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Yoke-Chains and Multipartite Compositions in connexion with the

Analytical Forms called " Trees."

By Major P. A. MACMAHON, R.A., F.R.S.

[Read April 9th, 1891.]

A yoke-chain, an expression adopted at the suggestion of Professor
Caylcy, is a geometrical configuration composed of line branches.

The simple line branch is indifferently a yoke or a chain.

The combinations < ^ > <C3> &c. are yokes ;

whilst ——. • » &c. are chains;

and generally we form chains by combining chain-wise any number
of yokes, and also generally we form yokes by combining yoke-wise
any number of chains.

E.g.,

Yoke-chains may be viewed as diagrammatic representations of the
combinations of resistances of linear electrical conductors, or of the
capacities of electrical condensers. The yoke and the chain repre-
sent parallel and scries combinations of resistances, but aeries and
parallel combinations of capacities.

Tlie theory of yoke-chains docs not include every combination of
resistances, but only those which are made up of two or more combi-
nations, either in parallel or in series. In the case of five resistances,
for example, we find a combination such as the Wheatstone net, which
is not decomposable into other combinations either in parallel or in
series. Such networks, considered by Kirchhoff and Maxwell, do not
come into view here;

Consider in the first place the different yoke-chains that can be
formed from a given number of branches.

From a single branch wo can merely form the yoko or chain.
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From two branches we form the chain of Fig. 1 or the yoke of
Fig. 2,

Fig. 1. Fig. 2.

I define the yoke of Fig. 2 to be the yoke-chain conjugate to tho
chain of Fig. 1, and I further regard the yoke or chain as being
Self-conjugate.

Every chain is a chain of yokes, and every yoke is a yoke of chains.
I make the following definitions :—
Definition.—The conjugate of any chain is formed by placing the

conjugates of the component yokes in a yoke.
Definition.—The conjugate of any yoke is formed by placing the

conjugates of the component chains in a chain.
The process of conjugation is necessarily reversible, as is obvious

from the definitions.
The second of the above definitions is derived from tho first by

interchanging the words chain and yoke.
We have thus the notion of conjugate yoke-chains, and it is clear

that the yoke-chains of a given order (i.e., of a given number of
branches) may be arranged in conjugate pairs, each pair comprising
a chain and a yoke.

Further, the whole of the yoke-chains may be arranged in a chain
set and a yoke set, and either set is derivable by conjugation from
the other.

Passing now to the case of three branches, we form the chain Bet
. by placing each of the forms of order 2 in chain with the form of
order 1. We thus obtain the left-hand column below :

To form the right-band column, we first place the three self-
conjugate components of the form • • • in yoke, and then
place the conjugates of the components <Z> of the form

viz., • • and • ' , in yoke.

Wo thus obtain the left-haud chain set, aud the right-haud yoke
set.
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In forming the forms of order 4, we place each of the four forms
of order 3 in chain with the form of order 1, and further place the
yoke form of order 2 in chain with itself. We have thus 5 ( = 4 + 1)
forms, constituting the chain-column of order 4. These are given
below, and also the conjugate yoke-column.

To form the chain-column of order 5, each of the ten forms of
order 4 is placed in chain with the form of order 1, and further each
of the yoke forms of order 3 is placed in chain with the yoke form of
order 2. There are thus, in all, 2 (10 + 2) = 24 forms. In general,
tbe forms of order n are formed from the forms of lower orders. To
form the chain-colnmn, as many processes must be performed as there
are non-uuitary partitions of n, or as there are partitions of n com-
posed of the integers

2, 3, 4, ... n.

We first place each form of order n— 1 in chain with the form of
order 1. This is the first process, and thereafter we have a process
associated with every non-unitary partition of n with the exception

of the partition consisting merely of the number n itself.
For the partition (n —2, 2) we take every yoke form of order n —2

in chain with the yoke form of order 2. For the partition (n—p, p),
_p>l, we take every yoke form of order n—p in chain with every
yoke form of order p.

