
1

What every developer should know about time

Martin Thoma
E-Mail: info@martin-thoma.de

Abstract—This paper introduces basic concepts around time,
including calendar systems, time zones, UTC and offsets. It gives
a brief historic overview of systems that are applied to simplify
the understanding.

I. INTRODUCTION

Time is such a fundamental concept that we rarely think about
it in detail. When one is forced to develop software or analyzes
data generated by software, one needs to understand the edge
cases. This paper is a short introduction to those concepts and
edge cases. The paper is inspired by [Sus12a], [Sus12b] and
John Skeet’s talk at NDC London in January 2017.

The target audience of this paper are computer scientists and
developers. There are many more details relevant to historians
like other calendar types, units of time such as Danna [Eng88]
or techniques like radiocarbon dating. While this paper touches
many topics, I recommend [Sei05] for details.

II. A BRIEF HISTORIC OVERVIEW

The history of time and dates is driven by religious beliefs,
economic interests, technological advances and navigation.

One of the oldest types of time measurement is measuring the
apparent solar time by sundial. In sundial time, the time of
the day when the sun reaches the local meridian is defined as
12:00 [Ste07].

1500 BC: Oldest known sundial was created [Bor11].

46 BC: The Julian Calendar was proposed. In the Julian
Calendar, every 4th year is a leap year. This means a Julian
year is 365.25 days, which is also used as the basis for a light
year [Wil89]. The Julian Calendar brought the 12 months in
line with the seasons.

1582: The Gregorian calendar was introduced to counter
seasonal drift [Wik18b]. It was desired that the Christian
holiday of Easter is on spring equinox - the day, when there is
an equal time of daytime and nighttime are of approximately
equal duration all over the planet. To keep equinox around
20 March and 22–23 September, every 4th year is a leap year
except for every 100th year. But every year that is divisible by
400 is again a leap year.

1712: Sweden wanted to gradually change from the Julian
Calendar to the Gregorian calendar by skipping leap years
for 40 years. During the Great Northern War, however, they
didn’t skip the leap years in 1704 and 1708. To restore the
Julian Calendar, they had to add another day. As 1712 was
already a leap year, they added February the 30th, making it a
double-leap year [dou].

1807: The Noon Gun starts firing a time signal in Cape Town,
South Africa [Bis79]. This allows ships in the port to check the
accuracy of their marine chronometers. Marine chronometers
are used on ships to help calculate the longitude.

1825: The Stockton and Darlington Railway opened [Tom15].
This raised the need for synchronized times for train schedules
started to rise. Often, the time of a big city like Berlin was
chosen. This was then called Berlin Standard Time.

1838: Telegraphy made time synchronization possible [TM99].

1876: After missing a train, Sir Sandford Fleming proposes
to use a 24-hour clock. So instead of distinguishing 6am and
6pm, he proposes to distinguish 6 o’clock and 18 o’clock.

1884: Sir Sandford Fleming proposed a worldwide standard
time at the International Meridian Conference to which 24 time
zones of 360◦

24 = 15◦ latitude are added as local offsets. This
way, the local time at each place would be at most half an
hour off from the standardized time and simplify the system
(see Figure 5). That conference accepted a different version of
Universal Time but refused to accept his zones, stating that they
were a local issue outside its purpose. In this conference, the
prime meridian was defined to be the Royal Observatory,
Greenwich, United Kingdom.

1891: The Prussian railway replaced Berlin time with Central
European Time (CET) as a common time [Bar07].

1893: The Imperial German government adopted CET for all
state purposes [Bar07].

1916: The German Empire introduces Daylight Saving
Time [vD16].

1924: The Greenwich Time Signal is introduced as a way to
synchronize time [McI90].

1955: The International Time Bureau (BIH) began a time
scale using both local Caesium clocks and comparisons to
distant clocks using the phase of VLF radio signals [GA05].

1956: The United States Naval Observatory began the A.1 scale
using a Caesium standard atomic clock [For85].

1959: DCF77 started service as a standard-frequency station.

1960: The Coordinated Universal Time (UTC) was intro-
duced [McC09].

1967: The SI second was defined in terms of the Caesium
atom (see Section III). Based on this exact definition, the Temps
Atomique International (TAI) is calculated by the International
Bureau of Weights and Measures (BIMP).

1968: The Universal Time No.1 (UT1) was introduced as a
successor of Greenwich Mean Time (GMT). It is based on
astronomical observations such as the mean solar time. In
the same year, the definition of a second was changed from
astronomical observations to atomic clocks.

1972: The first leap second was introduced [Leaa].

1986: The work on the IANA time zone database began.



2

III. UNITS

The SI base unit for time is a second. A second is historically
defined as the fraction 1

60·60·24 of the mean solar day. [Bro16]
defines it more formally by a physical process:

The second is the duration of 9 192 631 770 peri-
ods of the radiation corresponding to the transition
between the two hyperfine levels of the ground state
of the cesium 133 atom.

Other time units are based on the second:

• All SI-prefixes, especially 1 ns = 10−9 s, 1 µs = 10−6 s,
and 1 ms = 10−3 s. Applications in physics can go down
to an attosecond (10−18 s) [HKS+01].

• 60 seconds are one minute.

• 60 minutes are one hour.

• 24 hours are one standard day. The word “standard”
is important here, for example when you think about
Daylight Saving Time.

A 360◦ rotation of earth is called a sidereal day, while the noon
to noon rotation is called a solar day. Due to the movement of
Earth around the sun, this is not the same. Neither a sidereal
day nor a solar day are of the same length as the standard day.

An sidereal year is the time it takes Earth to orbit around
the sun with respect to fixed stars. A solar year is the time
it takes the sun to return to the same position in the cycle of
seasons as seen by Earth. As the axial precession has a cycle
of 25 722 years [dIV18], the difference between a sidereal year
and a solar year is about 365·24·60

25722 ≈ 20 min
year ).

A calendar year is an approximation of either a solar year,
a sidereal year or different systems like lunar years. A lunar
month is the time it takes the moon to orbit around the earth.
Similar to the calendaric definitions based on Earths rotation
around the sun, there are different lunar months depending on
how a full rotation around the Earth is defined. A calendar
month is an approximation to it. A day is the time it takes
earth to rotate around it’s axis.

And that is where we get problems: All of the calendar units
have at least two definitions which don’t match. Additionally,
a year and a month does not consist of a round multiple of
days. For this reason, leap days are introduced. Also, the speed
of the rotation of the earth is not constant. To keep the exactly
measured atomic time synchronized with Earths rotation, leap
seconds are introduced.

To emphasize that there are two definitions which do not match,
I want to explain two concepts of a day: One is 24 hours =
24 ·60 ·60 SI seconds. The other one is a solar day. It is defined
by a point on earth pointing exactly to the sun. The duration
as measured in seconds of such a solar day differs from day
to day. This can be seen with an “analemma”, a diagram of
the suns position against the local time.

IV. MEASURING AND SYNCHRONIZING TIME

Within desktop computers are real time clocks (RTCs) which
are powered by a small battery. RTCs are chips which contain
a crystal oscillator. Often Quartz is used, because it is cheap,
uses very little power and is accurate. It can gain or lose up
to 15 seconds every 30 days. This phenomenon is called clock
drift.

Today, many operating systems use the Network Time Protocol
(NTP) to get the current time via internet. The used time
servers can have more accurate sources like atomic clocks. The
protocol also compensates network latency. Over the public
internet it is accurate within a few tens of milliseconds. On
local networks it can be reduced to less than 1 ms. A set of
atomic clocks throughout the world keeps time by consensus.
This is defined to be the International Atomic Time (TAI).

For a security in NTP, see [DSZ16].

The Precision Time Protocol (PTP) focuses on higher accuracy
than NTP within local networks. It is standardized in IEEE 1588.
If PTP is implemented in hardware it can reach errors of
less than 10 ns [Wei12] and implemented in software within
milliseconds [GE17]. According to [Wei12], PTP is used to
coordinate measurement instants, to measure time intervals, as
a reference to determine the order of events and the age of
data items.

V. CALENDARS

The Julian calendar only had one leap day every 4 years making
the average year have 365.25 standard days. Comparing it to
the 365.24219 standard days of a tropical year, the Julian
calendar has an error of −0.00781standard day

tropical year and the solar
days shift from the standard days by one day every 128 years.

Today, we use the Gregorian calendar in most parts of the
world. It is named after Pope Gregory XIII, who introduced it
in October 1582. It uses leap years to make the average year
365+ 1

4 −
1

100 + 1
400 = 365.2425 days long, by inserting a leap

day at the end of February every fourth year except for every
100th year except for every 400th year. The Gregorian calendar
has an error of −0.00031standard day

tropical year and thus the shift is
only one day every 3226 years. This is a major improvement
compared the Julian calendar which was used before.

