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Abstract
The standard model of physics classifies particles into elementary leptons and hadrons composed of quarks.
In this article the existence of an alternate ordering principle will be demonstrated giving particle energies to
be  quantized  as  a  function of  the  fine-structure  constant,  α.  The  quantization  can  be  derived  using  an
appropriate wave function that acts as a probability amplitude on the electric field. The value of α itself can
be approximated numerically by the gamma functions of the integrals involved.
The  model  may be  used  to  calculate  other  particle  properties  as  well.  The  magnetic  moment  may be
calculated directly from the electromagnetic fields.  In the range of femtometer the wave function overlap
provides a mechanism for strong interaction. The model  gives quantitative terms for strong, Coulomb and
gravitational interaction of particles indicating a common base of these three forces.
Necessary input parameters for all calculations can be reduced to elementary charge and electric constant
only.

1.1 Introduction
Particle  zoo is  the  informal  though fairly common nickname  to describe  what  was  formerly known as
"elementary particles". The standard model of physics [1] divides these particles into leptons, considered to
be  fundamental  "elementary particles"  and  the  hadrons,  composed  of  two  (mesons)  or  three  (baryons)
quarks. Well hidden in the data of particle energies lies another ordering principle which can be derived by
interpreting particles as electromagnetic objects subject to some general principles of quantum mechanics.
The concept of expressing mass in electromagnetic terms is almost as old as Maxwell´s equation, going back
as far as 1881 with the work of J.J.Thomson [2]. O.Heaviside [3] and others produced a mass-energy relation
for charged particles of E = 3/4 mc0

2 later developed further by Poincare and others, dropping factor 3/4 [4]1.
W.Wien was a prominent advocate of reducing mass and consequently gravitation to electromagnetism [5]
In the model presented here, the particles are interpreted as some kind of standing electromagnetic wave
localized due to the effects of the strong force and may be visualized as a rotating electromagnetic field with
the  E-vector  pointing  towards  the  origin.  Neutral  particles  are  supposed  to  exhibit  nodes2 separating
corresponding equal volume elements of opposite polarity. To obtain quantifiable results, the electromagnetic
field will be modified with an appropriate exponential function, Ψ(r, ϑ, φ, e,  ε)  3, serving as probability
amplitude  of  the  field.  The  two  integrals  needed  to  calculate  energy  in  point  charge  and  photon
representation exhibit the following two relations:  
1) Their product - resulting from energy conservation - is characterized by containing the product of the two
gamma functions Γ(1/3)|Γ(-1/3)| ≈ α-1/(4π), 
2) their ratio features a quantization of energy states with powers of 1/3 n over some base α0, a relation that
can be found in the particle data with  α0 = α  as:

Wn /We  ≈ 3 /2( yl
m)-1/3 Π k=0

n α^(-1/3k )            n = {0;1;2;..} (1)

with We = energy of electron, Wn = energy of particle n and yl
m representing the angular part of Ψ(r, ϑ, φ). For

spherical  symmetry y0
0 = 1 holds,  corresponding particles are  e,  µ,  η,  p/n,  Λ, Σ and Δ  4.  Factor  3/2 is

supposed to represent an anomaly of the electron, related to angular momentum, see chpt. 2.5, 2.8.
Apart from calculating particle energies the model may be used to describe other particle properties. The
magnetic moment of particles may be calculated directly from the electromagnetic fields modified by Ψ. At
distances comparable to particle size, typically femtometer for hadrons, direct interaction of particle wave

1 Here E denotes energy - in all other parts of this article energy is identified by the letter W while E is for electric field;
m = mass ; c0 = speed of light in vacuum;
2 nodes of positive and negative charge regions will have to coincide with nodes of the wave function but not 
necessarily vice versa.
3 r = distance from origin, ϑ, φ = angular coordinates,  e = elementary charge, ε = electric constant
4 The relation of the masses e, µ, π with α was noted in 1952 by Y.Nambu [6]. M.MacGregor calculated particle mass 
and constituent quark mass as multiples of α and related parameters [7]. This is an extended, slightly altered and more 
speculative version of [8].
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functions (“overlap”) has to be expected. Interpreting this interaction as strong interaction and considering
the basic spatial characteristics of the functions may provide a possible explanation why leptons, in particular
the tauon, are not subject to this interaction. 
Quantitative terms for potential energy of strong and Coulomb interaction as well as particle energy (mass)
can be attributed to the terms of the expansion of the incomplete gamma function appearing in the integrals
for calculating particle energy and gravitational attraction may be linked to this function as well, suggesting a
common base for all three forces. 
The following equations basically use two parameters, one for energy (β or τ) based on We as reference and
free parameter of the model and a second (σ) which is a function of angular momentum, see chpt. 2.5, 2.8.
Typical accuracy of the calculations presented is ~ 0.001 (e.g. due to approximations of Γ-functions) 5 which
would be also the order of magnitude of possible QED corrections. 
The model is an electrostatic approximation of an electromagnetic object implying some asymmetry in its
terms, e.g. the electromagnetic units used.
This is a preliminary working paper intended to provide food for thought 6. 

1.2 Unit System
The unit system used in this work is SI with the exception of electromagnetic units that are required to be
based on their relation to c0, in the simplest case using a symmetric split of electric and magnetic constant, ε
and μ, such as given e.g. in Planck units. In this work SI units are kept with the modification:

c0
2  = (ε0 μ0)-1 (2)

being replaced by

c0
2  = (εc μc)-1 (3)

with 
εc = (2.998E+8 [m²/Jm] )-1 = (2.998E+8)-1 [J/m] 
μc = (2.998E+8 [Jm/s²] )-1 = (2.998E+8)-1 [s2/Jm] 
i.e. the numerical values for c0, 1/εc, 1/μc are identical, the units of εc, μc are expanded by [Jm] for the
convenience of this model. 
In the following the abbreviation b0 is used for the Coulomb term b0 = e2/(4π ε0) = ec

2 /(4πεc) = 2,307E-28
[Jm] which is identical in both unit systems, thus all calculations concerning particle energy are not affected
except for the definition of τdim, equ. (40)ff.
From b0  follows for the square of the elementary charge:  ec

2 = 9,67E-36 [J2]. 

1.3 Wave function
The model is essentially based on a single assumption: 
Particles can be described by using an appropriate exponential wave function, Ψ(r), that acts as a 
probability amplitude on an electromagnetic field. 
An appropriate form of Ψ can be deduced from three boundary conditions:
1.) To be able to apply Ψ to a point charge Ψ(r = 0) = 0 is required, this may be considered by a term such as:

Ψ (r) ~ exp(
−β /2

r y ) (4)

2.) To ensure integrability an integration limit is needed. This may be achieved by Ψ(r) being the solution of 
a 2nd order differential equation of approximate general form 

 −ΔΨ (r)  +  
β /2

r x+1 ∇ Ψ (r) −  
β /2

σ r x+2 Ψ (r)  = 0 (5)

giving for particle n:

Ψ n(r)=exp(−(βn /2

r x
+[(β n/2

r x )
2

– 4
βn/2

σ r x ]
0.5

)/2) (6)

5 Except for energies of higher particle states, see 2.9
6 http://doi.org/10.5281/zenodo.801423 gives a modified, shorter version; this working paper is intended for a broader, 
more speculative approach.
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3.) Ψ should be applicable regardless of the expression chosen to describe the electromagnetic object. In 
particular requiring a point charge and a photon representation of a localized electromagnetic field (particle) 
to have the same energy, the exponent of r is required to be x=3 (see (23)), giving finally:

Ψ n(r)=exp(−(βn /2

r3
+[(β n/2

r3 )
2

– 4
βn/2

σ r 3 ]
0.5

)/2) (7)

Up to the limit of the real solution of (7), r = rl, with

rl = (σ β/8)1/3 (8)

in all integrals over Ψ(r) given below equ. (9) may be used as approximation for (7) 

Ψ n(r<rl ) ≈ exp(−βn /2

r 3 ) (9)

Phase will be neglected on this approximation level.
The integrals over the approximation of Ψ(r) according to equ. (9) are closely related:

∫
0

r l

Ψ (r)2 r−(m+1)dr = Γ(m/3,  β/rl
3)  β- m/3 /3 (10)

with m = {...;-1;0;1;2;...}. The term Γ(m/3, β/rl
3) denotes the upper incomplete gamma function, given by the

Euler integral of the second kind:

Γ(m/3,  β/rl
3) = ∫

β /r l
3

∞

tm/3  −1 e−t dt (11)

It  follows  from the boundary condition  (8)  that  the  integration limit,  β/rl
3,  has  to  be  a  constant  for  all

particles:

βn/rl,n
3 = 2στnb0

2/ rl,n
3 = 8/σ                    (12)

For m ≥ 1 the term Γ(m/3, β/rl
3) may be approximated by Γ(m/3) 7, for m ≤ 0 the integrals (10), (11) depend 

critically on the integration limit and have to be integrated numerically. 
Coefficient βn is a particle specific factor, proportional to particle energy W as βn ~ Wn

