(1-q)\left(1-q^{2}\right)}+\ldots
$$

may be expressed in another form by means of Lemma iv. on p. 340, Vol. xxir. For, since this lemma gives

$$
\left(\lambda \mu \eta_{1}\right)\left(\lambda_{1} \mu\right) \frac{1}{\left(\lambda \delta_{1}\right)} \psi\left(\lambda_{1}\right)=\frac{1}{\left(\lambda_{1} \mu\right)}=\frac{\left(\lambda \delta_{1}\right)}{\left(\lambda_{1}\right), ~}
$$

we get, by patting $\psi\left(\lambda_{1}\right) \equiv\left(-\lambda_{1} q\right)$, and $\mu=-q$,

$$
\frac{1}{\left(\lambda \delta_{1}\right)}\left(-\lambda_{1} q\right)=\left(-\lambda q \eta_{1}\right)\left(-\lambda_{1} q\right) .
$$

Expanding each of these products and performing the operations involved, we get

$$
\begin{gathered}
1+q H_{1}\left(\lambda, \lambda_{1}\right)+q^{8} H_{1}\left(\lambda, \lambda_{1}\right)+q^{8} H_{3}\left(\lambda, \lambda_{1}\right)+\ldots \\
=\left(-\lambda_{1} q\right)\left\{1+\frac{\lambda q}{(1-q)\left(1+\lambda_{1} q\right)}+\frac{\lambda^{2} q^{s}}{(1-q)\left(1-q^{q}\right)\left(1+\lambda_{1} q\right)\left(1+\lambda_{1} q^{3}\right)}+\ldots\right\},
\end{gathered}
$$

which, by symmetry,
$=(-\lambda q)\left\{1+\frac{\lambda_{1} q}{(1-q)(1+\lambda q)}+\frac{\lambda_{q}^{3} q^{8}}{(1-q)\left(1-q^{2}\right)(1+\lambda q)\left(1+\lambda q^{2}\right)}+\ldots\right\}$
Let $\lambda_{1}=\lambda q^{\prime}$, so that

$$
\begin{equation*}
1+\sum x^{r} H_{r}\left(\lambda, \lambda_{1}\right)=1 \div(1-\lambda x)\left(1-\lambda x q^{4}\right)(1-\lambda x q) \ldots, \tag{1}
\end{equation*}
$$

and

$$
H_{r}\left(\lambda, \lambda_{1}\right)=\lambda^{r} \div\left(1-q^{t}\right)(1-q) \ldots\left(1-q^{t^{\dagger}}\right) ;
$$

then (1) becomes, after changing q into q^{4},

$$
1+\frac{\lambda q^{2}}{1-q}+\frac{\lambda^{3} q^{6}}{(1-q)\left(1-q^{3}\right)}+\ldots
$$

i.e., $\quad X(\lambda)=\Pi\left[1+q^{2 n+1} \lambda\right] x$

$$
\begin{gather*}
\left\{1+\frac{\lambda q^{3}}{\left(1-q^{2}\right)\left(1+\lambda q^{8}\right)}+\frac{\lambda^{3} q^{0}}{\left(1-q^{2}\right)\left(1-q^{4}\right)\left(1+\lambda q^{8}\right)\left(1+\lambda q^{8}\right)}+\ldots\right\} \tag{2}\\
=\mathrm{n}\left[1+q^{2 n} \lambda\right] \times \\
\left\{1+\frac{\lambda q^{8}}{\left(1-q^{2}\right)\left(1+\lambda q^{2}\right)}+\frac{\lambda^{3} q^{8}}{\left(1-q^{2}\right)\left(1-q^{4}\right)\left(1+\lambda q^{2}\right)\left(1+\lambda q^{4}\right)}+\ldots\right\}
\end{gather*}
$$

Again, in (1), let $\lambda_{1}=-\lambda$, so that

$$
1+\sum x^{r} H_{r}\left(\lambda, \lambda_{2}\right)=1 \div\left(1-\lambda^{3} x^{4}\right)\left(1-\lambda^{3} q^{9} x^{4}\right) \ldots,
$$

and

$$
H_{2 r}\left(\lambda, \lambda_{1}\right)=\lambda^{2 r} \div\left(1-q^{2}\right)\left(1-q^{4}\right) \ldots\left(1-q^{2 r}\right)
$$

and

$$
H_{2 r+1}\left(\lambda, \lambda_{1}\right)=0 ;
$$

then (1) beeomes

$$
1+\frac{q^{8} \lambda^{3}}{1-q^{2}}+\frac{q^{10} \lambda^{4}}{\left(1-q^{2}\right)\left(1-q^{4}\right)}+\ldots=(-\lambda q)\left\{1-\frac{\lambda q}{(1-q)(1+\lambda q)}+\ldots\right\} .
$$

Changing q into q^{3}, and λ into λq, we get

$$
\begin{gather*}
1+\frac{\lambda^{2} q^{8}}{1-q^{4}}+\frac{\lambda^{4} q^{26}}{\left(1-q^{4}\right)\left(1-q^{8}\right)}+\ldots=\Pi\left[1+\lambda q^{2 n+1}\right] \times \\
\left\{1-\frac{\lambda^{3} q^{8}}{\left(1-q^{3}\right)\left(1+\lambda q^{8}\right)}+\frac{\left.q^{3}\right)\left(1-q^{4}\right)\left(1+\lambda q^{8}\right)\left(1+\lambda q^{6}\right)}{(1-\cdots\} \ldots}\right.
\end{gather*}
$$

the left side of which is $\chi\left(\lambda^{?}\right)$ in which q has been changed into q^{4}. If, now, in (2), we put $\lambda=q^{-1}$, we get

$$
\phi(q)=\Pi\left[1+q^{2 n}\right]\left\{1+\frac{q}{1-q^{4}}+\frac{q^{4}}{\left(1-q^{4}\right)\left(1-q^{8}\right)}+\ldots\right\} ;
$$

therefore $\quad \phi(q)+\phi(-q)=2 \Pi\left[1+q^{2 n}\right] \times$

$$
\left\{1+\frac{q^{4}}{\left(1-q^{6}\right)\left(1-q^{8}\right)}+\frac{q^{10}}{\left(1-q^{6}\right)\left(1-q^{8}\right)\left(1-q^{13}\right)\left(1-q^{10}\right)}+\ldots\right\} .
$$

But in (4), if $\lambda=-q^{-2}$, we get

$$
\begin{gathered}
\phi\left(q^{4}\right)=\Pi\left[1-q^{2 n-1}\right] \times \\
\left\{1+\frac{q}{(1-q)\left(1-q^{4}\right)}+\frac{q^{4}}{(1-q)\left(1-q^{2}\right)\left(1-q^{s}\right)\left(1-q^{4}\right)}+\ldots\right\} \ldots
\end{gathered}
$$