Denote by Bp the number of chain or of yoke forms of order p.
Then, if p — 1, tho complete number of forms is J9, = 1 j but iip>l
the complete number of forms is 2BP.

Iu forming synthetically the number Bu we have above found a
portion ZBn_u and corresponding to the partition (n— p, p)% p>\, a
portiou Bn_pBp, for this represents the number of ways of combining
one of n—p things with one of p things of a different sort.

If, however, n—p=p, the corresponding portion is not Bp, but
p ,, \ viz., the number of homogoneous products of Bp things,



1891.] Analytical Forms called Trees, fyc. 333

two and two together. So also, corresponding to the partition
(^m**...), we have the number

A! •

and finally we have the relation

Bn = 2BH

the numbers I, m, &c being > 1 .

This relation leads at once to the expression of the law of the
numbers B in the form

(l-a8)"*' (l-x*)-B> (l-x*)-**...

or, multiplying up by 1—as,

hBix*+...).

This formula, wherein I?i = I?8 = 1, is convenient for calculating the
numbers 2BP.

We find

B, 2B3 2£8 2Bt 2B6 2B6 2B7 2£8 2J59 2P10 ...

1 2 4 10 24 66 180 522 1532 4984...

There is a paper by Cayley in the Philosophical Magazine, Vol. xnr.
(1857), also Collected Papers, Vol. in., No. 203, " On the Theory of
the Analytical Forms called Trees." The following passage occurs
(Collected Papers, loc. cit.t pp. 245, 246)* :—

* Other references are—
" On the Analytical -Forma called Trees," Cayley, Phil. Mag., Vol. xx.

(1860), pp. 337-341.
" On the Mathematical Theory of Isomers," Cayley, Phil. Mag., Vol. XLVII.

(1874), p . 444.
" On the Analytical Forms called Trees, with Application to the Theory of

Chemical Combinations," Cayley, British Association Report, 1875, pp. 257-305.
" O n the Analytical Forms called Trees," Cayley, American Journal of

Mathematics, Vol. iv., pp. 266-268.
In tho latter paper tho notion of the centre or biccnti-o of number is stated to be
due to M. Camille Jordan, but I cannot lind tho reference.
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" I have had occasion for another purpose to consider the question
of finding the number of trees with a given number of free branches,
bifurcations at least. Thus, when the number of free branches is
three, the trees of the form in question are those in. the annexed
figure, and the number is therefore two. It is not difficult to see that

we have in this case (i?r being the number of such trees with r free
branches)

(1-a ) - 1 (l-z*)-** ( l-a:8)-8 ' ( l - a 4 ) " * ...

In view of this interesting identity of enumeration, though in the
absence of information in regard to the purpose for which Cay ley
investigated the subject, I propose to examine in detail the correspon-
dence between yoke-chains and the trees with free branches.

A single tree represents either member of a certain conjugate pair
of yoke-chains, according to the interpretation placed upon the com-
bination of knots and branches which constitutes the tree.

In the first place, we may restrict attention to the chain combina-
tions of the several orders.

One, two, three, &c. branches in chain may be denoted by the trees

and this representation would be in some respects the most consistent
with what follows. The idea is that a branch

denotes a chain of order 1, and the upper knots are then joined by
branches to a single knot to denote that the several chains are to be
joined in chain. The trees, however, become simplified if we agree
to represent a single linear resistance, not by a branch but by a
terminal knot. The three trees above then become

I A A
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Consider next the tree

which may be taken to denote the resistances

A .
placed in series. In order that this tree may represent the com-
bination

it is necessary to suppose that the tree

A
represents npt the combination „ . . but rather its conjugate
yoke form

The ultimate step in interpreting a tree will be to take a number of
forms in chain. The trees which represent these forms will bo found
pendent to the second row of knots in the tree. We must therefore
agree always to interpret the trees which originate from the second
row of knots as yoke combinations. On this convention the tree

denotes the chain combination of the yoke combinations denoted by
the trees

A •
viz., the yokes < ~ > ——» placed in chain, or

The above principle enables us to form in succession tho free-branch
trees of the various orders.
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The five trees of order 4 are

I. II. III. IV. V.

[April 9,

Each corresponds to some partition of four other than the number
4 itself.