-3 (16), for particle n it 
may be given as partial product of a value for a reference particle, βref carrying the dimensional term βdim 

times particle specific dimensionless coefficients, αn, of succeeding particles representing the ratio of βn and 
βn+1:

βn = βref Πk=1
n α k  = βdim Π k=0

n αk   (13)

Coefficient σ is related to the angular part of Ψ(r, ϑ, φ) and thus to angular momentum. 
In the following apart from the particle coefficients αn, parameter β may be analyzed further. To avoid 
introducing additional parameters one might test an approach giving β as function of b0 and σ. A suitable 
expression will be βn = 2 τn σ b0

2/(2π)3  8, the particle specific parameter β will be repalced by τ, turning (13) 
into:

τn = τe Πk=0
n α τ , k =  τe Πτ,n (14)

2 Energy levels of elementary particles
2.1 Calculation of energy - point charge
Particle energy is expected to be equally divided into electric and magnetic part, W n = 2Wn,el = 2Wn,mag 

9. To
calculate energy the integral over the electrical field E of a point charge is used as a first approximation,

7 The complete Γ-function Γ(m) of the most frequently used terms Γ(+1/3) |Γ(-1/3)| will be abbreviated to Γ+ and Γ- . 
The sign of the latter arises from the relation between  Γ-functions, the relevant integrals, (10), (11), give the positive 
value.
8 factor (2π)3 see 2.8
9 Alternatively Wn/2 may be interpreted as  Wn/2 = Wpot = Wkin of a harmonic vibration. The term Wn/2 will be used in 
some relations below.
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giving 10:

Wpc,n = 2∫
0

∞

ε0 E (r)2d3 r = 2∫
0

∞
e2

4 πε0 r 2 dr = 2b0∫
0

∞

r−2 dr                   (15)

The integral for m = 1 is needed to calculate Wpc,n. Inserting (10) and (11) in equ. (15) will turn out:

Wpc,n = 2ε0∫
0

∞

E (r)2 Ψ n(r)2 d3 r = 2b0∫
0

rl ,n

Ψ n (r)
2 r−2 dr = 2 b0 Γ+ βn

-1/3 /3 (16)

Equation (16) is the source of βn, τn ~ Wn
-3. From (14) and (16) follows:  

τn/τe = Πk=0
n ατ ,k = Πk=0

n αW , k
−3  (17)

with αW,k being the coefficients for the general case of a partial product ΠW,n for particle energies 11. Through
equ. (8) the relations  τn ~ rl,n

3 and Wn ~ rl,n
-1 hold.

Figure 1: Example for particle energy Wn calc (r) (normalized) vs lg(r) according to equ. (16); rm,n: see (18); rW/2

=> radius where the integrals of (16) attain half their final value; r l see (8); black line: Ψe(r)

 rm,n = Γ- βn
1/3 /3  ≈ rmax,n      12 (18)

2.2 Calculation of energy -  photon

For m = -1 equations (10), (11) give a relation between radii and Euler-integral: 

rx,n  = ∫
0

rx , n

Ψ n(r)2 dr  = βn
1/3

/3 ∫
β/r x , n

3

∞

t -4/3 e-t dt (19)

which may be used to express rx as a function of β, Γ, appropriate for this model. Applying this for the value
of the Compton wavelength, λC, in the term for the energy of a photon,  hc0/λC gives

λC,n = ∫
0

λC , n

Ψ n (r)2 dr  = βn
1/3

/3 ∫
β/ λC, n

3

∞

t-4/3 e-t dt  = 352.97 βn
1/3/3 = 0.9934 36π2  βn

1/3/3  Γ-  (20)

According to (16) particle energy is proportional to βn
-1/3 and  λC,n ~ βn

1/3 has to hold, requiring the lower
integration limit of the Euler integral and the factor ≈ 36π2 to be a constant for all particles. Energy of a
photon can be expressed by:

WPhot,n = hc0/λC,n  =
hc0

∫
λC , n

Ψ n(r )2dr

=
3 hc0

36 π 2 Γ - β n
1/3 (21)

10 In general it can not be expected that Coulomb's law based on two interacting charges can be used unaltered in this 
problem. In prior versions a prefactor 4π in (15)f etc. has been used in place of 2, in this version the factor 2π is 
included in Ψ(r) as (2π)-3 to recover the correct energy while reducing all values for radii by 1/(2π).
11 Not used in the following. However, coefficients in Ψ, ατ, should not be confused with those in energy terms, αW .
12  rm,n  ≈ 0.942  rmax,n
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2.3 Relation of integrals for Wpc,n  and WPhot,n  with fine-structure constant α
The energy of a particle has to be the same in both photon and point charge description. From (16) and (21)
follows:

Wpc,n = WPhot,n = 2b0 Γ+ βn
-1/3 /3 =

3hc0

2 π 18π Γ - βn
1/3 (22)

which may be rearranged to emphasize the relationship of the gamma functions (Γ+ =  2.679; Γ- =  4.062)
with α, giving (note: h => ħ):

 
4 π Γ + Γ -

0.998
=

9hc0

18 π b0

=
ħ c0

b0

= α-1        13 14 (23)

Factor ka = 0.998 will be used in equations below to indicate the deviation from the exact value.  
Equation (23) uses two approximations:
1) Γ+ is used in place of the incomplete Γ-function Γ(1/3, β/ rl

3 ) = 0.996 Γ+ 
2) For the integration limit βn /rx,n

3 << 0 the result of the Euler integral in (19) is approximated by

∫
β n/ rx ,n

3

∞

t−4 /3 e−t dt ≈ 3 (βn /rx,n
3)-1/3 (24)

yielding 3 λC,n / (βn
1/3 Γ-) = 356.0656 = 1.002 36π2 as approximation for 36π2 15.

The two factors add up to change the remaining inequality of (23) from 0.998 to 0.996. Calculation errors,
approximation residuals as  well  as  possible  higher  order  correction terms of  e.g.  QED type have to be
considered to contribute to the remaining discrepancy.

2.4 Quantization with powers of 1/3n over α
In  general  a  relation  between coefficients  such as  given by equ.  (14)  is  arbitrary.  The special  form of
expression (1) may be derived from the product of the point charge and photon expression of energy, Wn

2,

W n
2  = 2b0 hc0

∫
r l , n

Ψ n (r)
2 r−2 dr

∫
λC, n

Ψ n(r)2 dr

~
1

βn
2/3 ~

ατ ,0
1/3 ατ ,1

1/3 ..... α τ ,n
1/3

α τ ,0 α τ ,1 .... α τ , n

        (25)

The last expression of (25) is obtained by expanding the product Πτ,n
- 2/3 included in βn

- 2/3 with Πτ,n
1/3 From

this term it is obvious that a relation αn+1 = αn
1/3 such as given by equation (1) yields the only non-trivial

solution  for  Wn
2 where  all  intermediate  particle  coefficients  cancel  out  and  Wn becomes  a  function  of

coefficient α0 only:

Wn
2 ~

ατ ,0
1/3 ατ ,0

1/ 9.... α τ ,0 ^ (1 /3n)ατ ,0 ^(1/3n+1)

α τ ,0 α τ ,0
1/3 α τ ,0

1/9 ....α τ ,0 ^(1/3n)
= α τ ,0 ^ (1 /3n+1)/α τ ,0                         n = {0;1;2;..} (26)

By comparison with experimental data ατ,0 may be identified as ατ,0 = αe ≈ α9 and the α-product can in general
be given by:

Wn
2  ~

α3 α1 α1/3 ....α ^(3 /3n−1)α ^(3/3n)

α9 α3 α1 .... α ^ (9 /3n)
= α ^(3/3n)/α9          n = {0;1;2;..} (27)

The corresponding term for particle energy will be given by:

13 Γ+ Γ-  = 3π /sin(π/3) = 30.5 2π  = 0.99797 α-1/ 4π. 
14 With the unit system of 1.1 follows: ħc0 4 π εc /ec

2 ≈ 4π Γ+ Γ   => ħc0 ε c=Γ+ Γ - ec
2 =>  | ħ'|[J2]  ≈  Γ+ Γ-  e2[J2]

15 Using λC/rm  directly gives the same value. (20) is sensitive to the integration limit, thus altered by the additional 
factor of 2π compared to previous versions.
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W n  = 

4 π b0
2

α
 
∫
r l , n

Ψ n (r)
2 r−2 dr

∫
λC, n

Ψ n(r)2 dr

 = ((2b0)
2 Γ1/3

2

9  [α 4 π  |Γ−1/3|Γ1/ 3]βn
2/3 )

0.5

 = 

 = 2b0

Γ 1/3

3 βn
1/3

 = 2b0

Γ 1/3

3 βe
1/3

α ^ (1.5 /3n
)/α 4.5  = W e  

3
2

 Πk=0
n α^(-1/3k )

   n = {0;1;2;..} (28)

giving equation (1) for spherical symmetry. In the last term of (28) the additional factor 3/2 has to be inserted
ad hoc to represent the anomaly in the product (13,14) due to the energy ratio of e, µ, Wµ /We = 1.5088 α-1  16.
Equation (13, 14) has to be adjusted accordingly:

βn = βe(2/3)3  Πk=0
n α ^(3 /3k)  = βdim α e(2 /3)3  Πk=0

n α ^(3/3k)  = βdim Πn   
17

          n = {0;1;2;..}      (29)

The coefficients of the partial product for Πτ,n of (14) are given by:

τn = τ e(2 /3)3 Πk=0
n α ^(3 /3  k)  = τ dim α e(2 /3)3  Πk=0

n α ^ (3 /3k) = τdim Πn                    n = {0;1;2;..} (30)

A fit of We will give βdim = 2.12E-24 [m3], τdim = 9.64E+25 [m/J2].
Extending the model to energies below the electron with a coefficient of α3 in equ. (1), Wν /We ≈ α3, gives a
state with energy ~0.2eV which is in a range expected for a neutrino [9]. 