Internally, the computer can keep track of the year by storing
the year as two characters. This is known as the Y2K or
Millennium bug.

The majority of countries today use the Gregorian calendar, but
some countries like India and Israel use other calendar systems
alongside to the Gregorian calendar; mostly for holidays. Two
exceptions are Iran and Afghanistan, which only use the Persian
calendar (Solar Hijri Calendar).



3

VI. TIME ZONES

A time zone is a region where the same time is used. Time
zones convert universal time into local time. The local time is
defined by it’s offset(s) compared to UTC - the Universal Time
Coordinated. A single time zone often has multiple offsets
depending on the date. UTC is not a time zone, but a standard.
The offset of a time zone can change.

See Figure 4 and Figure 3 for an example of a timezone
function which is neither injective nor surjective. This means
one can always unambiguously convert UTC to a local time,
but not always vice versa.

(a) Start of DST

2 4 6 8 10 12 14 16 18 20 22 24

2

4

6

8

10

12

14

16

18

20

22

24

UTC of 2018-03-25

Local time

(b) Start of DST

(c) End of DST

2 4 6 8 10 12 14 16 18 20 22 24

2

4

6

8

10

12

14

16

18

20

22

24

UTC of 2018-10-28

Local time

(d) End of DST

Figure 1: Visualization of the application of DST in Germany.
The function plots show how UTC time is mapped to local time.
While the mapping from UTC to local time is unambiguous,
the function is clearly neither surjective nor injective: Some
local times don’t exist and for some local times two possible
UTC times exist.

Having the UTC time with the offset, for example
2018-09-02T18:40:00+02:00, we know the instant in
time and the current local time (18:40). We don’t know what
local time it will a minute later.

Time zone abbreviations can be ambiguous. For example, IST
can be Indian Standard Time or Irish Standard Time. CST can
be Central Standard Time or China Standard Time.

A single city can also have two time zones: Nicosia, the capital
of Cyprus, is one example [And16]. The north of the city has
the Turkish time zone, the south has the Greek time zone.

Two places can have the same local time, but still not be in one
time zone. For example, during DST, California and Arizona
have the same time zone. They are, however, not in the same
time zone as Arizona does not use DST but California does.

Greenwich Mean Time (GMT) was the same time as Universal
time (UT) until 1972. Since then, GMT is no longer a standard
but a time zone.

Typically, the offset is by complete hours. But Nepal, for
example, has an offset of 5.25 hours.

The offset can also change: For example, the time zone of
Samoa changed from having UTC-11:00 to UTC+13:00 on
December 29th, 2011. The reason for this is trade with Australia
and New Zealand, which were almost one calendar day ahead.
So on Fridays in Samoa it was already Saturday in Australia
and on Sunday in Samoa it was already Monday in Australia.
This switch also is a reason for another oddity: Samoa skipped
Friday. The time went from 2011-12-30 10:00-11:00 to 2011-
12-30 10:00+13:00

It is also possible to have multiple time zones within one region
due to political disputes [BA13].

A commonly used database for time zones is the IANA time zone
database [Ols09]. It has the mailing list https://mm.icann.org/
mailman/listinfo/tz through which errors are reported.

VII. DAYLIGHT SAVING TIME

According to [Wik18a], 72 out of 193 UN member countries
currently use DST. 29 of them start DST on the last Sunday
in March at 01:00 UTC, 12 more countries also use the last
Sunday in March but the article didn’t specify a time. Mexico
uses the first Sunday April, Israel the Friday before last Sunday
March, Jordan and Syria the last Friday of March.

When DST is switched on, the name of the time zone changes.
For example, the time zone used in New York is Eastern
Standard Time (EST) during winter and Eastern Daylight Time
(EDT) during summer.

Figure 2: Blue countries apply northern hemisphere summer
time, orange ones apply southern hemisphere summer time,
bright gray ones formerly used DST and dark gray ones never
applied DST. Author: TimeZonesBoy

https://mm.icann.org/mailman/listinfo/tz
https://mm.icann.org/mailman/listinfo/tz


4

VIII. TIME KEEPING

The history of time keeping devices dates back as early as
2000 BC, but the devices, protocols and infrastructure relevant
for today’s computer system was invented after 1950.

The devices which are most accurate in measuring durations
are Caesium clocks. The first accurate atomic clock was built
in 1955 [EP55].

The first version of NTP was published in 1985 [M+85]. An
updated version [MMBK10] is still in use today. Computers
that synchronize time via NTP do so every 2τ minutes, with
values from τ = 2 (4 seconds) to τ = 17 (36h 24min 32s).

The source of time is called a primary server or stratum-1. A
primary server is synchronized to a reference clock (stratum-
0) directly traceable to UTC. Such a reference clock could
either be a Caesium clock, a GPS receiver or receivers of
terrestrial broadcasts like DCF77 or MSF. Radio clocks and
watches use long-wave time signals like DCF77 in Germany,
MSF in England and France Inter in France to synchronize
themselves automatically. DCF77 has an atomic clock that is
also synchronized with PTB in Braunschweig - the legal time
in Germany.

Note that the UTC time is synchronized via NTP, but the time
zone is applied only locally. This means the local time zone
library has to be updated once in a while.

NTP prevents time drift because the systems continuously
synchronize time.

When the client polls the time from the server, the difference
between server time and client time is called ∆. If ∆ > 1000 s
(16 min 40s), the program exits with a diagnostic message. If
1000 s ≥ ∆ > 125 ms, then the clock is stepped to the correct
time.

In this process, errors are introduced in various levels:

• GNSS: Global navigation satellite systems like GPS have
multiple satellites of which each contains an atomic clock.
In order to counter relativistic effects (see Section A), their
clocks are running slower by design. As the signal needs
time to arrive at the receivers, this has to be corrected as
well. Hence errors in the satellite position also introduce
an error in the current time. In the Ionosphere, there is a
variable time delay which depends on the electron density
and in the troposphere refraction causes issues.

• Network latency: Packages sent over the internet don’t
always take the same amount of time. Queuing is one
factor that influences it.

• Clock drift: Between two synchronizations, the local
clock ticks slightly slower or faster, than it should be.

IX. REPRESENTATION

A. NTP Timestamp Format

The NTP timestamp format has 64-bit which are split into
32-bit unsigned seconds field spanning 136 years and a 32-bit
fraction field resolving 232 picoseconds. As NTP uses an epoch
of January 1st 1900 this yields an overflow in 2036.

B. NTP Date Format

The NTP date format has 128 bit. It includes a 64-bit signed
seconds field spanning 584 billion years and a 64-bit fraction
field resolving 0.05 attosecond (i.e., 0.5 · 10−18).

C. Single Numbers

Once it is possible to measure the time duration’s reliably, one
can define a special date. Every point in time is then simply
this date plus an offset.

For the Unix Timestamp, this is 1st of January, 1970 at
midnight at UTC. Then the elapsed seconds are counted.
A common variation is to count milliseconds. Those two
timestamp formats can be recognized by typically having
10 characters or 13 characters.

Typically, the number of elapsed seconds is stored in a
signed 32-bit integer. The problem with this approach is that
we can only define seconds and only 232 different values.
Hence the first timestamp possible is −231 which is 1901-
12-13T20:45:52Z and the last possible time is 231 − 1 which
is 2038-01-19T03:14:07Z. This is known as the Year 2038
problem. A simple solution is the upgrade to 64-bit integers
which expands the borders to well Before Christ and beyond
the year 10 000 even if the resolution was increased from
seconds to microseconds. Another solution is to use a format
which allows arbitrary size such as PyInt [MZ01], variable
size integers (VarInts) of Go and Protocol Buffers [Lau18].

Similar to the Unix timestamp, the Julian day counts the number
of days since the beginning of the Julian period. Julian day
number 0 is assigned to the day starting at noon on Monday,
January 1, 4713 BC [jul01]. Hence the date 2000-01-01T12:00Z
has the Julian day 2 451 545 [Sei05]. The Modified Julian
Day (MJD) is defined as the Julian Day (JD) reduced by
2 400 000.5 [Win]. Both time formats are relevant for astronomy
and geodesy.

D. Multiple Numbers

Python stores datetimes by the different components (year,
month day, hour, minute, second, µ-seconds) as shown in Ta-
ble I. This is similar to what C stores [Sta05], with the notable
exception of the range of seconds and the year representation.
The number of second can be 60 in the case of leap seconds.
For C, the Year 0 is 1990



5

Name Bytes Values

Year 2 1–9999
Month 1 1–12
Day 1 1–31
Hour 1 0–23
Minute 1 0–59
Second 1 0–59
µ-second 3 0–999 999

Table I: Structure of Pythons datetime format.