The tree I. [partition (I4)] clearly denotes

the tree II., partition (21a), denotes

the tree III., partition (2X), gives

trees IV. and V. both belong to the partition (31); this follows from
the fact that there are two trees of the order 3, and either may be
placed as a pendent to a knot of the tree

A
in order to form a tree of order 4.

According to the rule, we must give parallel interpretations to the
trees

A
prior to taking them in scries, in each case, with the tree denoted by
a single knot.

We have thus—
Treo IV. =

Two.V.=
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and the five trees have been placed in correspondence with the five
series combinations of order 4.

As another example I take the tree

The series equivalences of the trees

are

To form the complete combination we have merely to take the conju-
gates of these in series.

The conjugates are

BO that the tree denotes the combination

In this way any tree may be interpreted so as to denote a chain.

If in the foregoing rules the words chain and yoke be interchanged,
the result will be the conjugate yoke combination.

A treo therefore may be taken to be a representation of either
combination of a conjugate pair at pleasure, or if we please of both
combinations of such a pair.

I give below a Table showing the correspondence of trees with
yoke-chains of the first six orders.

VOL. xxii.—NO. 420. z



338 Major P. A. MacMahon on the [April 9,
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The capacity of condensers placed in parallel is formed according
to the same law as the resistance of linear conductors placed in
series.

In general the capacity of any combination of condensers is formed
according to the same law as the resistance of the conjugate combi-
nation of linear conductors.

There is a very simple result connected with the conjugate com-
binations of equal linear conductors which may possibly hare escaped
notice.

If any combination of linear conductors, each of r ohms resistance,
be formed so that the combined resistance is

— r ohms;
n

then the resistance of the conjugate combination is

— r ohms.

The indnctive proof is easy, for suppose two series combinations to
have resistances ,

•^-r and -^-r ohms,
bo

and to be such that the resistances of the conjugate combinations aro

° A o' ,
— r and —y r ohms.
a a

Placing the two combinations in parallel, the resistance is

-r r ohms,
an

w

which is — -7- r ohms,

a a

and the reciprocal of the multiplier of r is

h_,V_
a a *
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which, multiplied into r, represents the resistance of the combination
formed by placing the conjugates of the component combinations in
series.

Hence, since the law.evidently holds in the simplest cases, it must
be true in general.

2. In the Philosophical Magazine, 1860, Professor Cayley has
enumerated the trees with a given number of terminal knots. He
remarks:—

" We have here

<bm — 1.2 .3 ... (TO—1) coefficient a:'""1 in ,
2—expa>

giving the values

fm = 1,1, 3, 13, 75, 541, 4683, 47293, ...,

for m = l , 2 , 3 , 4, 5, 6, 7, 8, ...."

This enumeration is identical with that of the compositions of
certain multipartite numbers.*

The correspondence is between the trees with m terminal knots,
and the compositions of the multipartite number

where I™"1 denotes 1 repeated m— 1 times, and the bar means
that the partition does not denote the partition (I"1"1) of a single
number m— 1, but rather the multipartite number having the multi-
partite weight 1, 1, 1, 1, ..., m—1 times.

To identify each tree with a composition, consider, for example, tho
13 trees with 4 terminal knots.

* H. J . S. Smith and J . W. L. Glaisher have termed partitions in which tho
order of the parts is essential " compositions." For multipartite numbers see the
author, " Memoir on Symmetric Functions of the Roots of Systems of Equations,"
Jfhil. Tram. Ji. S. of London, Vol. CLXXXI. (1890), A., pp. 481-636; and fox compo-
sitions of multipartite numbers, tho author, tho Messenger of Mathematics, Vol. xx.
(1890).
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These are

[April 9,

• 2 3

1 2 3 1 2 3

I i 3

We have to identify each of these trees with a composition of the
tripartite number 111. The number being tripartite, whilst the
terminal knots are four in nnmber, the idea is presented of considering
not the terminal knots, but the spaces between them, which are but
three in number. These spaces are numbered 1, 2, 3 from left to
right in each tree. Consider, moreover, the knots in the first, second
and third rows, omitting the terminal row of knots. These are marked
A, B, 0; in each row we have knots from which descend two or more
branches. Of these branches any two that are adjacent bound an
area which is in direct communication with one of the nnmbercd
Rpfices between the terminal knots. In any row of knots wo must
observe the connexion between each angle, formed by the

A
descent of two adjacent branches from a knot, and the terminal
spaces.