2.5 Relation of σ and τ with α
2.5.1 σ – spherical symmetric states
According to equation (19) rl,n may be given by :

rl,n = ∫
0

r l,n

Ψ n(r)2 dr = βn
1/3

/3∫
8/σ

∞

t-4/3 e-t dt  ≈ 1.5133 α-1 Γ- βn
1/3 /3       18 19 (31)

The coefficient σ is related to factor ≈ 1.5133 α-1 by equ. (8) and (31) to be:

σ = 8 rl,n
3 / βn  = 8(4π Γ-

3/3 )3 = (1.5133 α-1 Γ- 2/3)3 = (ks α-1 Γ- )3 = 1.772E+8[-]        20 (32)

Since the term ≈ 3/2 α-1 from (1) is approximately equal to the factor in rl, ≈ 1.5 α-1, these terms will cancel in
the expression for rl,µ  (note: Wn ~ 1/rl,n) : 

rl,e  ≈ 1.51 α-1 Γ- βe
1/3 /3 (33)

rl,µ  ≈ 1.51-1 α+1 [1.5 α-1 Γ- βe
1/3/3 ] =  Γ- βe

1/3/3  = rm,e = 1.51 α-1Γ- βµ
1/3/3 (34)

2.5.2 Coefficient  ~1.5
The value of 1.51 α-1 in rl, σ originates from the relationship with J setting the integration limits in equ. (50)
and is obviously close to the ratio Wµ/We = 206.8 = 1.5088 α-1. The source of this anomaly is supposed to be
the electron rather than the muon, which is a middle term of product (29)f and the equations have been
arranged accordingly in (29)ff by factor (2/3)3 representing a general factor of all particles to be canceled by
a factor (3/2)3 in αe. Several options for  ~1.51 involved in this model have been be considered: 3/2, Γ - /Γ+ =
1.516, π/2 = 1.571, 1.5088 etc. The value 1.5133 has been chosen due to  
1. a possible geometrical interpretation (using(23))

1.516 α-1 Γ- /3 =  Γ- /Γ+  4π Γ- Γ+/0.998   Γ- /3 = 1
0.998

 
4 π Γ -

3

3
   (35)

16 While the origin of factor 3/2 is unclear, the difference to 1.5088 can be given in 2.5.2.
17 Factor (2/3)3 reproduces factor 3/2 in (1) to be canceled by an extra (3/2)3 in αe ≈ (3/2)3 α9 (see (38)f).  ͔Πn for brevity.
18 The term ≈ 1.51 α-1 is within the accuracy of the calculations  identically to Wµ/We = 206.8 = 1.509 α-1. Calculating 
factor ≈ 1.5 numerically via the Euler integral of (40) with a value of σ ~ 1.509 gives 1.501,  numerical fits of particle 
energy give values in a range of ~ 1.515 .
19 r ' l , n  = 1.5  Γ -/3  α−1  βn

1 /3  = λC , n/3
0.5

20 Factor ks = 1.5133 * 2/3 = 1.0088 used as abbreviation in the following.
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suggests to use

1.5133 = 1.516 * 0.998 = 4πΓ-
2α-1 (36)

giving a dimensionless  representation of  particle  volume and  connecting the one and three dimensional
features of this model.
2. Factor 1.5088 of the ratio Wµ/We being subject to a 3rd power relationship of the same kind as the  α
coefficients:

(1.5133
1.5088)

3

 = (1.5133
1.5 ) (37)

indicating that the particle specific term of  β and the components of σ are not correctly separated yet even in
the case of spherical symmetric states.

2.5.3 Particle parameter β, τ
In the following according to (37) parameter 1.5133 of σ will be incorporated in the particle specific term τ,
giving:

 βn  = τ dim  
2

(2 π )
3  (2

3 )
3

 
σ

1.51333  b0
2 Πk=0

n [α 3( 1.5133
1.5 )]^( 3

3k )          n = {1,2,...} (38)

for the electron:

 βe  = τ dim  2
(2 π)3

 (2
3)

3

 σ
1.51333

 b0
2  [  3

2
 α3( 1.5133

1.5 )]
3

         (39)

the particle specific factor τ/τdim is given in bold.
Coefficient τdim will be given by:

 τ dim  = 
1

e c εc

= 9.64E+25 [m/J2] (40)

giving

 τ dim b0
2  = 

1
(4 π)2  (ec

εc
)

3

= 1.520 E-30 [m3] (41)

ψ will turn into 

Ψ n(r)  = exp(−{( (2
3)

3 σ τn b0
2

(2 π )3 r 3)+[( (2
3 )

3 σ τ n b0
2

(2 π )3r 3)
2

–  (2
3)

3 4 τ n b0
2

(2 π )3 r 3]
0.5

}/2) (42)

and  

Ψ n(r<rl ) = exp(−(2
3)

3 σ Π τ , n

(2 π )3 (4 π )2 r3( ec

ε c
)

3

) (43)

We may be given as:

We =
ec

2

2 π ε c

 ∫
0

r l ,n

Ψ e(r)2 r−2 dr = 
π2/3 Γ +

k s Γ -

ec

α 2
 ≈  

20.5 ec

k sα
2 (44)

2.6 Extension to non-spherical symmetry
Up  to  here  only  spherical  symmetry  and  Ψ(r)  is  considered,  introduced  through  equ.  (15)f.  For  non-
spherically symmetric states 21 an appropriate angular term, yl

m, will be introduced 22:  

yl
m= ∫∫Ψ (φ, ϑ )

2sin (ϑ )dφ dϑ  / 4 π (45)

giving equation (1) for spherical symmetry.  
The ratio of the volume integrals attributed to spherical harmonic Y 1

0 and Y0
0  gives a factor of 1/3. Assuming

21 see also 4.2
22 Note: the wave function over the E-field will not be normalized to 1.
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Y1
0  to be a sufficient approximation for the next angular term and  Wn ~ 1/rn ~ 1/Vn

1/3 (V = volume) to be
applicable for non-spherically symmetric states as well, will give W1

0/W0
0 = 31/3 =1.44 = (y1

0 )-1.
Relation (34) has to turn into:

τn = yl
m  

 τe (2/3)3 Πk=0
n α ^(3/3 k)               n = {0;1;2;..} (46)

A change in angular momentum is expected for this transition which is actually observed with ΔJ = ± 1
except for the pair µ/π with Δ J = 1/2.
Results for particles assigned to y0

0,  y1
0 are presented in table 1.

Table 1: Particles up to tauon energy 23; values for y0
0, y1

0; col. 3: energy values from literature [10] except *:
calculated from model; Wcalc calculated using (38)f; “uds” in col. 3 indicates particles covered by the quark
model, linear combination labeled LC; leptons indicated as O; 24

2.7 Discussion of particle states
2.7.1 Ground state
Equation (1) may be used to be extended to energy states below the electron. Yet according to  (46) the
associated parameter ατν should be α-9 i.e. not fitting into the partial product of ατ parameters. Moreover the
relationship of We with the Planck-scale, see 5.2.1, also strongly supports the electron as being a ground
state.

2.7.2 Lower limit
For extending this model to energies below the electron a coefficient of α3 is used in equ. (1): Wν /We = α3.
This gives a state with energy 0.2eV which is in an approximate range expected for a neutrino  [9]. 
Yet the final lower limit should be reached soon. While rl of the hypothetical neutrino is rl  = 3.6E-6 [m], the
next lower state would be the last one to fit into the universe, with rl ~ 1E+13[m] ~ 0,001 light year.