Comparing these results, we see that

$$
\begin{equation*}
\phi(q)+\dot{\phi}(-q)=2 \frac{\Pi\left[1+q^{2 n}\right]}{\Pi\left[1-q^{8 n-4}\right]} \phi\left(q^{16}\right) . \tag{5}
\end{equation*}
$$

Similarly,

$$
\phi(q)-\phi(-q)=2 \Pi\left[1+q^{2 n}\right]\left\{\frac{q}{1-q^{4}}+\frac{q^{0}}{\left(1-q^{6}\right)\left(1-q^{8}\right)\left(1-q^{13}\right)}+\ldots\right\}
$$

which, by putting $l=+1$, and $-q^{4}$ for q in (4),

$$
\begin{equation*}
=\frac{2 \Pi\left[1+q^{2 n}\right]}{\Pi\left[1-q^{8 n-4}\right]} q \psi\left(-q^{4}\right) \tag{6}
\end{equation*}
$$

Again, by (3), we shall get

$$
\psi(q)=\Pi\left[1+q^{2 n}\right]\left\{1+\frac{q^{8}}{1-q^{4}}+\frac{q^{8}}{\left(1-q^{4}\right)\left(1-q^{8}\right)}+\ldots\right\}
$$

whence, by (4),

$$
\begin{equation*}
\psi(q)-\psi(-q)=2 \frac{\Pi\left[1+q^{2 n}\right]}{\Pi\left[1-q^{8 n-4}\right]} q^{8} \psi\left(q^{10}\right) \tag{7}
\end{equation*}
$$

and similarly, by (3), used twice,

$$
\begin{equation*}
\psi(q)+\psi(1-q)=2 \frac{\Pi\left[1+q^{2 n}\right]}{\Pi\left[1-q^{8 n-6}\right]} \phi\left(-q^{4}\right) \tag{8}
\end{equation*}
$$

These four identities (5), (6), (7), (8) are sufficiently remarkable in themselves to call for mention at this point, although they may all be derived from the θ-function values of the series $\phi(q), \psi(q)$ obtained in the last section.

For instance,

$$
\phi(q)+\phi(-q)
$$

$=\frac{(1-q)\left(1-q^{0}\right)\left(1-q^{11}\right)\left(1-q^{10}\right) \ldots+(1+q)\left(1+q^{0}\right)\left(1+q^{11}\right)\left(1+q^{18}\right) \ldots}{\left(1-q^{9}\right)\left(1-q^{18}\right)\left(1-q^{28}\right) \ldots \times\left(1-q^{6}\right)\left(1-q^{6}\right)\left(1-q^{16}\right)\left(1-q^{10}\right)}$,
by $\S 5,(1)$.

This numerator multiplied by

$$
\begin{aligned}
& \quad\left(1-q^{10}\right)\left(1-q^{20}\right)\left(1-q^{80}\right) \ldots \\
= & 2\left\{1+q^{20}\left(q^{-8}+q^{8}\right)+q^{20}\left(q^{-16}+q^{10}\right)+\ldots\right\} \\
= & 2 \Pi\left(1-q^{10 n}\right)\left(1+q^{19}\right)\left(1+q^{29}\right)\left(1+q^{38}\right)\left(1+q^{08}\right) \ldots
\end{aligned}
$$

In this manner we reduce the left hand of (5) to an infinite product, which is easily seen to include identically all the factors in the righthand side, after substituting for $\phi\left(q^{10}\right)$ by $\S 5$, (1).
It is not, however, in these identities that the special interest in the series $\phi(q)$ and $\psi(q)$ lies. These relations may be considerably simplified by substituting the functions'
$\phi(q) \times\left(1-q^{9}\right)\left(1-q^{6}\right)\left(1-q^{6}\right) \ldots$ and $\psi(q) \times\left(1-q^{9}\right)\left(1-q^{4}\right)\left(1-q^{6}\right) \ldots$.
Let $\quad u_{ \pm r}$ denote $\phi\left(\pm q^{r}\right) \square\left\{1-q^{2 m}\right\}$,
and

$$
v_{ \pm r} \quad \# \quad \psi\left(\pm q^{r}\right) \Pi\left\{1-q^{2 m}\right\} .
$$

Then (5), (6), (7), and (8) become

$$
\begin{aligned}
& u_{1}+u_{-1}=2 \Pi\left[1-q^{8 n}\right] \phi\left(q^{10}\right)=2 \frac{\Pi\left[1-q^{8 n}\right]}{\Pi\left[1-q^{52 n}\right]} u_{10} \ldots \ldots \ldots \text { (9), }
\end{aligned}
$$

$$
\begin{align*}
& v_{1}-v_{-1}=2 q^{8} \frac{\Pi\left[1-q^{8 n}\right]}{\Pi\left[1-q^{2 n n}\right]} v_{10} \tag{11}\\
& v_{1}+v_{-1}=2 u_{-4}
\end{align*}
$$

Now, if we put $\lambda=q^{-1}$ in (3), we get

$$
\begin{gathered}
\phi(q)=(1+q)\left(1+q^{3}\right)\left(1+q^{6}\right) \ldots \\
\times\left\{1+\frac{q^{2}}{(1+q)\left(1-q^{8}\right)}+\frac{q^{6}}{(1+q)\left(1-q^{2}\right)\left(1+q^{3}\right)\left(1-q^{6}\right)}+\ldots\right\},
\end{gathered}
$$

so that u_{-1}
$=\Pi\left[1-\lambda(-q)^{n}\right]\left\{1+\frac{q^{2}}{(1-q)\left(1-q^{3}\right)}+\frac{q^{0}}{(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right)\left(1-q^{6}\right)}+\ldots\right\}$
By § 2, (9), and § 3, (2), we see that, if

$$
a_{0}+a_{1} B_{1}(\theta)+a_{9} B_{9}(\theta)+\ldots \equiv b_{0}+2 b_{1} \cos \theta+2 b_{2} \cos 2 \theta+\ldots
$$

then

$$
\begin{gather*}
a_{0}+a_{8} q^{8}+a_{4} q^{8}+a_{0} q^{15}+\ldots \\
=b_{0}-\frac{b_{q}}{q}-q^{4} \frac{b_{4}}{q^{4}}+q^{4}\left(1+q^{4}\right) \frac{b_{6}}{q^{9}}-q^{8} \frac{b_{8}}{q^{10}}-\ldots \tag{14}
\end{gather*}
$$

Now, by the definition of $B_{r}(\theta)$,

$$
\begin{gathered}
\quad\left(1+2 q^{4} \cos \theta+q\right)\left(1+2 q^{4} \cos \theta+q^{8}\right) \ldots \\
=1+\frac{B_{1}(\theta) q^{-3}}{1-q}+\frac{B_{9}(\theta) q^{-1}}{(1-q)\left(1-q^{3}\right)}+\frac{B_{3}(\theta) q^{-\frac{1}{i}}}{(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right)}+\ldots \\
=\frac{1}{\Pi\left[1-q^{n}\right]}\left(1+2 q^{4} \cos \theta+2 q^{3} \cos 2 \theta+2 q^{1} \cos 3 \theta+2 q^{8} \cos 4 \theta+\ldots\right) .
\end{gathered}
$$

Hence, by (13), u_{-1} is the right-hand side of (14), where $b_{2 r}=q^{2 r}$. Thus $\quad u_{-1}=1-q-q^{8}+q^{18}\left(1+q^{4}\right)-q^{26}-q^{15}+q^{50}\left(1+q^{8}\right)-\ldots(15)$.

