
The zeros of Riemann's Zeta-Function on the critical l i n e .  

By 

G. H. Hardy and J. E. Littlewood. 

1. Introduction. 

1. We denote by N o ( T  ) the number of zeros of ~(8) - - -=~(a-~- i t )  
for which 

1 e-----~, O<$<T. 

In a recent memoir in the Acta Maghematica ~) we proved tha t  t h e  
order of magnitude of N O (T) is not much less than T ~. More prec ise ly ,  
we proved that to every e > 0 corresponds a T o --= To(s ) such that  

~0 (T) > f ~-~ (T > To ). 
Here we go a good deal further. In w 2 we prove 

T h e o r e m  A. There is a K > O and a T O such that 

(1.1) N o ( T ) > K T  (T > To). 

The order of magnitude of N O (T) lies therefore between T and T log  T .  
In w167 3--5  we prove, by rather more difficult analysis, a more p rec i se  
result, viz. 

T h e o r e m  B. Let U :.. T a, where a > �89 Then there i s  a 

K = K ( a ) > O  a~d a T o = T o ( a  ) such that 

(1.~) ~ o ( T +  U ) -  No(T)> KU (T>T0). 
Some of the lemmas on which our argument depends have an i n t e r e s t  

independent of the particular application made of them here. We h a v e  
therefore sometimes developed them further than is absolutely neces sa ry  
for our immediate purpose. 

1) G. H. Hardy and J. E. Lit t lewood, Contributions to the theory of the  
Riemann Zet~Fun~tion and the theory of the di~ribution of primes, Ac2~ Ma:the- 
~aJiea, 41 (1917), 119--196 (177-184). 
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2.1. L e m m a  lZ). 

('2. 11) ~ ( s ) + i -  ~ 

o r  

(~ .~)  

2. Proof that No ( T )  .~ K Tr 

I] o ~ 0 ,  s ~ = l ,  x : > 0 ,  then 

2 J  = 

= 2s(2~) ' - 'Zn, -~fu- , - ' s inudu.  

Suppose first that o > 1; and let 
1 ~,(v) - -  , 2 -~+[v! ,  

Then 
x =  [z]. 

ar ar 

~(2.12) s v - ~ - ~ , ( v ) d v = -  2- -s_--f§ v- ' -~[vJdv 

] ~-s" 8zl-s 
: 2  s - 1  

Also 

X (z -s -- (X -t- 1)-s)  + ~ n ( n  - ~ -  (n -F 1)-~) �9 
n = X + l  

(2 .13)  ~,(s)-- ~-~n-'=: S~-~n-'--=--X(X-~l)-'+,~n(n-'-- (n--l-1)-e). 
n ' ~ Z  n = . , Y +  1 ~,=.X'+ 1 

From (2 .12)  and (2. 13) it follows that 
oo 

Xl--S 

(2 .14)  ~(8) + ~ _ ~  

Now 

(2.15) 1 fiT. sin 2 n z v  , ~ ( v ) = ~ . . .  ~ , 
~ = 1  

excep~ when v is an integer, when the sum of the" serieo is 0. The tri- 
gonometrical series is boundedly convergent throughout_ any interval of 

values of v, and ffi v-'-ll dv is convergent. Hence 8) ~ we may multiply 

~) The dash over the sign of summation indicates that, if ~. is  ~n integer, the 
last term x -8 is to be replaced by �89 z -8. 

The lemma may be proved in various ways. ~The me,hod followed hero was 
suggested to us by Dr. H. Cram6r of Stockholm, and i~ materially simpler than that 
which we had adopted originally. 

~) See, for example, W. H. Young,  The application of oxpansi0ns to definite 
integrals, Prec. L e n i n  Math. Soc. (2),  9 (1919), 463--485 (468). 



The zeros of Riemann's Zeta-Function on the critical line. 285 

(2.15) by sv -*-t  and integrate term by term over the interval (x, co). 
Thus r 

8fv-*-'  v' (~) d 

(2.16) 

s V~[  {v-s- ls in  2n~vdv 
V = = ~  n d  

---- 28 / 9 ~)*-t~-" ~.w~'n'-ifu-'-' sinudu, 

~, t - s  
- \ } n - '  -- - x - "  ,r ( x )  r  I---- s - - "  

n ' ~ x  

+ 28(2~)*- i ~,n,_ t fu_ ,_  ~ s i n u d u ,  

which is equivalent to (2. i l l ) .  This equation is so far proved only 
when a : > l .  But 

. , - ,  . f~-.-' , in ,~ d,~ = , , ' - '  (2 ,,~=)-'-'oos 2 , , ~ - -  (8+ 1 ) , , - - ,  f~- ' -~  cos ~,d,~ 

= o(n-~) + ~ . - '  ~ o  (~-o-~)au = o(~-~) ,  

provided only o }>--1 ,  and the series in (2.16) is uniformly convergent 
for 0 ]> - - 1 +  6 :> - -1  and any finite range of t. Hence (2.16) is valid 
for o > - - 1 .  Also 

28 (~ ~ . ) ' - ' , . - , f , , - , - '  sin u,~ ~ ---- ~-'-~, ~--" ~--~,, + 2 (~,) ' - '  , , ' - '  f ~ - ,  cos ~,d ,, 

if o > 0. Substituting in (2.16), we obtain (2. 11). 
The equation (2.111) holds for the wider region ~ > - - 1 .  If we 

suppose --1 < o < 0, and make x" tend to zero, we obtain the classical 
functional equation. The equations are easily modified so as to yield 
representations for r (8) valid over an arbitrary half-plane. 

2.2. L e m m a  2. Suppose that o~__%>0,  [ s - - l l  :> ~ :> O, and 

(e :~ l )  Itl < c ,  

where (7 > I. :Then 
I r l - #  

u n i f o r m l y  i n  8 .  

We use r result of Lemma 1 in the form (2. 111). 
mzflicieat to prove that 

~:~:28) ,X,.-'*.=~X,'-'f~-'-'sinue,,=O(~-~ 
Mathematbche Zeitsehrilt. X. 19 

It  is plainly 
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We have 

2 c z .  - -  f ~ - , - 1  e ,ua~ --  J'~-~-~ e - , . d u  = ].  + ]~, 
say. Also 

where w ~  u - -  t log u. Now 

dw l_t~l t t 1 
d---g = ~ _ -- ~-~---; ~_ I -- ~---; > 1 -- 

and increases steadily as u increases from 2 n ~ x  b infinity. Hence 

The same argument may be applied to the imaginary part of ~ and to 
both components of ?'~ ~). Hence 

I .  = 0 (nx) -~-~, 

and the series (2.23) takes the form 

o (I tl~,V,o-~ o ( ~ )  -o-~) = o(~-~- ,  l t l )=  o (~-o). 

L e m m a  3. There is a constant A such that 

~(s) = (i - 9.'-.)r =Z(- i) "-~ n-' + o (~-0) 

uni/ormly /or o ~_ % > 0, ] t l < A x. 