In the seoond of the last line of trees, beginning with row A, we
see an angle in communication with space 3, but not with spaces
1 or 2 ; this connexion between angles and spaces may be denoted by

001;
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similarly for row B, there is one angle in connexion with space 1, so

that we have 100;

in row C, one angle leads to space 2, so that we have

OTO;
the whole connexion between angles and spaces is represented by the

composition (OOl, 100, OlO)

of the multipartite number 111.

Interpreting each tree in succession, we get the whole of the 13
compositions of 111, viz. :—in order

(HI) ,
(oil; ioo), (ToT, olo), (TIo, ooT),
("olo, loT), (ooi, no) , (Too, OTT),

(001, 010, 100), (001, 100, 010), (010, 100, 001),

(olo, ooi, ioo), (Too, ooi, olo), (Too, olo, ooi).
This principle of interpretation is perfectly general. The number of
angles in a tree must be less by one than the number of terminal knots,
and each row from the first (or top) to the penultimate must contain
at least one angle.

If any composition of a multipartite number of the form which
presents itself in this theory be given, it is extremely easy to form the
corresponding tree. To form the tree, it is best to commence with the
right-hand part of the composition, and to then proceed regularly
towards the left.

Suppose given the composition

(0101, 1000, 0010),

the successive operations are

II A I
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This correspondence is valuable, as putting ns in possession of a
graphical method through which the compositions may be studied.

3. The compositions of the multipartite numbers

r, IT, nr, im, &c.,
into a definite number of parts, zero parts not excluded, may be
graphically represented by trees with a definite number of terminal
knots, and also a definite altitude (or number of rows of knots).

The trees of altitude 1 are trivial, as merely denoting the succession
of integer numbers 1, 2, 3, &c.

Passing to those of altitude 2, we have, for 1, 2, 3, &c, terminal
knots,

&o.;

and in the first place it is seen that these trees may be considered to
be graphical representations of the compositions of the integer numbers
1, 2, 3, &c.; the last, for example, denoting the compositions of 3,

viz., 3, 21, 12, 111.

Consequently the number of trees of altitude 2 with m terminal
knots is 2m~I.

We may also interpret these trees as before by paying attention to
the inter-terminal knot spaces.

We thus obtain the compositions

(01), (10),

(oon), (olio"), (looi), (noo),
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in which we now have the compositions of the multipartites

i, n, m, &c,
into two parts, zero not excluded.

In particular we have jnst obtained a graphical proof of the
theorem:—

" The whole number of compositions of the number m + 1 is equal
to the number of compositions of the multipartite lm into two parts,
zero parts not excluded."

In general, the trees of altitude n and having m terminal knots are
representations of the compositions of the multipartite

into n parts, zeros not excluded.

It is to be shown that the trees of altitude n and having m
terminal knots are m_i

n
in number.

All the trees of a given altitude n are derivable from the trees of
the next lower altitude.

We may start with a tree of altitude 1, having p terminal knots,
p^m, and append o>nj p trees of altitude n—1 of which the sum of
the terminal knots is m. We must give p all integer values from
1 to m in succession, and append the appropriate trees.

Let then Tm>n denote the number of trees in question.

It is easy to see that the above considerations lead to the relation

Tr •o \rr\ + "a + Tj + . . . ) ! ,pw, qr>, rp*3
m,n — -4 : j j -LPx,n~\ - 1 p t , n - l J - p , , n - \ • • • >

" V "*%• " 8 ! •••

the summation being for all partitions

(p?ftp? •••)
of the number m.