X. RECURRING EVENTS

It is a common task to implement software that has to run
on re-occuring events: Paying the monthly rent in a banking
system at the end of a month, marking a birthday as "occurs
every year on the same day" in a calendar system, running
a computationally intensive task at 02:00, sending out status
reports every Monday at 08:00.

For example, birthdays have the following problem:

• The simple solution to add 365 days for a year is not
good enough, because the current year might be a leap
year and thus one would calculate the birthday one year
off.

• Increasing the year by one does not work when the
birthday is on the leap day.

This leads to the distinction between a Duration and a
Period as explained in the Concepts section. Two common
solutions for dealing with such problems are RRULES as
specified in RFC-5545 and CRON.

CRON specifies those events as

M H D m w user command

where M is the minute, H is the hour, D is the day, m is the
month and w is the weekday. Here are two examples:

• 23 13 * * * repeats every day at 23:13

• 0 4 3 * * repeats every 3rd of a month at 4:00

RRULES are more flexible. They define a timezone and a
datetime at which they start, a RRULE which contains the
frequency of recurrence and how long it lasts. One example is:

DTSTART;TZID=Europe/Rome:20181003T090000
RRULE:FREQ=DAILY;UNTIL=20191230T095500Z

End dates are not required, though. The following example
defines an event that happens every second day:

DTSTART;TZID=Europe/Rome:20181003T090000
RRULE:FREQ=DAILY;INTERVAL=2

XI. CONCEPTS

Jon Skeet’s date and time API “Noda Time” distinguishes
several date and time related concepts. This distinction makes
it easier to understand allowed operations and allows the
enforcement of them via compiler.

A. Instant

An Instant is a point in time. It is always the same world wide.
A possible representation of an instant is in UTC, for example
2018-09-05 07:22:00Z were Z is short for Zulu time.
Another representation are Unix Timestamps, where the 1st of
January 1970 at 00:00 with no offset is the fixed reference
starting point.

B. Duration

A duration is elapsed time. It can be measured in seconds,
minutes, standard days, or many others. Most notably, a year,
a month and a week are not durations as they are based on
calendar systems. For example, the Bahá’í calendar does not
have the concept of a week.

C. Interval

An interval is a duration combined with an
instant. For example, [2018-09-05T07:22:00Z,
2018-09-05T07:23:00Z] or
(2018-09-05T07:22:00Z, 1min) both represent
the same one minute interval in time.

D. Calendar System

A calendar system is a way of structuring local time. Examples
are the Gregorian calendar, the Incan calendar, Solar Hijri
calendar, and the Assyrian calendar. There are many more
calendar systems, of which most are not in use anymore. Today,
the Gregorian calendar is the dominating calendar system, but
especially for holidays others are still in place. For example,
the Pawukon calendar in Bali (Indonesia) or the Tamil calendar
in India.

As the Gregorian calendar dominates the world today, this
paper will not explain any specialties of calendar systems.

E. Date

A date is associated with a calendar system. In the Gregorian
calendar, it is denoted by the year, a month and a day.

One could think that having a datetime where you set the time
to any fixed value like 00:00:00 is equivalent to a date object.
Bugs like [lev11] show that this is not the case. Somebody who
was born in Auckland (New Zealand) on 1990-04-28 04:00:00
would not suddenly say he was born on 27th, just because he
visits Pago Pago in the time zone Pacific/Pago Pago.

F. Time of the day

The local time or time of the day is what a watch shows.



6

G. Timezone-Unaware Fixed-Calendar Datetime

The time of the day and a date combined. As there is the date,
a calendar system is implicitly used. As it is timezone-unaware,
it is not associated with a time zone. This uses one single, fixed
calendar system. 2018-12-31 23:58:53 (Gregorian
calendar) is one example. Note that this is ambiguous due
to time zones, in contrast to an Instant.

H. Timezone-Unaware Variable-Calendar Datetime

Similar to time zones, there should are calendar-zones, that
means regions on Earth which define a calendar system. Those
calendar systems change. For example, in the UK in 1752, it
was switched on September the 2nd of the Julian calendar to
September the 14th of the Gregorian calendar. So the local
date September the 3rd never occurred in the UK. Still, it
is possible to define this day in both, the Gregorian and
the Julian calendar. 2018-12-31 23:58:53 (United
Kingdom/London calendar) is one example. In contrast
to timezone-unaware fixed-calendar datetime, this represents
only times that people at the time actually had in their calen-
dar. Just like the timezone-unaware fixed-calendar datetime,
the timezone-unaware variable-calendar datetime is not an
Instant due to the ambiguity introduced by not specifying
a time zone.

I. Time zones

A time zone is a function of time. It maps UTC time to local
time. See Section VI.

J. Period

A period is similar to a duration, but takes calendar expres-
sions into account. Where durations have a direct and clear
relationship to SI seconds, the length of period depends on the
start time. For example, a period of one month added to the
Date 2018-02-01 results in the date 2018-03-01. A period of a
month added to that results in the 2018-04-01. So the same
period added in February is only 28 days, but 31 days if added
to first of March.

K. Operations

Date and time related objects have a lot of possible operations.
For example, an interval can be shrunken from the end or
symmetrically by a given duration. In most cases operations
between two date/time objects are ambiguous. For this reason,
the + and - operators should in many cases not be used. Please
also note that adding durations like 5min to anything which
is not an instant is ambiguous, as local (timezone-unaware)
time is not continuous. The simplest example for this is DST,
where adding 5min to the local time 2018-10-29T02:58
can result in 2018-10-29T02:03 (for example in Germany)
or in 2018-10-29T03:03.

XII. COMMON PROBLEMS

One of the best documented problems is that of the maximum
representable time. On one form, it is known as the Year 2000
Problem (Millennium bug) if the year is stored only by the
last two digits. In another form, it is known as the Year 2038
Problem if a signed 32-bit integer is used for Unix Timestamps.
Similar, there is the problem of the minimum representable
time. For this kind of bug, [Mil99] documents that in Waadt
(Switzerland) for two days almost all hospitals could not check-
in new patients, a waste-water spill of 15 million liters of
water in Los Angeles, 20 000 credit card swipe machines were
unusable [KC99]. 426 inhabitants of Munich (Germany) were
sent payment orders almost 100 years ago [Mun99]. A similar
bug happened to Telecom Italia. The structure of the bug was
as follows:

dueDate ← serviceDate + 1 month . Overflow happened
if dueDate < currentDate then

Send payment order
end if

Other common problems include leap year bugs:

• Microsoft Azure was taken offline by the leap year bug
on 2012-02-29 00:00Z. A security certificate was created
by incrementing the year by one on February 29th, but
February 29th 2013 is an invalid date [Lai12]. Exactly the
same bug was in CouchDB [Buc16].

• Dusseldorf International Airport refused to let 1200 pieces
of luggage onto planes [Kan16].

• A lot more are mentioned in [Joh16a].

Calculating how much time passed: The idea that you can
simply create two datetime objects, get the number of seconds
/ hours passed in between and by this calculating the number
of years passed is wrong. DST, leap days and calendar changes
can break things.

XIII. SOLUTIONS

In general, it is a good idea to use well-maintained packages
based on the IANA time zone database for dealing with time
zones. For representing and exchanging time-based data ISO-
8601 with the offset and the time zone name or - if the local
time is not relevant - in UTC is a good idea.

A. Storing an Instant

In practice it is often necessary to store when something
happened: When did a customer book a hotel room? When
was the payment sent? At which time does the plane land so
that a taxi can be ordered?

For the decision what to store, it is important to be clear
about how the instant is used. If it is only used to put the
event in a larger context such as with log files or payment
information, then it should be stored in UTC. For example,
2018-09-15T11:56:59Z.



7

If the local time is important, then UTC with the offset should
be stored, like in 2018-09-15T13:56:59+02:00. If the
instant should be used to calculate something based on it, then
it is necessary to store the timezone as well. For example
2018-09-15T13:56:59+02:00, Europe/Berlin.

B. Serialization of Instants

The recommended way to serialize instants is by using the
Date Time String Format of ECMA-262 (JavaScript):

YYYY-MM-DDTHH:mm:ss.sssZ

The reason why this format is recommended are:

• Standards: The format is specified in a standard. It is also
conform to ISO 8601 and equals the internet date-time
format specified in RFC3339 [NK02].

• Human readable: In contrast to Unix Timestamps, it is
fairly easy for humans to read this format.

• Lexicographically Sortable: It is not necessary to convert
this representation. Due to this fact, even systems with
bad datetime support can at least sort.

If local time is of interest, the IANA time zone name should
be saved. Europe/Berlin is one example of such a time
zone name.

Similarly, a date should be stored in the format YYYY-MM-DD.