For 
73 s Z ' ( _ ~ ) " - ~ n - .  = Z , ~ -  _ 2 1 - ' Z ' n - . +  0(~-o) 

,<~ ,<__~ , < ~  

- ~-"  9 ~- ' (~)~-" + o ( ~ - o ) = ~ ( s ) + o ~ x - o )  - (i- e~-') :is)+i_. , _ ~  

by Lemma 2, iI A is sufficiently smail. The restriction that le - - i l  _~ ~ > o 
may obviously be omitted here. 

L e m m a  4. There is a von~tant A such that 

( -- l)S-i # -' 

log. = v ~ ( _ 1 ) . - 1 . - .  O ( s ) - = ~  -=" " -S_~ tog~ + 0 (~-~) 

unilormly /or o ~_ % > O, 1 #1 < A x .  

') The argument with j~ is simpler, as 1 + ~ oceurs instead of 1- -~ ,  a~ld the 
inequality (2. 21) is no~ required. 
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For, if [x] -- X,  
n 

-~  logn ~ \logn -- isg (n+  1) 
n = X •  n = X - t - I  "In 

~o 

_. X-" o ( _ _ L _  , ,~o(~-o)=o(~-o) ,  
n=X-1 \n ( logn) ' /  

by Lemma 3. 

2.3. L e m m a  5. I /  l ~ m ~ , u ,  l < n < , ,  r e + n ,  then 

(2.31) V . 1 -= 0 (/z logg) .  
t- m 

We write 

Z= Z + Z + Z = Z:+Z +23, 
~<~ �89 ~.<~ 

say. Then 

a~d so for Z ~ -  In Z ' , w e  have ~ = ,~ + ~, whero t~ :_~?n,  and 

flog m [ 
Hence 

--= 0 ~/n(n+r) r 7 : O(/~log/~). 
~ , = 1  r=l ~=I r = l  

This lemma is frequently useful. But what we shall 
mediately is a slightly different result, viz: 

L e m m a  6. 1] 2 < m < / ~ ,  2 < ~ n ~ u ,  r e + n ,  then 

Z (2. 32 ) i ~ 

V' m,~ log m log n !log 

Dividing up the summation as in Lemma ~ we obtain 

tt I 2 

and 

( Z . l o  Z 1 )  ( " ) ~ g ~  - -~  = o ~ ?  = o . 
~=~ [ g ~=1 

2.4. L e m m a  7. I /  
ot~ 

- 5  -~(-l!"--' n-�89 (2.41) v , ( t ) - ~  ~o~,~ 
n = 2  

287 

require im- 

19" 
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then 
2T 

(2. 42) f '~  (t + u) l~4t = o (T) 
T 

uni/orm#y /or 0 g u g T. 
This is the proposition we shall actually use. I t  is plainly sufficient 

to prove it when u = O; and in this form it is an immediate corollary of 

L e m m a  8. I /  
z(8) = ~ ( -  I)"-',,-' (2.43) 

then 

(2.44) 
T 

,f,(i , tz ~ + ~ t  ~ ~ "  . 
- T  n='~ n (log n)"  

By Lemma 4, we have 

n < A T  l o g n  

say; and so 

T T T 

--T -T -T 

~OW 

(2.~7) 

T T 

- T  - T  

- ~  n < A m n ( I o g n )  ~/m-n logmlogn_m(~)  d~ 

1 _ _  1 .) ,  

where the double summations are defined as in Lemma 6, :with/~ = .4 T. 
~rom (2. 32), (2 .47) ,  and (2, 46) it  foltows tha t  

T T 

-m -m '~=B n ( l  g-" ) 

2.5. L e m m a  9. I /  0 < k < 1, thereal ,parts 5) o /a  and b liebetween 

~) We are concerned wi~h the case in which a and b are pure imaginanes. For  
the definition of H i (x),  see N i e l s e n ,  Handbuch d ~  The~ie d~r Cy l lnde~unk t{~ ,  
p. 17. 
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-- k and 1 -- k ,  the real Tart o / y  is positive, and y-~* has its principal 
value, then 

k+i ,~  

(2.51) ~ 1  f F(s+a)i,(s+b)y ~ds: i zy~§ 
k - i ~  

where 

(2. 511) ~' - a - -  b 

and H[ (x) is H a n k e l ' s  cylinder-/unction. 

We find, in fac't, by a straightforward calculation of which it is 
hardly necessary to give the details, that the value of the integral is 

(a-b) .~i  ~ 7  ( -  1) ( i y ~  2 n - a + b  0~ 

sin(a--b)~ e~ n . r  ~.d n ! F ( l + a - b + n ) ]  
~=0 n=O 

izey a+b e~ '~  H[  (2 iy ) .  

This proof supposes that a =~ b. The result may be at once extended 
to cover this case by a passage to the limit. 

L e m m a  10. I[ k > ~, and the other conditions o/ Lemma 9 are 
saris/led, then 

Ir 

(2.52) ~ 1  fr(s+a)l~(s+b)r162 
r 

i$.Le~,,..~i a+b *, . 

r---J. 
where 

and ~  denotes the sum of the r-th powers o/ the divisors o/ n.  

We have 
1 + 2+)--2,4. (o>+), 

where 

(2. 531) d~----- - ~  ~ -~b 
din 

If now~we write n y  for y in (2. 51), multiply by d, ,  and sum, we 
obtain (2, 52). 

2. 6. SUppose Omt ~ = �89 + i t, and write 

F ~ ' ( s ) - -  s ( s - 1 )  = ~ + t  ~ = 
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so that X (t) is real for real t. Supposing t positive, and approximating 
to the Gamma-function by S t i r l i n g ' s  Theorem, we obtain 

= -  - " ' ~ ~  1 ~ L7))" 

There is of course a conjugate formula when t ~ 0. 

We write 
t + H  

(2.69,) l -=  I(t ,  I-I) = f X(u)du.  
t 

Here H is a constant, which will ultimately be chosen large enough to 
satisfy certain conditions. We shall suppose H > 2. 

Ia  the arguments preceding 4. 2 A denotes generally an absolute 
positive constant; so also do B ; C . . . .  A few words are necessary as 
to the use of O. The constants implied by the O's will also be absolute; 
but  there is a reservation which must be made as to the values of the 
variables (t, T ,  c, n,  m, . . .)  for which the inequalities symbolised by 
the O's  are satisfied. We shall frequently be concerned with inequalities 
of the type (e. g.) 

(2.63) 1F (t)'; < f (H)  q~ (t), 

and, if we wrote this simply in t h e f o r m F - ~ 0 ( ~ ) ,  the constant of the 
O would depend upon H.  If f(H) is a simple function of H (e. g. H),  
we may write 

F~-O(Hq~) (i.e. IFt  < A H ~ ) ,  

but  sometimes it would be troublesome to maintain this degree of ex- 
plicitness. We shall therefore sometimes write 

t~ = O(f(H)qJ)  

meaning thereby that (2.63) is satisfie4 for some form of the function f(H). 
The choice of H will always be prior logically to that of the variables 

t, T , . . .  which tend to limits. We shall therefore have 

o (.f (H)  ~) + o (f~ (H) cfl ) ~- o ( f ( / / )  ~) 
if q~l ~-~ 0 ( ~ ) ,  whatever be the forms of f and fl.  We can extend this 
principle to 0 ,  writing, e.g. ,  : 

O( T1/H) -4- O( H VT) = O( T yH) 
(since H I / T  < T~ iH  for T > To(H)'): But th'en it must be understood 
that the inequalities symbolised by the O's are only satisfied when T 
exceeds a certain value, depending "on H alone. As we shall, in such- eases, 
be concerned with large values of T only, and H is chosen first, there 
is no,.iaconvenience in this reservation. 
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From 4 .2  onwards A, B,  C , . . .  denote positive numbers depending 
only on the a of Theorem B, and the constants implied by the O's depend 
upon a only. 