This relation is expressed algebraically by the formula

and since obviously ' Tm>\ — 1,
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we reach without difficulty the formula

Thnx+T2tnx
t+Ts>nx*+... = x

1 —wa>

Hence , as above s ta ted , Tm>n = nm~l.

We have established the theorem :—

" The number of compositions of the multipartite number

into n parts, zeros not excluded, is

n""1

and there is a one-to-one correspondence between these compositions
and the trees of altitude n which have m terminal knots."

On Functions determined from their Discontinuities and a certain
form of Boundary Condition. By Mr. W. BURNSIDE.

[Read May Uth, 1891.]

The problem of uniform streaming in two dimensions (of incom-
pressible fluid or electricity) may be stated in the following form: to
determine a single-valued function of x+iy which in a given region
of the x, y plane shall have a single given infinity and whose
imaginary part shall be constant over the boundary of the region.

It is the object of the following paper to prove certain general
theorems with respect to functions of a complex variable which are
determined by conditions similar to but more general than these, and
to show how to construct the functions themselves in certain simple
cases.

I suppose that m closed non-intersecting curves are given,
Oj, 0t... Cm, no one of which separates any two others. The region
bounded by these curves is called B ; and I consider a function w in
the region B which shall be everywhere one-valued and continuous,
except at n given points zu z%... zni at each of which it has a given

simple infinity (BO that to — is finite when z = zr), and which
s—sr
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at the boundaries shall be such that the imaginary part of wei9r is
constant over Or, where 0u 08... 0m are given angles.

Assuming the function w to exist, I prove that it is completely
determined, except as regards an additive constant, by the given
conditions, and that in B it takes every value n times. It follows at
once that if wx, wt... wn are functions satisfying the same boundary
conditions and each with a single infinity, then

I then go on to show how to form the functions when the boundaries
are circles.

First consider the nature of the condition at the boundaries. If

w = u+iv,

then, at Cr, u sin 6r+v cos 6r is constant. Hence

if — denote differentiation along the arc of Cr. But £- denoting
os On

differentiation along the normal to Cr,

du ov_ , du ov m

9s On on ds

and if at any point on Gr -^- vanishes then also •£• vanishes, and the
os on

point is a double point on the u-cnrve passing through it.
Now u and v cannot both be constant along Cr without w being

everywhere constant; hence there must be an even number of points
on Gr at which u and v have (as regards displacements on Cr) maxi-
mum or minimum values, and at which the curves u = constant and
v = constant have double points. Suppose now that there are two
different functions w' and w" satisfying the given conditions in aud at
the boundaries of B ; their difference w'—w" ( = w) will be a fnmction
everywhere one-valued and continuous within B, and such that'

usin 0r-{-v cos 8r

is constant over Cr, where the suffix may have any value from 1 to m.
Suppose A and 13 are two points on Cv at which

The curve u = «„,
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which may, without loss of generality in the reasoning, be supposed
not to extend to infinity, will consist of a branch starting from A and
abutting on some other part of the boundary 0it say at A(; leaving
Oi at another point Bh and abutting on 0i; and so on, at last returning
to B. Between A and B on 0x is a point at which the u-curve, say

has a double point. The curve

will either not meet Oit or abut on it at two points between A{ and
Bit and a tt-curve drawn for some value which u takes twice between
Ai and J?,, will certainly abut on one bounding curve less than

This process may be continued, and at last there must be a curve

which abuts only on one bounding curve 0,. But between (the two
points on 0, where

u = ur

meets it, there is one at which the M-curve has a double point. This
M-curve then must either cut

M = wr,

which is contrary to the supposition that w is one-valued, or it must
be closed, which is contrary to the supposition that w is everywhere
finite. Hence the supposition that w'—w" is not constant leads to a
contradiction. The function then, if it exists, is completely deter-
mined, except as regards an additive constant, by the given conditions.

For sufficiently great values of u0 and v0, the curves

w = u0 and v = v0

consist each of n small closed approximately circular curves passing
through z,, 28... zn in pairs, and each pair intersecting in one other
point.