C. Serialization of Durations

A common way to serialize durations is to use the smallest
unit of interest and store an integer. Most of the time this unit
will be seconds or milliseconds.

REFERENCES

[And16] E. Andreou, “Cyprus’ new division: two time zones now a reality,”
Oct. 2016. [Online]. Available: https://cyprus-mail.com/2016/10/
30/cyprus-new-division-two-time-zones-now-reality/

[Asl12] H. Aslaksen, “Why is singapore in the “wrong” time zone?” Jun.
2012. [Online]. Available: http://www.math.nus.edu.sg/aslaksen/
teaching/timezone.html

[BA13] Y. Ben-Ami, “The world’s only ethnic time zone,” Oct. 2013.
[Online]. Available: https://972mag.com/the-worlds-only-ethnic-
time-zone/81006/

[Bar07] I. Bartky, One Time Fits All: The Campaigns for Global
Uniformity. Stanford University Press, 2007. [Online]. Available:
https://books.google.de/books?id=rC6sAAAAIAAJ

[Bis79] W. Bisset, “A new look at the castle of good hope and its symbolic
importance,” Scientia Militaria: South African Journal of Military
Studies, vol. 9, no. 3, pp. 1–6, 1979. [Online]. Available: https://
www.ajol.info/index.php/smsajms/article/viewFile/144208/133876

[Bor11] L. Borchardt, “Eine reisesonnenuhr aus ägypten,” Zeitschrift für
ägyptische Sprache und Altertumskunde, vol. 49, no. 1-2, pp. 80–82,
1911.

[Bro16] S. Brochure, “The international system of units (si)[2006;
updated in 2014],” Bureau International des Poids et Mesures,
F-92310 Sevres, France, 2016. [Online]. Available: https:
//www.bipm.org/en/publications/si-brochure/second.html

[Buc16] M. Buckett, “favicon produces a stack trace on february the
29th.” CouchDB Issue Tracker, Mar. 2016. [Online]. Available:
https://issues.apache.org/jira/browse/COUCHDB-2956

[dIV18] A. de Iaco Veris, Practical Astrodynamics. Springer, 2018.

[dou] “February 30 was a real date,” timeanddate.com. [Online].
Available: https://www.timeanddate.com/date/february-30.html

[DSZ16] B. Dowling, D. Stebila, and G. Zaverucha, “Authenticated network
time synchronization.” in USENIX Security Symposium, 2016, pp.
823–840.

[Eng88] R. K. Englund, “Administrative timekeeping in ancient
mesopotamia,” Journal of the Economic and Social History
of the Orient, vol. 31, no. 2, pp. 121–185, 1988.

[EP55] L. Essen and J. Parry, “An atomic standard of frequency and time
interval: a caesium resonator,” Nature, vol. 176, no. 4476, p. 280,
1955.

[For85] P. Forman, “Atomichron®: the atomic clock from concept to
commercial product,” Proceedings of the IEEE, vol. 73, no. 7,
pp. 1181–1204, 1985.

[GA05] B. Guinot and E. F. Arias, “Atomic time-keeping from 1955 to the
present,” Metrologia, vol. 42, no. 3, p. S20, 2005.

[GE17] E. Gedda and A. Eriksson, “Practical analysis of the precision time
protocol under different types of system load,” 2017.

[Goo18] “Leap smear,” Google Public NTP, Aug. 2018. [Online]. Available:
https://developers.google.com/time/smear

[HKS+01] M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider,
N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher,
and F. Krausz, “Attosecond metrology,” Nature, vol. 414, no. 6863,
p. 509, 2001.

[Hun17] R. Hunt, “Keeping time with amazon time sync service,” AWS News
Blog, Nov. 2017. [Online]. Available: https://aws.amazon.com/de/
blogs/aws/keeping-time-with-amazon-time-sync-service/

[IER13] “Measuring the irregularities of the earth’s rotation,” 2013. [Online].
Available: https://www.iers.org/IERS/EN/Science/EarthRotation/
EarthRotation.html

[Joh16a] M. Johnson, “List of 2016 leap day bugs,” Feb. 2016.
[Online]. Available: https://codeofmatt.com/2016/02/29/list-of-
2016-leap-day-bugs/

https://cyprus-mail.com/2016/10/30/cyprus-new-division-two-time-zones-now-reality/
https://cyprus-mail.com/2016/10/30/cyprus-new-division-two-time-zones-now-reality/
http://www.math.nus.edu.sg/aslaksen/teaching/timezone.html
http://www.math.nus.edu.sg/aslaksen/teaching/timezone.html
https://972mag.com/the-worlds-only-ethnic-time-zone/81006/
https://972mag.com/the-worlds-only-ethnic-time-zone/81006/
https://books.google.de/books?id=rC6sAAAAIAAJ
https://www.ajol.info/index.php/smsajms/article/viewFile/144208/133876
https://www.ajol.info/index.php/smsajms/article/viewFile/144208/133876
https://www.bipm.org/en/publications/si-brochure/second.html
https://www.bipm.org/en/publications/si-brochure/second.html
https://issues.apache.org/jira/browse/COUCHDB-2956
https://www.timeanddate.com/date/february-30.html
https://developers.google.com/time/smear
https://aws.amazon.com/de/blogs/aws/keeping-time-with-amazon-time-sync-service/
https://aws.amazon.com/de/blogs/aws/keeping-time-with-amazon-time-sync-service/
https://www.iers.org/IERS/EN/Science/EarthRotation/EarthRotation.html
https://www.iers.org/IERS/EN/Science/EarthRotation/EarthRotation.html
https://codeofmatt.com/2016/02/29/list-of-2016-leap-day-bugs/
https://codeofmatt.com/2016/02/29/list-of-2016-leap-day-bugs/


8

[Joh16b] ——, “Time zone chaos inevitable in egypt,” Jul. 2016.
[Online]. Available: https://codeofmatt.com/2016/07/01/time-zone-
chaos-inevitable-in-egypt/

[jul01] “Resolution b1 on the use of julian dates,” XXIII.
International Astronomical Union General Assembly, Jan.
2001. [Online]. Available: https://www.iers.org/IERS/EN/Science/
Recommendations/resolutionB1.html

[Kan16] A. Kannenberg, “Flughafen-software kennt schalttag nicht
- 1200 koffer gestrandet,” Feb. 2016. [Online]. Available:
https://www.heise.de/newsticker/meldung/Flughafen-Software-
kennt-Schalttag-nicht-1200-Koffer-gestrandet-3121045.html

[KC99] P. Kelso and J. Cassey, “Bug’s first strike as swipe
machines fail,” The Guardian, 1999. [Online]. Available: https://
www.theguardian.com/technology/1999/dec/30/hacking.security1

[kul18] kulseran, “Why could it be necessary to set a wrong
time in production?” Reddit, Sep. 2018. [Online]. Available:
https://www.reddit.com/r/learnprogramming/comments/9ebq7s/
why_could_it_be_necessary_to_set_a_wrong_time_in/e5noo0c/

[Lai12] B. Laing, “Summary of windows azure service disruption
on feb 29th, 2012,” Mar. 2012. [Online]. Avail-
able: https://azure.microsoft.com/en-us/blog/summary-of-windows-
azure-service-disruption-on-feb-29th-2012/

[Lau18] B. Lau, “Protocol buffers encoding: Base 128 varints,” Google, Tech.
Rep., 2018. [Online]. Available: https://developers.google.com/
protocol-buffers/docs/encoding#varints

[Leaa] “Leap seconds,” USNO. [Online]. Available: https:
//www.usno.navy.mil/USNO/time/master-clock/leap-seconds

[Leab] “Leap seconds in utc until 31 december 2018.” [Online]. Available:
ftp://ftp2.bipm.org/pub/tai/publication/leaptab/leaptab.pdf

[lev11] levi, “Is the javascript date object always one day
off?” StackOverflow, Sep. 2011. [Online]. Available:
IstheJavascriptdateobjectalwaysonedayoff?

[LMS05] P. Leach, M. Mealling, and R. Salz, “A universally unique identifier
(uuid) urn namespace,” IETF RFC, Jul. 2005. [Online]. Available:
https://tools.ietf.org/rfc/rfc4122.txt

[M+85] D. Mills et al., “Network time protocol,” RFC 958, M/A-COM
Linkabit, Tech. Rep., 1985.

[McC09] D. McCarthy, “Coordinated universal time (utc),” 18th meeting of
the CCTF, Jun. 2009. [Online]. Available: https://www.bipm.org/
cc/CCTF/Allowed/18/CCTF_09-32_noteUTC.pdf

[McI90] J. McIlroy, “Network radio - new time and frequency distribution
system,” in ENG INF, no. 40, 1990, p. 5.