2.71. L e m m a  11. We have 

T 

(2 .711)  f { I ( t , H ) } e d t < A H T  ( T ' - - T , , - - - T o f H ) ~ .  
0 

We note first that it is sufficient to prove 
ao 

f e _ , t i . , . d t  -~ A t [  (0 < e ,~. e o eo(H)'). 
g 

0 

(2 .712)  

For then 

T T t ao t 

I~dt < e gI~ 'd t<  e e- 
0 0 0 

2. 72. We res to the result of Lemma 10, taking 

a ---- ir b ==- i fl, O ~ a ~_ H ,  O <__ fl ~ H ,  a O= fi. 

IX follows from (2. 52) and C a u c h y ' s  Theorem") that 

�88 

1 f _r(s+a)r'(s+b)r162 (2.721) J - -  2~i 
� 8 8  

oo 

=i~e�89 ~V e,,H;'(2iny)+ e, 
n = l  

where 

~ = � 8 9 1 8 9 1 6 2  -+- 2 b - -  2 a ) y  - ~ + ,.a + F(~. + a - - b ) r  + 2 a - -  2 b ) y - ~  + .,.b}. 

2.73. We take 

(-2.731) 

and make e--* O. 

(2.732) 
Next, we write 

( .78a) 

y = ze~0 = jr e~(�89 ~- , )  

I t  is plain, first that I q s l <  f ( H )  or 

cP= O ( f ( H ) ) .  

� 8 8  �88 ~+~| 
1 

�88174 �88 

6) If arg y---O, so that - - � 8 9 1 8 9  we have 

F ( s + a )  F ( s + b ) r  O (I t t ~ e - ( " -  20) ltl), 

so lhat the deformation of the contour presents no difficu]ty. 
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Here it is only J.s that is of importanceS). We have plainly 

(2.734) J~=O(f(H)). 
In J~ 

r(~  + i(t  + ~))I < A It +,~ i- ~ e-  ~'+"~ < A !t + H I -~  e- ~-~+'~ 

!s  ~ + 1 )  

and similarly for the factors involving r and 
l y -~-' ] ,< A e T M  < A e -~=1~1 

HeIlee 

(~. 7 ~ )  

- H  

tJ~l <A f i t+ Hl-~(ltl ~ + 1)~. ~-~'§ 

< A f t  -~(It + HI ~ + 1)~e-~'-~'+mat < f(H). 
II 

We have therefore, from (2. 721), (2. 732), (2. 733), (2. 734), and (2. 735) 

j 1 ~,,~ ya+b~" c~H~ (2iny) + O(f(H)). (2.736) Js=~-~ =i:~e 

2.74. In J8 we have 

F(e + a ) ~ ( 2 s  + 2 a ) - -  F ( � 8 8  i(t-~a))$(�89 + 2i(t-~a)) 

I'(s + a)U(s -~- b) $ (2s -~- 2a) $(2s -~ 2b) 

= A t  �89 

Since X(2t+ 2r ~) aad y-~*-~O(e(~-2")t), 
the error term contributes 

o 

We have therelore 

(2.741) 4=Ae-�88189 + O(e)) f t-�89162 - 
0 

+O(f(H)e-~). 
~) Because lY-~sl~ Ae ~Oc and the Gamma-functions provide a factor e -=]tl' 
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2.75. Turning our attention to the series on the 
of ('2. 736), we have 

y = ae (~=-')i = i~  -}- e ~ 0 (e"), 

ya+b = y*(~+~) = a,( , ,+~,  e -  i ,~ ~, ~ ,e; ( 1 + O (e ) ) ,  

_-,e - ' - n v -  l 0 ~nU 

(2.751) 

right hand side 

~ n y  

- 1 q e ~ 1 @ 0 1 . 

av 

iae!~- i  ya, b X.] c,, H;'(2i,~y) 
n = l  

= -~e  -�89 1 + O(e))~'J-~.=l c. .... i n='-e ~ 1 + 0 n " 

Here we may replace e ~ by 1 -+- O(ne~), since e a"*' < 1 + A n *  "~ 
if ne ' ~ < A  and 

e - ' ~ n ~ * + O ( n * 5  - A 

~ i c,,i 
n ~2>.a. ~ n**>a 

Making this simplification, and comparing (2. 736), (2.741) and (2. 751), 
we obtain 

(2.752) ( l + O ( e ) ) j t - ~ X ( 2 t + 2 ~ ) X ( 2 t + 2 f l ) e - 2 " d t + O ( f ( I t ) ~ - ~ )  
0 

2 ) - - - - ( l+O(e) )A  c ~ -  l + O ( ~ ) + O ( n e  ~) + O ( f ( t t ) ) .  
n= I Vl ~ 

Now ) 
02 i(u-fl) 

e -2~"~ I ~-~ - ~ e  -~"'~') 
v n  

--~.~ 

. ~ c  2 _ ~ O ( n e ~ ) = O ( 8 ~  f ~ n ~ e - ' " = ' ) = O ( 1 ) ,  

--2n~e ) )Z ( I 0 ( *  n V,r, 

Hence (2. 752) may be written in the simpler form 
- -2nrz~ 

(2. 753) X ( 2 t +  2 a ) X ( 2 t  -i- 2fl)e - ~ ' d t  =A~d~c~ ~/g 

8) N i e l s e n ,  lee. cir., p. 154. 
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2.76. We now integrate (2. 753) with respect to a and fl, in each 
case over the interval ( 0 ,H) .  So long as e is positive, the series and 
integral are uniformly convergent, and we may inver~ the orders of inte- 
gration and summation. Since 

H 2 t+H) 

1 

0 2 t  

the left hand side gives 
H ,H 

o o o 

Thus, if we write 
H H  

O 0 

we obtain 

(2. 762) 

2.77. 

o 

H I t  

0 0 d i n  

~e-~t(I(2t, 2H)):dt=AZC,~ ~/----n_-----~O f(H)e-i) .  
0 ~ t = l  

We proceed to consider the sum 

s in  1 x ~ 

(since -~ -=  Xy if n = x y  and d = y ) .  We can write 

where Z 1  is defined by 

O < k x ~ y < x ,  xy~_m, 
and Z ~  by 

O < y ~ kx, xy < m,. 
1 "1 Here ~- < k < 1 : we shall ultimately take k ----- I H" 

2. 781. In Z 1  we use the inequality �9 

(sin Hu~ ~ H ~ 
~6 / 
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We obtain 

(2.7811) 

= O ( H - " m ( 1 - - k ~ ) ~ - O ( H  l/;n)+O(H"mlog k 

----- o (H~-,log -~ 1 +  0 (H" VT,,.) 
k /  

when m --~ oz. 
~ ?  