' Hence, when u0 and v0 are great enough, w takes the valne UQ+W^

n times. Now following the reasoning that Prof. F. Klein applies to
the similar problem for a one-valued function on a Riemann's surface
(" Ueber Riemann's Theorie der Algebraischen Punctionen," p. 46),

the carves u = un, v — vai
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can by continuous variation of u0 and v0 only lose or gain an inter-
section at a double point on the u- and v- curves or at the boundary.
But as u0 and v0 change continuously through values corresponding to
& double-point, a pair of points of intersection approach, coincide, and
then separate into two again, so that no point of intersection is gained
or lost in this way. Also, if

= uo

abuts on a boundary at A and B, the values of v at A and B are the
same (from the boundary condition); and, since between A and B there
must be a double point, the values of v on the curve

as it approaches A and leaves B, must be either continually increasing
or continually decreasing. Hence, as regards intersections, there is
no difference between a curve that meets the boundary and one that
does not. It follows therefore that the number of points of inter-
section is always the same as when w0 and v0 are very great; or in
other words, to takes every value n times in the region R.

If wu wi..,wn are n functions, each with a single infinity in the
region R, and all satisfying the same boundary conditions as before,
then w>i+w;a-f ..<+wn is a single-valued function in R with n given
infinities and satisfying the same boundary conditions; but it has
just been seen that there is only one such function, and therefore any
function of the kind considered can be formed by combining linearly
functions with a single infinity. The analogy between the functions
wu w2, &c, in the region R, and linear functions of z in the infinite
plane is obvious.

If wx is the function with a single infinity at zu the equation

establishes the conformable representation of the region R on the
infinite w-plane, the bounding curves Su S3, &c, corresponding to the
two sides of finite portions of the lines

u sin ft,+v cos 03 = c2,

&c,

where cv ct, &c. are constants depending on the bounding curves and
on *,; and similarly

/ ( )
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establishes the conformable representation of B on an n-sheeted
Riemann's surface, in which m finite lengths of certain straight lines
are to be regarded as boundaries.

Now if in B a closed carve be drawn that does not surround one of
the curves 0, it can be reduced to a point by continuous deformation
without leaving B. Hence the same must be true of the above
Riemann's surface; or, in other words, the surface itself, leaving the
finite bounding lines out of account, must be simply connected. Since
it has n sheets, there must therefore be 2 («—1) branch-points; and
therefore within the region B (i.e., excluding the boundary), there
must be 2n—2 doable points on the u- and v-curves.

Now suppose that, on Sn u, and therefore v, has pr maxima and
pr minima. Then I have shown, in a paper in the Messenger of Mathe-
matics (Vol. xx., p. 66), that the whole number of double-points of
the u- or the u-curves in B, including those at the boundaries, is

2n+2,pr+m-2.

But it has been shown here that in this case there are 2w—2 double
points inside B and 22pr on the boundaries.

Therefore 2pr = m;

but pr cannot be less than unity, and hence

or u and v will each have one maximum and one minimum at each
boundary.

I go on now to consider the actual formation of the functions when
the boundaries are circles.

With a single circle the solution is simple and well-known; but it
will be convenient to express the result directly in this case for the
sake of explaining the notation to be used in the further cases.

The conjugate imaginary of z will always be represented by z, the
modulus of z by | z | , and the radii and centres of the various circles
by ru î» »"a> 2a> &c« For a single circle the function w must satisfy
the following conditions :—

A
w

z—a

must be finite for all points on the same side of the circle

| z—z, | = rx

as a, and the imaginary part of we"1 must be constant at the circle.
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by ru î» »"a> 2a> &c« For a single circle the function w must satisfy
the following conditions :—

A
w

z—a

must be finite for all points on the same side of the circle

| z—z, | = rx

as a, and the imaginary part of we"1 must be constant at the circle.
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Now, it is easy to verify that the imaginary part of

Ae<e' A'e-">
z—a , , r2

a —zx— —»—
Z — 2,

vanishes at the circle

for, writing z—zx = rxe
xi

the expression becomes

Ae"' Aj
rle

is-\-zl—a

the sum of two conjugate imaginaries, which is real.