This series may be systematically arranged, if we notice that by taking every fourth term we get powers of q whose indices are in hyper-arithmetic progression.

We then see that we may write the series in the form

$$
\begin{aligned}
& 1+q^{15.1^{1}}\left(q^{-9}+q^{2}\right)+q^{18.2^{2}}\left(q^{-4}+q^{6}\right)+\ldots \\
& -q\left\{1+q^{15.1^{2}}\left(q^{-8}+q^{8}\right)+q^{15.2^{2}}\left(q^{-18}+q^{10}\right)+\ldots\right\}
\end{aligned}
$$

consisting of two θ-series of the 15 th order.
Changing q into $-q$, we arrive finally at the remarkable identity

$$
\begin{aligned}
& \Pi\left[1-q^{2 n}\right]\left\{1+\frac{q}{1-q}+\frac{q^{4}}{(1-q)\left(1-q^{2}\right)}+\ldots\right\} \\
& =1-q^{18.1^{5}}\left(q^{-8}+q^{9}\right)+q^{15.2^{2}}\left(q^{-4}+q^{4}\right)-\ldots \\
& +q\left\{1-q^{15.11^{6}}\left(q^{-8}+q^{8}\right)+q^{16.56}\left(q^{-16}+q^{10}\right)-\ldots\right\} \\
& =\Pi\left[1-q^{30 n}\right]\left\{\begin{array}{c}
\left(1-q^{18}\right)\left(1-q^{17}\right)\left(1-q^{48}\right)\left(1-q^{(7)}\right) \ldots \\
+q\left(1-q^{7}\right)\left(1-q^{28}\right)\left(1-q^{37}\right)\left(1-q^{58}\right) \ldots
\end{array}\right\},
\end{aligned}
$$

and, remembering the product value of $\phi(q)$ obtained in § 7, we see that

$$
\begin{gather*}
\Pi\left[1-q^{2 n}\right] \div \Pi\left[1-q^{3 n 21}\right] \Pi\left[1-q^{n_{n} \pm 1}\right] \\
=\quad\left(1-q^{18}\right)\left(1-q^{17}\right)\left(1-q^{45}\right)\left(1-q^{47}\right)\left(1-q^{75}\right)\left(1-q^{77}\right) \ldots . \\
+q\left(1-q^{7}\right)\left(1-q^{23}\right)\left(1-q^{87}\right)\left(1-q^{89}\right)\left(1-q^{67}\right)\left(1-q^{85}\right) \ldots \tag{16}
\end{gather*}
$$

We may, moreover, obtain from (10) a similar expression for v_{10} after changing $-q^{4}$ into q,

$$
\begin{aligned}
v_{1}= & 1-q^{16.1^{4}}\left(q^{-4}+q^{4}\right)+q^{16.2^{2}}\left(q^{-8}+q^{8}\right)-\ldots \\
& +q^{8}\left\{1-q^{18.1^{1}}\left(q^{-14}+q^{16}\right)+q^{16.2^{2}}\left(q^{-28}+q^{28}\right)-\ldots\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { whence } \quad \Pi\left[1-q^{2 n}\right] \div \Pi\left[1-q^{80 n}\right] \Pi\left[1-q^{6 n \pm 2}\right] \\
& =\left(1-q^{11}\right)\left(1-q^{10}\right)\left(1-q^{41}\right)\left(1-q^{00}\right)\left(1-q^{71}\right)\left(1-q^{70}\right) \ldots \\
& +q^{8}(1-q)\left(1-q^{28}\right)\left(1-q^{31}\right)\left(1-q^{50}\right)\left(1-q^{61}\right)\left(1-q^{80}\right) \ldots .
\end{aligned}
$$

Again, since, by (9),

$$
\begin{aligned}
& u \dot{+} u_{-1}=I I\left[1-q^{\varepsilon_{n}}\right] \phi\left(q^{18}\right), \\
& \text { we have } \\
& \Pi\left[1-q^{(6 i n}\right] \phi\left(q^{10}\right) \\
& =1 .+q^{80.10}\left(q^{-4}+q^{0}\right)+q^{80.2^{2}}\left(q^{-9}+q^{8}\right) \\
& -q\left\{q^{18.1^{10}}\left(q^{-9}+q^{8}\right)+q^{18.9^{2}}\left(q^{-24}+q^{24}\right)\right. \\
& =\Pi\left[1-q^{1200 m}\right]\left\{\begin{array}{c}
\left(1+q^{50}\right)\left(1+q^{64}\right)\left(1+q^{186}\right)\left(1+q^{184}\right) \ldots \\
-q^{18}\left(q^{-9}+q^{8}\right)\left(1+q^{104}\right)\left(1+q^{189}\right)\left(1+q^{246}\right)\left(1+q^{250}\right) \ldots
\end{array}\right\} \text {; }
\end{aligned}
$$

therefore, changing. q^{8} into q,
II $\left[1-q^{n}\right] \phi\left(q^{9}\right) \div \Pi\left[1-q^{15 n}\right]=(1-q)\left(1-q^{8}\right)\left(1-q^{4}\right)\left(1-q^{5}\right) \ldots\left(1-q^{N}\right) \ldots$,
where N is any integer which is not a multiple of 15 , or whose last digit is not 2 or 8 ,

$$
\begin{aligned}
= & \left(1+q^{7}\right)\left(1+q^{8}\right)\left(1+q^{28}\right)\left(1+q^{28}\right) \ldots \\
& -q\left(1+q^{8}\right)\left(1+q^{18}\right)\left(1+q^{17}\right)\left(1+q^{88}\right)\left(1+q^{28}\right) \ldots
\end{aligned}
$$

Similarly, from (11),

$$
\Pi\left[1-q^{n}\right] \psi\left(q^{2}\right) \div \Pi\left(1-q^{15 n}\right]=\Pi\left[1-q^{N}\right]
$$

where N is not a multiple of 15 , and does not end with a 4 or 6 ,

$$
\begin{aligned}
= & \left(1+q^{4}\right)\left(1+q^{11}\right)\left(1+q^{19}\right)\left(1+q^{20}\right) \ldots \\
& -q(1+q)\left(1+q^{16}\right)\left(1+q^{10}\right)\left(1+q^{29}\right) \ldots
\end{aligned}
$$

7. We have seen that, if

$$
a_{0} \pm a_{1} A_{1}(\theta)+a_{2} A_{9}(\theta) \pm \ldots=b_{0} \pm 2 b_{1} \cos \theta+2 b_{2} \cos 2 \theta \pm \ldots \quad \ldots(1)
$$

then $a_{0}, a_{1} ; \ldots$ can separately be expanded in $\S 1$ in series containing b's with simple coefficients. Moreover the series

$$
a_{0}+a_{1}+a_{2}+\ldots \text { and } a_{0}+a_{1} q^{4}+a_{9} q+\ldots
$$

have been similarly expanded in $\S 2$.
These identities are only a few of a very large number of relations connecting simple series in the a 's with simple series in the b 's, which will be established in the subsequent sections of this memoir.