23 up to Σ'0 all resonance states given in [10] as **** included; Exponent of -3/2, 27/2 for Δ and tau is equal to the limit 
of the partial products in (1) and (46); rl calculated with equ. (8);
24 Wcalc/WLit values differ from those calculated in reference to the electron in [8]
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n

J

uds

-1 2E-7 * - 1/2 1.5E+10 O

0 0.51  Reference 1.0001 1/2 8877 O

1 105.66 1.0000 1/2 42.9 O

1 139.57 1.0918 0 29.8 uds
K 495 0 uds

2 547.86 0.9933 0 8.3 LC

2 775.26 1.0124 1 5.8 LC

2 782.65 1.0028 1 5.8 LC

K* 894 1 uds

3 938.27 1.0016 1/2 4.8 uds

n 3 939.57 1.0003 1/2 4.8 uds
958 0 LC

1019 1 uds

4 1115.68 1.0106 1/2 4.0 uds

5 1192.62 1.0046 1/2 3.8 uds

Δ ∞ 1232.00 1.0025 3/2 3.7 uds
1318 1/2 uds

3 1383.70 0.9796 3/2 3.3 uds

4 1672.45 0.9724 3/2 2.8 uds

N(1720) 5 1720.00 1.0046 3/2 2.7

∞ 1776.82 1.0026 1/2 2.5 O
Higgs 1.25 E+5 0
Max ~2.6-7.0E+5

W
n,Lit      

 
[MeV] 

 Π
k=0

n α (̂-1/3k)                 
equ (1)

 Π
n
 
                                                 

equ (45) Wcalc/ WLit 
r

l
 [fm]

ν  α+3

e+- (3/2)3 α9

µ+-  α-1  α9α3

π+-  1.44 α-1  α9α3/3

η 0  α-1α-1/3  α9α3α1

ρ0  1.44 (α-1α-1/3)  α9α3α1 /3
ω0  1.44 (α-1α-1/3)  α9α3α1 /3

p+-  α-1α-1/3α-1/9  α9α3α1α1/3

 α-1α-1/3α-1/9  α9α3α1α1/3

η'

Φ0

Λ0  α-1α-1/3α-1/9α-1/27  α9α3α1α1/3α1/9

Σ0  α-1α-1/3α-1/9α-1/27α-1/81  α9α3α1α1/3α1/9α1/27

 α-3/2  α27/2

Ξ

Σ*0  1.44 (α-1α-1/3α-1/9)  α9α3α1α1/3 /3
Ω-  1.44 (α-1α-1/3α-1/9α-1/27)  α9α3α1α1/3α1/9 /3

 1.44 (α-1α-1/3α-1/9α-1/27α-1/81)  α9α3α1α1/3α1/9α1/27 /3
tau+-  1.44 (α-3/2)  α27/2 /3



2.7.3 Upper limit
2.4 Upper limit of energy
In the simple picture sketched in the introduction the rotating E-vector might be interpreted to cover the
whole angular range in the case of spherical symmetric states while a p-like state of an Y 1

0-analogue might
be interpreted as forming a double cone. Going to higher Yn

0-analogue states will close the angle of the cone
leaving the original vector in the angular limit case, which might be interpreted as an instantaneous snapshot
of time-averaged lower states, The maximum of the W(r) curve of spherical symmetric states of fig.1 will
shift towards rl until it reproduces the shape of Ψ(r) itself, i.e. rm   >̶  rl. 
This is equivalent to σ approaching approximately unity.  Since a bound state requires ~σ > 1 an upper limit
for the angular contribution to the particle energy may be given by 1.51 α -1 and possible other components
included in rl, σ according to (31)f such as Γ-1/3/3 or 2. The maximum angular contribution to Wmax may be
estimated as being approximately:
 1.5133 α-1  <  ΔWmax, angular   <  σ1/3 (47)

From (47) follows an estimate for the total upper limit of energy as:

We 1.51332 α-2.5  = 4.12E-8 [J]   <  Wmax  <  We 1.5133 α-1.5 σ1/3 = 1.72E-7[J] (48)

This corresponds to a factor 2.0 - 5.5 relative to the mass of the Higgs boson [10].
Since non-rest mass energy is not restricted to the particular solutions of the model this limit does not apply
to these. 

2.7.4 Particle states not in y0
0 and y1

0

On the present level the y0
0 and y1

0 states of this model cover the 13 particle families of table 1 {e, µ, π, η,
ρ/ω, p/n, Λ, Σ, Δ, Σ*, Ω, N(1720), τ} (excluding ν). This may be compared with the number of particle
families given by the multiplets of u, d, s quarks in roughly the same energy range which is 13 as well, {π, Κ,
ρ, Κ*, p/n, Φ, Λ, Σ,  Δ, Ξ, Σ*, Ω, Ξ*}(excluding linear combinations). 
Apart  from particles  attributed  to  y0

0 and  y1
0 symmetry,  assignment  of  more  particle  states  will  be  not

obvious. The following gives some possible approaches.

2.7.4.1 Partial products
Additional  partial  product  series  will  have to  start  with higher  exponents  n  in  α^(-1/3n)  giving smaller
differences in energy while density of experimentally detected states is high. There might be a tendency of
particles to exhibit a lower MLT making experimental detection of particles difficult  25. To determine the
factor yl

m requires the complete solution of the differential equation yet to be done. All these factors will
impede the identification of additional partial product series.
One more partial product might be inferred from the fact that d-like-orbital equivalents with a factor of 51/3 as
energy ratio relative to η (see 4.2) give the start of an additional partial product series at 51/3 W(η) = 937MeV
= 0.98 W(η'), i.e. a value that coincides with energy values of the first particles available as starting point, η'
or Φ0, and having Δ(2420) with a spin of 11/2, indicating a high number of nodes, as candidate for being an
end point. The difference in energy fits a series, some candidates for intermediate particles exist. However, in
general it is not expected that partial products can explain all values of particle energies.

2.7.4.2 Linear combinations and particle compounds
The first particle family that does not fit to the partial product series scheme are the kaons at ~ 495MeV.
They might be considered to be an equivalent to linear combination states of classical quantum mechanics.
The  π-states  of  the  y1

0 series  are  expected  to  be  similar  to  p-orbitals  of  the  H-atom,  giving  a  charge
distribution  of  +|+,  -|-  and  +|-.  A linear  combination  of  two  π-states  would  yield  the  basic  symmetry
properties of the 4 kaons as:

   +         -         -          +
K+     +       + K-    -        - KS

o    +      + KL
o     +        -  (+/- = charge)

   +         -         -    -
providing two neutral kaons of different structure and parity, implying a decay with different parity and MLT
values. For the charged Kaons, K+, K-,  a configuration for wave function sign equal to the configuration for
charge of KS

o  and KL
o might  be possible, giving two variants of P+ and P- parity of otherwise identical

25  Which might explain missing particles of higher n in the y0
0 and y1

0 series as well.
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particles and corresponding decay modes not violating parity conservation 26.
        -          +

K+/-    +      + K+/-     +        -  (+/- = wave function sign)
        -    -

The general formalism of such linear combinations might be different from classical quantum mechanics. At
least the normalization condition would have to be altered or entirely dropped, which might result in a simple
addition of particle energies. This is not the case for two pions adding up to one kaon. However, it has been
noted for a long time that simple multiple-mass relations can be found among particle masses [7], [18]. Easy
identifiable examples of near integer multiples can be found in particular among mesons, e.g. K, K* or η', η c

and ηb; among baryons e.g. the doubly charged particles stand out.
The latter particles draw attention to another possibility to explain particle resonances. A particle like Δ++

(from the reaction of p and π+) is not expected within this model.  Replacing  elementary charge  e in the
equations by 2e would give energies not compatible with other  single charged or neutral  Δ particles  and a
whole series of doubly charged particles should exist. A particle of charge 2+ in this energy range would be
rather considered to be a compound of n and two π+, giving an equivalent of the 3He nucleus (excited state). 

2.8 Angular momentum - 2π

A simple  relation  with  angular  momentum J  for  spherical  symmetric  states,  applying  a  semi-classical
approach using 

J  = r2 x p(r1)  = r2W n(r1)/c0 (49)

and assuming  |r2| = |r1| and Wkin,n = 1/2 Wn,   gives the integral:

|J| = ∫
0

rl , n

J n(r)dr = 2
b0

c0

 ∫
0

r l , n

Ψ 2 n(r)
2 r−1 dr (50)

From (10)f follows for m = 0:

∫
0

rl , n

Ψ 2π ,n(r )
2r−1 dr = 1/3∫

8 /σ

∞

t -1 e -tdt ≈  5.45  ≈  α-1/8π (51)

yielding the constant α-1/8π. Inserting (51) in (50) would provide:

 |J| = 2
b0

c0

 
α -1

8π
= 1/2 [ħ] 1/(2π) (52)

To get the expected value of 1/2 [ħ] either assumption |r2|  = |r1|  or the assumption of equ. (15), that the
Coulomb law originating from the interaction of 2 particles can be used as first approximation has to be
dropped, introducing a factor 2π in either (15)f or (49). The whole complex of angular part of the wave
function, wave function phase, angular momentum, magnetic moment needs to be worked out thoroughly
before this questions may be settled.