A A'e'2i"'Hence w = ;—I-constant.
a - 2 , »-

z—el

But

2—2, l a—z[

_ l_ -

1 ' ' ''
1 Ct " ^ Z\

r
and 2,H—7-*—, is the inverse point of a in the circle | z—zx I = r,7a —Z\

which will always be represented by a,; therefore

w = — -I -A-,V ^^•'+const.
2 — a \ a — Z\l 2—ctj

Starting from the finite form so obtained for the case of a single
circle, a method which is essentially the same as the physical method
of images may be applied to form a series, which} if convergent, will
give the required function for the case of two circular boundaries.

The two circles might first, by a linear transformation, bo replaced
by two concentric circles, but the simplification of the algebraic work
thereby introduced is not great; while the point at infinity being
then a singular point for the functions involved, the result would lose
something of its generality. Consider then the case iu which the
boundary consists of two non-intersecting circles

| z—zx | == rx und I z—z.t I = ra.
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By applying cbntinually the previous result a series may be obtained
of the form

_
* | A* | ... •|

z—a, z—a%x

where Ax = - (-^-}\A'e-%i\
Vo — Z\l

and a,, is the inverse point of a, in the circle | z—zt | = r,, &c. Each
term of this series corrects over one circle the error introduced over
it by the preceding term, and hence, if the series is convergent, it
clearly represents the function required.

The form of the series may bo simplified by the following con-
siderations.

Two consecutive inversions are equivalent to a linear substitution,
and hence tho quantities a, a,, a13, a,,, am, &c, in the denominators
can be dorived from a and a, (or from a and a%) by transforming these
by means of the direct or inverse powers of a linear substitution.

Suppose that a,, = a a ;
ea-\-d

any term a121... or am^ with an even number of suffixes can then be
written in the form

where (a, " * ) is a power of (z, az , 1, and any term with an
\ cna+d,J r \ cz+d I

odd number of suffixes can be written in the form

Also, sinco a,, =? «,+ ,r» ,,
a, — z2

therefore dun — — ( /* ; ) da'u
\ni—ztr
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and da, — — ( /^ .) da.
\a —zxf

Therefore Au = - (-p-, )'e'2"' A\
\aj—z2/

a—Z\

which result can be generalized at once.
The series therefore can be written in the form

w = A | c

z-fn(<*) da

1— 2-/,, (a,) da, '

where /„ represents the result of repeating n times the linear sa bsti-

Now the substitution ( z. a )
\ cz + dfcz + d

has for its double points the limiting points of the coaxal system to
which the two circles belong; while it may easily be verified that
tho multiplier is real and different from unity. It may therefore be
written in the form

f(z) — h z—h

and hence /. (a) = ̂ ^ . 4 1 ^ ';

therefore
da

It follows that 2 I" * is a uniformly convergent series, and there*
- • da

VOL. XXII.—NO. 421. 2 A
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fore at once that the two infinite series in the expression for w are
uniformly convergent and represent continuous functions of z.

If 0j—03 is commensurable with w, the expression for w can be put
in a finite form by means of theta-functions, but not otherwise.
Suppose, for instance, that

where p is an integer; then the terms in w which contain
w»*)i*> (s<p) as a coefficient are

Now

-« z—fs+ul, (a) da

1 df,+ni,(a) , 1 <*/..„(»)
*—/.+»P(«) do z—f,.ni>(a) da

- _ JL w r« - o^"p-o)fs(")-^ (K""-DI

(IC-»"-l)/J(«)+7i-?K--'"' J

(z-g) [f,(a)-h]-(s-

~ 8a

z / ' ^ a

log z-g f,(a)-h

1 - f.(«)-fc^-«
/.(«)-'*

The terms in question can then be written

z-hf.(a)-g) i I z-kf.(a)-g

where finally the denominator can bo omitted as a niorc constant.
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Omitting a further constant, this is the same as

-#logflifc. .«).
On

where q — K'*1',

, 1 , z — q f, (a)—h l i z — qa—h , is-,
and x, = — log —f Jf~— = - log — * + - log q.