2.782. The terms of- - ' ,z  we divide into two classes as follows. 

Associate with the point (x,y) the square Q~.u of which two opposite 
corners are ( x , y )  and ( x - - 1 ,  y + l ) .  In the first class 7~ we put all 
terms (x,  y) for which the associated square does not cross the line y --  k x; 
in the second class r~ the terms for which it crosses the line. 

I t  is plain that ,  if (x,y) belongs to" y~, 

1 

Henee 

when the domain of integration is defined by 0 < ~ / < k ~ ,  ~_<m,  
$(~ --  1) ~ m, and a ]ortiori when it is defined by 0 __< ~ =< kS, ~ / <  2m. 
Transforming to polar coordinates, we obtain 

are tan k ~/cos-O s l ~  arc tan k 

(2 .7821)  ~ <  f do C rdr=2m f -- ao 
(log tan 0) ~ a coso sine (log Sane )~- 

Yt 0 0 0 

k 

= 0 _ . _  ~ _  
~---2m t(l~ ~ log- " 

g 

The number of terms 'of 7, is less than a constant multiple of the 

tl~e length of the line joining the origin to point (~/-~-, kVk-m), or of  Ym. 
Hence 

(o.. 7s2~) ~ '  = o (H' ~/~). 

From (2. 772), (2. 7811), (2. 7821), and (2 .7822)  w e  obtain 

C,, ----- O (H'~n logl) + O ( H~l/-m) + O ( ~ ) .  
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1 Taking now k - -  1 - -  ~ ,  we obtain 

(2. 783) C,~ = O(Hm)  -[- 0 ( H ~ / m )  = O(Hm).  

2.79. We can now complete the proof of Lamina 11. We have, by 
(2. 783) and partial summation, 

~qt 

2 . ' ~  = O ( H ~ )  
~=1 v'n 

and so 

|  = 0  . 

Hence, from (2. 762), 
co 

e ( I ( 2 t , , H ) )  dt + 0 (t'(H)~ 0 , 
u 

o o  c~ ~o 

e ( I (2 t , ,~H) )  d r =  e - ~ t t } . t - } e - ~ t I " d t  e- = 0  . 
o o ~/~/~ 

This is equivalent to (2. 711); and the lemma follows. 

Proof  of  Theorem A. 

2.8. We defined I by 
t + H  

X= X(t, H ) =  f X ( ~ ) ~ ,  
r 

and we now define/" by 
t + H  

I-----! (t, t t )= f [X(u)ldu. 
t 

I t  is plain that  ! = I l l  if there is no zero of X ( u )  in (t, t +  H) .  
If 

~] (s) = ( 1 - -  21-a) ~- (s) = 1 -~- ~ V r ( -  1)n-t (s = ,~-~- i t ) ,  
n # 

n=2  
w e  h a v e  

Ix(t) 
t - I e n c e  

t + H  

(2. a )  ! > A Y l ~ (8) 
t 

> A  1-21-8~/(s) l > A [ ~ ( a ) t .  ~ 

t + H  

t 

= A H + A ~  i Z ( -1) '~-1 
n=a n �89 log n 

=AH+~V, 

1 n- : t  �9 ( - )  
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say, where 
~ =  O(~ ~,(t + H)l + ; ~(t):), 

in the notation of 2. 4. 
We denote by T the interval (T, 2 T )  and by _U the subset of 

in which 
-- 1 (2.82) I < ~AH, 

A being the same constant as occurs in (2.81). Then iTI  ~ �89 in U. 
But, by Lemma 7, 

2 T 

fl~sl"dt<BT, 
T 

B, like A, being an absolute constant. Hence, it m U is the measure 
of U,  we have 

(2. 83) m U < ~ r ,  
where e~ is a number which tends to zero when H--~oo. Thus 

(2. 84)" ] > �89 

if t lies in T and H 18 sullicie~tly large, except perhaps in a subset ~ 
of T whose measure is less than ~.HT. 

On the other hand, by Lemma 11, we have 
~T 

f I ~ ' d t < C H T .  
If then 

(2. 85) t I I  > ~ A H  

in a subset V of T, of measure my, we have 

~A~H~mV < CHT, 

(2. so) ~ Y  < ~ ' .  
Comparing (2.82), (2. 85), (2.83) and (2. 86), we see that  

<2. 87) tzl < z 
throughout all T except a subset ~ o] measure lese than eRT. 

2.9. Divide T into [~Ht pairs of abutting intervals j~, ~'~, each, 
except the last j~, of length H,  and each ]~ lying immediately to the 
xigh~ of the co~respond{ng ]~. Then eithel" j~ or ]~ contains a zero of 
X( t ) ,  unless ]1 consists entirely o/ points o/ ~. If the second case 
occurs for ~ ?'1's, we have ~ H  < zRT or 

~H 
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And therefore there are, in T, at least 

~ - - e / t  H > 4--~ 

zeros, if H is sufficiently large; which proves the theorem. 

3. The approximate functional equation. 

3 ~  

5 > A ,  and 

(3. l l )  

Then 

(3.12) 

L e m m a  12. Suppose that o is /ixed, 

o o  

1 = I(~, s) 2fu-,~ 

= - - S ) c o s g s ~ + O  

O < a < l ,  t > A ,  

( ~ < A t < t ) ,  

(a. 18) x = r ( 1  "~'~ ( ~-"  - -  S ) oos VS s ~ + O \ t--(-~_ N / (A t  < .~ < t ) , 

(3.14) I =  O ( ~ )  (t < : ,  < At) ,  

(3.15) I = 0 ( ~ - " )  (t < At  < ~), 

and 

(3.16) I = 0 (~-~l/i) 

in any case. 

I t  is sufficient to consider the integral which contains cos u; and we 
suppose first that ~ > t. We have 

21 = f u - ~ e ' d u  + f u -*e - "  du = I '  + I", 

say. In the first place 

where 
w =  u +  tlogu, 

Since u and w increase together, we have 

t$~r 
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The real part of 1" is 

f u -~' 2~ w d ~_o ~eos,v 
.=~ ~+5 w =  .=dl+_taw 

- -  ~ - c o s w d w  

_= o i s - o ) .  

The imaginary part may be treated in the same way. 
(3.14) and 13.15), we need only consider I ' .  

Again 
I '  - = / u - " e  ' l '- t '~ d u  = J 'u  -~ e ''~ d u, 

( ~ <  ~') 

IIence, in proving 

where 
w = u - -  t l ogu .  

Since ~ > t, dw t > O, 
d--~ = 1  - ~  

so that u and w increase together. Hence 

The real part of I '  is t 

I o COS ~D ~ --.~-~ l It- 1 ( a W ~  COS W dw - - 0  (~--~-?) 

u=~  u=~ 

and similarly for the imaginary part. Since 

J . . . .  0 ( 1 )  

t~is proves (3. 14) and (3. I5). 
~dxf~, suppose ~ < t. Then 

�9 1 
I ~ F ( 1 - - s ) s m  ~ e ~ r -  fu-"cosudu 

o 

r _ l _ ~ s f u l _ s s i n u d u  = ~ 1  -- s) sin 1 s ~r -- ] - ~  cos 
o 

F ( 1 - - s )  " 1  (~--) ~ ~u'-ssinudu. = sm~s~r-4-O - -  1 - 8 d  
o 

(~ < r  

(~>At>t), 
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Hence, in order to prove (3. 12) and (3. 13), it is enough to pro~e that 

(3. 17) I~ = f u t - "  sin u d u  = 0 \=t---=:-J" 
o 

Now 

say. 