Analogous to the postulate for neutral particles to be composed of volume elements of opposite charge,
particles with J = 0, J ≥ 1 are supposed to be composed of a combination of half integer contributions of
angular momentum J = ± 1/2, adding up accordingly, implying appropriate multiples for the relation of |r2|
and |r1| in (49) 27.

2.9 Accuracy of energy calculation
Agreement  with  experimental  values  is  typically  in  a  range  of  ± 0.01. There  are  three  major  causes
preventing a significant improvement of accuracy. 
1) Especially in the case of particle families 28, effects on top of the relations given in this work have to play
a  role  to  explain  different  energy levels  of  differently  charged  particles.  This  limits  accuracy and  the
possibility to precisely identify candidates for calculated energies (e.g. both ρ0 and ω0 are given for 1.44 α-1α-

26 For the neutral particles charge and wave function signs may not be necessarily independent
27 Going from µ with J=1/2 to η with J=(+1/2 -1/2) = 0, in the case of the proton a contribution of J = 3 |1/2] is needed, 
i.e. 3 contributions of J = |1/2] each, adding up to total spin of J = 1/2. For this formally  |r2| = 3 |r1| in (49) has to hold.
28 Particle families, defined here as possessing the same exponent n in (46) but being different in charge, show a typical
spread in energies of 3-4MeV and no dependence on total particle energy.
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1/3 in tab. 1).
If possible, particles chosen for y0

0 in table 1 are of charge ± 1. In cases such as Σ with three energy levels,
the intermediate energy level is chosen. For the y1

0 series particles of the same charge as their y0
0 equivalent

are preferred in table 1. 
2) The accuracy of the calculations is already in the order of magnitude of expectable QED corrections.
Since these originate from the  interaction of particles with the vacuum they may not be included in the
equations of this model yet may have some influence on experimental values.
As for comparing accuracy of the energy calculation with results from some quark models of the standard
model,  calculations of simplicity comparable to the model presented here, using the obsolete constituent
quarks and spin-spin interaction yield approximately the same accuracy [11]. However, more recent QCD
calculations for particle mass use the mass of current quarks as input parameter. For u, d, s quarks, relevant
in the energy range dealt with here, this mass is only vaguely defined, e.g. in the case of the u, Wu = 1.8 - 2.8
MeV [12]. Ab initio lattice QCD calculations may give particle mass with an uncertainty of a few percent
[13].

3 Other properties
3.1 Magnetic moment 29

Within this model particles are treated as electromagnetic objects principally enabling a direct calculation of
the magnetic moment M from the electromagnetic fields.
The magnetic moment Me of the electron is given as product of the anomalous g-factor, ga = 1,00116, Dirac-
g-factor, gD = 2, and the Bohr magneton, µB = e ħ/(2me), times the quantum number for angular momentum 
J = 1/2: 

M e  = ga g DµB /2  = ga

2e c0
2

2W e

 ħ
2

 = ga 9.274E-24 [Am2] (53)

The factor  ga arises  from the  interaction of  the  electron  with virtual  photons  as  calculated in  quantum
electrodynamics  and should not  be part  of  a  calculation of  the  magnetic moment  from the field of  the
electron itself. Within this model the factor 2 of gD originates from the fact that particle energy is supposed to
be equally divided into contributions of the electric and magnetic field,  Wel =  Wmag = Wn/2 and only the
magnetic field, i.e. Wmag contributes to the magnetic moment.
Inserting the term for particle energy of (16) in (53) gives: 

Me

ga

 = 
eħ c0

2

2W e

 = 
eħ c0

2

2
 

3 βe
1 /3

2b0 Γ +

 = e c0 βe
1 /3  ( Γ -

3
 

3
Γ -
)  

3 [ħ c0/b0]

4 Γ +

 = ec0 β e
1/3 Γ -

3
 [ 9[α−1

]

4 Γ + Γ -
] (54)

The term on the right is expanded by Γ-/3 and turned into a form that will be needed for comparison with a
calculation starting directly from the fields as explained in the following. 
The relation of the values of E and B in an electromagnetic wave is given by B = E/c 0.  This gives for the
value of Mn  :

Mn  ≈ 
1
μ
∫
0

rl

B(r )Ψ n(r )
2d 3r  = εc0∫

0

r l

E(r )Ψ n(r )
2d 3r  = ec0 β n

1/3 Γ -

3
 
1.51

α
       30 (55)

Equation  (55)  neglects  contributions  to  B(r)  from  other  parts  of  the  standing  wave  and  requires  an
appropriate integration of those. The term in brackets of (54) contains integral terms over Ψ(r)2 that might
provide suitable contributions since (expansion with 2π):

9(2π )α−1

8 π Γ1 /3|Γ−1 /3|
 = 

3 βe
1 /3

Γ 1/3

 
3

βe
1 /3

|Γ−1 /3|
 
2π α−1

8 π
 = 

2 π∫
rl

Ψ (r )
2r−1 dr

∫
r l

Ψ (r)2 r−2 dr[∫
r l

Ψ (r)2 dr]α /1.51

       30
(56)

holds. 

29 Note: to allow for comparison with tabulated values of M in units of [Am2] the calculations in this chapter use          
e [C] not ec  [J], conversion factor: [m2C/s ] /[m2 J/s ] = e/ec = 1/19.4 [C/J]. 
30 The integral in brackets of (56) would produce  1.51/α which is given by its inverse in the equation to compensate 
for that. The actual integral factor would cancel the same term in (55) .
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The  comparison  of  (54)  and  (55)  gives  evidence  that  it  is  possible  to  transform  the  Bohr  magneton
expression with M ~ 1/m ~1/W ~1/E2 into an electromagnetic expression where M can be calculated directly
from the integral over the B-, E-field, M ~ ∫E d3r .
Some more assumption about symmetry is required to interpret the integrals of (56)  and the model may
provide an  approach to  calculate  magnetic  moments  of  other  particles  as  well,  however,  at  present  the
absence of a detailed structure of particles seems to require too much speculation.

Table 2: Absolute values calculated for magnetic moment with (55) compared to literature [10]

3.2 Particle decay / mean lifetime
To check if the model yields any information about mean lifetimes (MLT) the particles attributed to y 0

0 and
y1

0 are arranged according to their α-exponent index n and indicated for different types of particle families in
fig. 2. There seems to be a tendency for charged particles to be significantly more stable than neutral ones
and for y1

0- lifetimes to be lower than y0
0- lifetimes.  31

Figure 2: Mean lifetime for y0
0 (blue) and y1

0 (red) particles; charged only (+,-), neutral only (0), charged and
neutral particle families with near identical MLT (+,-,0).

Table 3: Values for mean lifetime [10] used in figure 2

31 In [7] a dependence of MLT on α is given, however, there seems not to be a direct relation to the  α-coefficients of 
this work.
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|M|_Calc [Am2]
-9.28E-24 3.66E-22 -39.433
-4.49E-26 1.77E-24 -39.433
1.41E-26 1.99E-25 14.142

n -9.66E-27 1.99E-25 -20.637
-3.10E-27 1.68E-25 -54.170

M_Lit [Am2] |M|_Calc /|M|_Lit
e+-

µ+-

p+-

Λ0

0 1 2 3 4 5 6 7 8
-25

-20

-15

-10

-5

0

5

10

Y00 (+,-)

Y00 (+,-,0)

Y00 (0)

Y10 (+,-)

Y10 (+,-,0)

Y10 (0)

n(α)

lo
g(

M
LT

)

MLT [s] log(MLT) n(alpha)
e ∞ 0

µ 2.20E-06 -5,7 1

5.00E-19 -18,3 2

p ∞ 3

n 8.80E+02 2,9 3

2.60E-10 -9,6 4

7.40E-20 -19,1 5

8.00E-11 -10,1 5

Δ 5.60E-24 -23,3 ∞

2.60E-08 -7,6 1
8.50E-17 -16,1 1

ρ+-0 4.50E-24 -23,3 2

ω0 7.80E-23 -22,1 2

1.80E-23 -22,7 3

8.20E-11 -10,1 4

N(1720) 1.70E-23 -22,8 5

2.90E-13 -12,5 ∞

η 

Λ0

Σ0

Σ+-

π+-

π0

Σ*0+-

Ω-

tau+-



Differential equation
4.1 Radial part
The approximation Ψ(r<rl) of equation (  9  ) provides a solution to a differential equation of type

−
r

6σ τ b0

d2Ψ (r)

dr2
 +  

b0

2 r3

dΨ (r)
dr

 − 
b0

r 4
Ψ (r)  = 0  32 (57)

However the correct discriminant form of Ψ(r) of equ. (  7  ) would be provided by a slightly different equation
(revised by 6 in 2nd, 2 in 1st and σ in 0th order term) :

−
r

στ b0

d2 Ψ (r)

dr2
 +  

b0

r3

dΨ (r)
dr

 −  
b0

σ  r4
Ψ (r)  =  0  (58)