These can all be treated in the manner of $\S 6$, (14), where by $\S 3$ (2), we see that, if

$$
\begin{equation*}
a_{0}+m_{1} a_{1}+m_{2} a_{3}+\ldots=b_{0}+n_{1} b_{1}+n_{3} b_{3}+\ldots \tag{2}
\end{equation*}
$$

then

$$
a_{0}+m_{9} q^{9} a_{9}+m_{8} q^{9} a_{4}+\ldots=b_{0}+n_{3} q^{-1} b_{2}+n_{4} q^{-4} b_{4}+\ldots
$$

and $\quad m_{i} q^{4} a_{1}+m_{3} q^{4} a_{3}+\ldots=n_{1} q^{-\frac{1}{b}} b_{1}+n_{3} q^{-\frac{t}{2}} b_{8}+\ldots$,
which, applied to the θ-function identity

$$
\begin{aligned}
{\left[1-q^{n}\right]\left\{1+\frac{B_{1}(\theta) q^{-4}}{1-q}\right.} & \left.+\frac{B_{9}(\theta) q^{-1}}{(1-q)\left(1-q^{2}\right)}+\ldots\right\} \\
& =1+2 q^{4} \cos \theta+2 q^{4} \cos 2 \theta+\ldots
\end{aligned}
$$

gives

$$
\begin{align*}
& \text { II }\left[1-q^{n}\right]\left\{1 \pm \frac{q^{3} m_{1}}{1-q}+\frac{q m_{8}}{(1-q)\left(1-q^{2}\right)} \pm \frac{q^{9} m_{3}}{(1-q)\left(1-q^{3}\right)\left(1-q^{0}\right)}+\ldots\right\} \\
& =1 \pm q^{4} n_{1}+q n_{9} \pm q^{!} n_{\mathrm{g}}+q^{4} n_{4} \pm \ldots \tag{3}
\end{align*}
$$

Many of the relations obtained will only lead to well-known identities, and in such cases the application of this section will not be quoted.
8. We have seen in § 4, (2), that, if

$$
1+\frac{B_{1}(\theta) \lambda}{1-q}+\frac{B_{s}(\theta) \lambda^{3}}{(1-q)\left(1-q^{3}\right)}+\ldots,
$$

be expanded according to $A(\theta)$'s, the coefficient of $\boldsymbol{A}_{r}(\theta)$ is
when 8 has all integral values from 0 to ∞.

$$
\text { Now } \frac{2}{2} r(r+1)+r s+s(s+1)=\frac{1}{4} r^{2}+\frac{1}{4}(r+2 s)(r+2 s+2),
$$

so that, if any power λ^{m} of λ be changed into $\lambda q^{-\mathrm{tm}(m+2)}$, the correiponding coefficient of $A_{r}(\theta)$ would be

$$
\Sigma \frac{\lambda^{+2} q^{+r}}{\left(1-q^{2}\right)!\left(1-q^{0}\right)!} .
$$

This is precisely the same thing as saying that

$$
\begin{gather*}
1+\frac{B_{1}(\theta) q^{-t} \lambda}{1-q}+\frac{B_{3}(\theta) q^{-2} \lambda^{2}}{(1-q)\left(1-q^{2}\right)}+\ldots \\
=\left\{1+\frac{A_{1}(\theta) q^{4} \lambda}{1-q}+\frac{A_{9}(\theta) q \lambda^{2}}{(1-q)\left(1-q^{2}\right)}+\ldots\right\} \\
\times\left\{1+\frac{\lambda^{2}}{1-q}+\frac{\lambda^{4}}{(1-q)\left(1-q^{2}\right)}+\ldots\right\} \tag{1}
\end{gather*}
$$

Now suppose that, in consequence of a relation

$$
\begin{equation*}
a_{0}+a_{1} A_{1}(\theta)+\ldots=a_{0}+a_{1} B_{1}(\theta)+\ldots \tag{2}
\end{equation*}
$$

we can establish some relation of the form

$$
\begin{equation*}
a_{0}+a_{1} \lambda_{1}+a_{3} \lambda_{2}+\ldots=a_{0}+a_{1} n_{1} q^{9}+a_{2} n_{9} q^{2}+\ldots \tag{3}
\end{equation*}
$$

then (l) gives relations connecting the A 's and B 's by equating coefficients of powers of λ; (2) establishes connexions between a_{0}, a_{1}, \ldots and a_{0}, a_{1}, \ldots by equating coefficients of the A 's ; on substituting for the a 's in (3), we get relations connecting $\lambda_{1}, \lambda_{9}, \ldots$ with m_{1}, m_{3}.

It will be easy to see, however, that these are simply expressed by substitating λ_{r} for $A_{r}(\theta)$, and m_{r} for $B_{r}(\theta) q^{-\operatorname{lr}(r+2)}$, so that

$$
\begin{gather*}
1+\frac{m_{1} \lambda}{1-q}+\frac{m_{9} \lambda^{9}}{(1-q)\left(1-q^{3}\right)}+\ldots \\
=\left\{1+\frac{\lambda_{1} q^{2} \lambda}{1-q}+\frac{\lambda_{g} q \lambda^{3}}{(1-q)\left(1-q^{3}\right)}+\ldots\right\}\left\{1+\frac{\lambda^{q}}{1-q}+\ldots\right\} \tag{4}
\end{gather*}
$$

Now, in § 3, we have seen that, if

$$
\begin{equation*}
a_{0}+m_{1} a_{1}+m_{9} a_{3}+\ldots=b_{0}+n_{1} b_{1}+n_{9} b_{2}+\ldots \tag{5}
\end{equation*}
$$

then $\quad a_{0}+m_{1} q^{9} a_{1}+m_{9} q^{9} a_{9}+\ldots=b_{0}+n_{1} q^{-\frac{1}{b}} b_{1}+n_{9} q^{-1} b_{9}+\ldots$,
i.e., $\quad a_{0}+a_{1} \lambda_{1}+a_{2} \lambda_{2}+\ldots=b_{0}+n_{1} q^{-1} b_{1}+n_{9} q^{-1} b_{9}+\ldots$