~, ps 

2 i I  l = f u l - * e ' d u  - f u t - * e - ' d u  - -  I I  - -  I ,  , 
0 

In the first place 
.* $ 

I:-- f ,,~-o~-,,.+,,o,~,a,,= f ,,'-'e-'.a~,, 
0 0 

where, w--= u + t log u.  The real part of I;" is 
u ~ .  ~ u 

?l I c o s  w ~ t 1-;- t d w  c o s w d w  = .1 . . . . . . .  ~+~J 
~ = 0  U = r  

and similarly for the imaginary part. Hence, in proving (3. 17), we may 

confine our attention to I~. 

Now 
p 

I~ = f u'-" e~' - 'J~  du = f u ~-~ e'~ d u ,  
0 0 

where w ~ u - - t l o g u .  As ~ < t ,  

du~ = l ~ . t _ <  O ' 
d~  u 

so that w decreases as u increases. The real part of I :  is 

l V fee' " ' - ~  (0<~'<~, 

The imaginary part may be treated in the same way, ~uc~.:,~at wo~ob~aia 
(3. 17), and therefore (3. 12) and (3. 18). 

I t  remains to prove (3. 16). If ~ _~ t-~-Y-~,-~';w6 l~ve 

and if ~ ~_ $ -  ) / t  we have 
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We may suppose then that t - - V t  < ~ _ t - ~:i.  

and if ~ ' - t  we write 

t t - * i t  

IfJ'f. 

y ')":  
I = - -  ! ; : 

and it is plainly enough to show that 

s/ ( 1 a '~ 

t 3 . 1 8 t  f u  "e'"du- O\t" ) (t t t g ] , j ' f t  t i ts: 
l 
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If ~ < t, we write 

where 

then 
I~r 

, : y~ 
n < ~  a < v  

( ttj ~-" *--~ Z = ,~;,~/ (:,,)~ e~"'""t 

This lemma (the 'approximate functional equation') is important in 
~.~Ot~ parts of the theory of ~(s).  A~ present, however, we shall be content 
~:~ii~ve it in an imperfect form, which follows more naturally from our 
p t ~ o u !  tmaIysis and is sufficient for our immediate purpose, We actor- 
d i r e ly  reserve the proof of Lerama 14 for publication elsewhere, and here 
p ~ v e  ohly 

L e m m a  15. Under the conditions of Lemma 14, 

r  + It ~ - " y " - ' ) l o g  t ). 

Mmthemstlsche Zeltsehrlf t .  X.  2 0  

and this is obvious, since the integrand is O ( t -" ) .  

Hence we obtain (3.  18), and the proof of Lenuna 1 o is completed. 

The torama was stated for positive values of t. The corresponding 
results when t is negative may be written down at once, by appropriate 
changes of t into , t . 

L e m m a  13. The equations (3. 14) and (3. 15) o/ Lemma 12 hold 
/or any positive value o/ a. 

In fact, in proving these equations, no use was made of the assumption 
that c~. I .  

3. 2. L e m m a  14. If  a is /ixed and 

O. o < 1 ,  x > A ,  y > A ,  2 : r z y =  t], 
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We may plainly suppose t > 0. We have, by Lemma 1, 
zc 

"( ~ x l - ' - -  ~n- '  :t,(2~) ~-1 n "-I u - ' c o s u d u  (3. 21) 

n<~y Bu<n_<Cy cv<n 

say, B and C being constants and 0 < B -< 1 -< C. 

Wo begin by considering S 3. We have 

y o-, / 2(2z t ) s - ln  "- t  u - " e o s u d u  . . . .  s i n 2 n ; t x - 4 - 2 s ( 2 z t ) S - l n  ' - I  u - s  ~ s i n u d u ,  
2 n . ' t  x 2 n ~ $  

'Sa -=" . . . .  =-~ )'~sin 2 n ' x - - - -  -n + 2s(2n) ' l~k~-~-~n ' - ' f  u - " - l s i n u d u "  
C y <  n C y ( . n  2n.~x 

The first term here is O (x-") ,  since ~_.-*sin 2n~x  is boundedly con- 

vergent. The second is 

Oy,(,  a 

by (3. 15) and Lemma 13. Hence 

(z. 22) s .  = o ( z - o ) .  , 

Next, we have, by (3. 12), 
] ?r 

(3.23) f i r - : - 2 ( 2 n ) ' - a F ( 1 - - s ) s i n � 8 9  
n < . B y  

where 
. ) (3.24) $1 = O n "-~(n=)l -~  t = 0  y = 0 ( ~ - o ) .  

n < B y  

From (3.23) and (3.24) we deduce 

(z. 9.5) ~,  + s~ = ~ ; +  o ( z - - ) .  

I t  remains to discuss 8~. 

3.3. We have 

= s;  + s;' + s;' ,  
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_. ( (x logy) ( ) ~ x - " l o g t ) .  

say. By k3" |6 t ,  

,:~.~.:~ ~ : ' - o (  ," ,~, ,~,,~,-o~+: o~-<: , ' ) -o( ,~-~  o-') 
. ~ \ 9 - 

u--A < ~ n < y  ~ A  

Secondly, by t 3.14 !, 

72." - t ,) ==Ok m '  . n ~ x - - t '  (3. 322) ~"  { \ '  (n*~'-~ ; 

r~ 'x  \ ,  t , 
? t  - -  ~1 

y . t - _  n ' -~ () t ' 

FinaIly, by i 3, l:~ ) 

(3. 323) S,.." = 

where 

(a.s24) 

' ) ( 2 .~ ) ' - t  F ( 1 -  s ) s i n ~ s ~  \ -' ' S: - S '  ' " ~Sw n "  - T  ~, '~ ~, *-I- S , . . . .  

(.=)~-o 
, ( 

" / ( t - '2s~:~) /  
nl,_<.<~,-~ 

,' 
By_~n.~y-  A 

From (3. 21), (:L 25 ), (3 .3 t ) ,  (3.321),  [3. 322), i.3. 323) and (3. 324 ), 
we deduoe 

.1- ,  , , t~.,y ~ ' - - ' - - $ 1  v S . , z - ~ - O [ : ~ - " l o g t )  I O( t, (8.33) ~(8)~  ,_ .  ~}n ' 
n < ~ x  

r lO ~t--I ] 
=.~) F ( t - - s ) , i n ~ e : ~  ~ z . ~ ' n ' - ' - ~ - O ( x - " l o g e ) + O t t ~ ' - ~ y " -  *), 

.<v-A 

Now 

X I - - #  

I - - S  
o<x7 o) , ( < : > )  ~ =  = O ( x - " ) ,  2 ( 2 ~ ) ' - l F ( 1 - - 8 ) s i n , 2  sn-- ~ I+0 , 

zo(~-~ V n'-'= o(t-~-~176176 
n < y - A  

a a d  we may plainly replace n ~ z and n < y --  A by n < ar "and n , .  y. 
J ~ we obtain the result oI Lemma 15. 