[Mil99] “Millennium bug: Immer mehr störungen werden
bekannt,” Spiegel Online, 1999. [Online]. Avail-
able: http://www.spiegel.de/netzwelt/tech/millennium-bug-immer-
mehr-stoerungen-werden-bekannt-a-58093.html

[MMBK10] D. Mills, J. Martin, J. Burbank, and W. Kasch, “Network time
protocol version 4: Protocol and algorithms specification,” Tech.
Rep., 2010.

[Mun99] “München vom millennium bug heimge-
sucht,” Spiegel Online, 1999. [Online]. Avail-
able: http://www.spiegel.de/netzwelt/tech/jahr-2000-vorbereitung-
muenchen-vom-millennium-bug-heimgesucht-a-56756.html

[MZ01] G. v. R. Moshe Zadka, “Pep 237 – unifying long integers and
integers,” Python Software Foundation, Tech. Rep., 2001. [Online].
Available: https://www.python.org/dev/peps/pep-0237/

[NK02] C. Newman and G. Klyne, “Date and time on the internet:
Timestamps (rfc 3339),” The Internet Society., Jul. 2002. [Online].
Available: https://tools.ietf.org/html/rfc3339#page-8

[NYHR05] C. Neuman, T. Yu, S. Hartman, and K. Raeburn, “The kerberos
network authentication service (v5),” ietf.org, Jul. 2005. [Online].
Available: https://tools.ietf.org/rfc/rfc4120.txt

[Ols09] A. D. Olson, “Sources for time zone and daylight saving
time data,” ucla.edu, May 2009. [Online]. Available: http:
//web.cs.ucla.edu/~eggert/tz/tz-link.htm

[Ope18] “Seconds since the epoch,” The Open Group Base Specifications
Issue 7, 2018. [Online]. Available: http://pubs.opengroup.org/
onlinepubs/9699919799/xrat/V4_xbd_chap04.html#tag_21_04_16

[Sch18] Schwern, “How important is local time for security?”
StackExchange, Sep. 2018. [Online]. Available: https:
//security.stackexchange.com/a/193679/3286

[Sei05] P. K. Seidelmann, Explanatory supplement to the astronomical
almanac. University Science Books, 2005.

[Sta05] I. Standard, “Programming languages—c,” INTERNATIONAL
STANDARD ISO/IEC, vol. 9899, 2005. [Online]. Available:
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf

[Ste07] D. D. P. Stern, “The sundial,” planetary.org, 2007. [Online].
Available: https://www-spof.gsfc.nasa.gov/stargaze/Sundial.htm

[Sus12a] N. Sussman, “Falsehoods programmers believe about
time,” Infinite Undo! Blog, Jun. 2012. [Online].
Available: https://infiniteundo.com/post/25326999628/falsehoods-
programmers-believe-about-time

[Sus12b] ——, “More falsehoods programmers believe about time;
“wisdom of the crowd” edition,” Infinite Undo! Blog, Jun. 2012.
[Online]. Available: https://infiniteundo.com/post/25509354022/
more-falsehoods-programmers-believe-about-time

[Tay14] A. Taylor, “The surprising political importance of crimea’s shift to
moscow time,” The Washington Post, Mar. 2014.

[TM99] K. Terplan and P. A. Morreale, The telecommunications handbook.
CrC Press, 1999.

[Tom15] W. W. Tomlinson, The North Eastern Railway: its rise and
development. A. Reid, limited, 1915.

[vD16] C. von Delbrück, “Bekanntmachung über die vorverlegung der
stunden während der zeit vom 1. mai bis 30. september 1916.” in
Reichs-Gesetzblatt. Reichsamt des Inneren, Apr. 1916, no. 67, p.
243.

[Wei12] H. Weibel, “IEEE 1588 standard for a precision clock
synchronization protocol and synchronous ethernet,” Nov.
2012. [Online]. Available: http://www.in2p3.fr/actions/formation/
Numerique12/IEEE_1588_Tutorial_IN2P3_Handout.pdf

[Wik18a] Wikipedia contributors, “Daylight saving time
by country,” Wikipedia, Aug. 2018. [On-
line]. Available: https://en.wikipedia.org/w/index.php?title=
Daylight_saving_time_by_country&oldid=856565108

[Wik18b] ——, “Gregorian calendar,” Wikipedia, Sep. 2018.
[Online]. Available: https://en.wikipedia.org/w/index.php?title=
Gregorian_calendar&oldid=857369994

[Wil89] G. Wilkins, “The iau style manual,” IAU Transactions XXB S,
vol. 23, 1989. [Online]. Available: https://www.iau.org/publications/
proceedings_rules/units/

[Win] G. M. R. Winkler, “Modified julian date.” [Online]. Available:
https://tycho.usno.navy.mil/mjd.html

https://codeofmatt.com/2016/07/01/time-zone-chaos-inevitable-in-egypt/
https://codeofmatt.com/2016/07/01/time-zone-chaos-inevitable-in-egypt/
https://www.iers.org/IERS/EN/Science/Recommendations/resolutionB1.html
https://www.iers.org/IERS/EN/Science/Recommendations/resolutionB1.html
https://www.heise.de/newsticker/meldung/Flughafen-Software-kennt-Schalttag-nicht-1200-Koffer-gestrandet-3121045.html
https://www.heise.de/newsticker/meldung/Flughafen-Software-kennt-Schalttag-nicht-1200-Koffer-gestrandet-3121045.html
https://www.theguardian.com/technology/1999/dec/30/hacking.security1
https://www.theguardian.com/technology/1999/dec/30/hacking.security1
https://www.reddit.com/r/learnprogramming/comments/9ebq7s/why_could_it_be_necessary_to_set_a_wrong_time_in/e5noo0c/
https://www.reddit.com/r/learnprogramming/comments/9ebq7s/why_could_it_be_necessary_to_set_a_wrong_time_in/e5noo0c/
https://azure.microsoft.com/en-us/blog/summary-of-windows-azure-service-disruption-on-feb-29th-2012/
https://azure.microsoft.com/en-us/blog/summary-of-windows-azure-service-disruption-on-feb-29th-2012/
https://developers.google.com/protocol-buffers/docs/encoding#varints
https://developers.google.com/protocol-buffers/docs/encoding#varints
https://www.usno.navy.mil/USNO/time/master-clock/leap-seconds
https://www.usno.navy.mil/USNO/time/master-clock/leap-seconds
ftp://ftp2.bipm.org/pub/tai/publication/leaptab/leaptab.pdf
Is the Javascript date object always one day off?
https://tools.ietf.org/rfc/rfc4122.txt
https://www.bipm.org/cc/CCTF/Allowed/18/CCTF_09-32_noteUTC.pdf
https://www.bipm.org/cc/CCTF/Allowed/18/CCTF_09-32_noteUTC.pdf
http://www.spiegel.de/netzwelt/tech/millennium-bug-immer-mehr-stoerungen-werden-bekannt-a-58093.html
http://www.spiegel.de/netzwelt/tech/millennium-bug-immer-mehr-stoerungen-werden-bekannt-a-58093.html
http://www.spiegel.de/netzwelt/tech/jahr-2000-vorbereitung-muenchen-vom-millennium-bug-heimgesucht-a-56756.html
http://www.spiegel.de/netzwelt/tech/jahr-2000-vorbereitung-muenchen-vom-millennium-bug-heimgesucht-a-56756.html
https://www.python.org/dev/peps/pep-0237/
https://tools.ietf.org/html/rfc3339#page-8
https://tools.ietf.org/rfc/rfc4120.txt
http://web.cs.ucla.edu/~eggert/tz/tz-link.htm
http://web.cs.ucla.edu/~eggert/tz/tz-link.htm
http://pubs.opengroup.org/onlinepubs/9699919799/xrat/V4_xbd_chap04.html#tag_21_04_16
http://pubs.opengroup.org/onlinepubs/9699919799/xrat/V4_xbd_chap04.html#tag_21_04_16
https://security.stackexchange.com/a/193679/3286
https://security.stackexchange.com/a/193679/3286
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
https://www-spof.gsfc.nasa.gov/stargaze/Sundial.htm
https://infiniteundo.com/post/25326999628/falsehoods-programmers-believe-about-time
https://infiniteundo.com/post/25326999628/falsehoods-programmers-believe-about-time
https://infiniteundo.com/post/25509354022/more-falsehoods-programmers-believe-about-time
https://infiniteundo.com/post/25509354022/more-falsehoods-programmers-believe-about-time
http://www.in2p3.fr/actions/formation/Numerique12/IEEE_1588_Tutorial_IN2P3_Handout.pdf
http://www.in2p3.fr/actions/formation/Numerique12/IEEE_1588_Tutorial_IN2P3_Handout.pdf
https://en.wikipedia.org/w/index.php?title=Daylight_saving_time_by_country&oldid=856565108
https://en.wikipedia.org/w/index.php?title=Daylight_saving_time_by_country&oldid=856565108
https://en.wikipedia.org/w/index.php?title=Gregorian_calendar&oldid=857369994
https://en.wikipedia.org/w/index.php?title=Gregorian_calendar&oldid=857369994
https://www.iau.org/publications/proceedings_rules/units/
https://www.iau.org/publications/proceedings_rules/units/
https://tycho.usno.navy.mil/mjd.html


9

APPENDIX

LEAP SECONDS

The time it takes earth to rotate once is not constant [IER13]
and in average closer to 86400.002s than to 86400 = 24·60·60s.
As tidal forces slow it down over time, UT1 keeps getting
slower while TAI is always the same length. In order to keep
the difference between UT1 and TAI below 0.9 seconds, the
International Earth Rotation and Reference Systems Service
(IERS) announces leap seconds.