To proceed from the heuristic mathematical approach of equation (57) to one based more on physics the
second order term is expected to represent  a quantum mechanical  term for kinetic energy including the
impulse operator. Mass may be replaced by the term We /(2 c0

2)  33 giving 

W kin=(2ħ2 c0
2  

2  W e
) d2 Ψ (r)

dr2 (59)

To recover the r-dependence of (57) the following procedures are used as approximation

1.) We => Γ- Γ+ 2 b0 /(9 r) which is an approximation for r ≈ rm  
34

;

2.) Using the first derivative of Ψ(r), [3 σ τ b0
2
 r-4] (and [3 σ τ b0

2
 r-3]) to modify the 0th (and 1st order term), i.e.

effectively turning them into the next higher derivative, allows for canceling the 2 nd order term. Since this
term is almost identical to the expression for the supposed term of the strong force, the last term in equ. (65)
below, this term is preferred, i.e. [σ τ b0

2
 r-4/2] and [σ τ b0

2
 r-3/2] will be chosen for the terms of the differential

equation 35. 
3.) Setting σ in accordance with (58);
4.) Since στ,  technically στe, has to match the resulting expression, τe may be redefined as τe*. This gives:

−( 9ħ2 c0
2 r

Γ- Γ+ 2b0
)d2 Ψ (r)

dr2
 +  

b0 (σ τ e
* b0

2)

2r 3

dΨ (r)
dr

 −  
b0 (σ τ e

* b0
2)

2σ  r 4
Ψ (r)  =  0 (60)

as differential equation. Equation (42) will turn into (expanded by 4π):

Ψ (r)=exp−((( [Γ- Γ+ 4 π ]σ τ e
* b0

4

4 π 9ħ2 c0
2  r4 )+[( [Γ- Γ+ 4 π ]σ τ e

* b0
4

4 π 9ħ2 c0
2  r 4 )

2

−
4 [Γ - Γ +4 π ]τ e

*b0
4

4 π 9ħ2 c0
2  r5 ]

0.5

) r
2) (61)

   which may be rewritten, using  (23), as

Ψ (r) =  exp−((( k a α σ τ e
* b0

2

4 π 9r 3 )  +  [( ka α σ τ e
* b0

2

4 π 9r3 )
2

 −  
4 k a α τ e

* b0
2

4 π 9r 3 ]
0.5

)1
2) (62)

According to (62) τe*  has to be defined as:

τe* = τ e
18

(2π )
2

ka α
≈  τe α-1/2 (63)

32 [N15.1] dψ(r)/dr = 3 σ τ  b0
2 r -4 Ψ(r)

[N15.2]  d2ψ(k)/dk2 = 9 (σ τ  b0
2)2 r -8 Ψ(r)  - 12 σ τ  b0

2  r -5 Ψ(r) + 6 σ τ  b0
2 r -5 Ψ(r) (polar coordinates)

[N15.1] -[N15.2] inserted in (57) gives: 
[N15.3] r (6 σ τ  b0)-1 {-9 (σ τ  b0

2)2 r -8 + 6 σ τ  b0
2 r -5} + 3/2 σ τ  b0

3 r -7  - b0 r-4 = 0  
[N15.4] -3/2  σ τ  b0

3 r -7 + b0  r -4+ 3/2 σ τ  b0
3

 r -7 - b0 r-4  = 0
33 Using Wpot,n = Wkin,n = Wn/2 and (16)
34 βn in (16) replaced via term of (18)
35 Note: cancelling of factor 2 in β
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positioning (60) somewhere between (57) and (58).

4.2 Complete solution / angular part
For the type of differential equation (57)ff  a separation of variables will  in general  not  be possible, the
spherical harmonics such as (Y1

0)2 will not be a solution for the differential equation of type (57). However,
the factor 3 of Y1

0 fits not too bad and the symmetry properties of π-particles match those of p-orbitals. In
general any wave function corresponding to a rough equivalent of an atomic p-orbital will have to feature a
coefficient from the integration over φ, ϑ close to 3 and be accessible to the reasoning in 2.6. 
In general other approaches might be better suited to the problem, such as calculating in k-space or using
quaternions.

5 Particle-particle interaction
5.1 Relationship between particle energy and strong, Coulomb potential energy
The series expansion of Γ(1/3,βn/r3) in the equation for calculating particle energy (16) gives [14]:

Γ (1/3,  β n/(r3))  ≈ Γ 1/3  - 3( βn

r3 )
1/3

+ 3
4 (

βn

r 3 )
4 /3

 = Γ 1/3  - 3
βn

1/3

r
 + 3

4

βn
4/ 3

r4 (64)

and for the potential energy part of Wn(r),  Wn,pot(r) = Wn(r)/2:

W n, pot (r) ≈ W n /2  - b0

3 βn
1/3

3 βn
1/3 r

 + b0
3
4

β n
4/3

3 βn
1/3 r4

 = W n /2  - 
b0

r
 + b0

βn

4 r4
      36 (65)

The 2nd term in (65) drops the particle specific factor βn and gives the electrostatic energy of two elementary
charges at distance r. The 3rd term is chosen for the terms of the differential equation given in 4.1. The 0 th

order  term in the  differential  equation is  supposed to  represent  a  potential  energy which,  though being
composed  of  coefficients  originating  from  electrodynamics,  does  not  represent  an  electrodynamic  or
gravitational term but a term which has a high dependence on r and is obviously responsible for the localized
character of an electromagnetic object.  In 5.3 some arguments are given that demonstrate a relationship of
the properties of the wave functions used in this model with the  “strong force” of the standard model. It may
be assumed that the 3rd term of (65) represents this strong force 37.

5.2 Gravitation
Expressing  energy/mass  in  essentially  electromagnetic  terms  suggests  to  test  if  mass  interaction  i.e.
gravitational  attraction  can  be  derived  from  the  corresponding  terms.  Assuming the  expansion  of  the
incomplete Gamma function for the integral over r-2, Γ(1/3,βn/r3) (64)f, might be an adequate starting point
for gravitational attraction as well, implies that the Coulomb term b0 will be part of the expression for FG, i.e.
the ratio between gravitational and Coulomb force, e.g. for the electron,  FG,e /FC,e = 2.41E-43, should be be a
term that can be given as completely separate, self-contained expression. 

5.2.1 Planck scale
The same conclusion would arise from assuming that gravitational interaction is a higher order, nonlinear
effect of electromagnetic interaction and as such should be of less or equal strength compared to the latter.
This suggests to use the expression

b0 = G mPl
2 = G WPl

2 /c0
4               (66)

as definition of Planck terms , giving for the Planck energy WPl
 :

WPl
  = c0

2 (b0 /G)0.5 = c0
2 (αhc0/G)0.5 (67)

Using (67) gravitational attraction FG in the classical limit can be expressed as:

FG  = 
b0W n W m

W Pl
2

1

r2 (68)

36 signs not adapted to conventional usage of FC.
37 Apart from the Yukawa-Potential other approaches have been tried, e.g. Heisenberg in a letter to Pauli discusses an 
exchange energy for p - n interaction ~r-5 https://archiv.heisenberg-gesellschaft.de/heisenberg_0017-064r.pdf
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Expression (68) is a restatement of Newton's law with no additional insight unless an expression for WPl
  

independent of G would be at hand. Expanding relationship (29)f to higher powers of αe i.e. αe
3 = (1.51333 

α9)3 provides just that. The relationship is quantitative if using 

0.9994
W Pl

W e

 = 1.5133−2 α−102 = 2.039 E+21 (69)

i.e. using (αe
3)-1/3 times the angular limit factor according to (47) in the form 1.5133 α-1 *2.