L e m m a  16. 

(4.11) 

~ +  t'7 

4. Diseussion of ] I * d t~ 

I] A <T<T', 0<~<T, 0<7<T, lhen 

T' 

C( ' ?~+'~e, a ,~ ,  - -~  

20* 
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The integral is 

where 

T ~ 

]:=: f e *'~ 
T 

w = (t + 7 ) ( l o g t -  1 --  log ~), 

d,w t ~ r log O, d ~ - -  -~ - 7 ) -  

d"w 1 y 
. . . . . .  >0. 
dr" t t" 

Tile real part of ] is 

~t=T' u=T" 

u=T log ~ § -t log T _ ~ u: log ~- 
(T < T " <  T ' ) ,  

and similarly for the imaginary part. 

L e m m a  17. I1 t is positive 

X ( t ) =  O@ 0 ~-O(t-tlogt), 
where 

O \ 2 J  \ 2 ~ e  n - 4 - i t  t 
n~r  

and 0 is the conjugate o/ (-). 
Taking o =: �89 x .... y = - v  in Lemma 15~ we obtain 

But, by (2. 61), 

Substituting in (4. 12), and observing that 

O\y/ - -O(t- l )=O(t-~ ' logt) ,  

we obtain the result of the iomma. 

4.2. We suppose now that  

(4 .21)  � 8 9  

and, for the present, that  

(4. 22) b = ~ ;  
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that 

(4 .23)  T ~ . _ U  "T 5 

and 

(4 .24)  0-.I. H -_./T ~, 

where c ~ e ( a )  is a positive constant which will be chosen small enough 
to satisfy a number of conditions appearing in the sequel" and that 

(4 .25)  d J ( T ,  U) - .r i-' d r ,  
T 

where 

(4.2~) I = I ( t ,  H) -- f X ( u ' ) d u .  
t 

From this point onwards A,  B ,  C, . . .  and the constants of the O's  depend 
upon a only." 

We shall now prove 

L e m m a  18. I /  T a . :  U ~ T b, where a ~> ~, and  O .:. H ~ T ~, 

where c is  posi t ive and  su / / i c ien t ly  small ,  then 

T + U  

T 

Suppose tha~ 0 ~ a ~ H ,  0 ~ f l ~ H .  Then 

x ( t + ~ )  = o ,  + ~ + o ( t - ' ,  loft), 
where O~ is obtained from 0 by writing t - k  a in the place of t. Since 

Y't+r we may replace the limits of summation in (9, by 
n < ~. Also 

~2 

and the contribution of the error term here to (9, is 

if ~ is small enough. 

(4 .27 )  

where 

(a. 28) 

o(; 
H e n c e  

x(t + ~)= ~. + ~o+ o(t-I logt), 

e~ i , -  ~.~i ~_+-T n -  ~ - i(t+a); 
n~'r  
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and 

(4.29) 

say. 
4.3. 

+ O ( t - } l o g t  ~_.~n-~ -i ' '+~ + 0  t-}logt~ ~ , n  - - ' - i '+ r  I 

�9 1 o I a 

+ O(t-~-(logt)')= P + ti-+,-Q+Q+ R~ + R~+ O(t -~. (logt)-), 

We shall prove first that 
T+U T+U 

(4.31) f R~dt=O(CT-a),  f R~dt=O(UT_a), 
T P 

uniformly for 0 _< a < H,  0 =< fl ~ H.  I t  is sufficient to consider the 
first integral. 

If ___T -- ~, '~:4"= ' we have 

<4.32) ~ n  - ~ -~('+~) -- :-=O(T-A), 
n<~ n<T 

by (4.22) and (4.23), and so 

R, =o(t- logt --','+o, ) +o(T-"). 
Hence n < ~. 

T+ U T+ U 

T T n < T 

The first term on the right hand side is 
~'~:v ~.+u 

T n<_T T n<~ 
But 

T+U T+U 

(.]i't+"dt 

1 ' 1 \ 

= 0 (U log T) + 0 (_T logT) ----- 0 (Ulug T),  

by Lemma 5, (4.21), and (4.~,3). Hence 
T + U  

~, n<T_ 

and (4.31) now follows trom (4. 33) and (4.34). 

9) The dash implies as usual that ~n ~ n. 
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4.4. Next we prove that 

T+U T+U 

(4.41) fPdt=O(CT-a), fPdt=O(UT-a). 
T "1' 

It is sufficient to consider the first integral. We begin by replacing 
the limits of summation in q5 and rb~ by limits of the type n ~: T.  
By (4.23), 

(27 . . . . .  
.m ,n<~ m,,~< T 

ra<Z n <  T 

The last term obviously gives rise to an error O(UT-'a), and the argu- 
ment of the last section shows that the same is true of the first two 
terms. Hence the change of ~he limits of summation is irrelevant to the 
argument. 

Now 

T-r U 

( 4 . 4 2 ) .  \ ~ e /  ~ m - n- 
T ra,n<T 

T+U 

, T 

I Cr If we write 2ztmn-~-~ and z( -+-fl)=?, we have ~-~'T and 
0 ~ 7 <: H < T, Hence we may apply Lemma 16, and the in--~egral on 
the right hand side of (4. 42) is 

0 ~T" (log ~:;-m--~) 
If m + n  we have 

log J ~ - - ~  > 1us k ~-~ 

a n d  i f  r e = n <  T - - 1  we have 

These results ~ve  us upper bounds for all the terms in (4.42) except 
that for which m and n have each their greatest value, and this term 

\ T /  
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T ~U 

=0{  .~' 1 ,)"Jr-O( <-~w- 1 ) ~) 

1 .-/, :O(T logT>+O(  ~_f m ) - J - O (  ! -ra) ~ 0  (Z~_) 
m<~Z ,} Y_<m< r-1 

= O (T logT) § O(logT) -§ O( T logT) ~_ O ( U) ~- o (U T-a),  

since U > T "  and T = O ( ~ / T )  . We have  thus proved ( 4 . 4 1 ) -  

4.5. From (4.29), (4.31), and ( 4 . 4 1 )  it follows tha t  

T+ U T+ U 

(4.51) f x ( t + . ) X ( t + ~ ) d t = f ( Q + Q ) d t - , = - O ( U T - A ) .  
T T 

I t  is clear moreover that, in Q and Q-, we may modify t~he 
summation iu the same way as in P and P. Denoting t h e  
forms of Q and ~) by Q1 and Q~, we have  

T + U  T + U  H I I  

(4.52) J = f I ? d t = f d t f  f x ( t -~a)Z( t§  
T T 0 0 

11 H T + U  ] 

..... f f dadflf x ( t  + , , ) Z ( t  + f l ) d ~  
o o T / 

H H T+U 

= f fdadfl.[(Q,-4-Q,)dt -f- O(H ? UT -A) 
o o T 

= # + O(H' U = J + O(U T-"), 

say, if e is sufficiently small. 
4.6. The value of J is, by (4 .28 )  and (4. 29), 

.H H ~'+U . 