If, then, we know a relation of the form (5), we can by (4) obtain the coefficients $\lambda_{1}, \lambda_{3}, \ldots$ which establish the equation (6), and vice versa.

$$
\text { Example 1.-Let } \quad \lambda_{1}=\lambda_{8}=\ldots=0 \text {, }
$$

so that, by § l, (12), we know the values of $n_{1} q^{-1}, n_{3} q^{-1}$, \&c. Then sabstituting in (5) the values of the m 's given by (4), we get

$$
\begin{gathered}
a_{0}+a_{2}\left(1-q^{2}\right)+a_{4}\left(1-q^{8}\right)\left(1-q^{4}\right)+a_{0}\left(1-q^{4}\right)\left(1-q^{6}\right)\left(1-q^{0}\right)+\ldots \\
=b_{0}-q(1+q) b_{3}+q^{5}\left(1+q^{2}\right) b_{4}-q^{12}\left(1+q^{5}\right) b_{0}+\ldots
\end{gathered}
$$

Example 2.-In §7, (1), by putting $\theta=\frac{\pi}{2}$, we get

$$
a_{0}-a_{1}(1-q)+a_{4}(1-q)\left(1-q^{3}\right)-\ldots=b_{0}-2 b_{2}+2 b_{4}-\ldots
$$

The present section gives

$$
a_{0}+a_{9}(1-q)+a_{6}(1-q)\left(1-q^{3}\right)+\ldots=b_{0}-2 q b_{9}+2 q^{4} b_{4}-\ldots
$$

Example 3.-By putting $\pm 2 \cos \theta=q^{-1}+q^{\frac{1}{2}}$ in § 7, (1), we get

$$
\begin{aligned}
a_{0} \pm a_{1} q^{-\frac{1}{2}}\left(1+q^{i}\right)+a_{2} q^{-i} & \left(1+q^{i}\right)(1+q) \pm \ldots \\
& =b_{0} \pm b_{1} q^{-\frac{1}{2}}\left(1+q^{i}\right)+b_{9} q^{-i}(1+q) \pm \ldots
\end{aligned}
$$

and the derived form is

$$
\begin{aligned}
& \begin{array}{l}
a_{0} \pm a_{1}\left(1+q^{4}\right)+a_{2}\left(1+q^{4}\right)(1+q) \pm a_{8}\left(1+q^{4}\right)(1+q)\left(1+q^{4}\right)+\ldots \\
\quad=b_{0} \pm b_{1}\left(1+q^{4}\right)+b_{8} q^{4}(1+q) \pm b_{8} q^{4}\left(1+q^{4}\right)+\ldots \\
\text { Example 4.-If } \quad-2 \cos 2 \theta \ddot{=} q^{-1}+q \\
a_{0}-a_{2} q^{-1}(1-q)+a_{4} q^{-2}(1-q)\left(1-q^{8}\right)-\ldots \\
\\
=b_{0}-q^{-1}\left(1+q^{2}\right) b_{9}+q^{-2}\left(1+q^{4}\right) b_{4}-\ldots,
\end{array}
\end{aligned}
$$

and the derived form is

$$
\begin{aligned}
& a_{0}+a_{2} q(1-q)+a_{4} q^{2}(1-q)\left(1-q^{3}\right)+\ldots \\
& \quad=b_{0}-\left(1+q^{2}\right) b_{2}+q^{2}\left(1+q^{0}\right) b_{4}-q^{0}\left(1+q^{0}\right) b_{0}+\ldots
\end{aligned}
$$

9. Quadratic transformation of q.

We have already seen, on pp. 175 and 343 of Vol. xxiv., that

$$
\frac{(\mu \nu)}{P(\mu) P(\nu)}=1+H_{1}(\mu, \nu) A_{1}(\theta)+\ldots
$$

from which relation, by putting $\nu=\mu q^{k}$, and afterwards changing q into q^{2}, we have

$$
\begin{align*}
\left\{1-\frac{\mu^{2} q}{1-q^{2}}\right. & \left.+\frac{\mu^{4} q^{4}}{\left(1-q^{2}\right)\left(1-q^{4}\right)}-\ldots\right\}\left\{1+\frac{A_{1}(\theta) \mu}{1-q}+\frac{A_{9}(\theta) \mu^{2}}{(1-q)\left(1-q^{2}\right)}+\ldots\right\} \\
& =1+\frac{A_{1}\left(\theta, q^{2}\right)}{1-q} \mu+\frac{A_{9}\left(\theta, q^{2}\right)}{(1-q)\left(1-q^{2}\right)} \mu^{2}+\ldots \quad \ldots \ldots \ldots(1) \tag{1}
\end{align*}
$$

where $A_{r}\left(\theta, q^{2}\right)$ is what $A_{r}(\theta)$ becomes when q is changed into q^{3}.
By equating coefficients of powers of μ, we get $A_{r}\left(\theta, q^{2}\right)$ in terms of $\boldsymbol{A}_{r}(\theta), A_{r-9}(\theta) \ldots$.

Now suppose that we have some function expanded according to both kinds of A, i.e.,

$$
\begin{equation*}
a_{0}+a_{1} A_{1}(\theta)+\ldots=\gamma_{0}+\gamma_{1} A_{1}\left(\theta, q^{2}\right)+\ldots \tag{2}
\end{equation*}
$$

Substituting from (1) in the right-hand side of (2), and equating coefficients of like A's, we get relations connecting the a's and γ 's.
voL. XXV.-No. 496.

If this is written in the form

$$
\begin{equation*}
a_{0}+m_{1} a_{1}+m_{2} a_{2}+\ldots=\gamma_{0}+c_{1} \gamma_{1}+c_{3} \gamma_{2}+\ldots \tag{3}
\end{equation*}
$$

it will not be difficult to see, just as in the last section, that the m 's and c 's will be connected by the relation

$$
\begin{gather*}
1+\frac{c_{9} \mu}{1-q}+\frac{c_{9} \mu^{2}}{(1-q)\left(1-q^{2}\right)}+\ldots \\
=\left\{1+\frac{m_{1} \mu}{1-q}+\frac{m_{9} \mu^{3}}{(1-q)\left(1-q^{2}\right)}+\ldots\right\}\left\{1-\frac{\mu^{3} q}{1-q^{2}}+\frac{\mu^{4} q^{4}}{\left(1-q^{2}\right)\left(1-q^{4}\right)}-\ldots\right\} \tag{4}
\end{gather*}
$$

It is evident, moreover, that if we know a relation connecting a series of γ^{\prime} 's with a series of $b^{\prime} s$, we may change q to q^{1} throughout, provided we change γ_{r} into a_{r}.