Since the introduction of the leap second concept in 1972
until December 2018, 28 leap seconds were added [Leab]. The
extra second is displayed on UTC clocks as 23:59:60. Due
to the fact that leap seconds cannot be calculated in advance,
but are announced about 6 months before they happen, it is
not possible to accurately calculate the distance to an UTC
timestamp more than 6 months in the future.

Another issue leap seconds can cause is by their implementation:
Most developers assume that the seconds part of a timestamp
is in {0, . . . , 59}, hence having a value of 60 is problematic.
Another possible implementation is to repeat second 59, hence
effectively making it last two seconds. This would mean the
instant serialization format YYYY-MM-DDTHH:mm:ss.sssZ
as introduced in Section XIII-B would become ambiguous.
Google implemented a third solution: Leap Smearing [Goo18].
The idea is to change the duration of all seconds within several
hours instead of adding a leap second. Amazon uses leap
smearing as well [Hun17].

TIME DILATION

Time dilation is the effect that the elapsed time measured by
two observers is different. This can either be due to a velocity
difference relative to each other or due to being differently
situated relative to a gravitational field. This effect always
happens, but is in most cases not noticeable as the effect is too
small and thus hidden by the inaccuracies of the used clocks.

One application where it can be seen are global navigation
satellite systems (GNSS) such as GPS. GPS works by 31 satel-
lites in orbit so that at any point on earth at least 4 satellites
are visible. The GPS-satellites all have atomic clocks. Their
signals contain the exact time when the signal was send. As the
satellites move at approximately 14 000 km h−1 they gradually
fall behind clocks on earth-based receivers:

t = T0 · (
1√

1− v2

c2

− 1) = T0 · 8.4135 · 10−5

Each day, it will be approximately +7 µs.

Time dilation does not only happen when an object has high
speed, but also when an object is closer to something heavy.
For example, on earth clocks tick slower than on the satellites
which are in an orbit of 20 180 km.

POSSIBLE ATTACKS BY TIME MANIPULATION

Offline: Local System Time Manipulation

Some mobile games have counters which define when you get
resources. The simplest way to implement this is by using the
current system time and comparing it with a stored value of
the past system time.

The same attack is used to prolong 30-day trial software.

This attack can be prevented by loading the system time from
a server through a secured connect.

NTP and Certificate Validation

SSL certificates have a time when they become valid and
when they expire. If an attacker gets an old certificate and can
manipulate the time on the machine, they can make the local
machine think it is valid.

Replay-Attacks

Network protocols such as the Kerberos authentication proto-
col [NYHR05] contain timestamps to prevent replay attacks.

Log poisoning

An attacker which has control over the clock than change
where a log entry appears.

Random Number Generators

Generators for pseudo-random numbers need a seed to start.
This seed can be based on the local system time. If an attacker
has control over it, he can control the output of the random
number generator [Sch18].

Manipulation of UUID Generation

UUID version 1 and version 2 take a timestamp as input for
the generation of IDs [LMS05]. As pointed out in [Sch18], an
attacker could generate a UUID which is equal to an identifier
to an administrator and thus gain more privileges.

Periodic Jobs

Another potential issue if an attacker can manipulate time
pointed out by [Sch18] is changing the behavior of periodic
jobs. Either an attacker can cause them to run much more often
and at times where the server load is higher, or the attacker can
prevent such jobs to execute potentially critical maintenance
tasks. A Watchdog is one example of such a periodic job that
can be system-critical.



10

DATE, TIME AND DATETIME PARSING

Parsing anything related to dates is highly ambiguous. For
example, the format 06/04/03 could mean

• 2016-04-03

• 1916-04-03

• 2003-04-06

• 2003-06-04

Besides those inherent ambiguities, JavaScript adds more:

// Strings passed to Date are treated as a year
d1 = new Date("0");
// Sat Jan 01 2000 00:00:00 GMT+0100 (CET)

// Numbers passed to Date are treated
// as a timestamp
d2 = new Date(0);
// Thu Jan 01 1970 01:00:00 GMT+0100 (CET)

// The first number is treated as the year,
// the second as the month
d3 = new Date(0, 0);
// Mon Jan 01 1900 00:00:00 GMT+0100 (CET)

d4 = new Date(0, 0, 0);
//Sun Dec 31 1899 00:00:00 GMT+0100 (CET)

PROGRAMMING LANGUAGES AND SOFTWARE PACKAGES
FOR TIME ZONES

As a developer how creates software which does in some way
use local time, it is important to understand how time zone
updates come into the software.

In order to test them, Table II can be used. Depending on the
use case, the following combinations should be tested:

• T1 and T2: The local day 2011-12-30 does not exist for
the Pacific/Apia timezone. Similarly for T3 and T4,
the local time 2018-03-25 02:30:00 does not exist
for Europe/Germany.

• T3 and T4: Although only one second passed, more than
an hour passed in the local time.

• T6 and T7: Two different instants map to the same local
time.

UTC Timezone Local Datetime

T1 2011-12-30 09:59:00 Pacific/Apia 2011-12-29T23:59:00-10:00
T2 2011-12-30 10:00:00 Pacific/Apia 2011-12-31T00:00:00+14:00
T3 2018-03-25 00:59:59 Europe/Germany 2018-03-25T01:59:59+01:00
T4 2018-03-25 01:00:00 Europe/Germany 2018-03-25T03:00:00+02:00
T5 2017-10-29 01:00:00 Europe/Germany 2017-10-29T02:00:00+01:00
T6 2017-10-29 00:59:59 Europe/Germany 2017-10-29T02:59:59+02:00
T7 2017-10-29 01:59:59 Europe/Germany 2017-10-29T02:59:59+01:00

Table II: Example values for UTC and local time

The Linux operating system makes use of the IANA time zone
database. It’s a package called tzdata on Debian, Ubuntu
and Arch Linux. Those packages are updated several times a
year.

In Python, the core module datetime should be used if
possible. A notable exception are time zones which are handled
with pytz and dates before 1 AD or after the year 9999 need
other packages.

In JavaScript, the problems around the language core have
been addressed with libraries. Sugar.js can be used for
date parsing from natural language and Moment.js for all
of the rest. The Moment Timezone package directly includes
the IANA timezone database.

In .NET, nodatime is recommended.

PHP uses its timezonedb internal module https://
pecl.php.net/package/timezonedb.

Java has an internal Date class which which had issues that
were adressed by Joda Time. With Java SE 8, users are
asked to migrate to java.time (JSR-310). Time4J is another
possibility. The JRE directly contains the timezone data, but it
can be updated with TZUpdater.

https://pecl.php.net/package/timezonedb
https://pecl.php.net/package/timezonedb


11

Figure 3: A map of the world’s UTC offsets.

Figure 4: A map of the world’s time zones as of the 2017a release of the timezone database. Author: Evan Siroky



12

Figure 5: Local times in 1857 for rail passengers.



13

DATETIME FORMATTING

Many languages support the following strings for formatting datetime, as specified in [Ope18].