Using (36) to express factor 1.5133 gives (FG, FC = gravitational, Coulomb forces):

( W e

W Pl
) = (FG ,e

FC ,e
)calc

 = [ (4 π )
2
Γ -

4
α

12

2 ]
2

 = 1.00072  (FG ,e

FC ,e
)exp

 = 
G W e

2

c0
4 b0

   (70)

Using (36),(44) for calculating We would give G as:

    Gcalc  = 
c 0

4

4 π εc

 ((4 π )3 Γ -
7  α15

3 π2/3 Γ +
)

2

 = 1.0013G exp
38  (71)

5.2.2 Virtual superposition states
The results of 5.2.1 have several implications.
From (28) it is not obvious if and at which energy a ground state exists though the electron or neutrino would
be obvious choices. The ground state should be distinguished by the existence of a dimensionless parameter
αground

3 that  does  not  represent  another  particle  state  but  has  some  more  fundamental  significance.
Relationship (69) seems to provide just that. 
Within this model particles might interact via direct contact in place of boson-mediated interaction. The
particles are not expected to exhibit a rigid radius. Within the limits of charge and energy conservation a
superposition of many states might be conceivable, extending the particle in space with radius ~ r ,m,n,  rl,n

appropriate for energy of each virtual superposition state (VSS)  39, enabling interaction at a distance. The
wave function of a VSS might contribute an additional factor to lower total Ψ values on site of a second
particle thereby reducing particle energy and resulting in an attractive force . In general VSS are not supposed
to consist of analogues of e.g. spherical symmetric states covering the complete angular range of 4π but to be
an instantaneous, short term extension of the (rotating) E-vector thus requiring the angular limit factor in
(69).
The particular definition of the Planck scale used in 5.2.1 is based on the assumption that gravitation is a
nonlinear  effect  in  respect  to  electromagnetics.  This  model  provides  a  nonlinear  term in  respect  to  the
Coulomb term in the 3rd term of the expansion of the Γ-function according to (64), β4/3/r4, a term that has
been attributed to the  strong force and provides essentially the potential  energy term of the differential
equation.  This term is supposed to be responsible to keep an electromagnetic object  localized i.e.  to be
responsible for the existence of mass and the curvature of space-time associated with it.
The term (Γ- α3)4 of (70)  indicates a relationship of FG with the SF term of (64), including (α9)4/3 of the
electron parameter αe and the dimensionless parameter Γ- which is related to the spatial coordinate r. For any
particular VSS the term β4/3/r4 would yield a well defined value for any r < r l 40, the r-dependence of FG would
not be based on this term but on the relationship WVSS ~ 1/rVSS of each VSS. In addition there has to be an
intensity term being proportional to Wn  

41. 
In a very simple picture one would have:
1) a VSS providing energy at ~ r,m,n, rl,n , giving according to (65) ~ b0 βVSS

 /rm,VSS
4 ~ b0 /rm,VSS,

2) the rate at which a VSS would be created should be proportional to particle energy Wn,

38 Equ. (71) may be approximated as: Gcalc  = 
c0

4

4 π εc

 2
3

 α24  = 1.00087Gexp

39 The superposition states considered here would be not virtual in a Heisenberg sense, the energy is provided by the 
source particle.
40 In the simplest case: βVSS 4/3/r4  =  βVSS 4/3/rl,VSS 4 = 1
41 To give a simplified example, e and µ might both create neutrino VSS which would result in a neutrino energy /mass 
term at rl,v, i.e. approximately α3 times weaker at rl,v than at rl,e or rl,µ, providing a corresponding effect in curvature of 
spacetime. Factor ~ α3 represents both the ratio of energy and radius of the particles involved. This leaves the question, 
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3.) the strong force term in (60), (64) etc. is the cause for creating energy and associated curvature of space-
time. Assuming that its ground state parameter, ~ αe, is approximately appropriate for averaging the various
factors sketched above and thus for describing the curvature of space-time caused by VSS as well, one might
arrive at an equation of type (70).
Replacing We by other particle energies Wn in (70) would result in a factor ~  αx in the denominator and since
the exponent of α is the only variable parameter in (70) one ends up at the Planck scale when  Wn ~  α-x has
used up all of the starting  α12.
Such a model seems to suit GRT:
- the curvature of space-time at a distance from a particle / mass is due to the presence of energy in form of
VSS,
- energy is intrinsically connected with r (and implicitly t) (=> energy-space-time)
- no non-linearity problems due to extra energy of bosons.

5.2.3 Cosmological implications

5.3 Short range interaction - strong force
In this model,  on the length scale of particle radius, the wave functions of two particles should start  to
overlap and exert some kind of direct interaction. As demonstrated in table 1, col.8, for hadrons the model
yields particle radius in the range of femtometer, the characteristic scale for strong interaction and it seems
likely to identify strong interaction with the interaction of wave functions. Interaction via overlapping of
wave functions constitutes the basis of chemical bonding and has been examined extensively [15]. In general
wave functions are signed (not to be confused with electrical charge), for particles above the ground state
regions  of  different  sign  exist,  separated  by  nodes.  There  are  two  major  requirements  for  effective
interaction:
1) Comparable size and energy of wave functions ,
2) sufficient net overlap: In the overlap region of two interacting wave functions sign should be the same
(bonding)  or  opposite  (antibonding)  in  all  overlapping  regions.  If  regions with  same and opposite  sign
balance to give zero net overlap, no interaction results.
From  condition  1)  and  the  data  of  table  1  it  is  obvious  that  the  wave  functions  of  neutrino  and
electron/positron will not show effective interaction with hadrons due to mismatch of size and energy 42. In
the case of the tauon the second rule is crucial. According to this model the tauon is at the end of the partial
product series for y1

0 and should consequently exhibit a high, potentially infinite number of nodes, separating
densely spaced volume elements of alternating wave function sign. Though having particle size and energy
in the same order of magnitude as other hadrons, such as the proton, the frequent change of sign of the tauon
wave function will prohibit net overlap and effective interaction.
This  model  would  however,  suggest  a  smooth  transition  in  the  effects  of  strong interaction.  The  same
reasoning  as  for  the  tauon  would  have  to  apply e.g.  for  Δ-particles,  for  which  scattering  data  are  not
available. The supporting assumption of the Δ being subject to the strong force based on its short lifetime is
not a general distinctive feature of both particle groups and in this model the presence of the strong force, i.e.
the wave function character of particle states, is considered a constituent element of all particles anyway.
µ/π-scattering might give some information about the presence of the strong force in muon interaction.

Overlap of wave functions should provide a possible description of nuclear bonding as well.

6 Other aspects of the model 
6.1 Free particle
Omitting the 0th order term in the differential equations might produce the equation of a free particle. Using
the following version of equ. (57) for the electron gives:

 r
6 σ τe b0

d2 Ψ (r)

dr2 -
b0

2 r 3

dΨ (r)
dr

= 0 (72)

what would be the source of the difference in the gravitational effect of e and µ at  rl,v ? One obvious choice might be to 
interpret this intensity in terms of frequency, i.e. the higher rate the rotating E-vector points in a particular direction and 
having the possibility to create a VSS in that direction.
42 As for energy density ~ Wm/Wn

4
 : e/p ~ E-13, µ/p ~ 6E-4;  µ/π ~ 1/3, different symmetry may play an additional role. 
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d 2Ψ (r)

dr2
≈

3σ τe b0
2

r4

dΨ (r)
dr

+.... (73)

indicating there  could  exist  a  function in  the  general  form of  (66) for  a  photon,  maybe  describing  the
decrease of the electromagnetic fields perpendicular to wave propagation.

 Ψ(r) ≈ exp(−σ τe b0
2

r3 ) + .... (74)

6.2 Elementary charge
6.2.1 Electrical charge
As Ψ(r) approaches 1 for r  ̶ > rl  the Gauss integral ε0  ∫E(r)Ψ(r)2 dA approaches the limit of the elementary
charge e. Since for r  ̶ > 0 the term E(r)Ψ(r)2 goes to zero, there is no 'point charge' at the origin.
At a distance of rm, (see equ. (18)), marking the approximate maximum of W(r), Ψ(r)2 attains a value of
0.667 yielding a calculated charge of 2/3 e and a value of Wn of Wn = Wn/4 43.

6.2.2 Magnetic charge
The model outlined above should principally be suited to calculate the energy of particles with magnetic
charge  em,  i.e.  magnetic  monopoles.  Using the equations  above to  calculate  energies of Dirac magnetic
monopoles [16] is straightforward. Replacing e by the magnetic charge em

em = e /(2α) (75)

turns b0 into bm. The integral  (50) yields only minor variations even when changing input parameters by
several orders of magnitude. This indicates that a product 2b0 = xbm of (51)44 has to be essentially a constant
to provide half integer spin. The proportionality λC,n ~ βn

1/3 has to be applicable for magnetic monopoles as
well, yielding the same factor 36π2 in (20).  As a result equ. (23) should hold for both electric and magnetic
monopoles. Using the same coefficients τn according to equ. (30)  as for electric monopoles in  equ. (16)
would leave (2α)4/3 = 1/280 as ratio between electric and magnetic particle energies. Assuming τ0,magn ~ 1/em

(see  (40)) would  reduce  this  ratio  to  2α  =  2/137.  Both  versions  place  magnetic  monopole  particles
approximately in the same energy range as their electric counterparts.

7 Discussion
7.1 Basic model 
The basic idea behind this work is that elementary particles can be considered as a rotating E-vector pointing
towards the origin and  B and  Vrot 45 being orthogonal to each other, at  least  on a local scale forming a
standing  electromagnetic  wave.  Neutral  particles  are  supposed  to  exhibit  appropriate  nodes  and
corresponding equal volume elements of opposite polarity. Switching direction of the fields will result in the
corresponding antiparticles.
Whatever the detailed mechanism of this might be, there are two basic problems to overcome:
1. Since energy of the particle as calculated from electrostatics increases infinitely for r  ̶ > 0 a function that
serves as a damping term is needed to prevent this. 
2. Vrot which is considered to be some kind of wave propagation velocity i.e. speed of light c  in its broadest
sense, has to approach 0 for r   ̶ >0 . 
The function to be modified in this way is of the form 

Wn(r) ~ b0 r-1=
  e2

4 πεr
~ e2 c0

 r-1 (76)

Thus the function used to modify this, Ψ(r), has to act on terms that contain r, e, c  (or related electromagnetic
parameters). Decreasing the value of c0 obviously is sufficient to meet both requirements. 