In this manner we may extend very considerably the number of relations connecting series of a 's with series of b 's. It will not be necessary to work them all out in detail, since the method of deduction is the same for all.

$$
\text { Example 1.-Let } \quad m_{r}=q^{t r} \text {, }
$$

so that the right-hand side of (4) becomes

$$
\frac{\left(1-\mu^{3} q\right)\left(1-\mu^{3} q^{3}\right)\left(1-\mu^{3} q^{5}\right) \ldots}{\left(1-\mu q^{4}\right)\left(1-\mu q^{3}\right)\left(1-\mu q^{3}\right)}
$$

which

$$
\begin{aligned}
& =\left(1+\mu q^{4}\right)\left(1+\mu q^{4}\right) \ldots \\
& =1+\frac{\mu q^{4}}{1-q}+\frac{\mu^{8} q^{2}}{(1-q)\left(1-q^{2}\right)}+\ldots
\end{aligned}
$$

Hence $a_{0}+a_{1} q^{4}+a_{3} q+a_{8} q^{4}+a_{4} q^{3}+\ldots$

$$
=\gamma_{0}+\gamma_{1} q^{4}+\gamma_{2} q^{9}+\gamma_{3} q^{\frac{j}{4}}+\gamma_{4} q^{8}+\ldots
$$

But since the left-hand side has been given in § 2, (8), and changing q into q^{1}, and γ into a, we have

$$
\begin{aligned}
a_{0}+a_{1} q^{4}+a_{3} q & +a_{3} q^{8}+a_{4} q^{4}+\ldots \\
& =b_{0}+b_{1} q^{\frac{1}{2}}-b_{8}-q^{\frac{1}{2}}(1+q) b_{3}-q^{8} b_{4}+q^{\frac{1}{3}} b_{5}+\ldots
\end{aligned}
$$

where, of course, the series of terms with even suffixes are equal, and those with odd.

Example 2.-Let

$$
m_{r}=0 ;
$$

then $a_{0}=\gamma_{0}-q(1-q) \gamma_{3}+q^{4}(1-q)\left(1-q^{3}\right) \gamma_{4}-\ldots$

$$
=b_{0}-(1+q) b_{2}+q\left(1+q^{2}\right) b_{4}-q^{8}\left(1+q^{3}\right) b_{6}-\ldots, \text { by } \S 1,(12) ;
$$

therefore $a_{0}-q^{4}\left(1-q^{4}\right) a_{3}+q^{2}\left(1-q^{4}\right)\left(1-q^{4}\right) a_{4}-\ldots$

$$
=b_{0}-\left(1+q^{4}\right) b_{3}+q^{3}(1+q) b_{4}-q^{1}\left(1+q^{t}\right) b_{6}+\ldots
$$

By § 7, (3), we get the identity

$$
\begin{aligned}
\text { II }\left[1-q^{n}\right] & \left\{1-\frac{q^{\frac{1}{2}}\left(1-q^{4}\right)}{(1-q)\left(1-q^{2}\right)}+\frac{q^{0}\left(1-q^{4}\right)\left(1-q^{4}\right)}{(1-q)\left(1-q^{2}\right)\left(1-q^{2}\right)\left(1-q^{4}\right)}-\ldots\right\} \\
& =\text { the } \Theta \text {-function } 1-q\left(1+q^{4}\right)+q^{1}(1+q)-\ldots
\end{aligned}
$$

Example 3. $\quad a_{0}+a_{2}(1-q)+a_{6}(1-q)\left(1-q^{8}\right)+\ldots$

$$
\begin{aligned}
& =\gamma_{0}+\gamma_{2}(1-q)^{3}+\gamma_{4}(1-q)^{2}\left(1-q^{3}\right)^{3}+\ldots \\
& =b_{0}-2 q b_{3}+2 q^{4} b_{4}-\ldots, \text { by the preceding section }
\end{aligned}
$$

therefore $a_{0}+a_{9}\left(1-q^{i}\right)^{2}+a_{4}\left(1-q^{i}\right)^{2}\left(1-q^{i}\right)^{2}+\ldots$

$$
=b_{0}-2 q^{4} b_{9}+2 q^{2} b_{4}-\ldots
$$

whence, by § 7,

$$
\begin{gathered}
\Pi\left[1-q^{n}\right]\left\{1+\frac{\left(1-q^{4}\right)^{2} q}{(1-q)\left(1-q^{2}\right)}+\frac{\left(1-q^{4}\right)^{8}\left(1-q^{4}\right)^{2} q^{4}}{(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right)\left(1-q^{4}\right)}+\ldots\right\} \\
=1-2 q^{4}+2 q^{6}-\ldots
\end{gathered}
$$

Example 4. $\quad a_{0}+a_{2}\left(1-q^{2}\right)+a_{4}\left(1-q^{8}\right)\left(1-q^{4}\right)+\ldots$

$$
\begin{aligned}
& =\gamma_{0}+\gamma_{2}(1-q)+\gamma_{4}(1-q)\left(1-q^{3}\right)+\ldots \\
& =b_{0}-q(1+q) b_{2}+q^{5}\left(1+q^{2}\right) b_{4}-\ldots, \text { by } \S 9, \text { Ex. } 1 ;
\end{aligned}
$$

therefore $\quad a_{0}+a_{3}\left(1-q^{i}\right)+a_{4}\left(1-q^{i}\right)\left(1-q^{i}\right)+\ldots$

$$
=b_{0}-q^{4}\left(1+q^{4}\right) b_{8}+q^{\frac{1}{2}}(1+q) b_{4}-q^{6}\left(1+q^{1}\right) b_{6}+\ldots
$$

By §7, this gives

$$
\begin{aligned}
\Pi\left[1-q^{n}\right]\{1 & \left.+\frac{q\left(1-q^{1}\right)}{(1-q)\left(1-q^{9}\right)}+\frac{q^{4}\left(1-q^{4}\right)\left(1-q^{4}\right)}{(1-q)\left(1-q^{9}\right)\left(1-q^{3}\right)\left(1-q^{0}\right)}+\ldots\right\} \\
& =1-q^{4}\left(1+q^{4}\right)+q^{Y}(1+q)-q^{15}\left(1+q^{3}\right)+\ldots \\
& =\Pi\left[1-q^{1 n}\right] \Pi\left[1-q^{1(7 n \pm 3)}\right] .
\end{aligned}
$$

Hitherto we have deduced results by changing q^{2} into q. We may derive other identities by assuming values for the c 's in § 4.