Formatter Meaning Example 1 More examples

%% A literal ’%’ character. %
%Z Time zone name (empty string if the object is naive). UTC -10
%z UTC offset in the form +HHMM or -HHMM (empty string if the

object is naive).
+0000 +0200, -1000

%x Locale’s appropriate date representation. 01/03/19
%X Locale’s appropriate time representation. 18:19:34
%c Locale’s appropriate date and time representation. Thu Jan 3 18:19:34 2019
%Y Year with century as a decimal number. 2018 1, . . . , 10 000
%y Year without century as a zero-padded decimal number. 18 00, . . . , 99
%b Month as locale’s abbreviated name. Sep Jan, . . . , Oct, Nov, Dec
%B Month as locale’s full name. September October, Oktober
%m † Month as a zero-padded decimal number. 09 01, 02, 03, . . . , 12
%W †s Week number of the year. Monday as the first day of the week. 52 00, . . . , 51
%U †s Week number of the year. Sunday as the first day of the week. 12 00, . . . , 51
%a Weekday as locale’s abbreviated name. Mon Tue, Wed, Thu, Fri, Sat, Sun
%A Weekday as locale’s full name. Monday Tuesday, Wednesday
%w Weekday as a decimal number, where 0 is Sunday and 6 is Saturday. 0 1, 2, 3, 4, 5, 6
%d † Day of the month as a zero-padded decimal number. 30 01, 02, . . . , 31
%j † Day of the year as a zero-padded decimal number. 243 000, . . . , 366
%p Locale’s equivalent of either AM or PM. AM AM,PM
%H † Hour (24-hour clock) as a zero-padded decimal number. 20 01, . . . , 24
%I † Hour (12-hour clock) as a zero-padded decimal number. 08 01, . . . , 12
%M † Minute as a zero-padded decimal number. 10 00, . . . , 59
%S † Second as a zero-padded decimal number. 05 00, . . . , 59

†: Zero Padding §: A decimal number s: All days in a new year preceding the first day of the week are considered to be in
week 0.



14

FALSEHOOD PROGRAMMER BELIEVES ABOUT TIME

The following contains the falsehood believes stated in [Sus12a]
and possible reasons why they are false:

1) There are always 24 hours in a day.
→ Due to DST, countries like Germany have one day in
the year with 23 and one with 25 hours.

2) Months have either 30 or 31 days.
→ February has 28 or 29 days.

3) Years have 365 days.
→ Leap years have 366 days.

4) February is always 28 days long.
→ February has 28 or 29 days.

5) Any 24-hour period will always begin and end in the
same day (or week, or month).
→ Not when DST is and not when you start at any time
different from 00:00.

6) A week always begins and ends in the same month.
→ Similar to Item 5, weeks don’t align with borders of
the month.

7) A week (or a month) always begins and ends in the same
year.
→ Similar to Item 6, weeks don’t align with borders of
the year.

8) The machine that a program runs on will always be in
the GMT time zone.
→ My current machine is on CEST. On Linux systems,
you can check it with date +"%Z %z"

9) Ok, that’s not true. But at least the time zone in which a
program has to run will never change.
→ The user could change it, for example because of
political disputes as in Israel.

10) Well, surely there will never be a change to the time zone
in which a program hast to run in production.

11) The system clock will always be set to the correct local
time.
→ Clock drift makes this hard.

12) The system clock will always be set to a time that is not
wildly different from the correct local time.
→ The operating system or the software being used might
not know about time zone changes, such as the one in
Samoa in 2011.

13) If the system clock is incorrect, it will at least always be
off by a consistent number of seconds.
→ Due to clock drift all clocks will go wrong. The amount
by which they are wrong will also change.

14) The server clock and the client clock will always be set
to the same time.
→ This is hard to achieve due to different time zones,
simple clock errors and potential hacks. For example,

some people change their clocks by five minutes to not
be late.

15) The server clock and the client clock will always be set
to around the same time.
→ A persons internal clock can just be broken. If it is
set to 1970-01-01, this is one indicator. Or the client can
try to manipulate the server.

16) Ok, but the time on the server clock and time on the client
clock would never be different by a matter of decades.
→ Same as for Item 15 - manipulation can happen.

17) If the server clock and the client clock are not in sync,
they will at least always be out of sync by a consistent
number of seconds.
→ Clock drift

18) The server clock and the client clock will use the same
time zone.

19) The system clock will never be set to a time that is in
the distant past or the far future.
→ Testing can be a reason to do it. Or users trying to
force undesirable behavior.

20) Time has no beginning and no end.
→ The Unix Timestamp begins on 2018-01-01 00:00:00
UTC and ends in 2038 for 32-bit systems.

21) One minute on the system clock has exactly the same
duration as one minute on any other clock.
→ Clock drift is the simple reason why this is wrong.
Deliberately slowing down clocks such as for GPS
satellites to counter relativity is the other explanation.

22) Ok, but the duration of one minute on the system clock
will be pretty close to the duration of one minute on most
other clocks.
→ There was a bug on KVM on CentOS. See [Sus12a]
for details.

23) Fine, but the duration of one minute on the system clock
would never be more than an hour.
→ This can happen due to DST. Then the clocks switch
from 01:59:59 to 03:00:59 within a minute. And of course
the bug mentioned in Item 22.

24) You can’t be serious.

25) The smallest unit of time is one second.

26) Ok, one millisecond.

27) It will never be necessary to set the system time to any
value other than the correct local time.

28) Ok, testing might require setting the system time to a
value other than the correct local time but it will never
be necessary to do so in production.

29) Time stamps will always be specified in a commonly-
understood format like 1339972628 or 133997262837.
→ 091630Z JUL 11 represents 2011-07-09T16:30Z in
date-time group.



15

30) Time stamps will always be specified in the same format.
→ The developers can change their mind. For example,
in the 1980s, a YY format might have made sense. With
the year 2000 approaching developers could have changed
their mind.

31) Time stamps will always have the same level of precision.
→ Unix-Timestamps come seconds level precision and in
millisecond-level precision.

32) A time stamp of sufficient precision can safely be
considered unique.
→ The time 2017-10-29 02:04:55 in the time zone
Europe/Berlin is inherently non-unique due to DST. The
hour from 2am to 3am exists twice. No level of precision
changes that it is duplicated. The information if it is DST
or not is necessary to solve this ambiguity.

33) A timestamp represents the time that an event actually
occurred.
→ Timestamps are calculated based on a computers local
clock. This clock likely is not completely synchronized
with TAI, meaning it is not the time when it occurred. As
pointed out by [kul18], in distributed systems this problem
is faced.

34) Human-readable dates can be specified in universally
understood formats such as 05/07/11.
→ This format is not universally understood. Some people
use DD/MM/YY and others use MM/DD/YY. The best
solution is YYYY-MM-DD HH:mm:ss+Z.

The follwoing datetime fallacies are from [Sus12b]. Answers
were added:

1) The offsets between two time zones will remain constant.
→ No, due to DST and due to political considerations
such as the one by Samoa in 2011.

2) OK, historical oddities aside, the offsets between two
time zones won’t change in the future.

3) Changes in the offsets between time zones will occur with
plenty of advance notice.
→ See [Joh16b]: The Egyptian Cabinet announced on
April 29th, 2016 that daylight saving time was to take effect
starting July 7th. On June 27th the Egyptian Parliament
voted to abolish daylight saving time completely.

4) Daylight saving time happens at the same time every year.
→ DST is applied at the last Sunday in March in Germany
at 2am. This means the calendar day changes. It is also
important to note that it was applied in April between
1916 and 1945.

5) Daylight saving time happens at the same time in every
time zone.
→ For Germany, it is the last Sunday in March at
01:00 UTC. For Mexico it is the first Sunday in April.

6) Daylight saving time always adjusts by an hour.
→ On Lord Howe Island (Australia) clocks are set only

30 minutes forward from LHST (UTC+10:30) to LHDT
(UTC+11) during DST.

7) Months have either 28, 29, 30, or 31 days.
→ The day after September 2, 1752 in the UK was
September 14 as regulated in the Calendar (New Style)
Act 1750. This was when the UK switched from Julian
Calendar to the Gregorian Calendar. Hence the UK skipped
11 days in September 1752 and thus had a shorter calendar
year.

8) The day of the month always advances contiguously from
N to either N+1 or 1, with no discontinuities.
→ See Item 7

9) There is only one calendar system in use at one time.
→ On Bali, three calendar systems are in use: (1) The
Gregorian Calendar, (2) the Balinese pawukon calendar,
and (3) Balinese saka calendar

10) There is a leap year every year divisible by 4.
→ Except for years that are exactly divisible by 100, but
these centurial years are leap years if they are exactly
divisible by 400.

11) Non leap years will never contain a leap day.
→ A full rotation of the earth around the sun does not
always take the same time. It averages around 365.242 19
days. Including the leap year rules, the Gregorian calendar
has 365.2425 days, meaning it is 0.00031 days too fast.
After 3225 years this sums up to a day. As the Gregorian
calendar was introduced in 1582 this makes a leap year
necessary for the year 4807, assuming it was correct in
1582.

12) It will be easy to calculate the duration of x number of
hours and minutes from a particular point in time.
→ It might be impossible, it only a UTC time with offset
is given. While it is easy to add the duration to a given
UTC time, it is impossible without the timezone to know
the local time. The reason are offset changes, most notably
by UTC:

13) The same month has the same number of days in it
everywhere.
→ See Item 7

14) Unix time is completely ignorant about anything except
seconds.

15) Unix time is the number of seconds since Jan 1st 1970.
→ Unix time ignores leap seconds.