= . . ( ' i t  \'~'(~-~x-~ - '-~"n- d t j .  
0 o T m , # < Z  

We begin the discussion of the right h a n d  side by showing t h a t  %he con- 
tribution of the terms for which m • n is O(UT-a). 

If m + n, write n = eX and 1 (re - -  fl) = ?, so that [ Z ] < I t .  Then 

T+U T+U 

7 t ~- le~td~=O + 0  tt. 1 
L - - - i - U - j  - Z  ~ O . 

T T T 

Hence the terms in which m # n contr ibute ,  when we integrate with 
respect to t, 

/ ~- , '  1 _,~ 0 (1/T log T) 
"/.,n,n<~Cm-n l o g ;  ) 

l i m i t s  of 
modif ied 
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and when we integrate with respect to t." and fl, 

O[H~'V 'T logT)  = O( U T -  a), 

if once more c is sufficiently small. 
We have therefore, from (4.52) and (4.61), 

1f tt  T "  U ~ t ( . - i h  ~] 

f j  f: , ' ,,,i§ (4.62) J I/,2:r~I V I "dccdfi V.'..,n' 
.<X o " T 

4.7. Write 
t 

'2 ~ B ~ ~ v t i  V �9 

Then 

say. 

v ~ ( " - ~ d ~ d f l  : \ llogv 
o 0 

Also 
H //l 

V , , = _ 8 1 - c ~  f dHt  f cos 
( log v)  ~ o o 

Hence, i f  u - - n  ~I, 
H Ht 

V,,-- V. - 2 dH,  cos '2 2.~,,') -- cos 
0 0 

The difference of cosines here is 

and 

(4 .7 ! )  V. -- V. = O (~:  ) . 

We have now, from (4. 62), 

(~H~ l o g v )  d H ~ .  

(t H .  log  t ))  2 - "2_ ~ n ~ dH~. 
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T+U --v: .~ ~ ( v 2 ~ Z + ~ Z  ) J,+J~ j + O ( V T - ' 4 ) = ' l / 2 ~ . ;  V , , d t=  = , 

say. The first sum is 
T+U 

-~ 1 dt 
o 

.<T T 

In J- 2 we may replace summation with respect to n by  i n t e g r a t i o n  with 
respect to u, with an error 

Z ; u .  )_- o w  ~ v z  -") = o ( u  T -~ ' ) ,  
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if c is small enough. Thus 

T+U T 

o(~--_I. (4.72) J~V2--z~ dt  - - 1  . . . .  ~i . . . . . . .  ,~-+ u o g r /  

4.8. tn (4.7~) we may repine0 ~ = ~/~:~ by ~----~./-~ 

~ + u  

For since 

if c is small enough. 

we obtain 

wh ere 

Further, if we write 
4:r, 

t - - d u  2 d x  

f . ! t e / (sm4, Hl~ dU 2H sinx ~ ~ 

r~ 

~ 1 H log t . . . .  

Thus the integral in (4. 72) becomes 

T+ U ~ T+ U 

T 0 T 
u 

7~ 

Finally, from (4 .72) ,  and (4 .73) ,  we deduce 

- - -  O U J--=-reV2~HU + (lo--g~)' 
and Lemma 18 is proved, when b = ~. 

4. 9. I t  is easy now to remove the restriction that  b = 2. 
only that  U > T ~, and let 

U~=T a, d={(a--[-~)<'a. 
Then 

U 
; 

Suppose 
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f I~ dt 
T 

Also 

if c is small enough, and" 

T+(r- l~  U~ 

f~ dt = ~ )/2-z tt U~ + O ~og ( TC+ r U,) = ~ ~ 2 ~ H U~ + O \Uoog -~-/ 
T+r U~ 

Ior r ----- 0,1, 2, . "' v--l~[ U'5~_ -- 1. Adding all these equations, we obtain 

T+,' U, 

= ~ V 2 ~ H b ] i u ,  + 0  ~o I" = . ~ I / 2 n H U  LO ---~tlogT/" 

T~U 

\log T / 
T + r  U, 

The sum of the last two equations gives the result required. 

Shen 

5. Proof that N o ( T +  U)  -- YVo ( T )  > K U. 

5.1. L e m m a 19. I / U  and H satis/y the conditions o/Lemma 18, and 
t+H 

M = M( t ,  H)  = f ~ ( � 8 9  + i u ) d u - -  H, 
t 

T+U 

N = N ( T ,  U ) ~ - f ! M i ~ d t  = O(U) .  
T 

The proof of this lemma is very similar to that of Lemma 18. As 
there, we suppose initially that b = ~  and t >  0. We have, by Lemma 15, 

~ ( t  + ~) = ~(�89 + i t  + i,~) - 1 

= ~ , m - ,  -~t-i~ + C2-s 

--~/-t-+-f As in 4.2, we may replace z~ by% and \2~=e/ 
- -  2 ~  ~ 

where ~ 

( t ~-t(t+a) 
by \-~--~/ e -i~. Thus 

t ~-'('+" 
( t + ~) = ~ ' m  -~-"-~" + ~,y-~-;/ et~r189 +"+~" + 0 (~V-~), 

~(t + ~)=~v m-~+"+'~ + L~)  ~- ~ + ~ 

We have therefore 

qo(t + a)c~ (t + ~) = p + Q~ + Q2 + R + S~ + S.2 + S~ + S, + W, 
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where 

o, (~ ?'+"-~"+'~Z~->"-'~ ->"-~, 1ge/ e 

Q,, is a sum of the same type  as Q1, 

S~, S a, 8 ,  are sums of the same type as $1, and 

W=O(T-a). 
In  the summations every m runs over the range 2 ~ m < r and every r~ 

over the range 1 ~  n < ~. 

We write 

T+U f~+U 

f~(t + ~)~(t + ~)dt =f(P +O, + Oo + R + s~ + & + & + ~, + w)at 
T ~" 

= pO+QO + o g +  n ~  + ~: + ~: + s: + w ~ 

Obviously 
(5.11) W~ 
and 

o o o o (5.12) ,% + s~ + s~ + s,  = o ( u T-*) 

in virtue of the argument  of 4 .3 .  

Next  
T + U  QO =fQlat 
T 

T+U 
1 P" t \r = o (1.) Z ~ m,,~-o,j (~a-~)  e 

T 
T + U  

0 

and so, by  the argument  of 4. 4, 

(5.18) 
Thus 

T 

QO 0 --A +Q~ = o ( u T  9. 

T+U 

(5.14) fg(t+e)~(t+$)dt=P~176 
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5.2. 

(5.2~) 

say. Now 

Again 
T+U T+U 

T '/' 

T+U 

r:_, ''d, o(,) 
.,[ \ 2 ~ J  ~ n , :  ~, " log  n~, 

~22 

by the argument of 4.6; and so 

(5.22) 

Similarly 

(5.2z) 

and 

(5.24) 

[nl + t%), 

R~ = :2 -<--n~l  = O(Tlog T)~= O(UT-a). 