Example 5.-Let $\quad c_{r}=0$;
then

$$
\begin{aligned}
1+\frac{m_{1} \mu}{1-q}+\ldots & =1 \div\left(1-\mu^{3} q\right)\left(1-\mu^{9} q^{8}\right) \ldots \\
& =1+\frac{q \mu^{8}}{1-q^{9}}+\frac{q^{8} \mu^{4}}{\left(1-q^{2}\right)\left(1-q^{4}\right)}+\ldots
\end{aligned}
$$

therefore

$$
\begin{aligned}
\gamma_{0} & =a_{0}+a_{2} q(1-q)+a_{8} q^{8}(1-q)\left(1-q^{3}\right)+\ldots \\
& =b_{0}-b_{8}\left(1+q^{3}\right)+b_{8} q^{2}\left(1+q^{4}\right)-b_{6} q^{6}\left(1+q^{6}\right)+\ldots
\end{aligned}
$$

by changing q into q^{2}, and a_{0} into γ_{0} in $\S 1$, (12).
This result agrees with §8, Ex. 4.
10. Second quadratic transformation of q.

By putting $r=-\mu$ in the identity quoted at the beginning of the last section, we get a relation

$$
\begin{gathered}
\left\{1+\frac{A_{9}(\theta)}{1-q^{3}} \mu^{3}+\frac{A_{4}(\theta)}{\left(1-q^{9}\right)\left(1-q^{4}\right)} \mu^{4}+\ldots\right\} \\
\times\left\{1-\frac{\mu^{8}}{1-q}+\frac{\mu^{4}}{(1-q)\left(1-q^{9}\right)}-\ldots\right\} \\
=1+\frac{A_{8}\left(2 \theta, q^{9}\right)}{1-q^{2}} \mu^{2}+\frac{A_{6}\left(2 \theta, q^{2}\right)}{\left(1-q^{2}\right)\left(1-q^{4}\right)} \mu^{4}+\ldots
\end{gathered}
$$

As in the preceding sections, we see that, if in consequence of a known equation.

$$
a_{0}+a_{3} A_{9}(\theta)+a_{4} A_{4}(\theta)+\ldots=e_{0}+e_{1} A_{1}\left(2 \theta, q^{9}\right)+e_{3} A_{9}\left(2 \theta, q^{9}\right)+\ldots
$$

we can derive a relation

$$
a_{0}+a_{3} m_{3}+a_{4} m_{4}+\ldots=e_{0}+e_{1} k_{1}+e_{3} k_{3}+\ldots
$$

then

$$
1+\frac{k_{1} \mu^{3}}{1-q^{9}}+\frac{k_{8} \mu^{4}}{\left(1-q^{9}\right)\left(1-q^{4}\right)}+\ldots
$$

$$
=\left\{1+\frac{m_{0} \mu^{3}}{1-q^{9}}+\frac{m_{0} \mu^{4}}{\left(1-q^{3}\right)\left(1-q^{4}\right)}+\ldots\right\}
$$

$$
\begin{equation*}
\times\left\{1-\frac{\mu^{8}}{1-q}+\frac{\mu^{4}}{(1-q)\left(1-q^{3}\right)}-\ldots\right\} \tag{1}
\end{equation*}
$$

Example 1.—Let $\quad k_{r}=0$;
then

$$
e_{0}=a_{0}+a_{1}(1+q)+a_{4} q(1+q)\left(1+q^{2}\right)+\ldots
$$

But the expansion of e_{0} in terms of the b 's is evidently obtained by changing q into q^{2}, and b_{r} into $b_{2 r}$ in the expansion of a_{0}; therefore

$$
\begin{gathered}
a_{0}+a_{3}(1+q)+a_{4} q(1+q)\left(1+q^{2}\right)+a_{0} q^{3}(1+q)\left(1+q^{9}\right)\left(1+q^{8}\right)+\ldots \\
=b_{0}-b_{4}\left(1+q^{2}\right)+b_{8} q^{2}\left(1+q^{4}\right)-b_{18} q^{6}\left(1+q^{6}\right)-\ldots
\end{gathered}
$$

By § 7, we get

$$
\begin{gathered}
\Pi\left[1-q^{n}\right]\left\{1+\frac{q(1+q)}{(1-q)\left(1-q^{2}\right)}+\frac{q^{3}(1+q)\left(1+q^{9}\right)}{(1-q)\left(1-q^{2}\right)\left(1-q^{8}\right)\left(1-q^{4}\right)}+\ldots\right\} \\
=\text { the } \Theta \text {-function } 1-q^{4}\left(1+q^{9}\right)+q^{18}\left(1+q^{4}\right)-\ldots
\end{gathered}
$$

Example 2.-From Ex. 1, § 8, we get

$$
\begin{aligned}
& a_{0}+a_{2}(1+q)+a_{4}(1+q)\left(1+q^{2}\right)+\ldots \\
& \quad=b_{0}-b_{4} q^{2}\left(1+q^{2}\right)+b_{8} q^{10}\left(1+q^{4}\right)-\ldots ;
\end{aligned}
$$

whence

$$
\begin{gathered}
\Pi\left[1-q^{n}\right]\left\{1+\frac{q(1+q)}{(1-q)\left(1-q^{2}\right)}+\frac{q^{4}(1+q)\left(1+q^{2}\right)}{(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right)\left(1-q^{4}\right)}+\ldots\right\} \\
=\text { the } \theta \text {-function } 1-q^{7}\left(q^{-1}+q\right)+q^{2 s}\left(q^{-2}+q^{2}\right)-\ldots
\end{gathered}
$$

Example 3.-Let $k_{1}=-q, \quad k_{2}=q^{9}, \quad k_{3}=-q^{3} \ldots ;$
then

$$
a_{0}+a_{2}+a_{4} q^{2}+a_{6} q^{6}+a_{8} q^{18}+\ldots
$$

$$
\begin{aligned}
& =e_{0}-e_{1} q+e_{2} q^{2}-e_{3} q^{8}+\ldots \\
& =b_{0}+q b_{2}-b_{4}-q\left(1+q^{4}\right) b_{6}-q^{8} b_{8}+\ldots, \text { by } \S 2,(8)
\end{aligned}
$$

Similarly,

$$
a_{0}+a_{2} q+a_{4} q^{4}+\ldots
$$

$$
\begin{aligned}
& =e_{0}-e_{1}+e_{2}-e_{3}+\ldots \\
& =b_{0}-b_{2}-q^{2} b_{4}+q^{2}\left(1+q^{2}\right) b_{0}-\ldots, \text { as in } \S 9, \text { Ex. } 1 .
\end{aligned}
$$