16) The day before Saturday is always Friday.
→ No, because Samoa changed its time zone from -11
to +13 and skipped Friday.

17) Contiguous time zones are no more than an hour apart.
→ No, because of the International Date Line.

18) Two time zones that differ will differ by an integer number
of half hours.
→ No, because Nepal has UTC+0545



16

19) Okay, quarter hours.
→ Currently, this is true. Historically, Calcutta time had
UTC+5:53:20 until 1948.

20) Okay, seconds, but it will be a consistent difference if we
ignore DST.
→ We have to ignore DST, leap seconds and changes of
the offset due to political or economic reasons.

21) If you create two date objects right beside each other,
they’ll represent the same time.
→ No, because the command needs time to execute.

22) You can wait for the clock to reach exactly HH:MM:SS
by sampling once a second.
→ No, because commands take time to execute and due
to leap seconds or DST.

23) If a process runs for n seconds and then terminates,
approximately n seconds will have elapsed on the system
clock at the time of termination.
→ No, because of DST.

24) Weeks start on Monday.
→ In the US, weeks start on Sundays. Also, the Hebrew
calendar starts at Sunday and proceed to Saturday.

25) Days begin in the morning.
→ The Hebrew calendar day starts at sunset.

26) Holidays span an integer number of whole days.
→ The Hebrew calendar defines the day by sunset. This
means Holidays don’t span an integer amount of standard
days.

27) The weekend consists of Saturday and Sunday.
→ For more than 20 countries, including India, Mexico
and Egypt, this is false.

28) It’s possible to establish a total ordering on timestamps
that is useful outside your system.
→ Local clocks can be synchronized via NTP, but there is
always a finite accuracy. This means although the locally
created UTC timestamps indicate event A happened before
event B, due to their finite precision it can be the other
way around.

29) The local time offset (from UTC) will not change during
office hours.
→ People work at all times (night shifts) and although
DST happens often on weekends at night, there is no
guarantee that it will always be like this everywhere.

30) Thread.sleep(1000) sleeps for 1000 milliseconds.

31) Thread.sleep(1000) sleeps for ≥ 1000 millisec-
onds.
→ See https://stackoverflow.com/q/11376307

32) There are 60 seconds in every minute.
→ No, due to leap seconds and DST.

33) Timestamps always advance monotonically.
→ No. When Unix time was invented, leap seconds did
not exist.

34) GMT and UTC are the same time zone.
→ No, UTC is a standard.

35) Britain uses GMT.
→ No, in the summer Britain uses BST - British Summer
Time.

36) Time always goes forwards.
→ No, due to DST.

37) The difference between the current time and one week
from the current time is always 7 · 86400 seconds.
→ No, due to DST and leap seconds.

38) The difference between two timestamps is an accurate
measure of the time that elapsed between them.

39) 24:12:34 is a invalid time.
→ Time notations like this are used to linearize times.
This notation makes it easier to calculate how much time
has passed.

40) Every integer is a theoretical possible year.
→ The Gregorian calendar started in the year 1582.

41) If you display a datetime, the displayed time has the same
second part as the stored time.
→ No, because Time zones can have an offset on the
seconds-level.

42) Or the same year.
→ If it is 2018-12-30 23:30:00Z, then it is already the
first day of 2019 in Germany.

43) But at least the numerical difference between the displayed
and stored year will be less than 2.

44) If you have a date in a correct YYYY-MM-DD format,
the year consists of four characters.
→ No, if it is before the year 1000 or after the year 9999.
Or if it is before the year -999.

45) If you merge two dates, by taking the month from the
first and the day/year from the second, you get a valid
date.
→ No, because February only has 28 or 29 days.

46) But it will work, if both years are leap years.
→ No, because one date could be 2018-01-30 and the
other one could be 2018-02-26.

47) If you take a W3C published algorithm for adding
durations to dates, it will work in all cases.

48) The standard library supports negative years and years
above 10000.
→ Python does not support years below 1 and above
9999.

49) Time zones always differ by a whole hour.
→ No, because Nepal has UTC+0545

https://stackoverflow.com/q/11376307/562769


17

50) If you convert a timestamp with millisecond precision to
a date time with second precision, you can safely ignore
the millisecond fractions.
→ No, because of rounding mistakes.

51) But you can ignore the millisecond fraction, if it is less
than 0.5.

52) Two-digit years should be somewhere in the range 1900-
2099.
→ No, it also could be in 1800-1899.

53) If you parse a date time, you can read the numbers
character for character, without needing to backtrack.

54) But if you print a date time, you can write the numbers
character for character, without needing to backtrack.

55) You will never have to parse a format like —12Z or
P12Y34M56DT78H90M12.345S.

56) There are only 24 time zones.
→ The Wikipedia article “List of time zone abbreviations”
lists 199 time zones and the time zone library pytz knows
about 591 time zones (pytz.all_timezones).

57) Time zones are always whole hours away from UTC.
→ No, because Nepal has UTC+0545

58) Daylight Saving Time (DST) starts/ends on the same date
everywhere.
→ No, Germany and Mexico differ.

59) DST is always an advancement by 1 hour.
→ In 1933, Singapore added +0:20 hours for DST [Asl12].

60) Reading the client’s clock and comparing to UTC is a
good way to determine their time zone.
→ No, because of DST.

61) The software stack will/won’t try to automatically adjust
for time zone/DST.

62) My software is only used internally/locally, so I don’t
have to worry about time zones.
→ Users want their local time being used on their machine.

63) My software stack will handle it without me needing to
do anything special.

64) I can easily maintain a time zone list myself.
→ During this article, it should have become clear that
this is a hard task.

65) All measurements of time on a given clock will occur
within the same frame of reference.
→ See GPS / time dilatation.

66) The fact that a date-based function works now means it
will work on any date.
→ No, because there are so many special cases.

67) Years have 365 or 366 days.
→ See Item 7

68) Each calendar date is followed by the next in sequence,
without skipping.
→ See Item 7

69) A given date and / or time unambiguously identifies a
unique moment.
→ Due to multiple calendar systems notations like 1752-
08-08 are ambiguous. Also, notations like 07/06/17 are
highly ambiguous as it could be 2017-06-07, 2017-07-06,
1917-06-07, 1917-07-06, 2007-06-17.

70) Leap years occur every 4 years.
→ Except for years divisible by 100.

71) You can determine the time zone from the state/province.
→ The time zone in the Palestinian territories (West Bank,
Gaza Stripe) entered DST in 2011

72) You can determine the time zone from the city/town.
→ When people have different political interests, they can
choose different time zones as well. One example is the
Russian annexation of Crimea [Tay14].

73) Time passes at the same speed on top of a mountain and
at the bottom of a valley.
→ No, due to relativistic time dilation.

74) One hour is as long as the next in all time systems.
→ Today, we mostly use temporal hours: We define one
second. Then an hour is simply 60 · 60 seconds. Another
option are seasonal hours. You have sunrise and sunset.
Then you divide both, night and day, by 12. Then you
have 24 hours. But those hours depend on the time of the
year and on the latitude.

75) You can calculate when leap seconds will be added.
→ Leap seconds are necessary because earths rotation is
influenced by various factors. On the long run, tidal forces
slow down earth rotation. This means UT1 keeps getting
slower while TAI is always the same length. In order
to keep the difference between UT1 and TAI below 0.9
seconds, the International Earth Rotation and Reference
Systems Service (IERS) announces leap seconds.

76) The precision of the data type returned by a
getCurrentTime() function is the same as the preci-
sion of that function.

77) Two subsequent calls to a getCurrentTime() func-
tion will return distinct results.
→ The system clock could be resetted between the calls.

78) The second of two subsequent calls to a
getCurrentTime() function will return a larger
result.
→ See Item 77.

79) The software will never run on a space ship that is orbiting
a black hole.


	I Introduction
	II A brief historic overview
	III Units
	IV Measuring and Synchronizing Time
	V Calendars
	VI Time Zones
	VII Daylight Saving Time
	VIII Time Keeping
	IX Representation
	IX-A NTP Timestamp Format
	IX-B NTP Date Format
	IX-C Single Numbers
	IX-D Multiple Numbers

	X Recurring Events
	XI Concepts
	XI-A Instant
	XI-B Duration
	XI-C Interval
	XI-D Calendar System
	XI-E Date
	XI-F Time of the day
	XI-G Timezone-Unaware Fixed-Calendar Datetime
	XI-H Timezone-Unaware Variable-Calendar Datetime
	XI-I Time zones
	XI-J Period
	XI-K Operations

	XII Common Problems
	XIII Solutions
	XIII-A Storing an Instant
	XIII-B Serialization of Instants
	XIII-C Serialization of Durations

	References
	Appendix