43 For the pair e, µ the value of rm  is also distinguished by the relation rl,µ = rm,e , see 2.7.1.
44 or any other constant replacing 4π 
45 tangential velocity, not ω
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7.2 Relation to standard model of particle physics
The  standard  model  classifies  particles  into  leptons  and  hadrons,  composed  of  two  (mesons)  or  three
(baryons) quarks. The classification into the three groups may be reproduced by this model. 
Mesons constitute a distinct group of particles due to their integer angular momentum which is considered to
be a combination of half-integer contributions in both models. In the standard model leptons are defined as
being particles not subject to strong interaction, being essentially point like. Neutrinos, electron and muon
are the particles of lowest mass which in itself might provide an explanation for this quality. The tauon
however is outstanding in possessing a mass  almost  twice that  of  the proton and major decay channels
involving hadrons. The considerations in chpt. 5.3 about overlap and wave function symmetry might provide
a consistent explanation for all leptons not to be subject to strong interaction with hadrons which in turn
should prohibit detection of internal structure of these particles. 
In the model presented the y0

0 and y1
0 groups each include all three particle types. The possibility to calculate

particle energies with a single model using a uniform set of parameters does not support to identify a special
set  of  particles  as  more  “elementary”  than  others.  However,  the  standard  model  of  particle  physics
distinguishes  quite  rigidly  between  leptons  and  hadrons  postulating  that  a  set  of  physical  objects
characterized by an almost identical set of experimental observables -  such as mass, charge, spin, magnetic
moment, well defined mean life time and the effects of electromagnetism, weak interaction and gravitation -
is based on completely different physical principles. This is quite an extraordinary claim, is it covered by
extraordinary evidence ?
The  postulate  of  leptons  not  being  subject  to  strong  interaction  is  not  verifiable  beyond  experimental
accuracy. Neutrino mass is a precedent for the fallacy to confuse a very small value with zero.
The three generation model, attributing a neutrino to each charged lepton, looks like a more solid argument.
However, the total number of neutrinos is not beyond doubt (MiniBoone [17], cosmic neutrinos [9]) and
neutrino oscillation obscures the earlier assumption of clearly distinct particles. Last not least, a distinctive
interaction of neutrinos with the charged leptons might simply be due to the very weak strong interaction of
the particles involved not requiring any assumption beyond that. 
The standard model describes very successfully hadron properties and the reliability of the model presented
here will depend crucially on reproducing the symmetry properties as represented by the various quarks. On
a rudimentary level this is the case as demonstrated above.

Except for the reasoning given for “lepton” particles the description of particles as electromagnetic wave
structured by nodes implies some kind of measurable substructure though it goes without saying that this
substructure does not provide any possibility for a division into smaller entities. 

7.3 Relation to classical quantum mechanics
7.3.1 General
Very general, the relation of this model to classical quantum mechanics may be given by interpreting Ψ(r) as
probability amplitude.  Ψ(r) may be given as the solution of a simple single  2nd order  differential equation
such as the Schrödinger or Dirac equation, applied directly to the electromagnetic field instead of a particle.
The derivation of this model started from working out the function Ψ since it is easier to develop terms for
this function by fitting particle properties than to guess a term for the differential equation and in particular
the term representing potential energy. 
The differential equation may be given as approximately: 

( ħ2 c 0
2

2W kin
)ΔΨ (r)  −  σ W pot r ∇ Ψ (r) +  W pot Ψ (r)  = 0 (77)

There is no eigenvalue for energy, energy as well as other properties have to be calculated by the integral
over  Ψ(r)2,  implying that concepts such as orthonormalization may not be applicable on the level of the
differential equation yet alternative orthonormalization conditions may exist 46 or quite general, the equations

46 The comparable values of rl,e and e/(4π εc) hint at a kind of normalization condition for E(r), e.g.

∫
0

rl , e

E(r )Ψ (r)2dr  = 
ec

4 π εc
∫
0

rl , e

Ψ (r)2 r−2dr  = 
ec

4 π εc

Γ+

3 β e
1 /3  = 

e c

4 π εc

Γ+ Γ -

9rm ,e

 ≈ 
(2 π)2

α

giving 
e c

4 π εc

 ≈ 
4
3

 2 π r l ,2 π ,e
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might be considered to be “normalized” to yield the elementary charge for r > r l.
As a consequence the quantization condition given in 2.4 is not exclusive. The solution of (27)f relates to a
set of rest mass of particles of sufficient stability to be observable experimentally but does not prohibit the
existence of particles with any other mass. 
As for the number of parameters needed to calculate energy states, the model resembles the simplicity of ab
initio  quantum mechanical  models,  relying essentially on b0 and J = 1/2 to  yield  the  expression (1)  47.
Parameter τe or more generally βe is needed to transform the relative energy scale of (1) into an absolute one
and may be itself reduced to the elementary form (40), allowing all calculations to be based on ec and εc as
sole input parameters.

7.3.2 Quantization condition
Other approaches have been tried to obtain a more definite derivation for the quantization. 
A particular simple interpretation may be given using (32) and considering that the ratio rl,n / rl,n+1

3 is constant:

rl,n  /rl,n+1
3 = (σ βe Πτ,n /8)1/3) / (σ βe Πτ,n+1 /8) = const (78)

To be valid for all n this implies Πτ,n  Πτ,n+1 and Πτ,n
1/3 Πτ,n+1 requiring ατ,n+1 = ατ,n

1/3. Since Wn+1
3
 /Wn ~ λC,n /λC,n+1

3 ~ rl,n

/rl,n+1
3 this result is a restatement of the relations given above though suggesting that some geometrical interpretation in

r- or k-space might be conceivable.
Taking the ratio of the two integrals for the particle energy (note ε0 replaced by εc)

W pc,n  = 2εc∫
0

∞

E(r)2Ψ n(r )2d 3r = 2 b0 Γ+ βn
-1/3 /3 (79)

W pc,n  = 2e c∫
0

∞

E (r)Ψ n(r)
2 dr = 2 b0 Γ+ βn

-1/3 /3 (80)

gives:

e c

εc

  =  ∫
0

∞

E (r)2 Ψ n(r)
2 d3 r  / ∫

0

∞

E(r)Ψ n(r)
2dr (81)

and suggests that solutions for E(r) other than the point charge may be used. 
It is the angular momentum that most clearly requires some sort of quantization. The term e c/εc suggests that it might be
replaced by ecc0 ~ I in a term equivalent to (81), maybe providing a more accessible approach to quantization via phase
of the wave function, an aspect which has been totally neglected on this level of approximation. 

8 Summary 
The main results obtained by applying the function Ψ(r) to E(r) will be summarized here using a unit system 
where energy is given in units of [ec] = 3.11E-18 [J] and distance by [ec/εc] = 9.32E-10 [m]. All examples 
given for the electron.

● wave function: 

Ψ e(r<rl)  = exp(−(2
3 )

6 4 π

(2 πr)3
 (Γ - α)9) (82)

● fine structure constant:

4π Γ+ Γ-  ≈
ħ c0

b0

= α-1 (83)

● particle energy (rest energy):

We  =
1

2 π
 ∫

0

r l , n

Ψ e(r)
2 r−2 dr = (4 π (Γ- α)3

3
 2
π2/ 3 Γ +

)
−1

= [2  41/3

9 π2/3
(Γ - α )3]

−1

 ( 1

21 /3 2 π

Γ -

3 ) [ec]  48 (84)

47 J = 1/2 and the values ~1.5 and σ are closely related. Factor ~1.5 from the energy ratio µ/e might be considered an 
additional parameter, yet applies only to this particle pair. 
48 The term in square brackets of (84) is the exponential  (82) up to -1/3, factors 2 from β, 2π and Γ+/3 from (16).
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● long range particle interaction (2 electrons):

W e , pot (r) = 
1

4 π  r
 [1 - 

(4 π )4 Γ -
8 α 24

4 ] [ec]   (85)

● constant of gravitation:

  Gcalc  ≈ 
1

4 π
 
2
3

 α24     (86)

Conclusion

Using the exponential function Ψ(ec,εc) as probability amplitude for the electric field E(r) gives the following
results:

- a numerical approximation for the value of the fine-structure constant α,
- a quantization of energy levels given by a partial product of terms α^(-1/3n),
- a possibility to calculate magnetic moments directly from the electromagnetic fields,
- qualitative explanations for particle properties such as the lepton character of the tauon or the decay of 
   kaons,
- a possibility to quantitatively express gravitational force entirely in electromagnetic terms,
- an indication of a common source for strong force, electromagnetism and gravitation, based on a 
common set of -electromagnetic- coefficients and the expansion of the incomplete gamma function.
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