T+U T+U 

f "d - ' + i P [ ( ' ~ )  t pO= P d t = ~  m2~-i"m' ~ ..m, 

T T 

= / + l = e ~  

P~ ~.~,- ~ - , . ,  )=Or 
From (5.14), (5.2I), (5.22), (5.23) and (5.24), it follows that 

T + U  

(5. 25) f c : ( t + ~ ) r 1 7 6 1 7 6  
T 

5.3,  Hence 
T+U T+U 

(5.31) N=flMl'dt=fM~dt 
T T 

T+U H I-i 

= f dt f ( $ (-~ + i t  +in) --1)da f ( : (�89 -- i t - -  ifl) -- 1)d [l 
T 0 0 

T+U H 11 H H T+U 

T o o o o T 

H H  

L_ f f ( pO + tto)d~d~ + O(H, U~,-A) 
o o  

H H  

=/ f (po  + ~o)d~d ~ + 0 (Ve-~), 
o o  

if e is sufficieatly small. 



314 G.H. Hardy and J. E Little~ood. 

Now T ! - U  

o f (  t ~"~-"' R~ ~- 2-Tn~C~-Z ~-~ dr, \2~ /  
T 

H H  T + U  H H  

o O T o o 

/ 
1 U 

Further 

p~ e~: vZ.~.-o,-., 
T 

1 t t t  

0 0 

Finally, from (5.25), (5.:32) and (5.33), we deduce 

2v=o(v) 
the result of the lemma, when b - - ~ .  This restriction on b may now be 
removed just as in 4.9. 

5.4. As in 2,8 we write 
t + H  

! = = f [ X ( u ) l d u .  
t 

L e m m a  20. There exists an A such that 

] > � 8 9  

throughout the interval T = ( T, T + U ), except in a set S o/ measure 
AU leas than ~ .  

PrQvided we choose A > 1 6 ,  we may suppose H ~ _ 4 ,  We have 
then, by (2 .61)  

t + H  

!--(r f + 
$ 

t + H  t+H 

t t 

= (2) 3 ( H - - I + ! ~ M ) >  (34 H - - IMI) .  
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Hence, in S, 
[MI :> I H .  

Since |,M]O'dt < A U, we must have 
t - ,  

L , [  

(I H)'-mS < U, 
whence the lemma. 

5.5. From Lemma 18 we have 

T + U  

(5 51) jz'-dt .:: A H U  (H ~ 4). 
T 

This inequality is sufficient for the deduction of Theorem B. Let S '  be 
the sub-set of T for which I I ] ~  ~ _ _ ~ H .  By (5.51), 

AU mS' < 

Now I > l I f ,  except possibly in S ~- S'. The measure of S -~ S' is less 
than eHU, where e~ is a function of H only which tends to zero as 
H --* co; and Theorem B follows by the argument used in 2.9 to establish 
Theorem A. 

6. Remarks on the proo! of Theorem B. 

6. 1. As was observed in 5.5, we do not use the full force of 
Lemma 18. The complete lemma, however, seems of considerable interest 
in itself, and it may prove to be of service in the future. At the moment, 
however, we are unable to derive from it any suggestion for a method 
for reducing the factor log T by which Theorem B falls short of what is 
doubtless the real truth. It  is instructive to examine how our proof 
fails to give more, a~d we add in conclusion some remarks on this and 
on related points. 

6.2. The inequality ( 5 . 5 1 ) m a y  be replaced by the more precise 

relation ~ + v 

-" 0 1 1 f (I)~'dt _.~ O (H') + (H-~-~og-T) ' (6.2t) v 
T 

~ow I : H  is the mean of X(u)  in $ to ~ -~H,  and the left hand side 
of (6. 21) is the mean square of I : H. The equation (6.21) expresses 
the fact that the mean of X(u)  diminishes, on the average, in absolute 
value as H increases, a fact naturally connected with the presence of 
zeros. An equation of this kind is, indeed, the kernel of the proof. 

To carry out the details, however, we have to compare I and / .  
There is no known direct means of averaging / (as opposed to /~). Now / 
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t+H 

is substantially Bf]~(~ § du. We proceed in our proof by using 
the inequality 

t + H  t t + H  t + H  

(6.22) t f i $ ] d t ~ [ / ~ d t  ~ f S d t = H + ~ M ;  

A 
and we show that, when H > logT' the mean square of tMl is O(H) ,  

so that M is generally O(]/-H). This enables us to show that =I is 
generally greater than �89 BH,  when H is a sufficiently large constant, and 
so, since I is generally less than �89 B H, to deduce our theorem. 

But since ] /H dominates H when H is small, the argument fails 
when H is a small constant, and this is the obstacle to further progress. 

When H is small, ~ M  is (generally) more important than H. It 
might be sapposed that the mean square of B l f  $ d t  ~ is greater than 
that of 1, and that, if we could overcome difficulties of detail, we could 
conclude that / is generally greater than 1. But unfortunately the 
mean square of B t f r d t i, when H is small, is asymptotically one hall 
that of I, as may be verified from (5.33)1~ It  would appear, then, 
that we lose something essential in replacing f [C[d$ by l fcgtl. This 
does not sound very surprising at first sight. But there is less difference 
between the two expressions, or between I X (u)[ and B r (�89 § i u), than 
might be supposed. If we assume the R i e m a n n  hypothesis, and write 

1 ( T l o g T - - ( 1 §  log2~r)T) q- R(T) ,  

we have, from (2.61), 

,(~ § it)= Ae~Ce"'n"]X(,)[(l t O ( l ) ) .  

Now it is known that R ( T ) =  o (log T) and it is possible to show that 

T 

-~ IR(t)ldt=O(loglogT). 
o 

l 1 Thus we should expect that, provided H -- o log iog T 
$+// 

would generally be asymptotically equivalent to f I ~" (~ "~ i u) i g u. 
t 

lo) It is easily shown that, wher~ H is small, 
T 

4 
n (log ~) ~ ,) ~ (log~u) ~ 

1 



The  zeros  of R i e m a n n ' s  Ze ta -Funct ion  on the crit ical  l ine 317 

6.3.  We note finally a deduction from Lemma 18 which, 
w e  are unable to make any use of it, appears very curious. 

Let K satisfy the same conditions as H. Then, since 

I(t,H-~- K)-~ I(t, II)-[- I ( t+  H, K)~ 
we have 

though 

T+U T+U T4 U 

f I(t, H)I(t ~-H, K)dt-= ~ f l~(t, H-~ K)dt-  ~,t'I~'(t, H)dt 
T T T 

T+U 

--' f I~(t ~ H,K)dt. 2 
T 

Now 
T + U  

f ff'(t + H, K)dt 
T T 

T + U  

f (I~(t ~- H, K) -- I~(t, K))dt 
T 

provided c is small enough. Hence 

T+U T+H T+U+H 

T T+U 

U 

T+U T+U T+U 

1 ~ 1 f I ( t ,H)I( t+H,K)dt=-~f  I ( t ,H+K)dt - -~ f  l (t,H)dt 
q' T T 

T+U 

T 

by  Lemma 18. This is true uniformly for 0 < H ~ _ T  c, 0 _ _ < K ~ T  ~ 
when c=e(a) is sufficiently small. 

( E i n g e g a n g e n  am 14. Oktober  1920.) 
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