1% z — h fa(a)-g 2i z—ha — g p °.
Now 5 =

a 2i.(a-h)(n-9y

and the part of w which has A for a coefficient can therefore be
written in the form

2 (a — /i)(a—g) «-o 0j (x,)

The quantity ; z~ -, which occurs as a factor in the other
C«i—'0(«i—9)

half of 10, may easily be put in the form

( a, —Z\ \ 2 h — q'
7"j / ( a ' — ^ ) ( a — Q )

so that, if y, is written for the result of putting rij for a in JB,, the
second part of to becomes

2 (a'-h'Xa'-g) ..o ^ (y.)'

Finally, simplifying the constants by writing

i,t _ , j

2 (a-fc)(a-

o 6x(x.)

The function so obtained represents the space outside two non-
intersecting circles conformably on an infinite plane in which two
finite non-intersecting straight lines inclined at an angle n-/p are to
be regarded as boundai-ics.
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If ex = 0, = 0, so that p = 1,

e; ( i log Z-^L ^ =
2 t z h a

01 ( 1 log £=£ «=*) e, (i-. log

is a function having a single infinity at a in the space outside the
two circles, and constant imaginary part at their circumferences.

If, further, o = oo, and therefore

ID ^

where the modulus of the theta-functions is JT*1, gives the uniform
streaming motion of flnid in any direction past two right circular
cylinders. This particular case of functions of the kind considered
has already been dealt with by Mr. Hicks and Mr. Greenhill in
Vols. xiv. and xvi. of the Quarterly Journal of Mathematics.

In this case the original expression for w is

z—f»(.a)
therefore

Now, if /„ (a) = -n^~j , [a»dn—bnc,, = 1 ] ,

1 d[,,J(a) 1
[«—/«(a)l* da rz^Cna^.^ — Cna — l)ny

— (-cnz+an)~
2

# - (i)
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dw _, r A . Ax -| dfn (z)
or

dz~ '"tLr«~/.MT ' r«,-/.wTJ d*

The form of this function is precisely that of those that M. Poincar6
calls theta-fuchsian, except that the factor c»z+dn occurs in the
power — 2, while the general form of a theta-fuchsian function as
considered by M. Poincare, is

where m is not less than 2.

The group of substitutions to which the above — belongs, being
oz

derived from a single fundamontal substitution, is the simplest
possible, and is only incidentally referred to by M. Poincare1 in his
memoir (Ada Mathematics Vol. I.).

The previous investigation shows that for the discontinuous infinite
group derived from a single fundamental substitution (which must be
hyperbolic or loxodromic to give a discontinuous group),

is a convergent series, and that therefore theta-fuchsian functions of
the form

do really exist.

Now, if ^ = / (*) ,
dz

then, from the fundamental properties of these functions,

and therefore f (™±±) d ^ =/(«) dz;
" \cz + d / cz + d
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or,« '

so that the variable part of w must remain unchanged by the substi-
tution

/ „ az + b\

or, in other words, by any substitution of the group.

The function w therefore has its characteristic properties, not only
in the original region 22, but in any of the regions into which this
may be transformed by the substitutions of the group.

These latter results can be derived directly from the expression of
twin theta- functions ; but with a view to the consideration of the case
when the boundary consists of three or more circles, in which the
group of substitutions involved is derived from more than one
fundamental substitution, and the functions can therefore not be
expressed in terms of tbeta-functions of one variable, it appears
desirable to show how in this simplest case the idea of a group of
substitutions and of functions which are unchanged by it is involved.

Before going on to consider the functions for streaming motion
and tbe analogous functions considered here for the case of three or
more circular boundaries, it will be necessary to investigate the con-
vergence of series analogous to the one just dealt with, but arising
from a more extended gronp of substitutions. This I shall do in
another paper, which I hope to have tbe honour of laying before the
Society.