Example 4.-Let $\quad \dot{m}_{2}=1+q, \dot{m}_{4}=(1+q)\left(1+q^{8}\right), \ldots ;$
then, since

$$
1+\frac{1+q}{1+q^{2}} \mu^{8}+\frac{(1+q)\left(1+q^{3}\right)}{\left(1-q^{2}\right)\left(1-q^{4}\right)} \mu^{4}+\ldots=\frac{\left(1+\mu^{2} q\right)\left(1+\mu^{2} q^{3}\right) \ldots}{\left(1-\mu^{2}\right)\left(1-\mu^{3} q^{2}\right) \ldots}
$$

we have

$$
1+\frac{k_{1} \mu^{2}}{1-q^{2}}+\ldots=1 \div\left(1-\mu^{4}\right)\left(1-\mu^{4} q^{4}\right) \ldots ;
$$

therefore $a_{0}+a_{2}(1+q)+a_{4}(1+q)\left(1+q^{3}\right)+\ldots$

$$
\begin{aligned}
& =e_{0}+e_{2}\left(1-q^{2}\right)+e_{4}\left(1-q^{5}\right)\left(1-q^{0}\right)+\ldots \\
& =b_{0}-2 q^{2} b_{4}+2 q^{8} b_{8}-\ldots, \text { by §8, Ex. } 2 .
\end{aligned}
$$

$$
\begin{gathered}
\text { Example } 5 .- \text { Let } \quad m_{r}=0, \\
e_{0}-(1+q) e_{1}+(1+q)\left(1+q^{9}\right) e_{9}-\ldots \\
\quad=a_{0}=b_{0}-(1+q) b_{8}+q\left(1+q^{4}\right) b_{4}-\ldots, \text { by } \S 1,(12) ; \\
\text { therefore } \begin{array}{l}
a_{0}-\left(1+q^{4}\right) a_{1}+\left(1+q^{4}\right)(1+q) a_{3}-\ldots \\
\quad=b_{0}-\left(1+q^{4}\right) b_{1}+q^{4}(1+q) b_{3}-q^{4}\left(1+q^{4}\right) b_{s}-\ldots .
\end{array}
\end{gathered}
$$

11. Cubic transformation of q.

The identity

$$
\frac{(\lambda \mu)(\mu \nu)(\nu \lambda)}{P(\lambda) P(\mu) P(\nu)}=1+\Sigma H_{r}(\lambda \mu \nu / \lambda, \mu, \nu) A_{r}(\theta),
$$

given in Vol. xxiv., p. 346, when

$$
\mu=\lambda q^{4}, \quad \nu=\lambda q^{1},
$$

and q is changed into q^{3}, becomes

$$
\begin{gathered}
1+\frac{A_{1}(\theta)}{1-q} \lambda+\frac{A_{2}(\theta)}{(1-q)\left(1-q^{3}\right)} \lambda^{2}+\ldots \\
=\left\{1+\frac{\lambda^{3} q}{1-q}+\frac{\lambda^{4} q^{2}}{(1-q)\left(1-q^{2}\right)}+\ldots\right\}\left\{1+\Sigma H_{r} \cdot A_{r}\left(\theta, q^{3}\right)\right\},
\end{gathered}
$$

where

$$
1+\Sigma H_{r} x^{r} \equiv \frac{\left(1-\lambda^{3} q^{3} x\right)\left(1-\lambda^{3} q^{6} x\right) \ldots}{(1-\lambda x)(1-\lambda q x)\left(1-\lambda q^{9} x\right) \ldots}
$$

If, then, $\quad a_{0}+a_{1} A_{1}(\theta)+\ldots=f_{0}+f_{1} A_{1}\left(\theta, q^{3}\right)+\ldots$,
we see that $a_{0}+a_{8} q\left(1-q^{2}\right)+a_{4} q^{2}\left(1-q^{3}\right)\left(1-q^{4}\right)+\ldots$

$$
=b_{0}-\left(1+q^{3}\right) b_{2}+q^{3}\left(1+q^{6}\right) b_{4}-q^{0}\left(1+q^{0}\right) b_{0}+\ldots .
$$

Again, by § 9, we get

$$
\begin{aligned}
& a_{0}+a_{2} q\left(1-q^{9}\right)+a_{4} q^{8}\left(1-q^{3}\right)\left(1-q^{4}\right)+\ldots \\
& \\
& =\gamma_{0}+\gamma_{8} q^{2}(1-q)+\gamma_{4} q^{4}(1-q)\left(1-q^{3}\right)+\ldots
\end{aligned}
$$

so that $a_{0}+a_{3} q\left(1-q^{4}\right)+a_{4} q^{2}\left(1-q^{4}\right)\left(1-q^{\frac{1}{3}}\right)+\ldots$

$$
=b_{0}-\left(1+q^{3}\right) b_{2}+q^{\frac{1}{2}}\left(1+q^{3}\right) b_{4}-q^{t}\left(1+q^{t}\right) b_{6}+\ldots
$$

and, by § 7,

$$
\begin{aligned}
\Pi\left[1-q^{n}\right]\{1 & \left.+\frac{q^{2}\left(1-q^{4}\right)}{(1-q)\left(1-q^{2}\right)}+\frac{q^{6}\left(1-q^{4}\right)\left(1-q^{4}\right)}{(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right)\left(1-q^{4}\right)}+\ldots\right\} \\
& =1-q-q^{4}+q^{3,2}+q^{\frac{i}{4}}-\ldots \\
& =\Pi\left[1-q^{\frac{q}{n}}\right] \Pi\left[1-q^{4(7 n \pm 2)}\right](c f . \text { Ex. } 4, \S 9) .
\end{aligned}
$$

The foregoing examples will illustrate the great fertility of the method employed for deducing identities which are difficult to prove by other means. It may be noticed that, when all the b's are equated to unity, the expression for a_{0} vanishes identically. The equation $\S 1$, (4) would lead us to infer that a_{1} would also vanish identically on the same supposition, as indeed is obvious from §1, (13). Similarly, it may be shown that all the a 's vanish identically when the b 's are equated to unity. Consistently with this fact, it will be then seen that, if in any relation connecting an a-series with a b-series the coefficients of the a 's form a convergent series, then the b-series vanishes identically, as in § 2, (9), §8, Ex. 4, \&c.; but, if the b-series does not vanish identically, then the coefficients of the a 's form a divergent series, as in $\S 2$, (7), §8, Ex. 1, 2, 3, \&c.

On Regular Difference Terms. By A. B. Kempe, M.A., F.R.S.
Read and Received April 12th, 1894.

1. Let a, β, γ, \ldots be a system S_{n} of n quantities, which may be termed roots; and let w differences $\alpha-\beta, \alpha-\beta ; \beta-\gamma, \alpha-\gamma ; \& c$. , be formed with these, each root entering into v of the differences. Then the product of these w differences will be called a regular difference term of the system S_{n}, and will be said to be of degree n, order v, and weight w.
2. The expression

$$
(a-\beta)^{2}(\beta-\gamma)(\gamma-\delta)^{2}(\delta-\alpha)
$$

affords an example of a regular difference term of degree 4 , order 3 , and weight 6.
3. We may have difference terms into which the different roots do not all enter the same number of times; such difference terms are, however, irregular. A difference term will be irregular although ench of the roots which enters into it enters the same number of times as the others, provided that there are other roots of the system under consideration which do not enter at all. Such a difference term will,

